]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
qcow2: Increase the default upper limit on the L2 cache size
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
46 " memory-encryption=@var{} memory encryption object to use (default=none)\n",
47 QEMU_ARCH_ALL)
48 STEXI
49 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
50 @findex -machine
51 Select the emulated machine by @var{name}. Use @code{-machine help} to list
52 available machines.
53
54 For architectures which aim to support live migration compatibility
55 across releases, each release will introduce a new versioned machine
56 type. For example, the 2.8.0 release introduced machine types
57 ``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures.
58
59 To allow live migration of guests from QEMU version 2.8.0, to QEMU
60 version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8''
61 and ``pc-q35-2.8'' machines too. To allow users live migrating VMs
62 to skip multiple intermediate releases when upgrading, new releases
63 of QEMU will support machine types from many previous versions.
64
65 Supported machine properties are:
66 @table @option
67 @item accel=@var{accels1}[:@var{accels2}[:...]]
68 This is used to enable an accelerator. Depending on the target architecture,
69 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
70 more than one accelerator specified, the next one is used if the previous one
71 fails to initialize.
72 @item kernel_irqchip=on|off
73 Controls in-kernel irqchip support for the chosen accelerator when available.
74 @item gfx_passthru=on|off
75 Enables IGD GFX passthrough support for the chosen machine when available.
76 @item vmport=on|off|auto
77 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
78 value based on accel. For accel=xen the default is off otherwise the default
79 is on.
80 @item kvm_shadow_mem=size
81 Defines the size of the KVM shadow MMU.
82 @item dump-guest-core=on|off
83 Include guest memory in a core dump. The default is on.
84 @item mem-merge=on|off
85 Enables or disables memory merge support. This feature, when supported by
86 the host, de-duplicates identical memory pages among VMs instances
87 (enabled by default).
88 @item aes-key-wrap=on|off
89 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
90 controls whether AES wrapping keys will be created to allow
91 execution of AES cryptographic functions. The default is on.
92 @item dea-key-wrap=on|off
93 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
94 controls whether DEA wrapping keys will be created to allow
95 execution of DEA cryptographic functions. The default is on.
96 @item nvdimm=on|off
97 Enables or disables NVDIMM support. The default is off.
98 @item enforce-config-section=on|off
99 If @option{enforce-config-section} is set to @var{on}, force migration
100 code to send configuration section even if the machine-type sets the
101 @option{migration.send-configuration} property to @var{off}.
102 NOTE: this parameter is deprecated. Please use @option{-global}
103 @option{migration.send-configuration}=@var{on|off} instead.
104 @item memory-encryption=@var{}
105 Memory encryption object to use. The default is none.
106 @end table
107 ETEXI
108
109 HXCOMM Deprecated by -machine
110 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
111
112 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
113 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
114 STEXI
115 @item -cpu @var{model}
116 @findex -cpu
117 Select CPU model (@code{-cpu help} for list and additional feature selection)
118 ETEXI
119
120 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
121 "-accel [accel=]accelerator[,thread=single|multi]\n"
122 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
123 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
124 STEXI
125 @item -accel @var{name}[,prop=@var{value}[,...]]
126 @findex -accel
127 This is used to enable an accelerator. Depending on the target architecture,
128 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
129 more than one accelerator specified, the next one is used if the previous one
130 fails to initialize.
131 @table @option
132 @item thread=single|multi
133 Controls number of TCG threads. When the TCG is multi-threaded there will be one
134 thread per vCPU therefor taking advantage of additional host cores. The default
135 is to enable multi-threading where both the back-end and front-ends support it and
136 no incompatible TCG features have been enabled (e.g. icount/replay).
137 @end table
138 ETEXI
139
140 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
141 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
142 " set the number of CPUs to 'n' [default=1]\n"
143 " maxcpus= maximum number of total cpus, including\n"
144 " offline CPUs for hotplug, etc\n"
145 " cores= number of CPU cores on one socket\n"
146 " threads= number of threads on one CPU core\n"
147 " sockets= number of discrete sockets in the system\n",
148 QEMU_ARCH_ALL)
149 STEXI
150 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
151 @findex -smp
152 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
153 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
154 to 4.
155 For the PC target, the number of @var{cores} per socket, the number
156 of @var{threads} per cores and the total number of @var{sockets} can be
157 specified. Missing values will be computed. If any on the three values is
158 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
159 specifies the maximum number of hotpluggable CPUs.
160 ETEXI
161
162 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
163 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
164 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
165 "-numa dist,src=source,dst=destination,val=distance\n"
166 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n",
167 QEMU_ARCH_ALL)
168 STEXI
169 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
170 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
171 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
172 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
173 @findex -numa
174 Define a NUMA node and assign RAM and VCPUs to it.
175 Set the NUMA distance from a source node to a destination node.
176
177 Legacy VCPU assignment uses @samp{cpus} option where
178 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
179 @samp{cpus} option represent a contiguous range of CPU indexes
180 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
181 set of VCPUs can be represented by providing multiple @samp{cpus}
182 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
183 split between them.
184
185 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
186 a NUMA node:
187 @example
188 -numa node,cpus=0-2,cpus=5
189 @end example
190
191 @samp{cpu} option is a new alternative to @samp{cpus} option
192 which uses @samp{socket-id|core-id|thread-id} properties to assign
193 CPU objects to a @var{node} using topology layout properties of CPU.
194 The set of properties is machine specific, and depends on used
195 machine type/@samp{smp} options. It could be queried with
196 @samp{hotpluggable-cpus} monitor command.
197 @samp{node-id} property specifies @var{node} to which CPU object
198 will be assigned, it's required for @var{node} to be declared
199 with @samp{node} option before it's used with @samp{cpu} option.
200
201 For example:
202 @example
203 -M pc \
204 -smp 1,sockets=2,maxcpus=2 \
205 -numa node,nodeid=0 -numa node,nodeid=1 \
206 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
207 @end example
208
209 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
210 assigns RAM from a given memory backend device to a node. If
211 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
212 split equally between them.
213
214 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
215 if one node uses @samp{memdev}, all of them have to use it.
216
217 @var{source} and @var{destination} are NUMA node IDs.
218 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
219 The distance from a node to itself is always 10. If any pair of nodes is
220 given a distance, then all pairs must be given distances. Although, when
221 distances are only given in one direction for each pair of nodes, then
222 the distances in the opposite directions are assumed to be the same. If,
223 however, an asymmetrical pair of distances is given for even one node
224 pair, then all node pairs must be provided distance values for both
225 directions, even when they are symmetrical. When a node is unreachable
226 from another node, set the pair's distance to 255.
227
228 Note that the -@option{numa} option doesn't allocate any of the
229 specified resources, it just assigns existing resources to NUMA
230 nodes. This means that one still has to use the @option{-m},
231 @option{-smp} options to allocate RAM and VCPUs respectively.
232
233 ETEXI
234
235 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
236 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
237 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
238 STEXI
239 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
240 @findex -add-fd
241
242 Add a file descriptor to an fd set. Valid options are:
243
244 @table @option
245 @item fd=@var{fd}
246 This option defines the file descriptor of which a duplicate is added to fd set.
247 The file descriptor cannot be stdin, stdout, or stderr.
248 @item set=@var{set}
249 This option defines the ID of the fd set to add the file descriptor to.
250 @item opaque=@var{opaque}
251 This option defines a free-form string that can be used to describe @var{fd}.
252 @end table
253
254 You can open an image using pre-opened file descriptors from an fd set:
255 @example
256 qemu-system-i386
257 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
258 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
259 -drive file=/dev/fdset/2,index=0,media=disk
260 @end example
261 ETEXI
262
263 DEF("set", HAS_ARG, QEMU_OPTION_set,
264 "-set group.id.arg=value\n"
265 " set <arg> parameter for item <id> of type <group>\n"
266 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
267 STEXI
268 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
269 @findex -set
270 Set parameter @var{arg} for item @var{id} of type @var{group}
271 ETEXI
272
273 DEF("global", HAS_ARG, QEMU_OPTION_global,
274 "-global driver.property=value\n"
275 "-global driver=driver,property=property,value=value\n"
276 " set a global default for a driver property\n",
277 QEMU_ARCH_ALL)
278 STEXI
279 @item -global @var{driver}.@var{prop}=@var{value}
280 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
281 @findex -global
282 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
283
284 @example
285 qemu-system-i386 -global ide-hd.physical_block_size=4096 disk-image.img
286 @end example
287
288 In particular, you can use this to set driver properties for devices which are
289 created automatically by the machine model. To create a device which is not
290 created automatically and set properties on it, use -@option{device}.
291
292 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
293 driver=@var{driver},property=@var{prop},value=@var{value}. The
294 longhand syntax works even when @var{driver} contains a dot.
295 ETEXI
296
297 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
298 "-boot [order=drives][,once=drives][,menu=on|off]\n"
299 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
300 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
301 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
302 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
303 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
304 QEMU_ARCH_ALL)
305 STEXI
306 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
307 @findex -boot
308 Specify boot order @var{drives} as a string of drive letters. Valid
309 drive letters depend on the target architecture. The x86 PC uses: a, b
310 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
311 from network adapter 1-4), hard disk boot is the default. To apply a
312 particular boot order only on the first startup, specify it via
313 @option{once}. Note that the @option{order} or @option{once} parameter
314 should not be used together with the @option{bootindex} property of
315 devices, since the firmware implementations normally do not support both
316 at the same time.
317
318 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
319 as firmware/BIOS supports them. The default is non-interactive boot.
320
321 A splash picture could be passed to bios, enabling user to show it as logo,
322 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
323 supports them. Currently Seabios for X86 system support it.
324 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
325 format(true color). The resolution should be supported by the SVGA mode, so
326 the recommended is 320x240, 640x480, 800x640.
327
328 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
329 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
330 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
331 system support it.
332
333 Do strict boot via @option{strict=on} as far as firmware/BIOS
334 supports it. This only effects when boot priority is changed by
335 bootindex options. The default is non-strict boot.
336
337 @example
338 # try to boot from network first, then from hard disk
339 qemu-system-i386 -boot order=nc
340 # boot from CD-ROM first, switch back to default order after reboot
341 qemu-system-i386 -boot once=d
342 # boot with a splash picture for 5 seconds.
343 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
344 @end example
345
346 Note: The legacy format '-boot @var{drives}' is still supported but its
347 use is discouraged as it may be removed from future versions.
348 ETEXI
349
350 DEF("m", HAS_ARG, QEMU_OPTION_m,
351 "-m [size=]megs[,slots=n,maxmem=size]\n"
352 " configure guest RAM\n"
353 " size: initial amount of guest memory\n"
354 " slots: number of hotplug slots (default: none)\n"
355 " maxmem: maximum amount of guest memory (default: none)\n"
356 "NOTE: Some architectures might enforce a specific granularity\n",
357 QEMU_ARCH_ALL)
358 STEXI
359 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
360 @findex -m
361 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
362 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
363 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
364 could be used to set amount of hotpluggable memory slots and maximum amount of
365 memory. Note that @var{maxmem} must be aligned to the page size.
366
367 For example, the following command-line sets the guest startup RAM size to
368 1GB, creates 3 slots to hotplug additional memory and sets the maximum
369 memory the guest can reach to 4GB:
370
371 @example
372 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
373 @end example
374
375 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
376 be enabled and the guest startup RAM will never increase.
377 ETEXI
378
379 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
380 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
381 STEXI
382 @item -mem-path @var{path}
383 @findex -mem-path
384 Allocate guest RAM from a temporarily created file in @var{path}.
385 ETEXI
386
387 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
388 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
389 QEMU_ARCH_ALL)
390 STEXI
391 @item -mem-prealloc
392 @findex -mem-prealloc
393 Preallocate memory when using -mem-path.
394 ETEXI
395
396 DEF("k", HAS_ARG, QEMU_OPTION_k,
397 "-k language use keyboard layout (for example 'fr' for French)\n",
398 QEMU_ARCH_ALL)
399 STEXI
400 @item -k @var{language}
401 @findex -k
402 Use keyboard layout @var{language} (for example @code{fr} for
403 French). This option is only needed where it is not easy to get raw PC
404 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
405 display). You don't normally need to use it on PC/Linux or PC/Windows
406 hosts.
407
408 The available layouts are:
409 @example
410 ar de-ch es fo fr-ca hu ja mk no pt-br sv
411 da en-gb et fr fr-ch is lt nl pl ru th
412 de en-us fi fr-be hr it lv nl-be pt sl tr
413 @end example
414
415 The default is @code{en-us}.
416 ETEXI
417
418
419 DEF("audio-help", 0, QEMU_OPTION_audio_help,
420 "-audio-help print list of audio drivers and their options\n",
421 QEMU_ARCH_ALL)
422 STEXI
423 @item -audio-help
424 @findex -audio-help
425 Will show the audio subsystem help: list of drivers, tunable
426 parameters.
427 ETEXI
428
429 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
430 "-soundhw c1,... enable audio support\n"
431 " and only specified sound cards (comma separated list)\n"
432 " use '-soundhw help' to get the list of supported cards\n"
433 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
434 STEXI
435 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
436 @findex -soundhw
437 Enable audio and selected sound hardware. Use 'help' to print all
438 available sound hardware.
439
440 @example
441 qemu-system-i386 -soundhw sb16,adlib disk.img
442 qemu-system-i386 -soundhw es1370 disk.img
443 qemu-system-i386 -soundhw ac97 disk.img
444 qemu-system-i386 -soundhw hda disk.img
445 qemu-system-i386 -soundhw all disk.img
446 qemu-system-i386 -soundhw help
447 @end example
448
449 Note that Linux's i810_audio OSS kernel (for AC97) module might
450 require manually specifying clocking.
451
452 @example
453 modprobe i810_audio clocking=48000
454 @end example
455 ETEXI
456
457 DEF("device", HAS_ARG, QEMU_OPTION_device,
458 "-device driver[,prop[=value][,...]]\n"
459 " add device (based on driver)\n"
460 " prop=value,... sets driver properties\n"
461 " use '-device help' to print all possible drivers\n"
462 " use '-device driver,help' to print all possible properties\n",
463 QEMU_ARCH_ALL)
464 STEXI
465 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
466 @findex -device
467 Add device @var{driver}. @var{prop}=@var{value} sets driver
468 properties. Valid properties depend on the driver. To get help on
469 possible drivers and properties, use @code{-device help} and
470 @code{-device @var{driver},help}.
471
472 Some drivers are:
473 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}]
474
475 Add an IPMI BMC. This is a simulation of a hardware management
476 interface processor that normally sits on a system. It provides
477 a watchdog and the ability to reset and power control the system.
478 You need to connect this to an IPMI interface to make it useful
479
480 The IPMI slave address to use for the BMC. The default is 0x20.
481 This address is the BMC's address on the I2C network of management
482 controllers. If you don't know what this means, it is safe to ignore
483 it.
484
485 @table @option
486 @item bmc=@var{id}
487 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
488 @item slave_addr=@var{val}
489 Define slave address to use for the BMC. The default is 0x20.
490 @item sdrfile=@var{file}
491 file containing raw Sensor Data Records (SDR) data. The default is none.
492 @item fruareasize=@var{val}
493 size of a Field Replaceable Unit (FRU) area. The default is 1024.
494 @item frudatafile=@var{file}
495 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
496 @end table
497
498 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
499
500 Add a connection to an external IPMI BMC simulator. Instead of
501 locally emulating the BMC like the above item, instead connect
502 to an external entity that provides the IPMI services.
503
504 A connection is made to an external BMC simulator. If you do this, it
505 is strongly recommended that you use the "reconnect=" chardev option
506 to reconnect to the simulator if the connection is lost. Note that if
507 this is not used carefully, it can be a security issue, as the
508 interface has the ability to send resets, NMIs, and power off the VM.
509 It's best if QEMU makes a connection to an external simulator running
510 on a secure port on localhost, so neither the simulator nor QEMU is
511 exposed to any outside network.
512
513 See the "lanserv/README.vm" file in the OpenIPMI library for more
514 details on the external interface.
515
516 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
517
518 Add a KCS IPMI interafce on the ISA bus. This also adds a
519 corresponding ACPI and SMBIOS entries, if appropriate.
520
521 @table @option
522 @item bmc=@var{id}
523 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
524 @item ioport=@var{val}
525 Define the I/O address of the interface. The default is 0xca0 for KCS.
526 @item irq=@var{val}
527 Define the interrupt to use. The default is 5. To disable interrupts,
528 set this to 0.
529 @end table
530
531 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
532
533 Like the KCS interface, but defines a BT interface. The default port is
534 0xe4 and the default interrupt is 5.
535
536 ETEXI
537
538 DEF("name", HAS_ARG, QEMU_OPTION_name,
539 "-name string1[,process=string2][,debug-threads=on|off]\n"
540 " set the name of the guest\n"
541 " string1 sets the window title and string2 the process name (on Linux)\n"
542 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
543 " NOTE: The thread names are for debugging and not a stable API.\n",
544 QEMU_ARCH_ALL)
545 STEXI
546 @item -name @var{name}
547 @findex -name
548 Sets the @var{name} of the guest.
549 This name will be displayed in the SDL window caption.
550 The @var{name} will also be used for the VNC server.
551 Also optionally set the top visible process name in Linux.
552 Naming of individual threads can also be enabled on Linux to aid debugging.
553 ETEXI
554
555 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
556 "-uuid %08x-%04x-%04x-%04x-%012x\n"
557 " specify machine UUID\n", QEMU_ARCH_ALL)
558 STEXI
559 @item -uuid @var{uuid}
560 @findex -uuid
561 Set system UUID.
562 ETEXI
563
564 STEXI
565 @end table
566 ETEXI
567 DEFHEADING()
568
569 DEFHEADING(Block device options:)
570 STEXI
571 @table @option
572 ETEXI
573
574 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
575 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
576 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
577 STEXI
578 @item -fda @var{file}
579 @itemx -fdb @var{file}
580 @findex -fda
581 @findex -fdb
582 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
583 ETEXI
584
585 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
586 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
587 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
588 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
589 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
590 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
591 STEXI
592 @item -hda @var{file}
593 @itemx -hdb @var{file}
594 @itemx -hdc @var{file}
595 @itemx -hdd @var{file}
596 @findex -hda
597 @findex -hdb
598 @findex -hdc
599 @findex -hdd
600 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
601 ETEXI
602
603 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
604 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
605 QEMU_ARCH_ALL)
606 STEXI
607 @item -cdrom @var{file}
608 @findex -cdrom
609 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
610 @option{-cdrom} at the same time). You can use the host CD-ROM by
611 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
612 ETEXI
613
614 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
615 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
616 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
617 " [,read-only=on|off][,detect-zeroes=on|off|unmap]\n"
618 " [,driver specific parameters...]\n"
619 " configure a block backend\n", QEMU_ARCH_ALL)
620 STEXI
621 @item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]]
622 @findex -blockdev
623
624 Define a new block driver node. Some of the options apply to all block drivers,
625 other options are only accepted for a specific block driver. See below for a
626 list of generic options and options for the most common block drivers.
627
628 Options that expect a reference to another node (e.g. @code{file}) can be
629 given in two ways. Either you specify the node name of an already existing node
630 (file=@var{node-name}), or you define a new node inline, adding options
631 for the referenced node after a dot (file.filename=@var{path},file.aio=native).
632
633 A block driver node created with @option{-blockdev} can be used for a guest
634 device by specifying its node name for the @code{drive} property in a
635 @option{-device} argument that defines a block device.
636
637 @table @option
638 @item Valid options for any block driver node:
639
640 @table @code
641 @item driver
642 Specifies the block driver to use for the given node.
643 @item node-name
644 This defines the name of the block driver node by which it will be referenced
645 later. The name must be unique, i.e. it must not match the name of a different
646 block driver node, or (if you use @option{-drive} as well) the ID of a drive.
647
648 If no node name is specified, it is automatically generated. The generated node
649 name is not intended to be predictable and changes between QEMU invocations.
650 For the top level, an explicit node name must be specified.
651 @item read-only
652 Open the node read-only. Guest write attempts will fail.
653 @item cache.direct
654 The host page cache can be avoided with @option{cache.direct=on}. This will
655 attempt to do disk IO directly to the guest's memory. QEMU may still perform an
656 internal copy of the data.
657 @item cache.no-flush
658 In case you don't care about data integrity over host failures, you can use
659 @option{cache.no-flush=on}. This option tells QEMU that it never needs to write
660 any data to the disk but can instead keep things in cache. If anything goes
661 wrong, like your host losing power, the disk storage getting disconnected
662 accidentally, etc. your image will most probably be rendered unusable.
663 @item discard=@var{discard}
664 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls
665 whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are
666 ignored or passed to the filesystem. Some machine types may not support
667 discard requests.
668 @item detect-zeroes=@var{detect-zeroes}
669 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
670 conversion of plain zero writes by the OS to driver specific optimized
671 zero write commands. You may even choose "unmap" if @var{discard} is set
672 to "unmap" to allow a zero write to be converted to an @code{unmap} operation.
673 @end table
674
675 @item Driver-specific options for @code{file}
676
677 This is the protocol-level block driver for accessing regular files.
678
679 @table @code
680 @item filename
681 The path to the image file in the local filesystem
682 @item aio
683 Specifies the AIO backend (threads/native, default: threads)
684 @item locking
685 Specifies whether the image file is protected with Linux OFD / POSIX locks. The
686 default is to use the Linux Open File Descriptor API if available, otherwise no
687 lock is applied. (auto/on/off, default: auto)
688 @end table
689 Example:
690 @example
691 -blockdev driver=file,node-name=disk,filename=disk.img
692 @end example
693
694 @item Driver-specific options for @code{raw}
695
696 This is the image format block driver for raw images. It is usually
697 stacked on top of a protocol level block driver such as @code{file}.
698
699 @table @code
700 @item file
701 Reference to or definition of the data source block driver node
702 (e.g. a @code{file} driver node)
703 @end table
704 Example 1:
705 @example
706 -blockdev driver=file,node-name=disk_file,filename=disk.img
707 -blockdev driver=raw,node-name=disk,file=disk_file
708 @end example
709 Example 2:
710 @example
711 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
712 @end example
713
714 @item Driver-specific options for @code{qcow2}
715
716 This is the image format block driver for qcow2 images. It is usually
717 stacked on top of a protocol level block driver such as @code{file}.
718
719 @table @code
720 @item file
721 Reference to or definition of the data source block driver node
722 (e.g. a @code{file} driver node)
723
724 @item backing
725 Reference to or definition of the backing file block device (default is taken
726 from the image file). It is allowed to pass @code{null} here in order to disable
727 the default backing file.
728
729 @item lazy-refcounts
730 Whether to enable the lazy refcounts feature (on/off; default is taken from the
731 image file)
732
733 @item cache-size
734 The maximum total size of the L2 table and refcount block caches in bytes
735 (default: the sum of l2-cache-size and refcount-cache-size)
736
737 @item l2-cache-size
738 The maximum size of the L2 table cache in bytes
739 (default: if cache-size is not specified - 32M on Linux platforms, and 8M on
740 non-Linux platforms; otherwise, as large as possible within the cache-size,
741 while permitting the requested or the minimal refcount cache size)
742
743 @item refcount-cache-size
744 The maximum size of the refcount block cache in bytes
745 (default: 4 times the cluster size; or if cache-size is specified, the part of
746 it which is not used for the L2 cache)
747
748 @item cache-clean-interval
749 Clean unused entries in the L2 and refcount caches. The interval is in seconds.
750 The default value is 0 and it disables this feature.
751
752 @item pass-discard-request
753 Whether discard requests to the qcow2 device should be forwarded to the data
754 source (on/off; default: on if discard=unmap is specified, off otherwise)
755
756 @item pass-discard-snapshot
757 Whether discard requests for the data source should be issued when a snapshot
758 operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off;
759 default: on)
760
761 @item pass-discard-other
762 Whether discard requests for the data source should be issued on other
763 occasions where a cluster gets freed (on/off; default: off)
764
765 @item overlap-check
766 Which overlap checks to perform for writes to the image
767 (none/constant/cached/all; default: cached). For details or finer
768 granularity control refer to the QAPI documentation of @code{blockdev-add}.
769 @end table
770
771 Example 1:
772 @example
773 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
774 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
775 @end example
776 Example 2:
777 @example
778 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
779 @end example
780
781 @item Driver-specific options for other drivers
782 Please refer to the QAPI documentation of the @code{blockdev-add} QMP command.
783
784 @end table
785
786 ETEXI
787
788 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
789 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
790 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
791 " [,snapshot=on|off][,rerror=ignore|stop|report]\n"
792 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
793 " [,readonly=on|off][,copy-on-read=on|off]\n"
794 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
795 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
796 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
797 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
798 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
799 " [[,iops_size=is]]\n"
800 " [[,group=g]]\n"
801 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
802 STEXI
803 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
804 @findex -drive
805
806 Define a new drive. This includes creating a block driver node (the backend) as
807 well as a guest device, and is mostly a shortcut for defining the corresponding
808 @option{-blockdev} and @option{-device} options.
809
810 @option{-drive} accepts all options that are accepted by @option{-blockdev}. In
811 addition, it knows the following options:
812
813 @table @option
814 @item file=@var{file}
815 This option defines which disk image (@pxref{disk_images}) to use with
816 this drive. If the filename contains comma, you must double it
817 (for instance, "file=my,,file" to use file "my,file").
818
819 Special files such as iSCSI devices can be specified using protocol
820 specific URLs. See the section for "Device URL Syntax" for more information.
821 @item if=@var{interface}
822 This option defines on which type on interface the drive is connected.
823 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
824 @item bus=@var{bus},unit=@var{unit}
825 These options define where is connected the drive by defining the bus number and
826 the unit id.
827 @item index=@var{index}
828 This option defines where is connected the drive by using an index in the list
829 of available connectors of a given interface type.
830 @item media=@var{media}
831 This option defines the type of the media: disk or cdrom.
832 @item snapshot=@var{snapshot}
833 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
834 (see @option{-snapshot}).
835 @item cache=@var{cache}
836 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough"
837 and controls how the host cache is used to access block data. This is a
838 shortcut that sets the @option{cache.direct} and @option{cache.no-flush}
839 options (as in @option{-blockdev}), and additionally @option{cache.writeback},
840 which provides a default for the @option{write-cache} option of block guest
841 devices (as in @option{-device}). The modes correspond to the following
842 settings:
843
844 @c Our texi2pod.pl script doesn't support @multitable, so fall back to using
845 @c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage
846 @c and the HTML output.
847 @example
848 @ │ cache.writeback cache.direct cache.no-flush
849 ─────────────┼─────────────────────────────────────────────────
850 writeback │ on off off
851 none │ on on off
852 writethrough │ off off off
853 directsync │ off on off
854 unsafe │ on off on
855 @end example
856
857 The default mode is @option{cache=writeback}.
858
859 @item aio=@var{aio}
860 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
861 @item format=@var{format}
862 Specify which disk @var{format} will be used rather than detecting
863 the format. Can be used to specify format=raw to avoid interpreting
864 an untrusted format header.
865 @item werror=@var{action},rerror=@var{action}
866 Specify which @var{action} to take on write and read errors. Valid actions are:
867 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
868 "report" (report the error to the guest), "enospc" (pause QEMU only if the
869 host disk is full; report the error to the guest otherwise).
870 The default setting is @option{werror=enospc} and @option{rerror=report}.
871 @item copy-on-read=@var{copy-on-read}
872 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
873 file sectors into the image file.
874 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
875 Specify bandwidth throttling limits in bytes per second, either for all request
876 types or for reads or writes only. Small values can lead to timeouts or hangs
877 inside the guest. A safe minimum for disks is 2 MB/s.
878 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
879 Specify bursts in bytes per second, either for all request types or for reads
880 or writes only. Bursts allow the guest I/O to spike above the limit
881 temporarily.
882 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
883 Specify request rate limits in requests per second, either for all request
884 types or for reads or writes only.
885 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
886 Specify bursts in requests per second, either for all request types or for reads
887 or writes only. Bursts allow the guest I/O to spike above the limit
888 temporarily.
889 @item iops_size=@var{is}
890 Let every @var{is} bytes of a request count as a new request for iops
891 throttling purposes. Use this option to prevent guests from circumventing iops
892 limits by sending fewer but larger requests.
893 @item group=@var{g}
894 Join a throttling quota group with given name @var{g}. All drives that are
895 members of the same group are accounted for together. Use this option to
896 prevent guests from circumventing throttling limits by using many small disks
897 instead of a single larger disk.
898 @end table
899
900 By default, the @option{cache.writeback=on} mode is used. It will report data
901 writes as completed as soon as the data is present in the host page cache.
902 This is safe as long as your guest OS makes sure to correctly flush disk caches
903 where needed. If your guest OS does not handle volatile disk write caches
904 correctly and your host crashes or loses power, then the guest may experience
905 data corruption.
906
907 For such guests, you should consider using @option{cache.writeback=off}. This
908 means that the host page cache will be used to read and write data, but write
909 notification will be sent to the guest only after QEMU has made sure to flush
910 each write to the disk. Be aware that this has a major impact on performance.
911
912 When using the @option{-snapshot} option, unsafe caching is always used.
913
914 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
915 useful when the backing file is over a slow network. By default copy-on-read
916 is off.
917
918 Instead of @option{-cdrom} you can use:
919 @example
920 qemu-system-i386 -drive file=file,index=2,media=cdrom
921 @end example
922
923 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
924 use:
925 @example
926 qemu-system-i386 -drive file=file,index=0,media=disk
927 qemu-system-i386 -drive file=file,index=1,media=disk
928 qemu-system-i386 -drive file=file,index=2,media=disk
929 qemu-system-i386 -drive file=file,index=3,media=disk
930 @end example
931
932 You can open an image using pre-opened file descriptors from an fd set:
933 @example
934 qemu-system-i386
935 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
936 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
937 -drive file=/dev/fdset/2,index=0,media=disk
938 @end example
939
940 You can connect a CDROM to the slave of ide0:
941 @example
942 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
943 @end example
944
945 If you don't specify the "file=" argument, you define an empty drive:
946 @example
947 qemu-system-i386 -drive if=ide,index=1,media=cdrom
948 @end example
949
950 Instead of @option{-fda}, @option{-fdb}, you can use:
951 @example
952 qemu-system-i386 -drive file=file,index=0,if=floppy
953 qemu-system-i386 -drive file=file,index=1,if=floppy
954 @end example
955
956 By default, @var{interface} is "ide" and @var{index} is automatically
957 incremented:
958 @example
959 qemu-system-i386 -drive file=a -drive file=b"
960 @end example
961 is interpreted like:
962 @example
963 qemu-system-i386 -hda a -hdb b
964 @end example
965 ETEXI
966
967 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
968 "-mtdblock file use 'file' as on-board Flash memory image\n",
969 QEMU_ARCH_ALL)
970 STEXI
971 @item -mtdblock @var{file}
972 @findex -mtdblock
973 Use @var{file} as on-board Flash memory image.
974 ETEXI
975
976 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
977 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
978 STEXI
979 @item -sd @var{file}
980 @findex -sd
981 Use @var{file} as SecureDigital card image.
982 ETEXI
983
984 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
985 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
986 STEXI
987 @item -pflash @var{file}
988 @findex -pflash
989 Use @var{file} as a parallel flash image.
990 ETEXI
991
992 DEF("snapshot", 0, QEMU_OPTION_snapshot,
993 "-snapshot write to temporary files instead of disk image files\n",
994 QEMU_ARCH_ALL)
995 STEXI
996 @item -snapshot
997 @findex -snapshot
998 Write to temporary files instead of disk image files. In this case,
999 the raw disk image you use is not written back. You can however force
1000 the write back by pressing @key{C-a s} (@pxref{disk_images}).
1001 ETEXI
1002
1003 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1004 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
1005 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n"
1006 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1007 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1008 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1009 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1010 " [[,throttling.iops-size=is]]\n",
1011 QEMU_ARCH_ALL)
1012
1013 STEXI
1014
1015 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1016 @findex -fsdev
1017 Define a new file system device. Valid options are:
1018 @table @option
1019 @item @var{fsdriver}
1020 This option specifies the fs driver backend to use.
1021 Currently "local", "handle" and "proxy" file system drivers are supported.
1022 @item id=@var{id}
1023 Specifies identifier for this device
1024 @item path=@var{path}
1025 Specifies the export path for the file system device. Files under
1026 this path will be available to the 9p client on the guest.
1027 @item security_model=@var{security_model}
1028 Specifies the security model to be used for this export path.
1029 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1030 In "passthrough" security model, files are stored using the same
1031 credentials as they are created on the guest. This requires QEMU
1032 to run as root. In "mapped-xattr" security model, some of the file
1033 attributes like uid, gid, mode bits and link target are stored as
1034 file attributes. For "mapped-file" these attributes are stored in the
1035 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1036 interact with other unix tools. "none" security model is same as
1037 passthrough except the sever won't report failures if it fails to
1038 set file attributes like ownership. Security model is mandatory
1039 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
1040 security model as a parameter.
1041 @item writeout=@var{writeout}
1042 This is an optional argument. The only supported value is "immediate".
1043 This means that host page cache will be used to read and write data but
1044 write notification will be sent to the guest only when the data has been
1045 reported as written by the storage subsystem.
1046 @item readonly
1047 Enables exporting 9p share as a readonly mount for guests. By default
1048 read-write access is given.
1049 @item socket=@var{socket}
1050 Enables proxy filesystem driver to use passed socket file for communicating
1051 with virtfs-proxy-helper
1052 @item sock_fd=@var{sock_fd}
1053 Enables proxy filesystem driver to use passed socket descriptor for
1054 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1055 will create socketpair and pass one of the fds as sock_fd
1056 @item fmode=@var{fmode}
1057 Specifies the default mode for newly created files on the host. Works only
1058 with security models "mapped-xattr" and "mapped-file".
1059 @item dmode=@var{dmode}
1060 Specifies the default mode for newly created directories on the host. Works
1061 only with security models "mapped-xattr" and "mapped-file".
1062 @end table
1063
1064 -fsdev option is used along with -device driver "virtio-9p-pci".
1065 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
1066 Options for virtio-9p-pci driver are:
1067 @table @option
1068 @item fsdev=@var{id}
1069 Specifies the id value specified along with -fsdev option
1070 @item mount_tag=@var{mount_tag}
1071 Specifies the tag name to be used by the guest to mount this export point
1072 @end table
1073
1074 ETEXI
1075
1076 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1077 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
1078 " [,id=id][,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n",
1079 QEMU_ARCH_ALL)
1080
1081 STEXI
1082
1083 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1084 @findex -virtfs
1085
1086 The general form of a Virtual File system pass-through options are:
1087 @table @option
1088 @item @var{fsdriver}
1089 This option specifies the fs driver backend to use.
1090 Currently "local", "handle" and "proxy" file system drivers are supported.
1091 @item id=@var{id}
1092 Specifies identifier for this device
1093 @item path=@var{path}
1094 Specifies the export path for the file system device. Files under
1095 this path will be available to the 9p client on the guest.
1096 @item security_model=@var{security_model}
1097 Specifies the security model to be used for this export path.
1098 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1099 In "passthrough" security model, files are stored using the same
1100 credentials as they are created on the guest. This requires QEMU
1101 to run as root. In "mapped-xattr" security model, some of the file
1102 attributes like uid, gid, mode bits and link target are stored as
1103 file attributes. For "mapped-file" these attributes are stored in the
1104 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1105 interact with other unix tools. "none" security model is same as
1106 passthrough except the sever won't report failures if it fails to
1107 set file attributes like ownership. Security model is mandatory only
1108 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
1109 model as a parameter.
1110 @item writeout=@var{writeout}
1111 This is an optional argument. The only supported value is "immediate".
1112 This means that host page cache will be used to read and write data but
1113 write notification will be sent to the guest only when the data has been
1114 reported as written by the storage subsystem.
1115 @item readonly
1116 Enables exporting 9p share as a readonly mount for guests. By default
1117 read-write access is given.
1118 @item socket=@var{socket}
1119 Enables proxy filesystem driver to use passed socket file for
1120 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1121 will create socketpair and pass one of the fds as sock_fd
1122 @item sock_fd
1123 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
1124 descriptor for interfacing with virtfs-proxy-helper
1125 @item fmode=@var{fmode}
1126 Specifies the default mode for newly created files on the host. Works only
1127 with security models "mapped-xattr" and "mapped-file".
1128 @item dmode=@var{dmode}
1129 Specifies the default mode for newly created directories on the host. Works
1130 only with security models "mapped-xattr" and "mapped-file".
1131 @end table
1132 ETEXI
1133
1134 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
1135 "-virtfs_synth Create synthetic file system image\n",
1136 QEMU_ARCH_ALL)
1137 STEXI
1138 @item -virtfs_synth
1139 @findex -virtfs_synth
1140 Create synthetic file system image
1141 ETEXI
1142
1143 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1144 "-iscsi [user=user][,password=password]\n"
1145 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1146 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1147 " [,timeout=timeout]\n"
1148 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1149
1150 STEXI
1151 @item -iscsi
1152 @findex -iscsi
1153 Configure iSCSI session parameters.
1154 ETEXI
1155
1156 STEXI
1157 @end table
1158 ETEXI
1159 DEFHEADING()
1160
1161 DEFHEADING(USB options:)
1162 STEXI
1163 @table @option
1164 ETEXI
1165
1166 DEF("usb", 0, QEMU_OPTION_usb,
1167 "-usb enable the USB driver (if it is not used by default yet)\n",
1168 QEMU_ARCH_ALL)
1169 STEXI
1170 @item -usb
1171 @findex -usb
1172 Enable the USB driver (if it is not used by default yet).
1173 ETEXI
1174
1175 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1176 "-usbdevice name add the host or guest USB device 'name'\n",
1177 QEMU_ARCH_ALL)
1178 STEXI
1179
1180 @item -usbdevice @var{devname}
1181 @findex -usbdevice
1182 Add the USB device @var{devname}. Note that this option is deprecated,
1183 please use @code{-device usb-...} instead. @xref{usb_devices}.
1184
1185 @table @option
1186
1187 @item mouse
1188 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1189
1190 @item tablet
1191 Pointer device that uses absolute coordinates (like a touchscreen). This
1192 means QEMU is able to report the mouse position without having to grab the
1193 mouse. Also overrides the PS/2 mouse emulation when activated.
1194
1195 @item braille
1196 Braille device. This will use BrlAPI to display the braille output on a real
1197 or fake device.
1198
1199 @end table
1200 ETEXI
1201
1202 STEXI
1203 @end table
1204 ETEXI
1205 DEFHEADING()
1206
1207 DEFHEADING(Display options:)
1208 STEXI
1209 @table @option
1210 ETEXI
1211
1212 DEF("display", HAS_ARG, QEMU_OPTION_display,
1213 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
1214 " [,window_close=on|off][,gl=on|core|es|off]\n"
1215 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1216 "-display vnc=<display>[,<optargs>]\n"
1217 "-display curses\n"
1218 "-display none"
1219 " select display type\n"
1220 "The default display is equivalent to\n"
1221 #if defined(CONFIG_GTK)
1222 "\t\"-display gtk\"\n"
1223 #elif defined(CONFIG_SDL)
1224 "\t\"-display sdl\"\n"
1225 #elif defined(CONFIG_COCOA)
1226 "\t\"-display cocoa\"\n"
1227 #elif defined(CONFIG_VNC)
1228 "\t\"-vnc localhost:0,to=99,id=default\"\n"
1229 #else
1230 "\t\"-display none\"\n"
1231 #endif
1232 , QEMU_ARCH_ALL)
1233 STEXI
1234 @item -display @var{type}
1235 @findex -display
1236 Select type of display to use. This option is a replacement for the
1237 old style -sdl/-curses/... options. Valid values for @var{type} are
1238 @table @option
1239 @item sdl
1240 Display video output via SDL (usually in a separate graphics
1241 window; see the SDL documentation for other possibilities).
1242 @item curses
1243 Display video output via curses. For graphics device models which
1244 support a text mode, QEMU can display this output using a
1245 curses/ncurses interface. Nothing is displayed when the graphics
1246 device is in graphical mode or if the graphics device does not support
1247 a text mode. Generally only the VGA device models support text mode.
1248 @item none
1249 Do not display video output. The guest will still see an emulated
1250 graphics card, but its output will not be displayed to the QEMU
1251 user. This option differs from the -nographic option in that it
1252 only affects what is done with video output; -nographic also changes
1253 the destination of the serial and parallel port data.
1254 @item gtk
1255 Display video output in a GTK window. This interface provides drop-down
1256 menus and other UI elements to configure and control the VM during
1257 runtime.
1258 @item vnc
1259 Start a VNC server on display <arg>
1260 @end table
1261 ETEXI
1262
1263 DEF("nographic", 0, QEMU_OPTION_nographic,
1264 "-nographic disable graphical output and redirect serial I/Os to console\n",
1265 QEMU_ARCH_ALL)
1266 STEXI
1267 @item -nographic
1268 @findex -nographic
1269 Normally, if QEMU is compiled with graphical window support, it displays
1270 output such as guest graphics, guest console, and the QEMU monitor in a
1271 window. With this option, you can totally disable graphical output so
1272 that QEMU is a simple command line application. The emulated serial port
1273 is redirected on the console and muxed with the monitor (unless
1274 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1275 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1276 switching between the console and monitor.
1277 ETEXI
1278
1279 DEF("curses", 0, QEMU_OPTION_curses,
1280 "-curses shorthand for -display curses\n",
1281 QEMU_ARCH_ALL)
1282 STEXI
1283 @item -curses
1284 @findex -curses
1285 Normally, if QEMU is compiled with graphical window support, it displays
1286 output such as guest graphics, guest console, and the QEMU monitor in a
1287 window. With this option, QEMU can display the VGA output when in text
1288 mode using a curses/ncurses interface. Nothing is displayed in graphical
1289 mode.
1290 ETEXI
1291
1292 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1293 "-no-frame open SDL window without a frame and window decorations\n",
1294 QEMU_ARCH_ALL)
1295 STEXI
1296 @item -no-frame
1297 @findex -no-frame
1298 Do not use decorations for SDL windows and start them using the whole
1299 available screen space. This makes the using QEMU in a dedicated desktop
1300 workspace more convenient.
1301 ETEXI
1302
1303 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1304 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1305 QEMU_ARCH_ALL)
1306 STEXI
1307 @item -alt-grab
1308 @findex -alt-grab
1309 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1310 affects the special keys (for fullscreen, monitor-mode switching, etc).
1311 ETEXI
1312
1313 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1314 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1315 QEMU_ARCH_ALL)
1316 STEXI
1317 @item -ctrl-grab
1318 @findex -ctrl-grab
1319 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1320 affects the special keys (for fullscreen, monitor-mode switching, etc).
1321 ETEXI
1322
1323 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1324 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1325 STEXI
1326 @item -no-quit
1327 @findex -no-quit
1328 Disable SDL window close capability.
1329 ETEXI
1330
1331 DEF("sdl", 0, QEMU_OPTION_sdl,
1332 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1333 STEXI
1334 @item -sdl
1335 @findex -sdl
1336 Enable SDL.
1337 ETEXI
1338
1339 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1340 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1341 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1342 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1343 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1344 " [,tls-ciphers=<list>]\n"
1345 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1346 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1347 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1348 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1349 " [,jpeg-wan-compression=[auto|never|always]]\n"
1350 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1351 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1352 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1353 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1354 " [,gl=[on|off]][,rendernode=<file>]\n"
1355 " enable spice\n"
1356 " at least one of {port, tls-port} is mandatory\n",
1357 QEMU_ARCH_ALL)
1358 STEXI
1359 @item -spice @var{option}[,@var{option}[,...]]
1360 @findex -spice
1361 Enable the spice remote desktop protocol. Valid options are
1362
1363 @table @option
1364
1365 @item port=<nr>
1366 Set the TCP port spice is listening on for plaintext channels.
1367
1368 @item addr=<addr>
1369 Set the IP address spice is listening on. Default is any address.
1370
1371 @item ipv4
1372 @itemx ipv6
1373 @itemx unix
1374 Force using the specified IP version.
1375
1376 @item password=<secret>
1377 Set the password you need to authenticate.
1378
1379 @item sasl
1380 Require that the client use SASL to authenticate with the spice.
1381 The exact choice of authentication method used is controlled from the
1382 system / user's SASL configuration file for the 'qemu' service. This
1383 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1384 unprivileged user, an environment variable SASL_CONF_PATH can be used
1385 to make it search alternate locations for the service config.
1386 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1387 it is recommended that SASL always be combined with the 'tls' and
1388 'x509' settings to enable use of SSL and server certificates. This
1389 ensures a data encryption preventing compromise of authentication
1390 credentials.
1391
1392 @item disable-ticketing
1393 Allow client connects without authentication.
1394
1395 @item disable-copy-paste
1396 Disable copy paste between the client and the guest.
1397
1398 @item disable-agent-file-xfer
1399 Disable spice-vdagent based file-xfer between the client and the guest.
1400
1401 @item tls-port=<nr>
1402 Set the TCP port spice is listening on for encrypted channels.
1403
1404 @item x509-dir=<dir>
1405 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1406
1407 @item x509-key-file=<file>
1408 @itemx x509-key-password=<file>
1409 @itemx x509-cert-file=<file>
1410 @itemx x509-cacert-file=<file>
1411 @itemx x509-dh-key-file=<file>
1412 The x509 file names can also be configured individually.
1413
1414 @item tls-ciphers=<list>
1415 Specify which ciphers to use.
1416
1417 @item tls-channel=[main|display|cursor|inputs|record|playback]
1418 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1419 Force specific channel to be used with or without TLS encryption. The
1420 options can be specified multiple times to configure multiple
1421 channels. The special name "default" can be used to set the default
1422 mode. For channels which are not explicitly forced into one mode the
1423 spice client is allowed to pick tls/plaintext as he pleases.
1424
1425 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1426 Configure image compression (lossless).
1427 Default is auto_glz.
1428
1429 @item jpeg-wan-compression=[auto|never|always]
1430 @itemx zlib-glz-wan-compression=[auto|never|always]
1431 Configure wan image compression (lossy for slow links).
1432 Default is auto.
1433
1434 @item streaming-video=[off|all|filter]
1435 Configure video stream detection. Default is off.
1436
1437 @item agent-mouse=[on|off]
1438 Enable/disable passing mouse events via vdagent. Default is on.
1439
1440 @item playback-compression=[on|off]
1441 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1442
1443 @item seamless-migration=[on|off]
1444 Enable/disable spice seamless migration. Default is off.
1445
1446 @item gl=[on|off]
1447 Enable/disable OpenGL context. Default is off.
1448
1449 @item rendernode=<file>
1450 DRM render node for OpenGL rendering. If not specified, it will pick
1451 the first available. (Since 2.9)
1452
1453 @end table
1454 ETEXI
1455
1456 DEF("portrait", 0, QEMU_OPTION_portrait,
1457 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1458 QEMU_ARCH_ALL)
1459 STEXI
1460 @item -portrait
1461 @findex -portrait
1462 Rotate graphical output 90 deg left (only PXA LCD).
1463 ETEXI
1464
1465 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1466 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1467 QEMU_ARCH_ALL)
1468 STEXI
1469 @item -rotate @var{deg}
1470 @findex -rotate
1471 Rotate graphical output some deg left (only PXA LCD).
1472 ETEXI
1473
1474 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1475 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1476 " select video card type\n", QEMU_ARCH_ALL)
1477 STEXI
1478 @item -vga @var{type}
1479 @findex -vga
1480 Select type of VGA card to emulate. Valid values for @var{type} are
1481 @table @option
1482 @item cirrus
1483 Cirrus Logic GD5446 Video card. All Windows versions starting from
1484 Windows 95 should recognize and use this graphic card. For optimal
1485 performances, use 16 bit color depth in the guest and the host OS.
1486 (This card was the default before QEMU 2.2)
1487 @item std
1488 Standard VGA card with Bochs VBE extensions. If your guest OS
1489 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1490 to use high resolution modes (>= 1280x1024x16) then you should use
1491 this option. (This card is the default since QEMU 2.2)
1492 @item vmware
1493 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1494 recent XFree86/XOrg server or Windows guest with a driver for this
1495 card.
1496 @item qxl
1497 QXL paravirtual graphic card. It is VGA compatible (including VESA
1498 2.0 VBE support). Works best with qxl guest drivers installed though.
1499 Recommended choice when using the spice protocol.
1500 @item tcx
1501 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1502 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1503 fixed resolution of 1024x768.
1504 @item cg3
1505 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1506 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1507 resolutions aimed at people wishing to run older Solaris versions.
1508 @item virtio
1509 Virtio VGA card.
1510 @item none
1511 Disable VGA card.
1512 @end table
1513 ETEXI
1514
1515 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1516 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1517 STEXI
1518 @item -full-screen
1519 @findex -full-screen
1520 Start in full screen.
1521 ETEXI
1522
1523 DEF("g", 1, QEMU_OPTION_g ,
1524 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1525 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1526 STEXI
1527 @item -g @var{width}x@var{height}[x@var{depth}]
1528 @findex -g
1529 Set the initial graphical resolution and depth (PPC, SPARC only).
1530 ETEXI
1531
1532 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1533 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1534 STEXI
1535 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1536 @findex -vnc
1537 Normally, if QEMU is compiled with graphical window support, it displays
1538 output such as guest graphics, guest console, and the QEMU monitor in a
1539 window. With this option, you can have QEMU listen on VNC display
1540 @var{display} and redirect the VGA display over the VNC session. It is
1541 very useful to enable the usb tablet device when using this option
1542 (option @option{-device usb-tablet}). When using the VNC display, you
1543 must use the @option{-k} parameter to set the keyboard layout if you are
1544 not using en-us. Valid syntax for the @var{display} is
1545
1546 @table @option
1547
1548 @item to=@var{L}
1549
1550 With this option, QEMU will try next available VNC @var{display}s, until the
1551 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1552 available, e.g. port 5900+@var{display} is already used by another
1553 application. By default, to=0.
1554
1555 @item @var{host}:@var{d}
1556
1557 TCP connections will only be allowed from @var{host} on display @var{d}.
1558 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1559 be omitted in which case the server will accept connections from any host.
1560
1561 @item unix:@var{path}
1562
1563 Connections will be allowed over UNIX domain sockets where @var{path} is the
1564 location of a unix socket to listen for connections on.
1565
1566 @item none
1567
1568 VNC is initialized but not started. The monitor @code{change} command
1569 can be used to later start the VNC server.
1570
1571 @end table
1572
1573 Following the @var{display} value there may be one or more @var{option} flags
1574 separated by commas. Valid options are
1575
1576 @table @option
1577
1578 @item reverse
1579
1580 Connect to a listening VNC client via a ``reverse'' connection. The
1581 client is specified by the @var{display}. For reverse network
1582 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1583 is a TCP port number, not a display number.
1584
1585 @item websocket
1586
1587 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1588 If a bare @var{websocket} option is given, the Websocket port is
1589 5700+@var{display}. An alternative port can be specified with the
1590 syntax @code{websocket}=@var{port}.
1591
1592 If @var{host} is specified connections will only be allowed from this host.
1593 It is possible to control the websocket listen address independently, using
1594 the syntax @code{websocket}=@var{host}:@var{port}.
1595
1596 If no TLS credentials are provided, the websocket connection runs in
1597 unencrypted mode. If TLS credentials are provided, the websocket connection
1598 requires encrypted client connections.
1599
1600 @item password
1601
1602 Require that password based authentication is used for client connections.
1603
1604 The password must be set separately using the @code{set_password} command in
1605 the @ref{pcsys_monitor}. The syntax to change your password is:
1606 @code{set_password <protocol> <password>} where <protocol> could be either
1607 "vnc" or "spice".
1608
1609 If you would like to change <protocol> password expiration, you should use
1610 @code{expire_password <protocol> <expiration-time>} where expiration time could
1611 be one of the following options: now, never, +seconds or UNIX time of
1612 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1613 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1614 date and time).
1615
1616 You can also use keywords "now" or "never" for the expiration time to
1617 allow <protocol> password to expire immediately or never expire.
1618
1619 @item tls-creds=@var{ID}
1620
1621 Provides the ID of a set of TLS credentials to use to secure the
1622 VNC server. They will apply to both the normal VNC server socket
1623 and the websocket socket (if enabled). Setting TLS credentials
1624 will cause the VNC server socket to enable the VeNCrypt auth
1625 mechanism. The credentials should have been previously created
1626 using the @option{-object tls-creds} argument.
1627
1628 @item sasl
1629
1630 Require that the client use SASL to authenticate with the VNC server.
1631 The exact choice of authentication method used is controlled from the
1632 system / user's SASL configuration file for the 'qemu' service. This
1633 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1634 unprivileged user, an environment variable SASL_CONF_PATH can be used
1635 to make it search alternate locations for the service config.
1636 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1637 it is recommended that SASL always be combined with the 'tls' and
1638 'x509' settings to enable use of SSL and server certificates. This
1639 ensures a data encryption preventing compromise of authentication
1640 credentials. See the @ref{vnc_security} section for details on using
1641 SASL authentication.
1642
1643 @item acl
1644
1645 Turn on access control lists for checking of the x509 client certificate
1646 and SASL party. For x509 certs, the ACL check is made against the
1647 certificate's distinguished name. This is something that looks like
1648 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1649 made against the username, which depending on the SASL plugin, may
1650 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1651 When the @option{acl} flag is set, the initial access list will be
1652 empty, with a @code{deny} policy. Thus no one will be allowed to
1653 use the VNC server until the ACLs have been loaded. This can be
1654 achieved using the @code{acl} monitor command.
1655
1656 @item lossy
1657
1658 Enable lossy compression methods (gradient, JPEG, ...). If this
1659 option is set, VNC client may receive lossy framebuffer updates
1660 depending on its encoding settings. Enabling this option can save
1661 a lot of bandwidth at the expense of quality.
1662
1663 @item non-adaptive
1664
1665 Disable adaptive encodings. Adaptive encodings are enabled by default.
1666 An adaptive encoding will try to detect frequently updated screen regions,
1667 and send updates in these regions using a lossy encoding (like JPEG).
1668 This can be really helpful to save bandwidth when playing videos. Disabling
1669 adaptive encodings restores the original static behavior of encodings
1670 like Tight.
1671
1672 @item share=[allow-exclusive|force-shared|ignore]
1673
1674 Set display sharing policy. 'allow-exclusive' allows clients to ask
1675 for exclusive access. As suggested by the rfb spec this is
1676 implemented by dropping other connections. Connecting multiple
1677 clients in parallel requires all clients asking for a shared session
1678 (vncviewer: -shared switch). This is the default. 'force-shared'
1679 disables exclusive client access. Useful for shared desktop sessions,
1680 where you don't want someone forgetting specify -shared disconnect
1681 everybody else. 'ignore' completely ignores the shared flag and
1682 allows everybody connect unconditionally. Doesn't conform to the rfb
1683 spec but is traditional QEMU behavior.
1684
1685 @item key-delay-ms
1686
1687 Set keyboard delay, for key down and key up events, in milliseconds.
1688 Default is 10. Keyboards are low-bandwidth devices, so this slowdown
1689 can help the device and guest to keep up and not lose events in case
1690 events are arriving in bulk. Possible causes for the latter are flaky
1691 network connections, or scripts for automated testing.
1692
1693 @end table
1694 ETEXI
1695
1696 STEXI
1697 @end table
1698 ETEXI
1699 ARCHHEADING(, QEMU_ARCH_I386)
1700
1701 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1702 STEXI
1703 @table @option
1704 ETEXI
1705
1706 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1707 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1708 QEMU_ARCH_I386)
1709 STEXI
1710 @item -win2k-hack
1711 @findex -win2k-hack
1712 Use it when installing Windows 2000 to avoid a disk full bug. After
1713 Windows 2000 is installed, you no longer need this option (this option
1714 slows down the IDE transfers).
1715 ETEXI
1716
1717 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1718 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1719 QEMU_ARCH_I386)
1720 STEXI
1721 @item -no-fd-bootchk
1722 @findex -no-fd-bootchk
1723 Disable boot signature checking for floppy disks in BIOS. May
1724 be needed to boot from old floppy disks.
1725 ETEXI
1726
1727 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1728 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1729 STEXI
1730 @item -no-acpi
1731 @findex -no-acpi
1732 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1733 it if your guest OS complains about ACPI problems (PC target machine
1734 only).
1735 ETEXI
1736
1737 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1738 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1739 STEXI
1740 @item -no-hpet
1741 @findex -no-hpet
1742 Disable HPET support.
1743 ETEXI
1744
1745 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1746 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1747 " ACPI table description\n", QEMU_ARCH_I386)
1748 STEXI
1749 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1750 @findex -acpitable
1751 Add ACPI table with specified header fields and context from specified files.
1752 For file=, take whole ACPI table from the specified files, including all
1753 ACPI headers (possible overridden by other options).
1754 For data=, only data
1755 portion of the table is used, all header information is specified in the
1756 command line.
1757 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1758 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1759 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1760 spec.
1761 ETEXI
1762
1763 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1764 "-smbios file=binary\n"
1765 " load SMBIOS entry from binary file\n"
1766 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1767 " [,uefi=on|off]\n"
1768 " specify SMBIOS type 0 fields\n"
1769 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1770 " [,uuid=uuid][,sku=str][,family=str]\n"
1771 " specify SMBIOS type 1 fields\n"
1772 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1773 " [,asset=str][,location=str]\n"
1774 " specify SMBIOS type 2 fields\n"
1775 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1776 " [,sku=str]\n"
1777 " specify SMBIOS type 3 fields\n"
1778 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1779 " [,asset=str][,part=str]\n"
1780 " specify SMBIOS type 4 fields\n"
1781 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1782 " [,asset=str][,part=str][,speed=%d]\n"
1783 " specify SMBIOS type 17 fields\n",
1784 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1785 STEXI
1786 @item -smbios file=@var{binary}
1787 @findex -smbios
1788 Load SMBIOS entry from binary file.
1789
1790 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1791 Specify SMBIOS type 0 fields
1792
1793 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1794 Specify SMBIOS type 1 fields
1795
1796 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1797 Specify SMBIOS type 2 fields
1798
1799 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1800 Specify SMBIOS type 3 fields
1801
1802 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1803 Specify SMBIOS type 4 fields
1804
1805 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1806 Specify SMBIOS type 17 fields
1807 ETEXI
1808
1809 STEXI
1810 @end table
1811 ETEXI
1812 DEFHEADING()
1813
1814 DEFHEADING(Network options:)
1815 STEXI
1816 @table @option
1817 ETEXI
1818
1819 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1820 #ifdef CONFIG_SLIRP
1821 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1822 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1823 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1824 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
1825 " [,tftp=dir][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1826 #ifndef _WIN32
1827 "[,smb=dir[,smbserver=addr]]\n"
1828 #endif
1829 " configure a user mode network backend with ID 'str',\n"
1830 " its DHCP server and optional services\n"
1831 #endif
1832 #ifdef _WIN32
1833 "-netdev tap,id=str,ifname=name\n"
1834 " configure a host TAP network backend with ID 'str'\n"
1835 #else
1836 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1837 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1838 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1839 " [,poll-us=n]\n"
1840 " configure a host TAP network backend with ID 'str'\n"
1841 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1842 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1843 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1844 " to deconfigure it\n"
1845 " use '[down]script=no' to disable script execution\n"
1846 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1847 " configure it\n"
1848 " use 'fd=h' to connect to an already opened TAP interface\n"
1849 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1850 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1851 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1852 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1853 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1854 " use vhost=on to enable experimental in kernel accelerator\n"
1855 " (only has effect for virtio guests which use MSIX)\n"
1856 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1857 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1858 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1859 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1860 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1861 " spent on busy polling for vhost net\n"
1862 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1863 " configure a host TAP network backend with ID 'str' that is\n"
1864 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1865 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1866 #endif
1867 #ifdef __linux__
1868 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1869 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1870 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1871 " [,rxcookie=rxcookie][,offset=offset]\n"
1872 " configure a network backend with ID 'str' connected to\n"
1873 " an Ethernet over L2TPv3 pseudowire.\n"
1874 " Linux kernel 3.3+ as well as most routers can talk\n"
1875 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1876 " VM to a router and even VM to Host. It is a nearly-universal\n"
1877 " standard (RFC3391). Note - this implementation uses static\n"
1878 " pre-configured tunnels (same as the Linux kernel).\n"
1879 " use 'src=' to specify source address\n"
1880 " use 'dst=' to specify destination address\n"
1881 " use 'udp=on' to specify udp encapsulation\n"
1882 " use 'srcport=' to specify source udp port\n"
1883 " use 'dstport=' to specify destination udp port\n"
1884 " use 'ipv6=on' to force v6\n"
1885 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1886 " well as a weak security measure\n"
1887 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1888 " use 'txcookie=0x012345678' to specify a txcookie\n"
1889 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1890 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1891 " use 'pincounter=on' to work around broken counter handling in peer\n"
1892 " use 'offset=X' to add an extra offset between header and data\n"
1893 #endif
1894 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1895 " configure a network backend to connect to another network\n"
1896 " using a socket connection\n"
1897 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1898 " configure a network backend to connect to a multicast maddr and port\n"
1899 " use 'localaddr=addr' to specify the host address to send packets from\n"
1900 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1901 " configure a network backend to connect to another network\n"
1902 " using an UDP tunnel\n"
1903 #ifdef CONFIG_VDE
1904 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1905 " configure a network backend to connect to port 'n' of a vde switch\n"
1906 " running on host and listening for incoming connections on 'socketpath'.\n"
1907 " Use group 'groupname' and mode 'octalmode' to change default\n"
1908 " ownership and permissions for communication port.\n"
1909 #endif
1910 #ifdef CONFIG_NETMAP
1911 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1912 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1913 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1914 " netmap device, defaults to '/dev/netmap')\n"
1915 #endif
1916 #ifdef CONFIG_POSIX
1917 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1918 " configure a vhost-user network, backed by a chardev 'dev'\n"
1919 #endif
1920 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
1921 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL)
1922 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
1923 "-nic [tap|bridge|"
1924 #ifdef CONFIG_SLIRP
1925 "user|"
1926 #endif
1927 #ifdef __linux__
1928 "l2tpv3|"
1929 #endif
1930 #ifdef CONFIG_VDE
1931 "vde|"
1932 #endif
1933 #ifdef CONFIG_NETMAP
1934 "netmap|"
1935 #endif
1936 #ifdef CONFIG_POSIX
1937 "vhost-user|"
1938 #endif
1939 "socket][,option][,...][mac=macaddr]\n"
1940 " initialize an on-board / default host NIC (using MAC address\n"
1941 " macaddr) and connect it to the given host network backend\n"
1942 "-nic none use it alone to have zero network devices (the default is to\n"
1943 " provided a 'user' network connection)\n",
1944 QEMU_ARCH_ALL)
1945 DEF("net", HAS_ARG, QEMU_OPTION_net,
1946 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1947 " configure or create an on-board (or machine default) NIC and\n"
1948 " connect it to hub 0 (please use -nic unless you need a hub)\n"
1949 "-net ["
1950 #ifdef CONFIG_SLIRP
1951 "user|"
1952 #endif
1953 "tap|"
1954 "bridge|"
1955 #ifdef CONFIG_VDE
1956 "vde|"
1957 #endif
1958 #ifdef CONFIG_NETMAP
1959 "netmap|"
1960 #endif
1961 "socket][,option][,option][,...]\n"
1962 " old way to initialize a host network interface\n"
1963 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1964 STEXI
1965 @item -nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]
1966 @findex -nic
1967 This option is a shortcut for configuring both the on-board (default) guest
1968 NIC hardware and the host network backend in one go. The host backend options
1969 are the same as with the corresponding @option{-netdev} options below.
1970 The guest NIC model can be set with @option{model=@var{modelname}}.
1971 Use @option{model=help} to list the available device types.
1972 The hardware MAC address can be set with @option{mac=@var{macaddr}}.
1973
1974 The following two example do exactly the same, to show how @option{-nic} can
1975 be used to shorten the command line length (note that the e1000 is the default
1976 on i386, so the @option{model=e1000} parameter could even be omitted here, too):
1977 @example
1978 qemu-system-i386 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
1979 qemu-system-i386 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
1980 @end example
1981
1982 @item -nic none
1983 Indicate that no network devices should be configured. It is used to override
1984 the default configuration (default NIC with ``user'' host network backend)
1985 which is activated if no other networking options are provided.
1986
1987 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1988 @findex -netdev
1989 Configure user mode host network backend which requires no administrator
1990 privilege to run. Valid options are:
1991
1992 @table @option
1993 @item id=@var{id}
1994 Assign symbolic name for use in monitor commands.
1995
1996 @item ipv4=on|off and ipv6=on|off
1997 Specify that either IPv4 or IPv6 must be enabled. If neither is specified
1998 both protocols are enabled.
1999
2000 @item net=@var{addr}[/@var{mask}]
2001 Set IP network address the guest will see. Optionally specify the netmask,
2002 either in the form a.b.c.d or as number of valid top-most bits. Default is
2003 10.0.2.0/24.
2004
2005 @item host=@var{addr}
2006 Specify the guest-visible address of the host. Default is the 2nd IP in the
2007 guest network, i.e. x.x.x.2.
2008
2009 @item ipv6-net=@var{addr}[/@var{int}]
2010 Set IPv6 network address the guest will see (default is fec0::/64). The
2011 network prefix is given in the usual hexadecimal IPv6 address
2012 notation. The prefix size is optional, and is given as the number of
2013 valid top-most bits (default is 64).
2014
2015 @item ipv6-host=@var{addr}
2016 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
2017 the guest network, i.e. xxxx::2.
2018
2019 @item restrict=on|off
2020 If this option is enabled, the guest will be isolated, i.e. it will not be
2021 able to contact the host and no guest IP packets will be routed over the host
2022 to the outside. This option does not affect any explicitly set forwarding rules.
2023
2024 @item hostname=@var{name}
2025 Specifies the client hostname reported by the built-in DHCP server.
2026
2027 @item dhcpstart=@var{addr}
2028 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
2029 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
2030
2031 @item dns=@var{addr}
2032 Specify the guest-visible address of the virtual nameserver. The address must
2033 be different from the host address. Default is the 3rd IP in the guest network,
2034 i.e. x.x.x.3.
2035
2036 @item ipv6-dns=@var{addr}
2037 Specify the guest-visible address of the IPv6 virtual nameserver. The address
2038 must be different from the host address. Default is the 3rd IP in the guest
2039 network, i.e. xxxx::3.
2040
2041 @item dnssearch=@var{domain}
2042 Provides an entry for the domain-search list sent by the built-in
2043 DHCP server. More than one domain suffix can be transmitted by specifying
2044 this option multiple times. If supported, this will cause the guest to
2045 automatically try to append the given domain suffix(es) in case a domain name
2046 can not be resolved.
2047
2048 Example:
2049 @example
2050 qemu-system-i386 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2051 @end example
2052
2053 @item domainname=@var{domain}
2054 Specifies the client domain name reported by the built-in DHCP server.
2055
2056 @item tftp=@var{dir}
2057 When using the user mode network stack, activate a built-in TFTP
2058 server. The files in @var{dir} will be exposed as the root of a TFTP server.
2059 The TFTP client on the guest must be configured in binary mode (use the command
2060 @code{bin} of the Unix TFTP client).
2061
2062 @item bootfile=@var{file}
2063 When using the user mode network stack, broadcast @var{file} as the BOOTP
2064 filename. In conjunction with @option{tftp}, this can be used to network boot
2065 a guest from a local directory.
2066
2067 Example (using pxelinux):
2068 @example
2069 qemu-system-i386 -hda linux.img -boot n -device e1000,netdev=n1 \
2070 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2071 @end example
2072
2073 @item smb=@var{dir}[,smbserver=@var{addr}]
2074 When using the user mode network stack, activate a built-in SMB
2075 server so that Windows OSes can access to the host files in @file{@var{dir}}
2076 transparently. The IP address of the SMB server can be set to @var{addr}. By
2077 default the 4th IP in the guest network is used, i.e. x.x.x.4.
2078
2079 In the guest Windows OS, the line:
2080 @example
2081 10.0.2.4 smbserver
2082 @end example
2083 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
2084 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
2085
2086 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2087
2088 Note that a SAMBA server must be installed on the host OS.
2089
2090 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
2091 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
2092 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
2093 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
2094 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
2095 be bound to a specific host interface. If no connection type is set, TCP is
2096 used. This option can be given multiple times.
2097
2098 For example, to redirect host X11 connection from screen 1 to guest
2099 screen 0, use the following:
2100
2101 @example
2102 # on the host
2103 qemu-system-i386 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2104 # this host xterm should open in the guest X11 server
2105 xterm -display :1
2106 @end example
2107
2108 To redirect telnet connections from host port 5555 to telnet port on
2109 the guest, use the following:
2110
2111 @example
2112 # on the host
2113 qemu-system-i386 -nic user,hostfwd=tcp::5555-:23
2114 telnet localhost 5555
2115 @end example
2116
2117 Then when you use on the host @code{telnet localhost 5555}, you
2118 connect to the guest telnet server.
2119
2120 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
2121 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
2122 Forward guest TCP connections to the IP address @var{server} on port @var{port}
2123 to the character device @var{dev} or to a program executed by @var{cmd:command}
2124 which gets spawned for each connection. This option can be given multiple times.
2125
2126 You can either use a chardev directly and have that one used throughout QEMU's
2127 lifetime, like in the following example:
2128
2129 @example
2130 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2131 # the guest accesses it
2132 qemu-system-i386 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
2133 @end example
2134
2135 Or you can execute a command on every TCP connection established by the guest,
2136 so that QEMU behaves similar to an inetd process for that virtual server:
2137
2138 @example
2139 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2140 # and connect the TCP stream to its stdin/stdout
2141 qemu-system-i386 -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2142 @end example
2143
2144 @end table
2145
2146 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2147 Configure a host TAP network backend with ID @var{id}.
2148
2149 Use the network script @var{file} to configure it and the network script
2150 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2151 automatically provides one. The default network configure script is
2152 @file{/etc/qemu-ifup} and the default network deconfigure script is
2153 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2154 to disable script execution.
2155
2156 If running QEMU as an unprivileged user, use the network helper
2157 @var{helper} to configure the TAP interface and attach it to the bridge.
2158 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2159 and the default bridge device is @file{br0}.
2160
2161 @option{fd}=@var{h} can be used to specify the handle of an already
2162 opened host TAP interface.
2163
2164 Examples:
2165
2166 @example
2167 #launch a QEMU instance with the default network script
2168 qemu-system-i386 linux.img -nic tap
2169 @end example
2170
2171 @example
2172 #launch a QEMU instance with two NICs, each one connected
2173 #to a TAP device
2174 qemu-system-i386 linux.img \
2175 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \
2176 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
2177 @end example
2178
2179 @example
2180 #launch a QEMU instance with the default network helper to
2181 #connect a TAP device to bridge br0
2182 qemu-system-i386 linux.img -device virtio-net-pci,netdev=n1 \
2183 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
2184 @end example
2185
2186 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2187 Connect a host TAP network interface to a host bridge device.
2188
2189 Use the network helper @var{helper} to configure the TAP interface and
2190 attach it to the bridge. The default network helper executable is
2191 @file{/path/to/qemu-bridge-helper} and the default bridge
2192 device is @file{br0}.
2193
2194 Examples:
2195
2196 @example
2197 #launch a QEMU instance with the default network helper to
2198 #connect a TAP device to bridge br0
2199 qemu-system-i386 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
2200 @end example
2201
2202 @example
2203 #launch a QEMU instance with the default network helper to
2204 #connect a TAP device to bridge qemubr0
2205 qemu-system-i386 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
2206 @end example
2207
2208 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2209
2210 This host network backend can be used to connect the guest's network to
2211 another QEMU virtual machine using a TCP socket connection. If @option{listen}
2212 is specified, QEMU waits for incoming connections on @var{port}
2213 (@var{host} is optional). @option{connect} is used to connect to
2214 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2215 specifies an already opened TCP socket.
2216
2217 Example:
2218 @example
2219 # launch a first QEMU instance
2220 qemu-system-i386 linux.img \
2221 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2222 -netdev socket,id=n1,listen=:1234
2223 # connect the network of this instance to the network of the first instance
2224 qemu-system-i386 linux.img \
2225 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2226 -netdev socket,id=n2,connect=127.0.0.1:1234
2227 @end example
2228
2229 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2230
2231 Configure a socket host network backend to share the guest's network traffic
2232 with another QEMU virtual machines using a UDP multicast socket, effectively
2233 making a bus for every QEMU with same multicast address @var{maddr} and @var{port}.
2234 NOTES:
2235 @enumerate
2236 @item
2237 Several QEMU can be running on different hosts and share same bus (assuming
2238 correct multicast setup for these hosts).
2239 @item
2240 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2241 @url{http://user-mode-linux.sf.net}.
2242 @item
2243 Use @option{fd=h} to specify an already opened UDP multicast socket.
2244 @end enumerate
2245
2246 Example:
2247 @example
2248 # launch one QEMU instance
2249 qemu-system-i386 linux.img \
2250 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2251 -netdev socket,id=n1,mcast=230.0.0.1:1234
2252 # launch another QEMU instance on same "bus"
2253 qemu-system-i386 linux.img \
2254 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2255 -netdev socket,id=n2,mcast=230.0.0.1:1234
2256 # launch yet another QEMU instance on same "bus"
2257 qemu-system-i386 linux.img \
2258 -device e1000,netdev=n3,macaddr=52:54:00:12:34:58 \
2259 -netdev socket,id=n3,mcast=230.0.0.1:1234
2260 @end example
2261
2262 Example (User Mode Linux compat.):
2263 @example
2264 # launch QEMU instance (note mcast address selected is UML's default)
2265 qemu-system-i386 linux.img \
2266 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2267 -netdev socket,id=n1,mcast=239.192.168.1:1102
2268 # launch UML
2269 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2270 @end example
2271
2272 Example (send packets from host's 1.2.3.4):
2273 @example
2274 qemu-system-i386 linux.img \
2275 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2276 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2277 @end example
2278
2279 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2280 Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a
2281 popular protocol to transport Ethernet (and other Layer 2) data frames between
2282 two systems. It is present in routers, firewalls and the Linux kernel
2283 (from version 3.3 onwards).
2284
2285 This transport allows a VM to communicate to another VM, router or firewall directly.
2286
2287 @table @option
2288 @item src=@var{srcaddr}
2289 source address (mandatory)
2290 @item dst=@var{dstaddr}
2291 destination address (mandatory)
2292 @item udp
2293 select udp encapsulation (default is ip).
2294 @item srcport=@var{srcport}
2295 source udp port.
2296 @item dstport=@var{dstport}
2297 destination udp port.
2298 @item ipv6
2299 force v6, otherwise defaults to v4.
2300 @item rxcookie=@var{rxcookie}
2301 @itemx txcookie=@var{txcookie}
2302 Cookies are a weak form of security in the l2tpv3 specification.
2303 Their function is mostly to prevent misconfiguration. By default they are 32
2304 bit.
2305 @item cookie64
2306 Set cookie size to 64 bit instead of the default 32
2307 @item counter=off
2308 Force a 'cut-down' L2TPv3 with no counter as in
2309 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2310 @item pincounter=on
2311 Work around broken counter handling in peer. This may also help on
2312 networks which have packet reorder.
2313 @item offset=@var{offset}
2314 Add an extra offset between header and data
2315 @end table
2316
2317 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2318 on the remote Linux host 1.2.3.4:
2319 @example
2320 # Setup tunnel on linux host using raw ip as encapsulation
2321 # on 1.2.3.4
2322 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2323 encap udp udp_sport 16384 udp_dport 16384
2324 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2325 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2326 ifconfig vmtunnel0 mtu 1500
2327 ifconfig vmtunnel0 up
2328 brctl addif br-lan vmtunnel0
2329
2330
2331 # on 4.3.2.1
2332 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2333
2334 qemu-system-i386 linux.img -device e1000,netdev=n1 \
2335 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2336
2337 @end example
2338
2339 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2340 Configure VDE backend to connect to PORT @var{n} of a vde switch running on host and
2341 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2342 and MODE @var{octalmode} to change default ownership and permissions for
2343 communication port. This option is only available if QEMU has been compiled
2344 with vde support enabled.
2345
2346 Example:
2347 @example
2348 # launch vde switch
2349 vde_switch -F -sock /tmp/myswitch
2350 # launch QEMU instance
2351 qemu-system-i386 linux.img -nic vde,sock=/tmp/myswitch
2352 @end example
2353
2354 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2355
2356 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2357 be a unix domain socket backed one. The vhost-user uses a specifically defined
2358 protocol to pass vhost ioctl replacement messages to an application on the other
2359 end of the socket. On non-MSIX guests, the feature can be forced with
2360 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2361 be created for multiqueue vhost-user.
2362
2363 Example:
2364 @example
2365 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2366 -numa node,memdev=mem \
2367 -chardev socket,id=chr0,path=/path/to/socket \
2368 -netdev type=vhost-user,id=net0,chardev=chr0 \
2369 -device virtio-net-pci,netdev=net0
2370 @end example
2371
2372 @item -netdev hubport,id=@var{id},hubid=@var{hubid}[,netdev=@var{nd}]
2373
2374 Create a hub port on the emulated hub with ID @var{hubid}.
2375
2376 The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a
2377 single netdev. Alternatively, you can also connect the hubport to another
2378 netdev with ID @var{nd} by using the @option{netdev=@var{nd}} option.
2379
2380 @item -net nic[,netdev=@var{nd}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
2381 @findex -net
2382 Legacy option to configure or create an on-board (or machine default) Network
2383 Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e.
2384 the default hub), or to the netdev @var{nd}.
2385 The NIC is an e1000 by default on the PC target. Optionally, the MAC address
2386 can be changed to @var{mac}, the device address set to @var{addr} (PCI cards
2387 only), and a @var{name} can be assigned for use in monitor commands.
2388 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
2389 that the card should have; this option currently only affects virtio cards; set
2390 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
2391 NIC is created. QEMU can emulate several different models of network card.
2392 Use @code{-net nic,model=help} for a list of available devices for your target.
2393
2394 @item -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=@var{name}]
2395 Configure a host network backend (with the options corresponding to the same
2396 @option{-netdev} option) and connect it to the emulated hub 0 (the default
2397 hub). Use @var{name} to specify the name of the hub port.
2398 ETEXI
2399
2400 STEXI
2401 @end table
2402 ETEXI
2403 DEFHEADING()
2404
2405 DEFHEADING(Character device options:)
2406
2407 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2408 "-chardev help\n"
2409 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2410 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2411 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2412 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2413 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2414 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2415 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2416 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2417 " [,logfile=PATH][,logappend=on|off]\n"
2418 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2419 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2420 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2421 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2422 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2423 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2424 #ifdef _WIN32
2425 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2426 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2427 #else
2428 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2429 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2430 #endif
2431 #ifdef CONFIG_BRLAPI
2432 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2433 #endif
2434 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2435 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2436 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2437 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2438 #endif
2439 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2440 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2441 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2442 #endif
2443 #if defined(CONFIG_SPICE)
2444 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2445 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2446 #endif
2447 , QEMU_ARCH_ALL
2448 )
2449
2450 STEXI
2451
2452 The general form of a character device option is:
2453 @table @option
2454 @item -chardev @var{backend},id=@var{id}[,mux=on|off][,@var{options}]
2455 @findex -chardev
2456 Backend is one of:
2457 @option{null},
2458 @option{socket},
2459 @option{udp},
2460 @option{msmouse},
2461 @option{vc},
2462 @option{ringbuf},
2463 @option{file},
2464 @option{pipe},
2465 @option{console},
2466 @option{serial},
2467 @option{pty},
2468 @option{stdio},
2469 @option{braille},
2470 @option{tty},
2471 @option{parallel},
2472 @option{parport},
2473 @option{spicevmc},
2474 @option{spiceport}.
2475 The specific backend will determine the applicable options.
2476
2477 Use @code{-chardev help} to print all available chardev backend types.
2478
2479 All devices must have an id, which can be any string up to 127 characters long.
2480 It is used to uniquely identify this device in other command line directives.
2481
2482 A character device may be used in multiplexing mode by multiple front-ends.
2483 Specify @option{mux=on} to enable this mode.
2484 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2485 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2486 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2487 create a multiplexer with your specified ID, and you can then configure multiple
2488 front ends to use that chardev ID for their input/output. Up to four different
2489 front ends can be connected to a single multiplexed chardev. (Without
2490 multiplexing enabled, a chardev can only be used by a single front end.)
2491 For instance you could use this to allow a single stdio chardev to be used by
2492 two serial ports and the QEMU monitor:
2493
2494 @example
2495 -chardev stdio,mux=on,id=char0 \
2496 -mon chardev=char0,mode=readline \
2497 -serial chardev:char0 \
2498 -serial chardev:char0
2499 @end example
2500
2501 You can have more than one multiplexer in a system configuration; for instance
2502 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2503 multiplexed between the QEMU monitor and a parallel port:
2504
2505 @example
2506 -chardev stdio,mux=on,id=char0 \
2507 -mon chardev=char0,mode=readline \
2508 -parallel chardev:char0 \
2509 -chardev tcp,...,mux=on,id=char1 \
2510 -serial chardev:char1 \
2511 -serial chardev:char1
2512 @end example
2513
2514 When you're using a multiplexed character device, some escape sequences are
2515 interpreted in the input. @xref{mux_keys, Keys in the character backend
2516 multiplexer}.
2517
2518 Note that some other command line options may implicitly create multiplexed
2519 character backends; for instance @option{-serial mon:stdio} creates a
2520 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2521 and @option{-nographic} also multiplexes the console and the monitor to
2522 stdio.
2523
2524 There is currently no support for multiplexing in the other direction
2525 (where a single QEMU front end takes input and output from multiple chardevs).
2526
2527 Every backend supports the @option{logfile} option, which supplies the path
2528 to a file to record all data transmitted via the backend. The @option{logappend}
2529 option controls whether the log file will be truncated or appended to when
2530 opened.
2531
2532 @end table
2533
2534 The available backends are:
2535
2536 @table @option
2537 @item -chardev null,id=@var{id}
2538 A void device. This device will not emit any data, and will drop any data it
2539 receives. The null backend does not take any options.
2540
2541 @item -chardev socket,id=@var{id}[,@var{TCP options} or @var{unix options}][,server][,nowait][,telnet][,reconnect=@var{seconds}][,tls-creds=@var{id}]
2542
2543 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2544 unix socket will be created if @option{path} is specified. Behaviour is
2545 undefined if TCP options are specified for a unix socket.
2546
2547 @option{server} specifies that the socket shall be a listening socket.
2548
2549 @option{nowait} specifies that QEMU should not block waiting for a client to
2550 connect to a listening socket.
2551
2552 @option{telnet} specifies that traffic on the socket should interpret telnet
2553 escape sequences.
2554
2555 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2556 the remote end goes away. qemu will delay this many seconds and then attempt
2557 to reconnect. Zero disables reconnecting, and is the default.
2558
2559 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2560 and specifies the id of the TLS credentials to use for the handshake. The
2561 credentials must be previously created with the @option{-object tls-creds}
2562 argument.
2563
2564 TCP and unix socket options are given below:
2565
2566 @table @option
2567
2568 @item TCP options: port=@var{port}[,host=@var{host}][,to=@var{to}][,ipv4][,ipv6][,nodelay]
2569
2570 @option{host} for a listening socket specifies the local address to be bound.
2571 For a connecting socket species the remote host to connect to. @option{host} is
2572 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2573
2574 @option{port} for a listening socket specifies the local port to be bound. For a
2575 connecting socket specifies the port on the remote host to connect to.
2576 @option{port} can be given as either a port number or a service name.
2577 @option{port} is required.
2578
2579 @option{to} is only relevant to listening sockets. If it is specified, and
2580 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2581 to and including @option{to} until it succeeds. @option{to} must be specified
2582 as a port number.
2583
2584 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2585 If neither is specified the socket may use either protocol.
2586
2587 @option{nodelay} disables the Nagle algorithm.
2588
2589 @item unix options: path=@var{path}
2590
2591 @option{path} specifies the local path of the unix socket. @option{path} is
2592 required.
2593
2594 @end table
2595
2596 @item -chardev udp,id=@var{id}[,host=@var{host}],port=@var{port}[,localaddr=@var{localaddr}][,localport=@var{localport}][,ipv4][,ipv6]
2597
2598 Sends all traffic from the guest to a remote host over UDP.
2599
2600 @option{host} specifies the remote host to connect to. If not specified it
2601 defaults to @code{localhost}.
2602
2603 @option{port} specifies the port on the remote host to connect to. @option{port}
2604 is required.
2605
2606 @option{localaddr} specifies the local address to bind to. If not specified it
2607 defaults to @code{0.0.0.0}.
2608
2609 @option{localport} specifies the local port to bind to. If not specified any
2610 available local port will be used.
2611
2612 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2613 If neither is specified the device may use either protocol.
2614
2615 @item -chardev msmouse,id=@var{id}
2616
2617 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2618 take any options.
2619
2620 @item -chardev vc,id=@var{id}[[,width=@var{width}][,height=@var{height}]][[,cols=@var{cols}][,rows=@var{rows}]]
2621
2622 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2623 size.
2624
2625 @option{width} and @option{height} specify the width and height respectively of
2626 the console, in pixels.
2627
2628 @option{cols} and @option{rows} specify that the console be sized to fit a text
2629 console with the given dimensions.
2630
2631 @item -chardev ringbuf,id=@var{id}[,size=@var{size}]
2632
2633 Create a ring buffer with fixed size @option{size}.
2634 @var{size} must be a power of two and defaults to @code{64K}.
2635
2636 @item -chardev file,id=@var{id},path=@var{path}
2637
2638 Log all traffic received from the guest to a file.
2639
2640 @option{path} specifies the path of the file to be opened. This file will be
2641 created if it does not already exist, and overwritten if it does. @option{path}
2642 is required.
2643
2644 @item -chardev pipe,id=@var{id},path=@var{path}
2645
2646 Create a two-way connection to the guest. The behaviour differs slightly between
2647 Windows hosts and other hosts:
2648
2649 On Windows, a single duplex pipe will be created at
2650 @file{\\.pipe\@option{path}}.
2651
2652 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2653 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2654 received by the guest. Data written by the guest can be read from
2655 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2656 be present.
2657
2658 @option{path} forms part of the pipe path as described above. @option{path} is
2659 required.
2660
2661 @item -chardev console,id=@var{id}
2662
2663 Send traffic from the guest to QEMU's standard output. @option{console} does not
2664 take any options.
2665
2666 @option{console} is only available on Windows hosts.
2667
2668 @item -chardev serial,id=@var{id},path=@option{path}
2669
2670 Send traffic from the guest to a serial device on the host.
2671
2672 On Unix hosts serial will actually accept any tty device,
2673 not only serial lines.
2674
2675 @option{path} specifies the name of the serial device to open.
2676
2677 @item -chardev pty,id=@var{id}
2678
2679 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2680 not take any options.
2681
2682 @option{pty} is not available on Windows hosts.
2683
2684 @item -chardev stdio,id=@var{id}[,signal=on|off]
2685 Connect to standard input and standard output of the QEMU process.
2686
2687 @option{signal} controls if signals are enabled on the terminal, that includes
2688 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2689 default, use @option{signal=off} to disable it.
2690
2691 @item -chardev braille,id=@var{id}
2692
2693 Connect to a local BrlAPI server. @option{braille} does not take any options.
2694
2695 @item -chardev tty,id=@var{id},path=@var{path}
2696
2697 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2698 DragonFlyBSD hosts. It is an alias for @option{serial}.
2699
2700 @option{path} specifies the path to the tty. @option{path} is required.
2701
2702 @item -chardev parallel,id=@var{id},path=@var{path}
2703 @itemx -chardev parport,id=@var{id},path=@var{path}
2704
2705 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2706
2707 Connect to a local parallel port.
2708
2709 @option{path} specifies the path to the parallel port device. @option{path} is
2710 required.
2711
2712 @item -chardev spicevmc,id=@var{id},debug=@var{debug},name=@var{name}
2713
2714 @option{spicevmc} is only available when spice support is built in.
2715
2716 @option{debug} debug level for spicevmc
2717
2718 @option{name} name of spice channel to connect to
2719
2720 Connect to a spice virtual machine channel, such as vdiport.
2721
2722 @item -chardev spiceport,id=@var{id},debug=@var{debug},name=@var{name}
2723
2724 @option{spiceport} is only available when spice support is built in.
2725
2726 @option{debug} debug level for spicevmc
2727
2728 @option{name} name of spice port to connect to
2729
2730 Connect to a spice port, allowing a Spice client to handle the traffic
2731 identified by a name (preferably a fqdn).
2732 ETEXI
2733
2734 STEXI
2735 @end table
2736 ETEXI
2737 DEFHEADING()
2738
2739 DEFHEADING(Bluetooth(R) options:)
2740 STEXI
2741 @table @option
2742 ETEXI
2743
2744 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2745 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2746 "-bt hci,host[:id]\n" \
2747 " use host's HCI with the given name\n" \
2748 "-bt hci[,vlan=n]\n" \
2749 " emulate a standard HCI in virtual scatternet 'n'\n" \
2750 "-bt vhci[,vlan=n]\n" \
2751 " add host computer to virtual scatternet 'n' using VHCI\n" \
2752 "-bt device:dev[,vlan=n]\n" \
2753 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2754 QEMU_ARCH_ALL)
2755 STEXI
2756 @item -bt hci[...]
2757 @findex -bt
2758 Defines the function of the corresponding Bluetooth HCI. -bt options
2759 are matched with the HCIs present in the chosen machine type. For
2760 example when emulating a machine with only one HCI built into it, only
2761 the first @code{-bt hci[...]} option is valid and defines the HCI's
2762 logic. The Transport Layer is decided by the machine type. Currently
2763 the machines @code{n800} and @code{n810} have one HCI and all other
2764 machines have none.
2765
2766 @anchor{bt-hcis}
2767 The following three types are recognized:
2768
2769 @table @option
2770 @item -bt hci,null
2771 (default) The corresponding Bluetooth HCI assumes no internal logic
2772 and will not respond to any HCI commands or emit events.
2773
2774 @item -bt hci,host[:@var{id}]
2775 (@code{bluez} only) The corresponding HCI passes commands / events
2776 to / from the physical HCI identified by the name @var{id} (default:
2777 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2778 capable systems like Linux.
2779
2780 @item -bt hci[,vlan=@var{n}]
2781 Add a virtual, standard HCI that will participate in the Bluetooth
2782 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2783 VLANs, devices inside a bluetooth network @var{n} can only communicate
2784 with other devices in the same network (scatternet).
2785 @end table
2786
2787 @item -bt vhci[,vlan=@var{n}]
2788 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2789 to the host bluetooth stack instead of to the emulated target. This
2790 allows the host and target machines to participate in a common scatternet
2791 and communicate. Requires the Linux @code{vhci} driver installed. Can
2792 be used as following:
2793
2794 @example
2795 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2796 @end example
2797
2798 @item -bt device:@var{dev}[,vlan=@var{n}]
2799 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2800 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2801 currently:
2802
2803 @table @option
2804 @item keyboard
2805 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2806 @end table
2807 ETEXI
2808
2809 STEXI
2810 @end table
2811 ETEXI
2812 DEFHEADING()
2813
2814 #ifdef CONFIG_TPM
2815 DEFHEADING(TPM device options:)
2816
2817 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2818 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2819 " use path to provide path to a character device; default is /dev/tpm0\n"
2820 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2821 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
2822 "-tpmdev emulator,id=id,chardev=dev\n"
2823 " configure the TPM device using chardev backend\n",
2824 QEMU_ARCH_ALL)
2825 STEXI
2826
2827 The general form of a TPM device option is:
2828 @table @option
2829
2830 @item -tpmdev @var{backend},id=@var{id}[,@var{options}]
2831 @findex -tpmdev
2832
2833 The specific backend type will determine the applicable options.
2834 The @code{-tpmdev} option creates the TPM backend and requires a
2835 @code{-device} option that specifies the TPM frontend interface model.
2836
2837 Use @code{-tpmdev help} to print all available TPM backend types.
2838
2839 @end table
2840
2841 The available backends are:
2842
2843 @table @option
2844
2845 @item -tpmdev passthrough,id=@var{id},path=@var{path},cancel-path=@var{cancel-path}
2846
2847 (Linux-host only) Enable access to the host's TPM using the passthrough
2848 driver.
2849
2850 @option{path} specifies the path to the host's TPM device, i.e., on
2851 a Linux host this would be @code{/dev/tpm0}.
2852 @option{path} is optional and by default @code{/dev/tpm0} is used.
2853
2854 @option{cancel-path} specifies the path to the host TPM device's sysfs
2855 entry allowing for cancellation of an ongoing TPM command.
2856 @option{cancel-path} is optional and by default QEMU will search for the
2857 sysfs entry to use.
2858
2859 Some notes about using the host's TPM with the passthrough driver:
2860
2861 The TPM device accessed by the passthrough driver must not be
2862 used by any other application on the host.
2863
2864 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2865 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2866 TPM again and may therefore not show a TPM-specific menu that would
2867 otherwise allow the user to configure the TPM, e.g., allow the user to
2868 enable/disable or activate/deactivate the TPM.
2869 Further, if TPM ownership is released from within a VM then the host's TPM
2870 will get disabled and deactivated. To enable and activate the
2871 TPM again afterwards, the host has to be rebooted and the user is
2872 required to enter the firmware's menu to enable and activate the TPM.
2873 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2874
2875 To create a passthrough TPM use the following two options:
2876 @example
2877 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2878 @end example
2879 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2880 @code{tpmdev=tpm0} in the device option.
2881
2882 @item -tpmdev emulator,id=@var{id},chardev=@var{dev}
2883
2884 (Linux-host only) Enable access to a TPM emulator using Unix domain socket based
2885 chardev backend.
2886
2887 @option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server.
2888
2889 To create a TPM emulator backend device with chardev socket backend:
2890 @example
2891
2892 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
2893
2894 @end example
2895
2896 ETEXI
2897
2898 STEXI
2899 @end table
2900 ETEXI
2901 DEFHEADING()
2902
2903 #endif
2904
2905 DEFHEADING(Linux/Multiboot boot specific:)
2906 STEXI
2907
2908 When using these options, you can use a given Linux or Multiboot
2909 kernel without installing it in the disk image. It can be useful
2910 for easier testing of various kernels.
2911
2912 @table @option
2913 ETEXI
2914
2915 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2916 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2917 STEXI
2918 @item -kernel @var{bzImage}
2919 @findex -kernel
2920 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2921 or in multiboot format.
2922 ETEXI
2923
2924 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2925 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2926 STEXI
2927 @item -append @var{cmdline}
2928 @findex -append
2929 Use @var{cmdline} as kernel command line
2930 ETEXI
2931
2932 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2933 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2934 STEXI
2935 @item -initrd @var{file}
2936 @findex -initrd
2937 Use @var{file} as initial ram disk.
2938
2939 @item -initrd "@var{file1} arg=foo,@var{file2}"
2940
2941 This syntax is only available with multiboot.
2942
2943 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2944 first module.
2945 ETEXI
2946
2947 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2948 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2949 STEXI
2950 @item -dtb @var{file}
2951 @findex -dtb
2952 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2953 on boot.
2954 ETEXI
2955
2956 STEXI
2957 @end table
2958 ETEXI
2959 DEFHEADING()
2960
2961 DEFHEADING(Debug/Expert options:)
2962 STEXI
2963 @table @option
2964 ETEXI
2965
2966 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2967 "-fw_cfg [name=]<name>,file=<file>\n"
2968 " add named fw_cfg entry with contents from file\n"
2969 "-fw_cfg [name=]<name>,string=<str>\n"
2970 " add named fw_cfg entry with contents from string\n",
2971 QEMU_ARCH_ALL)
2972 STEXI
2973
2974 @item -fw_cfg [name=]@var{name},file=@var{file}
2975 @findex -fw_cfg
2976 Add named fw_cfg entry with contents from file @var{file}.
2977
2978 @item -fw_cfg [name=]@var{name},string=@var{str}
2979 Add named fw_cfg entry with contents from string @var{str}.
2980
2981 The terminating NUL character of the contents of @var{str} will not be
2982 included as part of the fw_cfg item data. To insert contents with
2983 embedded NUL characters, you have to use the @var{file} parameter.
2984
2985 The fw_cfg entries are passed by QEMU through to the guest.
2986
2987 Example:
2988 @example
2989 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
2990 @end example
2991 creates an fw_cfg entry named opt/com.mycompany/blob with contents
2992 from ./my_blob.bin.
2993
2994 ETEXI
2995
2996 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
2997 "-serial dev redirect the serial port to char device 'dev'\n",
2998 QEMU_ARCH_ALL)
2999 STEXI
3000 @item -serial @var{dev}
3001 @findex -serial
3002 Redirect the virtual serial port to host character device
3003 @var{dev}. The default device is @code{vc} in graphical mode and
3004 @code{stdio} in non graphical mode.
3005
3006 This option can be used several times to simulate up to 4 serial
3007 ports.
3008
3009 Use @code{-serial none} to disable all serial ports.
3010
3011 Available character devices are:
3012 @table @option
3013 @item vc[:@var{W}x@var{H}]
3014 Virtual console. Optionally, a width and height can be given in pixel with
3015 @example
3016 vc:800x600
3017 @end example
3018 It is also possible to specify width or height in characters:
3019 @example
3020 vc:80Cx24C
3021 @end example
3022 @item pty
3023 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3024 @item none
3025 No device is allocated.
3026 @item null
3027 void device
3028 @item chardev:@var{id}
3029 Use a named character device defined with the @code{-chardev} option.
3030 @item /dev/XXX
3031 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3032 parameters are set according to the emulated ones.
3033 @item /dev/parport@var{N}
3034 [Linux only, parallel port only] Use host parallel port
3035 @var{N}. Currently SPP and EPP parallel port features can be used.
3036 @item file:@var{filename}
3037 Write output to @var{filename}. No character can be read.
3038 @item stdio
3039 [Unix only] standard input/output
3040 @item pipe:@var{filename}
3041 name pipe @var{filename}
3042 @item COM@var{n}
3043 [Windows only] Use host serial port @var{n}
3044 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3045 This implements UDP Net Console.
3046 When @var{remote_host} or @var{src_ip} are not specified
3047 they default to @code{0.0.0.0}.
3048 When not using a specified @var{src_port} a random port is automatically chosen.
3049
3050 If you just want a simple readonly console you can use @code{netcat} or
3051 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3052 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3053 will appear in the netconsole session.
3054
3055 If you plan to send characters back via netconsole or you want to stop
3056 and start QEMU a lot of times, you should have QEMU use the same
3057 source port each time by using something like @code{-serial
3058 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3059 version of netcat which can listen to a TCP port and send and receive
3060 characters via udp. If you have a patched version of netcat which
3061 activates telnet remote echo and single char transfer, then you can
3062 use the following options to set up a netcat redirector to allow
3063 telnet on port 5555 to access the QEMU port.
3064 @table @code
3065 @item QEMU Options:
3066 -serial udp::4555@@:4556
3067 @item netcat options:
3068 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3069 @item telnet options:
3070 localhost 5555
3071 @end table
3072
3073 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3074 The TCP Net Console has two modes of operation. It can send the serial
3075 I/O to a location or wait for a connection from a location. By default
3076 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3077 the @var{server} option QEMU will wait for a client socket application
3078 to connect to the port before continuing, unless the @code{nowait}
3079 option was specified. The @code{nodelay} option disables the Nagle buffering
3080 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3081 set, if the connection goes down it will attempt to reconnect at the
3082 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3083 one TCP connection at a time is accepted. You can use @code{telnet} to
3084 connect to the corresponding character device.
3085 @table @code
3086 @item Example to send tcp console to 192.168.0.2 port 4444
3087 -serial tcp:192.168.0.2:4444
3088 @item Example to listen and wait on port 4444 for connection
3089 -serial tcp::4444,server
3090 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3091 -serial tcp:192.168.0.100:4444,server,nowait
3092 @end table
3093
3094 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3095 The telnet protocol is used instead of raw tcp sockets. The options
3096 work the same as if you had specified @code{-serial tcp}. The
3097 difference is that the port acts like a telnet server or client using
3098 telnet option negotiation. This will also allow you to send the
3099 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3100 sequence. Typically in unix telnet you do it with Control-] and then
3101 type "send break" followed by pressing the enter key.
3102
3103 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3104 A unix domain socket is used instead of a tcp socket. The option works the
3105 same as if you had specified @code{-serial tcp} except the unix domain socket
3106 @var{path} is used for connections.
3107
3108 @item mon:@var{dev_string}
3109 This is a special option to allow the monitor to be multiplexed onto
3110 another serial port. The monitor is accessed with key sequence of
3111 @key{Control-a} and then pressing @key{c}.
3112 @var{dev_string} should be any one of the serial devices specified
3113 above. An example to multiplex the monitor onto a telnet server
3114 listening on port 4444 would be:
3115 @table @code
3116 @item -serial mon:telnet::4444,server,nowait
3117 @end table
3118 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3119 QEMU any more but will be passed to the guest instead.
3120
3121 @item braille
3122 Braille device. This will use BrlAPI to display the braille output on a real
3123 or fake device.
3124
3125 @item msmouse
3126 Three button serial mouse. Configure the guest to use Microsoft protocol.
3127 @end table
3128 ETEXI
3129
3130 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3131 "-parallel dev redirect the parallel port to char device 'dev'\n",
3132 QEMU_ARCH_ALL)
3133 STEXI
3134 @item -parallel @var{dev}
3135 @findex -parallel
3136 Redirect the virtual parallel port to host device @var{dev} (same
3137 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3138 be used to use hardware devices connected on the corresponding host
3139 parallel port.
3140
3141 This option can be used several times to simulate up to 3 parallel
3142 ports.
3143
3144 Use @code{-parallel none} to disable all parallel ports.
3145 ETEXI
3146
3147 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3148 "-monitor dev redirect the monitor to char device 'dev'\n",
3149 QEMU_ARCH_ALL)
3150 STEXI
3151 @item -monitor @var{dev}
3152 @findex -monitor
3153 Redirect the monitor to host device @var{dev} (same devices as the
3154 serial port).
3155 The default device is @code{vc} in graphical mode and @code{stdio} in
3156 non graphical mode.
3157 Use @code{-monitor none} to disable the default monitor.
3158 ETEXI
3159 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3160 "-qmp dev like -monitor but opens in 'control' mode\n",
3161 QEMU_ARCH_ALL)
3162 STEXI
3163 @item -qmp @var{dev}
3164 @findex -qmp
3165 Like -monitor but opens in 'control' mode.
3166 ETEXI
3167 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3168 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3169 QEMU_ARCH_ALL)
3170 STEXI
3171 @item -qmp-pretty @var{dev}
3172 @findex -qmp-pretty
3173 Like -qmp but uses pretty JSON formatting.
3174 ETEXI
3175
3176 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3177 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3178 STEXI
3179 @item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
3180 @findex -mon
3181 Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing
3182 easing human reading and debugging.
3183 ETEXI
3184
3185 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3186 "-debugcon dev redirect the debug console to char device 'dev'\n",
3187 QEMU_ARCH_ALL)
3188 STEXI
3189 @item -debugcon @var{dev}
3190 @findex -debugcon
3191 Redirect the debug console to host device @var{dev} (same devices as the
3192 serial port). The debug console is an I/O port which is typically port
3193 0xe9; writing to that I/O port sends output to this device.
3194 The default device is @code{vc} in graphical mode and @code{stdio} in
3195 non graphical mode.
3196 ETEXI
3197
3198 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3199 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3200 STEXI
3201 @item -pidfile @var{file}
3202 @findex -pidfile
3203 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3204 from a script.
3205 ETEXI
3206
3207 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3208 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3209 STEXI
3210 @item -singlestep
3211 @findex -singlestep
3212 Run the emulation in single step mode.
3213 ETEXI
3214
3215 DEF("preconfig", 0, QEMU_OPTION_preconfig, \
3216 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3217 QEMU_ARCH_ALL)
3218 STEXI
3219 @item --preconfig
3220 @findex --preconfig
3221 Pause QEMU for interactive configuration before the machine is created,
3222 which allows querying and configuring properties that will affect
3223 machine initialization. Use QMP command 'x-exit-preconfig' to exit
3224 the preconfig state and move to the next state (i.e. run guest if -S
3225 isn't used or pause the second time if -S is used). This option is
3226 experimental.
3227 ETEXI
3228
3229 DEF("S", 0, QEMU_OPTION_S, \
3230 "-S freeze CPU at startup (use 'c' to start execution)\n",
3231 QEMU_ARCH_ALL)
3232 STEXI
3233 @item -S
3234 @findex -S
3235 Do not start CPU at startup (you must type 'c' in the monitor).
3236 ETEXI
3237
3238 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3239 "-realtime [mlock=on|off]\n"
3240 " run qemu with realtime features\n"
3241 " mlock=on|off controls mlock support (default: on)\n",
3242 QEMU_ARCH_ALL)
3243 STEXI
3244 @item -realtime mlock=on|off
3245 @findex -realtime
3246 Run qemu with realtime features.
3247 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3248 (enabled by default).
3249 ETEXI
3250
3251 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3252 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3253 " run qemu with overcommit hints\n"
3254 " mem-lock=on|off controls memory lock support (default: off)\n"
3255 " cpu-pm=on|off controls cpu power management (default: off)\n",
3256 QEMU_ARCH_ALL)
3257 STEXI
3258 @item -overcommit mem-lock=on|off
3259 @item -overcommit cpu-pm=on|off
3260 @findex -overcommit
3261 Run qemu with hints about host resource overcommit. The default is
3262 to assume that host overcommits all resources.
3263
3264 Locking qemu and guest memory can be enabled via @option{mem-lock=on} (disabled
3265 by default). This works when host memory is not overcommitted and reduces the
3266 worst-case latency for guest. This is equivalent to @option{realtime}.
3267
3268 Guest ability to manage power state of host cpus (increasing latency for other
3269 processes on the same host cpu, but decreasing latency for guest) can be
3270 enabled via @option{cpu-pm=on} (disabled by default). This works best when
3271 host CPU is not overcommitted. When used, host estimates of CPU cycle and power
3272 utilization will be incorrect, not taking into account guest idle time.
3273 ETEXI
3274
3275 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3276 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3277 STEXI
3278 @item -gdb @var{dev}
3279 @findex -gdb
3280 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3281 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3282 stdio are reasonable use case. The latter is allowing to start QEMU from
3283 within gdb and establish the connection via a pipe:
3284 @example
3285 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3286 @end example
3287 ETEXI
3288
3289 DEF("s", 0, QEMU_OPTION_s, \
3290 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3291 QEMU_ARCH_ALL)
3292 STEXI
3293 @item -s
3294 @findex -s
3295 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3296 (@pxref{gdb_usage}).
3297 ETEXI
3298
3299 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3300 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3301 QEMU_ARCH_ALL)
3302 STEXI
3303 @item -d @var{item1}[,...]
3304 @findex -d
3305 Enable logging of specified items. Use '-d help' for a list of log items.
3306 ETEXI
3307
3308 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3309 "-D logfile output log to logfile (default stderr)\n",
3310 QEMU_ARCH_ALL)
3311 STEXI
3312 @item -D @var{logfile}
3313 @findex -D
3314 Output log in @var{logfile} instead of to stderr
3315 ETEXI
3316
3317 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3318 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3319 QEMU_ARCH_ALL)
3320 STEXI
3321 @item -dfilter @var{range1}[,...]
3322 @findex -dfilter
3323 Filter debug output to that relevant to a range of target addresses. The filter
3324 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3325 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3326 addresses and sizes required. For example:
3327 @example
3328 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3329 @end example
3330 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3331 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3332 block starting at 0xffffffc00005f000.
3333 ETEXI
3334
3335 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3336 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3337 QEMU_ARCH_ALL)
3338 STEXI
3339 @item -L @var{path}
3340 @findex -L
3341 Set the directory for the BIOS, VGA BIOS and keymaps.
3342
3343 To list all the data directories, use @code{-L help}.
3344 ETEXI
3345
3346 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3347 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3348 STEXI
3349 @item -bios @var{file}
3350 @findex -bios
3351 Set the filename for the BIOS.
3352 ETEXI
3353
3354 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3355 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3356 STEXI
3357 @item -enable-kvm
3358 @findex -enable-kvm
3359 Enable KVM full virtualization support. This option is only available
3360 if KVM support is enabled when compiling.
3361 ETEXI
3362
3363 DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \
3364 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386)
3365 STEXI
3366 @item -enable-hax
3367 @findex -enable-hax
3368 Enable HAX (Hardware-based Acceleration eXecution) support. This option
3369 is only available if HAX support is enabled when compiling. HAX is only
3370 applicable to MAC and Windows platform, and thus does not conflict with
3371 KVM. This option is deprecated, use @option{-accel hax} instead.
3372 ETEXI
3373
3374 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3375 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3376 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3377 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3378 " warning: should not be used when xend is in use\n",
3379 QEMU_ARCH_ALL)
3380 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3381 "-xen-attach attach to existing xen domain\n"
3382 " xend will use this when starting QEMU\n",
3383 QEMU_ARCH_ALL)
3384 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3385 "-xen-domid-restrict restrict set of available xen operations\n"
3386 " to specified domain id. (Does not affect\n"
3387 " xenpv machine type).\n",
3388 QEMU_ARCH_ALL)
3389 STEXI
3390 @item -xen-domid @var{id}
3391 @findex -xen-domid
3392 Specify xen guest domain @var{id} (XEN only).
3393 @item -xen-create
3394 @findex -xen-create
3395 Create domain using xen hypercalls, bypassing xend.
3396 Warning: should not be used when xend is in use (XEN only).
3397 @item -xen-attach
3398 @findex -xen-attach
3399 Attach to existing xen domain.
3400 xend will use this when starting QEMU (XEN only).
3401 @findex -xen-domid-restrict
3402 Restrict set of available xen operations to specified domain id (XEN only).
3403 ETEXI
3404
3405 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3406 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3407 STEXI
3408 @item -no-reboot
3409 @findex -no-reboot
3410 Exit instead of rebooting.
3411 ETEXI
3412
3413 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3414 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3415 STEXI
3416 @item -no-shutdown
3417 @findex -no-shutdown
3418 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3419 This allows for instance switching to monitor to commit changes to the
3420 disk image.
3421 ETEXI
3422
3423 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3424 "-loadvm [tag|id]\n" \
3425 " start right away with a saved state (loadvm in monitor)\n",
3426 QEMU_ARCH_ALL)
3427 STEXI
3428 @item -loadvm @var{file}
3429 @findex -loadvm
3430 Start right away with a saved state (@code{loadvm} in monitor)
3431 ETEXI
3432
3433 #ifndef _WIN32
3434 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3435 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3436 #endif
3437 STEXI
3438 @item -daemonize
3439 @findex -daemonize
3440 Daemonize the QEMU process after initialization. QEMU will not detach from
3441 standard IO until it is ready to receive connections on any of its devices.
3442 This option is a useful way for external programs to launch QEMU without having
3443 to cope with initialization race conditions.
3444 ETEXI
3445
3446 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3447 "-option-rom rom load a file, rom, into the option ROM space\n",
3448 QEMU_ARCH_ALL)
3449 STEXI
3450 @item -option-rom @var{file}
3451 @findex -option-rom
3452 Load the contents of @var{file} as an option ROM.
3453 This option is useful to load things like EtherBoot.
3454 ETEXI
3455
3456 HXCOMM Silently ignored for compatibility
3457 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3458
3459 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3460 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3461 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3462 QEMU_ARCH_ALL)
3463
3464 STEXI
3465
3466 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3467 @findex -rtc
3468 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3469 UTC or local time, respectively. @code{localtime} is required for correct date in
3470 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3471 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3472
3473 By default the RTC is driven by the host system time. This allows using of the
3474 RTC as accurate reference clock inside the guest, specifically if the host
3475 time is smoothly following an accurate external reference clock, e.g. via NTP.
3476 If you want to isolate the guest time from the host, you can set @option{clock}
3477 to @code{rt} instead. To even prevent it from progressing during suspension,
3478 you can set it to @code{vm}.
3479
3480 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3481 specifically with Windows' ACPI HAL. This option will try to figure out how
3482 many timer interrupts were not processed by the Windows guest and will
3483 re-inject them.
3484 ETEXI
3485
3486 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3487 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3488 " enable virtual instruction counter with 2^N clock ticks per\n" \
3489 " instruction, enable aligning the host and virtual clocks\n" \
3490 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3491 STEXI
3492 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3493 @findex -icount
3494 Enable virtual instruction counter. The virtual cpu will execute one
3495 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3496 then the virtual cpu speed will be automatically adjusted to keep virtual
3497 time within a few seconds of real time.
3498
3499 When the virtual cpu is sleeping, the virtual time will advance at default
3500 speed unless @option{sleep=on|off} is specified.
3501 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3502 instantly whenever the virtual cpu goes to sleep mode and will not advance
3503 if no timer is enabled. This behavior give deterministic execution times from
3504 the guest point of view.
3505
3506 Note that while this option can give deterministic behavior, it does not
3507 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3508 order cores with complex cache hierarchies. The number of instructions
3509 executed often has little or no correlation with actual performance.
3510
3511 @option{align=on} will activate the delay algorithm which will try
3512 to synchronise the host clock and the virtual clock. The goal is to
3513 have a guest running at the real frequency imposed by the shift option.
3514 Whenever the guest clock is behind the host clock and if
3515 @option{align=on} is specified then we print a message to the user
3516 to inform about the delay.
3517 Currently this option does not work when @option{shift} is @code{auto}.
3518 Note: The sync algorithm will work for those shift values for which
3519 the guest clock runs ahead of the host clock. Typically this happens
3520 when the shift value is high (how high depends on the host machine).
3521
3522 When @option{rr} option is specified deterministic record/replay is enabled.
3523 Replay log is written into @var{filename} file in record mode and
3524 read from this file in replay mode.
3525
3526 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3527 at the start of execution recording. In replay mode this option is used
3528 to load the initial VM state.
3529 ETEXI
3530
3531 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3532 "-watchdog model\n" \
3533 " enable virtual hardware watchdog [default=none]\n",
3534 QEMU_ARCH_ALL)
3535 STEXI
3536 @item -watchdog @var{model}
3537 @findex -watchdog
3538 Create a virtual hardware watchdog device. Once enabled (by a guest
3539 action), the watchdog must be periodically polled by an agent inside
3540 the guest or else the guest will be restarted. Choose a model for
3541 which your guest has drivers.
3542
3543 The @var{model} is the model of hardware watchdog to emulate. Use
3544 @code{-watchdog help} to list available hardware models. Only one
3545 watchdog can be enabled for a guest.
3546
3547 The following models may be available:
3548 @table @option
3549 @item ib700
3550 iBASE 700 is a very simple ISA watchdog with a single timer.
3551 @item i6300esb
3552 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3553 dual-timer watchdog.
3554 @item diag288
3555 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3556 (currently KVM only).
3557 @end table
3558 ETEXI
3559
3560 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3561 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
3562 " action when watchdog fires [default=reset]\n",
3563 QEMU_ARCH_ALL)
3564 STEXI
3565 @item -watchdog-action @var{action}
3566 @findex -watchdog-action
3567
3568 The @var{action} controls what QEMU will do when the watchdog timer
3569 expires.
3570 The default is
3571 @code{reset} (forcefully reset the guest).
3572 Other possible actions are:
3573 @code{shutdown} (attempt to gracefully shutdown the guest),
3574 @code{poweroff} (forcefully poweroff the guest),
3575 @code{inject-nmi} (inject a NMI into the guest),
3576 @code{pause} (pause the guest),
3577 @code{debug} (print a debug message and continue), or
3578 @code{none} (do nothing).
3579
3580 Note that the @code{shutdown} action requires that the guest responds
3581 to ACPI signals, which it may not be able to do in the sort of
3582 situations where the watchdog would have expired, and thus
3583 @code{-watchdog-action shutdown} is not recommended for production use.
3584
3585 Examples:
3586
3587 @table @code
3588 @item -watchdog i6300esb -watchdog-action pause
3589 @itemx -watchdog ib700
3590 @end table
3591 ETEXI
3592
3593 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3594 "-echr chr set terminal escape character instead of ctrl-a\n",
3595 QEMU_ARCH_ALL)
3596 STEXI
3597
3598 @item -echr @var{numeric_ascii_value}
3599 @findex -echr
3600 Change the escape character used for switching to the monitor when using
3601 monitor and serial sharing. The default is @code{0x01} when using the
3602 @code{-nographic} option. @code{0x01} is equal to pressing
3603 @code{Control-a}. You can select a different character from the ascii
3604 control keys where 1 through 26 map to Control-a through Control-z. For
3605 instance you could use the either of the following to change the escape
3606 character to Control-t.
3607 @table @code
3608 @item -echr 0x14
3609 @itemx -echr 20
3610 @end table
3611 ETEXI
3612
3613 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3614 "-virtioconsole c\n" \
3615 " set virtio console\n", QEMU_ARCH_ALL)
3616 STEXI
3617 @item -virtioconsole @var{c}
3618 @findex -virtioconsole
3619 Set virtio console.
3620 This option is deprecated, please use @option{-device virtconsole} instead.
3621 ETEXI
3622
3623 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3624 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3625 STEXI
3626 @item -show-cursor
3627 @findex -show-cursor
3628 Show cursor.
3629 ETEXI
3630
3631 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3632 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3633 STEXI
3634 @item -tb-size @var{n}
3635 @findex -tb-size
3636 Set TB size.
3637 ETEXI
3638
3639 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3640 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3641 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3642 "-incoming unix:socketpath\n" \
3643 " prepare for incoming migration, listen on\n" \
3644 " specified protocol and socket address\n" \
3645 "-incoming fd:fd\n" \
3646 "-incoming exec:cmdline\n" \
3647 " accept incoming migration on given file descriptor\n" \
3648 " or from given external command\n" \
3649 "-incoming defer\n" \
3650 " wait for the URI to be specified via migrate_incoming\n",
3651 QEMU_ARCH_ALL)
3652 STEXI
3653 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3654 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3655 @findex -incoming
3656 Prepare for incoming migration, listen on a given tcp port.
3657
3658 @item -incoming unix:@var{socketpath}
3659 Prepare for incoming migration, listen on a given unix socket.
3660
3661 @item -incoming fd:@var{fd}
3662 Accept incoming migration from a given filedescriptor.
3663
3664 @item -incoming exec:@var{cmdline}
3665 Accept incoming migration as an output from specified external command.
3666
3667 @item -incoming defer
3668 Wait for the URI to be specified via migrate_incoming. The monitor can
3669 be used to change settings (such as migration parameters) prior to issuing
3670 the migrate_incoming to allow the migration to begin.
3671 ETEXI
3672
3673 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3674 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3675 STEXI
3676 @item -only-migratable
3677 @findex -only-migratable
3678 Only allow migratable devices. Devices will not be allowed to enter an
3679 unmigratable state.
3680 ETEXI
3681
3682 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3683 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3684 STEXI
3685 @item -nodefaults
3686 @findex -nodefaults
3687 Don't create default devices. Normally, QEMU sets the default devices like serial
3688 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3689 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3690 default devices.
3691 ETEXI
3692
3693 #ifndef _WIN32
3694 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3695 "-chroot dir chroot to dir just before starting the VM\n",
3696 QEMU_ARCH_ALL)
3697 #endif
3698 STEXI
3699 @item -chroot @var{dir}
3700 @findex -chroot
3701 Immediately before starting guest execution, chroot to the specified
3702 directory. Especially useful in combination with -runas.
3703 ETEXI
3704
3705 #ifndef _WIN32
3706 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3707 "-runas user change to user id user just before starting the VM\n" \
3708 " user can be numeric uid:gid instead\n",
3709 QEMU_ARCH_ALL)
3710 #endif
3711 STEXI
3712 @item -runas @var{user}
3713 @findex -runas
3714 Immediately before starting guest execution, drop root privileges, switching
3715 to the specified user.
3716 ETEXI
3717
3718 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3719 "-prom-env variable=value\n"
3720 " set OpenBIOS nvram variables\n",
3721 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3722 STEXI
3723 @item -prom-env @var{variable}=@var{value}
3724 @findex -prom-env
3725 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3726 ETEXI
3727 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3728 "-semihosting semihosting mode\n",
3729 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3730 QEMU_ARCH_MIPS)
3731 STEXI
3732 @item -semihosting
3733 @findex -semihosting
3734 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3735 ETEXI
3736 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3737 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3738 " semihosting configuration\n",
3739 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3740 QEMU_ARCH_MIPS)
3741 STEXI
3742 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3743 @findex -semihosting-config
3744 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3745 @table @option
3746 @item target=@code{native|gdb|auto}
3747 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3748 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3749 during debug sessions and @code{native} otherwise.
3750 @item arg=@var{str1},arg=@var{str2},...
3751 Allows the user to pass input arguments, and can be used multiple times to build
3752 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3753 command line is still supported for backward compatibility. If both the
3754 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3755 specified, the former is passed to semihosting as it always takes precedence.
3756 @end table
3757 ETEXI
3758 DEF("old-param", 0, QEMU_OPTION_old_param,
3759 "-old-param old param mode\n", QEMU_ARCH_ARM)
3760 STEXI
3761 @item -old-param
3762 @findex -old-param (ARM)
3763 Old param mode (ARM only).
3764 ETEXI
3765
3766 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3767 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
3768 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
3769 " Enable seccomp mode 2 system call filter (default 'off').\n" \
3770 " use 'obsolete' to allow obsolete system calls that are provided\n" \
3771 " by the kernel, but typically no longer used by modern\n" \
3772 " C library implementations.\n" \
3773 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \
3774 " its privileges by blacklisting all set*uid|gid system calls.\n" \
3775 " The value 'children' will deny set*uid|gid system calls for\n" \
3776 " main QEMU process but will allow forks and execves to run unprivileged\n" \
3777 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
3778 " blacklisting *fork and execve\n" \
3779 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
3780 QEMU_ARCH_ALL)
3781 STEXI
3782 @item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}]
3783 @findex -sandbox
3784 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3785 disable it. The default is 'off'.
3786 @table @option
3787 @item obsolete=@var{string}
3788 Enable Obsolete system calls
3789 @item elevateprivileges=@var{string}
3790 Disable set*uid|gid system calls
3791 @item spawn=@var{string}
3792 Disable *fork and execve
3793 @item resourcecontrol=@var{string}
3794 Disable process affinity and schedular priority
3795 @end table
3796 ETEXI
3797
3798 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3799 "-readconfig <file>\n", QEMU_ARCH_ALL)
3800 STEXI
3801 @item -readconfig @var{file}
3802 @findex -readconfig
3803 Read device configuration from @var{file}. This approach is useful when you want to spawn
3804 QEMU process with many command line options but you don't want to exceed the command line
3805 character limit.
3806 ETEXI
3807 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3808 "-writeconfig <file>\n"
3809 " read/write config file\n", QEMU_ARCH_ALL)
3810 STEXI
3811 @item -writeconfig @var{file}
3812 @findex -writeconfig
3813 Write device configuration to @var{file}. The @var{file} can be either filename to save
3814 command line and device configuration into file or dash @code{-}) character to print the
3815 output to stdout. This can be later used as input file for @code{-readconfig} option.
3816 ETEXI
3817
3818 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3819 "-no-user-config\n"
3820 " do not load default user-provided config files at startup\n",
3821 QEMU_ARCH_ALL)
3822 STEXI
3823 @item -no-user-config
3824 @findex -no-user-config
3825 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3826 config files on @var{sysconfdir}.
3827 ETEXI
3828
3829 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3830 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3831 " specify tracing options\n",
3832 QEMU_ARCH_ALL)
3833 STEXI
3834 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3835 HXCOMM HX does not support conditional compilation of text.
3836 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3837 @findex -trace
3838 @include qemu-option-trace.texi
3839 ETEXI
3840
3841 HXCOMM Internal use
3842 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3843 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3844
3845 #ifdef __linux__
3846 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3847 "-enable-fips enable FIPS 140-2 compliance\n",
3848 QEMU_ARCH_ALL)
3849 #endif
3850 STEXI
3851 @item -enable-fips
3852 @findex -enable-fips
3853 Enable FIPS 140-2 compliance mode.
3854 ETEXI
3855
3856 HXCOMM Deprecated by -machine accel=tcg property
3857 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3858
3859 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3860 "-msg timestamp[=on|off]\n"
3861 " change the format of messages\n"
3862 " on|off controls leading timestamps (default:on)\n",
3863 QEMU_ARCH_ALL)
3864 STEXI
3865 @item -msg timestamp[=on|off]
3866 @findex -msg
3867 prepend a timestamp to each log message.(default:on)
3868 ETEXI
3869
3870 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3871 "-dump-vmstate <file>\n"
3872 " Output vmstate information in JSON format to file.\n"
3873 " Use the scripts/vmstate-static-checker.py file to\n"
3874 " check for possible regressions in migration code\n"
3875 " by comparing two such vmstate dumps.\n",
3876 QEMU_ARCH_ALL)
3877 STEXI
3878 @item -dump-vmstate @var{file}
3879 @findex -dump-vmstate
3880 Dump json-encoded vmstate information for current machine type to file
3881 in @var{file}
3882 ETEXI
3883
3884 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile,
3885 "-enable-sync-profile\n"
3886 " enable synchronization profiling\n",
3887 QEMU_ARCH_ALL)
3888 STEXI
3889 @item -enable-sync-profile
3890 @findex -enable-sync-profile
3891 Enable synchronization profiling.
3892 ETEXI
3893
3894 STEXI
3895 @end table
3896 ETEXI
3897 DEFHEADING()
3898
3899 DEFHEADING(Generic object creation:)
3900 STEXI
3901 @table @option
3902 ETEXI
3903
3904 DEF("object", HAS_ARG, QEMU_OPTION_object,
3905 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3906 " create a new object of type TYPENAME setting properties\n"
3907 " in the order they are specified. Note that the 'id'\n"
3908 " property must be set. These objects are placed in the\n"
3909 " '/objects' path.\n",
3910 QEMU_ARCH_ALL)
3911 STEXI
3912 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3913 @findex -object
3914 Create a new object of type @var{typename} setting properties
3915 in the order they are specified. Note that the 'id'
3916 property must be set. These objects are placed in the
3917 '/objects' path.
3918
3919 @table @option
3920
3921 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},align=@var{align}
3922
3923 Creates a memory file backend object, which can be used to back
3924 the guest RAM with huge pages.
3925
3926 The @option{id} parameter is a unique ID that will be used to reference this
3927 memory region when configuring the @option{-numa} argument.
3928
3929 The @option{size} option provides the size of the memory region, and accepts
3930 common suffixes, eg @option{500M}.
3931
3932 The @option{mem-path} provides the path to either a shared memory or huge page
3933 filesystem mount.
3934
3935 The @option{share} boolean option determines whether the memory
3936 region is marked as private to QEMU, or shared. The latter allows
3937 a co-operating external process to access the QEMU memory region.
3938
3939 The @option{share} is also required for pvrdma devices due to
3940 limitations in the RDMA API provided by Linux.
3941
3942 Setting share=on might affect the ability to configure NUMA
3943 bindings for the memory backend under some circumstances, see
3944 Documentation/vm/numa_memory_policy.txt on the Linux kernel
3945 source tree for additional details.
3946
3947 Setting the @option{discard-data} boolean option to @var{on}
3948 indicates that file contents can be destroyed when QEMU exits,
3949 to avoid unnecessarily flushing data to the backing file. Note
3950 that @option{discard-data} is only an optimization, and QEMU
3951 might not discard file contents if it aborts unexpectedly or is
3952 terminated using SIGKILL.
3953
3954 The @option{merge} boolean option enables memory merge, also known as
3955 MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for
3956 memory deduplication.
3957
3958 Setting the @option{dump} boolean option to @var{off} excludes the memory from
3959 core dumps. This feature is also known as MADV_DONTDUMP.
3960
3961 The @option{prealloc} boolean option enables memory preallocation.
3962
3963 The @option{host-nodes} option binds the memory range to a list of NUMA host
3964 nodes.
3965
3966 The @option{policy} option sets the NUMA policy to one of the following values:
3967
3968 @table @option
3969 @item @var{default}
3970 default host policy
3971
3972 @item @var{preferred}
3973 prefer the given host node list for allocation
3974
3975 @item @var{bind}
3976 restrict memory allocation to the given host node list
3977
3978 @item @var{interleave}
3979 interleave memory allocations across the given host node list
3980 @end table
3981
3982 The @option{align} option specifies the base address alignment when
3983 QEMU mmap(2) @option{mem-path}, and accepts common suffixes, eg
3984 @option{2M}. Some backend store specified by @option{mem-path}
3985 requires an alignment different than the default one used by QEMU, eg
3986 the device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
3987 such cases, users can specify the required alignment via this option.
3988
3989 The @option{pmem} option specifies whether the backing file specified
3990 by @option{mem-path} is in host persistent memory that can be accessed
3991 using the SNIA NVM programming model (e.g. Intel NVDIMM).
3992 If @option{pmem} is set to 'on', QEMU will take necessary operations to
3993 guarantee the persistence of its own writes to @option{mem-path}
3994 (e.g. in vNVDIMM label emulation and live migration).
3995
3996 @item -object memory-backend-ram,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave}
3997
3998 Creates a memory backend object, which can be used to back the guest RAM.
3999 Memory backend objects offer more control than the @option{-m} option that is
4000 traditionally used to define guest RAM. Please refer to
4001 @option{memory-backend-file} for a description of the options.
4002
4003 @item -object memory-backend-memfd,id=@var{id},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},seal=@var{on|off},hugetlb=@var{on|off},hugetlbsize=@var{size}
4004
4005 Creates an anonymous memory file backend object, which allows QEMU to
4006 share the memory with an external process (e.g. when using
4007 vhost-user). The memory is allocated with memfd and optional
4008 sealing. (Linux only)
4009
4010 The @option{seal} option creates a sealed-file, that will block
4011 further resizing the memory ('on' by default).
4012
4013 The @option{hugetlb} option specify the file to be created resides in
4014 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction with
4015 the @option{hugetlb} option, the @option{hugetlbsize} option specify
4016 the hugetlb page size on systems that support multiple hugetlb page
4017 sizes (it must be a power of 2 value supported by the system).
4018
4019 In some versions of Linux, the @option{hugetlb} option is incompatible
4020 with the @option{seal} option (requires at least Linux 4.16).
4021
4022 Please refer to @option{memory-backend-file} for a description of the
4023 other options.
4024
4025 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
4026
4027 Creates a random number generator backend which obtains entropy from
4028 a device on the host. The @option{id} parameter is a unique ID that
4029 will be used to reference this entropy backend from the @option{virtio-rng}
4030 device. The @option{filename} parameter specifies which file to obtain
4031 entropy from and if omitted defaults to @option{/dev/random}.
4032
4033 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
4034
4035 Creates a random number generator backend which obtains entropy from
4036 an external daemon running on the host. The @option{id} parameter is
4037 a unique ID that will be used to reference this entropy backend from
4038 the @option{virtio-rng} device. The @option{chardev} parameter is
4039 the unique ID of a character device backend that provides the connection
4040 to the RNG daemon.
4041
4042 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
4043
4044 Creates a TLS anonymous credentials object, which can be used to provide
4045 TLS support on network backends. The @option{id} parameter is a unique
4046 ID which network backends will use to access the credentials. The
4047 @option{endpoint} is either @option{server} or @option{client} depending
4048 on whether the QEMU network backend that uses the credentials will be
4049 acting as a client or as a server. If @option{verify-peer} is enabled
4050 (the default) then once the handshake is completed, the peer credentials
4051 will be verified, though this is a no-op for anonymous credentials.
4052
4053 The @var{dir} parameter tells QEMU where to find the credential
4054 files. For server endpoints, this directory may contain a file
4055 @var{dh-params.pem} providing diffie-hellman parameters to use
4056 for the TLS server. If the file is missing, QEMU will generate
4057 a set of DH parameters at startup. This is a computationally
4058 expensive operation that consumes random pool entropy, so it is
4059 recommended that a persistent set of parameters be generated
4060 upfront and saved.
4061
4062 @item -object tls-creds-psk,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/keys/dir}[,username=@var{username}]
4063
4064 Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide
4065 TLS support on network backends. The @option{id} parameter is a unique
4066 ID which network backends will use to access the credentials. The
4067 @option{endpoint} is either @option{server} or @option{client} depending
4068 on whether the QEMU network backend that uses the credentials will be
4069 acting as a client or as a server. For clients only, @option{username}
4070 is the username which will be sent to the server. If omitted
4071 it defaults to ``qemu''.
4072
4073 The @var{dir} parameter tells QEMU where to find the keys file.
4074 It is called ``@var{dir}/keys.psk'' and contains ``username:key''
4075 pairs. This file can most easily be created using the GnuTLS
4076 @code{psktool} program.
4077
4078 For server endpoints, @var{dir} may also contain a file
4079 @var{dh-params.pem} providing diffie-hellman parameters to use
4080 for the TLS server. If the file is missing, QEMU will generate
4081 a set of DH parameters at startup. This is a computationally
4082 expensive operation that consumes random pool entropy, so it is
4083 recommended that a persistent set of parameters be generated
4084 up front and saved.
4085
4086 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},priority=@var{priority},verify-peer=@var{on|off},passwordid=@var{id}
4087
4088 Creates a TLS anonymous credentials object, which can be used to provide
4089 TLS support on network backends. The @option{id} parameter is a unique
4090 ID which network backends will use to access the credentials. The
4091 @option{endpoint} is either @option{server} or @option{client} depending
4092 on whether the QEMU network backend that uses the credentials will be
4093 acting as a client or as a server. If @option{verify-peer} is enabled
4094 (the default) then once the handshake is completed, the peer credentials
4095 will be verified. With x509 certificates, this implies that the clients
4096 must be provided with valid client certificates too.
4097
4098 The @var{dir} parameter tells QEMU where to find the credential
4099 files. For server endpoints, this directory may contain a file
4100 @var{dh-params.pem} providing diffie-hellman parameters to use
4101 for the TLS server. If the file is missing, QEMU will generate
4102 a set of DH parameters at startup. This is a computationally
4103 expensive operation that consumes random pool entropy, so it is
4104 recommended that a persistent set of parameters be generated
4105 upfront and saved.
4106
4107 For x509 certificate credentials the directory will contain further files
4108 providing the x509 certificates. The certificates must be stored
4109 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4110 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4111 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4112
4113 For the @var{server-key.pem} and @var{client-key.pem} files which
4114 contain sensitive private keys, it is possible to use an encrypted
4115 version by providing the @var{passwordid} parameter. This provides
4116 the ID of a previously created @code{secret} object containing the
4117 password for decryption.
4118
4119 The @var{priority} parameter allows to override the global default
4120 priority used by gnutls. This can be useful if the system administrator
4121 needs to use a weaker set of crypto priorities for QEMU without
4122 potentially forcing the weakness onto all applications. Or conversely
4123 if one wants wants a stronger default for QEMU than for all other
4124 applications, they can do this through this parameter. Its format is
4125 a gnutls priority string as described at
4126 @url{https://gnutls.org/manual/html_node/Priority-Strings.html}.
4127
4128 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4129
4130 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4131 packets arriving in a given interval on netdev @var{netdevid} are delayed
4132 until the end of the interval. Interval is in microseconds.
4133 @option{status} is optional that indicate whether the netfilter is
4134 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4135
4136 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4137
4138 @option{all}: the filter is attached both to the receive and the transmit
4139 queue of the netdev (default).
4140
4141 @option{rx}: the filter is attached to the receive queue of the netdev,
4142 where it will receive packets sent to the netdev.
4143
4144 @option{tx}: the filter is attached to the transmit queue of the netdev,
4145 where it will receive packets sent by the netdev.
4146
4147 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4148
4149 filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.
4150
4151 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4152
4153 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4154 @var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag,
4155 filter-redirector will redirect packet with vnet_hdr_len.
4156 Create a filter-redirector we need to differ outdev id from indev id, id can not
4157 be the same. we can just use indev or outdev, but at least one of indev or outdev
4158 need to be specified.
4159
4160 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support]
4161
4162 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4163 secondary from primary to keep secondary tcp connection,and rewrite
4164 tcp packet to primary from secondary make tcp packet can be handled by
4165 client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.
4166
4167 usage:
4168 colo secondary:
4169 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4170 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4171 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4172
4173 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4174
4175 Dump the network traffic on netdev @var{dev} to the file specified by
4176 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4177 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4178 or Wireshark.
4179
4180 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid}[,vnet_hdr_support]
4181
4182 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4183 secondary packet. If the packets are same, we will output primary
4184 packet to outdev@var{chardevid}, else we will notify colo-frame
4185 do checkpoint and send primary packet to outdev@var{chardevid}.
4186 if it has the vnet_hdr_support flag, colo compare will send/recv packet with vnet_hdr_len.
4187
4188 we must use it with the help of filter-mirror and filter-redirector.
4189
4190 @example
4191
4192 primary:
4193 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4194 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4195 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4196 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4197 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4198 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4199 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4200 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4201 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4202 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4203 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4204 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
4205
4206 secondary:
4207 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4208 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4209 -chardev socket,id=red0,host=3.3.3.3,port=9003
4210 -chardev socket,id=red1,host=3.3.3.3,port=9004
4211 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4212 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4213
4214 @end example
4215
4216 If you want to know the detail of above command line, you can read
4217 the colo-compare git log.
4218
4219 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4220
4221 Creates a cryptodev backend which executes crypto opreation from
4222 the QEMU cipher APIS. The @var{id} parameter is
4223 a unique ID that will be used to reference this cryptodev backend from
4224 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4225 which specify the queue number of cryptodev backend, the default of
4226 @var{queues} is 1.
4227
4228 @example
4229
4230 # qemu-system-x86_64 \
4231 [...] \
4232 -object cryptodev-backend-builtin,id=cryptodev0 \
4233 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4234 [...]
4235 @end example
4236
4237 @item -object cryptodev-vhost-user,id=@var{id},chardev=@var{chardevid}[,queues=@var{queues}]
4238
4239 Creates a vhost-user cryptodev backend, backed by a chardev @var{chardevid}.
4240 The @var{id} parameter is a unique ID that will be used to reference this
4241 cryptodev backend from the @option{virtio-crypto} device.
4242 The chardev should be a unix domain socket backed one. The vhost-user uses
4243 a specifically defined protocol to pass vhost ioctl replacement messages
4244 to an application on the other end of the socket.
4245 The @var{queues} parameter is optional, which specify the queue number
4246 of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1.
4247
4248 @example
4249
4250 # qemu-system-x86_64 \
4251 [...] \
4252 -chardev socket,id=chardev0,path=/path/to/socket \
4253 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
4254 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4255 [...]
4256 @end example
4257
4258 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4259 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4260
4261 Defines a secret to store a password, encryption key, or some other sensitive
4262 data. The sensitive data can either be passed directly via the @var{data}
4263 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4264 parameter is insecure unless the sensitive data is encrypted.
4265
4266 The sensitive data can be provided in raw format (the default), or base64.
4267 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4268 so base64 is recommended for sending binary data. QEMU will convert from
4269 which ever format is provided to the format it needs internally. eg, an
4270 RBD password can be provided in raw format, even though it will be base64
4271 encoded when passed onto the RBD sever.
4272
4273 For added protection, it is possible to encrypt the data associated with
4274 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4275 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4276 parameter provides the ID of a previously defined secret that contains
4277 the AES-256 decryption key. This key should be 32-bytes long and be
4278 base64 encoded. The @var{iv} parameter provides the random initialization
4279 vector used for encryption of this particular secret and should be a
4280 base64 encrypted string of the 16-byte IV.
4281
4282 The simplest (insecure) usage is to provide the secret inline
4283
4284 @example
4285
4286 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4287
4288 @end example
4289
4290 The simplest secure usage is to provide the secret via a file
4291
4292 # printf "letmein" > mypasswd.txt
4293 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4294
4295 For greater security, AES-256-CBC should be used. To illustrate usage,
4296 consider the openssl command line tool which can encrypt the data. Note
4297 that when encrypting, the plaintext must be padded to the cipher block
4298 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4299
4300 First a master key needs to be created in base64 encoding:
4301
4302 @example
4303 # openssl rand -base64 32 > key.b64
4304 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4305 @end example
4306
4307 Each secret to be encrypted needs to have a random initialization vector
4308 generated. These do not need to be kept secret
4309
4310 @example
4311 # openssl rand -base64 16 > iv.b64
4312 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4313 @end example
4314
4315 The secret to be defined can now be encrypted, in this case we're
4316 telling openssl to base64 encode the result, but it could be left
4317 as raw bytes if desired.
4318
4319 @example
4320 # SECRET=$(printf "letmein" |
4321 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4322 @end example
4323
4324 When launching QEMU, create a master secret pointing to @code{key.b64}
4325 and specify that to be used to decrypt the user password. Pass the
4326 contents of @code{iv.b64} to the second secret
4327
4328 @example
4329 # $QEMU \
4330 -object secret,id=secmaster0,format=base64,file=key.b64 \
4331 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4332 data=$SECRET,iv=$(<iv.b64)
4333 @end example
4334
4335 @item -object sev-guest,id=@var{id},cbitpos=@var{cbitpos},reduced-phys-bits=@var{val},[sev-device=@var{string},policy=@var{policy},handle=@var{handle},dh-cert-file=@var{file},session-file=@var{file}]
4336
4337 Create a Secure Encrypted Virtualization (SEV) guest object, which can be used
4338 to provide the guest memory encryption support on AMD processors.
4339
4340 When memory encryption is enabled, one of the physical address bit (aka the
4341 C-bit) is utilized to mark if a memory page is protected. The @option{cbitpos}
4342 is used to provide the C-bit position. The C-bit position is Host family dependent
4343 hence user must provide this value. On EPYC, the value should be 47.
4344
4345 When memory encryption is enabled, we loose certain bits in physical address space.
4346 The @option{reduced-phys-bits} is used to provide the number of bits we loose in
4347 physical address space. Similar to C-bit, the value is Host family dependent.
4348 On EPYC, the value should be 5.
4349
4350 The @option{sev-device} provides the device file to use for communicating with
4351 the SEV firmware running inside AMD Secure Processor. The default device is
4352 '/dev/sev'. If hardware supports memory encryption then /dev/sev devices are
4353 created by CCP driver.
4354
4355 The @option{policy} provides the guest policy to be enforced by the SEV firmware
4356 and restrict what configuration and operational commands can be performed on this
4357 guest by the hypervisor. The policy should be provided by the guest owner and is
4358 bound to the guest and cannot be changed throughout the lifetime of the guest.
4359 The default is 0.
4360
4361 If guest @option{policy} allows sharing the key with another SEV guest then
4362 @option{handle} can be use to provide handle of the guest from which to share
4363 the key.
4364
4365 The @option{dh-cert-file} and @option{session-file} provides the guest owner's
4366 Public Diffie-Hillman key defined in SEV spec. The PDH and session parameters
4367 are used for establishing a cryptographic session with the guest owner to
4368 negotiate keys used for attestation. The file must be encoded in base64.
4369
4370 e.g to launch a SEV guest
4371 @example
4372 # $QEMU \
4373 ......
4374 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
4375 -machine ...,memory-encryption=sev0
4376 .....
4377
4378 @end example
4379 @end table
4380
4381 ETEXI
4382
4383
4384 HXCOMM This is the last statement. Insert new options before this line!
4385 STEXI
4386 @end table
4387 ETEXI