]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
numa: Extend CLI to provide memory latency and bandwidth information
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
35 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
36 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
37 " mem-merge=on|off controls memory merge support (default: on)\n"
38 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
39 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
40 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
41 " nvdimm=on|off controls NVDIMM support (default=off)\n"
42 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
43 " memory-encryption=@var{} memory encryption object to use (default=none)\n"
44 " hmat=on|off controls ACPI HMAT support (default=off)\n",
45 QEMU_ARCH_ALL)
46 STEXI
47 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
48 @findex -machine
49 Select the emulated machine by @var{name}. Use @code{-machine help} to list
50 available machines.
51
52 For architectures which aim to support live migration compatibility
53 across releases, each release will introduce a new versioned machine
54 type. For example, the 2.8.0 release introduced machine types
55 ``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures.
56
57 To allow live migration of guests from QEMU version 2.8.0, to QEMU
58 version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8''
59 and ``pc-q35-2.8'' machines too. To allow users live migrating VMs
60 to skip multiple intermediate releases when upgrading, new releases
61 of QEMU will support machine types from many previous versions.
62
63 Supported machine properties are:
64 @table @option
65 @item accel=@var{accels1}[:@var{accels2}[:...]]
66 This is used to enable an accelerator. Depending on the target architecture,
67 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
68 more than one accelerator specified, the next one is used if the previous one
69 fails to initialize.
70 @item vmport=on|off|auto
71 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
72 value based on accel. For accel=xen the default is off otherwise the default
73 is on.
74 @item dump-guest-core=on|off
75 Include guest memory in a core dump. The default is on.
76 @item mem-merge=on|off
77 Enables or disables memory merge support. This feature, when supported by
78 the host, de-duplicates identical memory pages among VMs instances
79 (enabled by default).
80 @item aes-key-wrap=on|off
81 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
82 controls whether AES wrapping keys will be created to allow
83 execution of AES cryptographic functions. The default is on.
84 @item dea-key-wrap=on|off
85 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
86 controls whether DEA wrapping keys will be created to allow
87 execution of DEA cryptographic functions. The default is on.
88 @item nvdimm=on|off
89 Enables or disables NVDIMM support. The default is off.
90 @item enforce-config-section=on|off
91 If @option{enforce-config-section} is set to @var{on}, force migration
92 code to send configuration section even if the machine-type sets the
93 @option{migration.send-configuration} property to @var{off}.
94 NOTE: this parameter is deprecated. Please use @option{-global}
95 @option{migration.send-configuration}=@var{on|off} instead.
96 @item memory-encryption=@var{}
97 Memory encryption object to use. The default is none.
98 @item hmat=on|off
99 Enables or disables ACPI Heterogeneous Memory Attribute Table (HMAT) support.
100 The default is off.
101 @end table
102 ETEXI
103
104 HXCOMM Deprecated by -machine
105 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
106
107 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
108 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
109 STEXI
110 @item -cpu @var{model}
111 @findex -cpu
112 Select CPU model (@code{-cpu help} for list and additional feature selection)
113 ETEXI
114
115 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
116 "-accel [accel=]accelerator[,prop[=value][,...]]\n"
117 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
118 " igd-passthru=on|off (enable Xen integrated Intel graphics passthrough, default=off)\n"
119 " kernel-irqchip=on|off|split controls accelerated irqchip support (default=on)\n"
120 " kvm-shadow-mem=size of KVM shadow MMU in bytes\n"
121 " tb-size=n (TCG translation block cache size)\n"
122 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
123 STEXI
124 @item -accel @var{name}[,prop=@var{value}[,...]]
125 @findex -accel
126 This is used to enable an accelerator. Depending on the target architecture,
127 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
128 more than one accelerator specified, the next one is used if the previous one
129 fails to initialize.
130 @table @option
131 @item igd-passthru=on|off
132 When Xen is in use, this option controls whether Intel integrated graphics
133 devices can be passed through to the guest (default=off)
134 @item kernel-irqchip=on|off|split
135 Controls KVM in-kernel irqchip support. The default is full acceleration of the
136 interrupt controllers. On x86, split irqchip reduces the kernel attack
137 surface, at a performance cost for non-MSI interrupts. Disabling the in-kernel
138 irqchip completely is not recommended except for debugging purposes.
139 @item kvm-shadow-mem=size
140 Defines the size of the KVM shadow MMU.
141 @item tb-size=@var{n}
142 Controls the size (in MiB) of the TCG translation block cache.
143 @item thread=single|multi
144 Controls number of TCG threads. When the TCG is multi-threaded there will be one
145 thread per vCPU therefor taking advantage of additional host cores. The default
146 is to enable multi-threading where both the back-end and front-ends support it and
147 no incompatible TCG features have been enabled (e.g. icount/replay).
148 @end table
149 ETEXI
150
151 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
152 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,dies=dies][,sockets=sockets]\n"
153 " set the number of CPUs to 'n' [default=1]\n"
154 " maxcpus= maximum number of total cpus, including\n"
155 " offline CPUs for hotplug, etc\n"
156 " cores= number of CPU cores on one socket (for PC, it's on one die)\n"
157 " threads= number of threads on one CPU core\n"
158 " dies= number of CPU dies on one socket (for PC only)\n"
159 " sockets= number of discrete sockets in the system\n",
160 QEMU_ARCH_ALL)
161 STEXI
162 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,dies=dies][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
163 @findex -smp
164 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
165 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
166 to 4.
167 For the PC target, the number of @var{cores} per die, the number of @var{threads}
168 per cores, the number of @var{dies} per packages and the total number of
169 @var{sockets} can be specified. Missing values will be computed.
170 If any on the three values is given, the total number of CPUs @var{n} can be omitted.
171 @var{maxcpus} specifies the maximum number of hotpluggable CPUs.
172 ETEXI
173
174 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
175 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
176 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
177 "-numa dist,src=source,dst=destination,val=distance\n"
178 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n"
179 "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n",
180 QEMU_ARCH_ALL)
181 STEXI
182 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}]
183 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}]
184 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
185 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
186 @itemx -numa hmat-lb,initiator=@var{node},target=@var{node},hierarchy=@var{hierarchy},data-type=@var{tpye}[,latency=@var{lat}][,bandwidth=@var{bw}]
187 @findex -numa
188 Define a NUMA node and assign RAM and VCPUs to it.
189 Set the NUMA distance from a source node to a destination node.
190 Set the ACPI Heterogeneous Memory Attributes for the given nodes.
191
192 Legacy VCPU assignment uses @samp{cpus} option where
193 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
194 @samp{cpus} option represent a contiguous range of CPU indexes
195 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
196 set of VCPUs can be represented by providing multiple @samp{cpus}
197 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
198 split between them.
199
200 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
201 a NUMA node:
202 @example
203 -numa node,cpus=0-2,cpus=5
204 @end example
205
206 @samp{cpu} option is a new alternative to @samp{cpus} option
207 which uses @samp{socket-id|core-id|thread-id} properties to assign
208 CPU objects to a @var{node} using topology layout properties of CPU.
209 The set of properties is machine specific, and depends on used
210 machine type/@samp{smp} options. It could be queried with
211 @samp{hotpluggable-cpus} monitor command.
212 @samp{node-id} property specifies @var{node} to which CPU object
213 will be assigned, it's required for @var{node} to be declared
214 with @samp{node} option before it's used with @samp{cpu} option.
215
216 For example:
217 @example
218 -M pc \
219 -smp 1,sockets=2,maxcpus=2 \
220 -numa node,nodeid=0 -numa node,nodeid=1 \
221 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
222 @end example
223
224 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
225 assigns RAM from a given memory backend device to a node. If
226 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
227 split equally between them.
228
229 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
230 if one node uses @samp{memdev}, all of them have to use it.
231
232 @samp{initiator} is an additional option that points to an @var{initiator}
233 NUMA node that has best performance (the lowest latency or largest bandwidth)
234 to this NUMA @var{node}. Note that this option can be set only when
235 the machine property 'hmat' is set to 'on'.
236
237 Following example creates a machine with 2 NUMA nodes, node 0 has CPU.
238 node 1 has only memory, and its initiator is node 0. Note that because
239 node 0 has CPU, by default the initiator of node 0 is itself and must be
240 itself.
241 @example
242 -machine hmat=on \
243 -m 2G,slots=2,maxmem=4G \
244 -object memory-backend-ram,size=1G,id=m0 \
245 -object memory-backend-ram,size=1G,id=m1 \
246 -numa node,nodeid=0,memdev=m0 \
247 -numa node,nodeid=1,memdev=m1,initiator=0 \
248 -smp 2,sockets=2,maxcpus=2 \
249 -numa cpu,node-id=0,socket-id=0 \
250 -numa cpu,node-id=0,socket-id=1
251 @end example
252
253 @var{source} and @var{destination} are NUMA node IDs.
254 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
255 The distance from a node to itself is always 10. If any pair of nodes is
256 given a distance, then all pairs must be given distances. Although, when
257 distances are only given in one direction for each pair of nodes, then
258 the distances in the opposite directions are assumed to be the same. If,
259 however, an asymmetrical pair of distances is given for even one node
260 pair, then all node pairs must be provided distance values for both
261 directions, even when they are symmetrical. When a node is unreachable
262 from another node, set the pair's distance to 255.
263
264 Note that the -@option{numa} option doesn't allocate any of the
265 specified resources, it just assigns existing resources to NUMA
266 nodes. This means that one still has to use the @option{-m},
267 @option{-smp} options to allocate RAM and VCPUs respectively.
268
269 Use @samp{hmat-lb} to set System Locality Latency and Bandwidth Information
270 between initiator and target NUMA nodes in ACPI Heterogeneous Attribute Memory Table (HMAT).
271 Initiator NUMA node can create memory requests, usually it has one or more processors.
272 Target NUMA node contains addressable memory.
273
274 In @samp{hmat-lb} option, @var{node} are NUMA node IDs. @var{hierarchy} is the memory
275 hierarchy of the target NUMA node: if @var{hierarchy} is 'memory', the structure
276 represents the memory performance; if @var{hierarchy} is 'first-level|second-level|third-level',
277 this structure represents aggregated performance of memory side caches for each domain.
278 @var{type} of 'data-type' is type of data represented by this structure instance:
279 if 'hierarchy' is 'memory', 'data-type' is 'access|read|write' latency or 'access|read|write'
280 bandwidth of the target memory; if 'hierarchy' is 'first-level|second-level|third-level',
281 'data-type' is 'access|read|write' hit latency or 'access|read|write' hit bandwidth of the
282 target memory side cache.
283
284 @var{lat} is latency value in nanoseconds. @var{bw} is bandwidth value,
285 the possible value and units are NUM[M|G|T], mean that the bandwidth value are
286 NUM byte per second (or MB/s, GB/s or TB/s depending on used suffix).
287 Note that if latency or bandwidth value is 0, means the corresponding latency or
288 bandwidth information is not provided.
289
290 For example, the following options describe 2 NUMA nodes. Node 0 has 2 cpus and
291 a ram, node 1 has only a ram. The processors in node 0 access memory in node
292 0 with access-latency 5 nanoseconds, access-bandwidth is 200 MB/s;
293 The processors in NUMA node 0 access memory in NUMA node 1 with access-latency 10
294 nanoseconds, access-bandwidth is 100 MB/s.
295 @example
296 -machine hmat=on \
297 -m 2G \
298 -object memory-backend-ram,size=1G,id=m0 \
299 -object memory-backend-ram,size=1G,id=m1 \
300 -smp 2 \
301 -numa node,nodeid=0,memdev=m0 \
302 -numa node,nodeid=1,memdev=m1,initiator=0 \
303 -numa cpu,node-id=0,socket-id=0 \
304 -numa cpu,node-id=0,socket-id=1 \
305 -numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5 \
306 -numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M \
307 -numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10 \
308 -numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M
309 @end example
310
311 ETEXI
312
313 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
314 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
315 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
316 STEXI
317 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
318 @findex -add-fd
319
320 Add a file descriptor to an fd set. Valid options are:
321
322 @table @option
323 @item fd=@var{fd}
324 This option defines the file descriptor of which a duplicate is added to fd set.
325 The file descriptor cannot be stdin, stdout, or stderr.
326 @item set=@var{set}
327 This option defines the ID of the fd set to add the file descriptor to.
328 @item opaque=@var{opaque}
329 This option defines a free-form string that can be used to describe @var{fd}.
330 @end table
331
332 You can open an image using pre-opened file descriptors from an fd set:
333 @example
334 @value{qemu_system} \
335 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
336 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \
337 -drive file=/dev/fdset/2,index=0,media=disk
338 @end example
339 ETEXI
340
341 DEF("set", HAS_ARG, QEMU_OPTION_set,
342 "-set group.id.arg=value\n"
343 " set <arg> parameter for item <id> of type <group>\n"
344 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
345 STEXI
346 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
347 @findex -set
348 Set parameter @var{arg} for item @var{id} of type @var{group}
349 ETEXI
350
351 DEF("global", HAS_ARG, QEMU_OPTION_global,
352 "-global driver.property=value\n"
353 "-global driver=driver,property=property,value=value\n"
354 " set a global default for a driver property\n",
355 QEMU_ARCH_ALL)
356 STEXI
357 @item -global @var{driver}.@var{prop}=@var{value}
358 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
359 @findex -global
360 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
361
362 @example
363 @value{qemu_system_x86} -global ide-hd.physical_block_size=4096 disk-image.img
364 @end example
365
366 In particular, you can use this to set driver properties for devices which are
367 created automatically by the machine model. To create a device which is not
368 created automatically and set properties on it, use -@option{device}.
369
370 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
371 driver=@var{driver},property=@var{prop},value=@var{value}. The
372 longhand syntax works even when @var{driver} contains a dot.
373 ETEXI
374
375 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
376 "-boot [order=drives][,once=drives][,menu=on|off]\n"
377 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
378 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
379 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
380 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
381 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
382 QEMU_ARCH_ALL)
383 STEXI
384 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
385 @findex -boot
386 Specify boot order @var{drives} as a string of drive letters. Valid
387 drive letters depend on the target architecture. The x86 PC uses: a, b
388 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
389 from network adapter 1-4), hard disk boot is the default. To apply a
390 particular boot order only on the first startup, specify it via
391 @option{once}. Note that the @option{order} or @option{once} parameter
392 should not be used together with the @option{bootindex} property of
393 devices, since the firmware implementations normally do not support both
394 at the same time.
395
396 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
397 as firmware/BIOS supports them. The default is non-interactive boot.
398
399 A splash picture could be passed to bios, enabling user to show it as logo,
400 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
401 supports them. Currently Seabios for X86 system support it.
402 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
403 format(true color). The resolution should be supported by the SVGA mode, so
404 the recommended is 320x240, 640x480, 800x640.
405
406 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
407 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
408 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
409 system support it.
410
411 Do strict boot via @option{strict=on} as far as firmware/BIOS
412 supports it. This only effects when boot priority is changed by
413 bootindex options. The default is non-strict boot.
414
415 @example
416 # try to boot from network first, then from hard disk
417 @value{qemu_system_x86} -boot order=nc
418 # boot from CD-ROM first, switch back to default order after reboot
419 @value{qemu_system_x86} -boot once=d
420 # boot with a splash picture for 5 seconds.
421 @value{qemu_system_x86} -boot menu=on,splash=/root/boot.bmp,splash-time=5000
422 @end example
423
424 Note: The legacy format '-boot @var{drives}' is still supported but its
425 use is discouraged as it may be removed from future versions.
426 ETEXI
427
428 DEF("m", HAS_ARG, QEMU_OPTION_m,
429 "-m [size=]megs[,slots=n,maxmem=size]\n"
430 " configure guest RAM\n"
431 " size: initial amount of guest memory\n"
432 " slots: number of hotplug slots (default: none)\n"
433 " maxmem: maximum amount of guest memory (default: none)\n"
434 "NOTE: Some architectures might enforce a specific granularity\n",
435 QEMU_ARCH_ALL)
436 STEXI
437 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
438 @findex -m
439 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
440 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
441 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
442 could be used to set amount of hotpluggable memory slots and maximum amount of
443 memory. Note that @var{maxmem} must be aligned to the page size.
444
445 For example, the following command-line sets the guest startup RAM size to
446 1GB, creates 3 slots to hotplug additional memory and sets the maximum
447 memory the guest can reach to 4GB:
448
449 @example
450 @value{qemu_system} -m 1G,slots=3,maxmem=4G
451 @end example
452
453 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
454 be enabled and the guest startup RAM will never increase.
455 ETEXI
456
457 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
458 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
459 STEXI
460 @item -mem-path @var{path}
461 @findex -mem-path
462 Allocate guest RAM from a temporarily created file in @var{path}.
463 ETEXI
464
465 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
466 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
467 QEMU_ARCH_ALL)
468 STEXI
469 @item -mem-prealloc
470 @findex -mem-prealloc
471 Preallocate memory when using -mem-path.
472 ETEXI
473
474 DEF("k", HAS_ARG, QEMU_OPTION_k,
475 "-k language use keyboard layout (for example 'fr' for French)\n",
476 QEMU_ARCH_ALL)
477 STEXI
478 @item -k @var{language}
479 @findex -k
480 Use keyboard layout @var{language} (for example @code{fr} for
481 French). This option is only needed where it is not easy to get raw PC
482 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
483 display). You don't normally need to use it on PC/Linux or PC/Windows
484 hosts.
485
486 The available layouts are:
487 @example
488 ar de-ch es fo fr-ca hu ja mk no pt-br sv
489 da en-gb et fr fr-ch is lt nl pl ru th
490 de en-us fi fr-be hr it lv nl-be pt sl tr
491 @end example
492
493 The default is @code{en-us}.
494 ETEXI
495
496
497 HXCOMM Deprecated by -audiodev
498 DEF("audio-help", 0, QEMU_OPTION_audio_help,
499 "-audio-help show -audiodev equivalent of the currently specified audio settings\n",
500 QEMU_ARCH_ALL)
501 STEXI
502 @item -audio-help
503 @findex -audio-help
504 Will show the -audiodev equivalent of the currently specified
505 (deprecated) environment variables.
506 ETEXI
507
508 DEF("audiodev", HAS_ARG, QEMU_OPTION_audiodev,
509 "-audiodev [driver=]driver,id=id[,prop[=value][,...]]\n"
510 " specifies the audio backend to use\n"
511 " id= identifier of the backend\n"
512 " timer-period= timer period in microseconds\n"
513 " in|out.mixing-engine= use mixing engine to mix streams inside QEMU\n"
514 " in|out.fixed-settings= use fixed settings for host audio\n"
515 " in|out.frequency= frequency to use with fixed settings\n"
516 " in|out.channels= number of channels to use with fixed settings\n"
517 " in|out.format= sample format to use with fixed settings\n"
518 " valid values: s8, s16, s32, u8, u16, u32\n"
519 " in|out.voices= number of voices to use\n"
520 " in|out.buffer-length= length of buffer in microseconds\n"
521 "-audiodev none,id=id,[,prop[=value][,...]]\n"
522 " dummy driver that discards all output\n"
523 #ifdef CONFIG_AUDIO_ALSA
524 "-audiodev alsa,id=id[,prop[=value][,...]]\n"
525 " in|out.dev= name of the audio device to use\n"
526 " in|out.period-length= length of period in microseconds\n"
527 " in|out.try-poll= attempt to use poll mode\n"
528 " threshold= threshold (in microseconds) when playback starts\n"
529 #endif
530 #ifdef CONFIG_AUDIO_COREAUDIO
531 "-audiodev coreaudio,id=id[,prop[=value][,...]]\n"
532 " in|out.buffer-count= number of buffers\n"
533 #endif
534 #ifdef CONFIG_AUDIO_DSOUND
535 "-audiodev dsound,id=id[,prop[=value][,...]]\n"
536 " latency= add extra latency to playback in microseconds\n"
537 #endif
538 #ifdef CONFIG_AUDIO_OSS
539 "-audiodev oss,id=id[,prop[=value][,...]]\n"
540 " in|out.dev= path of the audio device to use\n"
541 " in|out.buffer-count= number of buffers\n"
542 " in|out.try-poll= attempt to use poll mode\n"
543 " try-mmap= try using memory mapped access\n"
544 " exclusive= open device in exclusive mode\n"
545 " dsp-policy= set timing policy (0..10), -1 to use fragment mode\n"
546 #endif
547 #ifdef CONFIG_AUDIO_PA
548 "-audiodev pa,id=id[,prop[=value][,...]]\n"
549 " server= PulseAudio server address\n"
550 " in|out.name= source/sink device name\n"
551 " in|out.latency= desired latency in microseconds\n"
552 #endif
553 #ifdef CONFIG_AUDIO_SDL
554 "-audiodev sdl,id=id[,prop[=value][,...]]\n"
555 #endif
556 #ifdef CONFIG_SPICE
557 "-audiodev spice,id=id[,prop[=value][,...]]\n"
558 #endif
559 "-audiodev wav,id=id[,prop[=value][,...]]\n"
560 " path= path of wav file to record\n",
561 QEMU_ARCH_ALL)
562 STEXI
563 @item -audiodev [driver=]@var{driver},id=@var{id}[,@var{prop}[=@var{value}][,...]]
564 @findex -audiodev
565 Adds a new audio backend @var{driver} identified by @var{id}. There are
566 global and driver specific properties. Some values can be set
567 differently for input and output, they're marked with @code{in|out.}.
568 You can set the input's property with @code{in.@var{prop}} and the
569 output's property with @code{out.@var{prop}}. For example:
570 @example
571 -audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
572 -audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified
573 @end example
574
575 NOTE: parameter validation is known to be incomplete, in many cases
576 specifying an invalid option causes QEMU to print an error message and
577 continue emulation without sound.
578
579 Valid global options are:
580
581 @table @option
582 @item id=@var{identifier}
583 Identifies the audio backend.
584
585 @item timer-period=@var{period}
586 Sets the timer @var{period} used by the audio subsystem in microseconds.
587 Default is 10000 (10 ms).
588
589 @item in|out.mixing-engine=on|off
590 Use QEMU's mixing engine to mix all streams inside QEMU and convert
591 audio formats when not supported by the backend. When off,
592 @var{fixed-settings} must be off too. Note that disabling this option
593 means that the selected backend must support multiple streams and the
594 audio formats used by the virtual cards, otherwise you'll get no sound.
595 It's not recommended to disable this option unless you want to use 5.1
596 or 7.1 audio, as mixing engine only supports mono and stereo audio.
597 Default is on.
598
599 @item in|out.fixed-settings=on|off
600 Use fixed settings for host audio. When off, it will change based on
601 how the guest opens the sound card. In this case you must not specify
602 @var{frequency}, @var{channels} or @var{format}. Default is on.
603
604 @item in|out.frequency=@var{frequency}
605 Specify the @var{frequency} to use when using @var{fixed-settings}.
606 Default is 44100Hz.
607
608 @item in|out.channels=@var{channels}
609 Specify the number of @var{channels} to use when using
610 @var{fixed-settings}. Default is 2 (stereo).
611
612 @item in|out.format=@var{format}
613 Specify the sample @var{format} to use when using @var{fixed-settings}.
614 Valid values are: @code{s8}, @code{s16}, @code{s32}, @code{u8},
615 @code{u16}, @code{u32}. Default is @code{s16}.
616
617 @item in|out.voices=@var{voices}
618 Specify the number of @var{voices} to use. Default is 1.
619
620 @item in|out.buffer-length=@var{usecs}
621 Sets the size of the buffer in microseconds.
622
623 @end table
624
625 @item -audiodev none,id=@var{id}[,@var{prop}[=@var{value}][,...]]
626 Creates a dummy backend that discards all outputs. This backend has no
627 backend specific properties.
628
629 @item -audiodev alsa,id=@var{id}[,@var{prop}[=@var{value}][,...]]
630 Creates backend using the ALSA. This backend is only available on
631 Linux.
632
633 ALSA specific options are:
634
635 @table @option
636
637 @item in|out.dev=@var{device}
638 Specify the ALSA @var{device} to use for input and/or output. Default
639 is @code{default}.
640
641 @item in|out.period-length=@var{usecs}
642 Sets the period length in microseconds.
643
644 @item in|out.try-poll=on|off
645 Attempt to use poll mode with the device. Default is on.
646
647 @item threshold=@var{threshold}
648 Threshold (in microseconds) when playback starts. Default is 0.
649
650 @end table
651
652 @item -audiodev coreaudio,id=@var{id}[,@var{prop}[=@var{value}][,...]]
653 Creates a backend using Apple's Core Audio. This backend is only
654 available on Mac OS and only supports playback.
655
656 Core Audio specific options are:
657
658 @table @option
659
660 @item in|out.buffer-count=@var{count}
661 Sets the @var{count} of the buffers.
662
663 @end table
664
665 @item -audiodev dsound,id=@var{id}[,@var{prop}[=@var{value}][,...]]
666 Creates a backend using Microsoft's DirectSound. This backend is only
667 available on Windows and only supports playback.
668
669 DirectSound specific options are:
670
671 @table @option
672
673 @item latency=@var{usecs}
674 Add extra @var{usecs} microseconds latency to playback. Default is
675 10000 (10 ms).
676
677 @end table
678
679 @item -audiodev oss,id=@var{id}[,@var{prop}[=@var{value}][,...]]
680 Creates a backend using OSS. This backend is available on most
681 Unix-like systems.
682
683 OSS specific options are:
684
685 @table @option
686
687 @item in|out.dev=@var{device}
688 Specify the file name of the OSS @var{device} to use. Default is
689 @code{/dev/dsp}.
690
691 @item in|out.buffer-count=@var{count}
692 Sets the @var{count} of the buffers.
693
694 @item in|out.try-poll=on|of
695 Attempt to use poll mode with the device. Default is on.
696
697 @item try-mmap=on|off
698 Try using memory mapped device access. Default is off.
699
700 @item exclusive=on|off
701 Open the device in exclusive mode (vmix won't work in this case).
702 Default is off.
703
704 @item dsp-policy=@var{policy}
705 Sets the timing policy (between 0 and 10, where smaller number means
706 smaller latency but higher CPU usage). Use -1 to use buffer sizes
707 specified by @code{buffer} and @code{buffer-count}. This option is
708 ignored if you do not have OSS 4. Default is 5.
709
710 @end table
711
712 @item -audiodev pa,id=@var{id}[,@var{prop}[=@var{value}][,...]]
713 Creates a backend using PulseAudio. This backend is available on most
714 systems.
715
716 PulseAudio specific options are:
717
718 @table @option
719
720 @item server=@var{server}
721 Sets the PulseAudio @var{server} to connect to.
722
723 @item in|out.name=@var{sink}
724 Use the specified source/sink for recording/playback.
725
726 @item in|out.latency=@var{usecs}
727 Desired latency in microseconds. The PulseAudio server will try to honor this
728 value but actual latencies may be lower or higher.
729
730 @end table
731
732 @item -audiodev sdl,id=@var{id}[,@var{prop}[=@var{value}][,...]]
733 Creates a backend using SDL. This backend is available on most systems,
734 but you should use your platform's native backend if possible. This
735 backend has no backend specific properties.
736
737 @item -audiodev spice,id=@var{id}[,@var{prop}[=@var{value}][,...]]
738 Creates a backend that sends audio through SPICE. This backend requires
739 @code{-spice} and automatically selected in that case, so usually you
740 can ignore this option. This backend has no backend specific
741 properties.
742
743 @item -audiodev wav,id=@var{id}[,@var{prop}[=@var{value}][,...]]
744 Creates a backend that writes audio to a WAV file.
745
746 Backend specific options are:
747
748 @table @option
749
750 @item path=@var{path}
751 Write recorded audio into the specified file. Default is
752 @code{qemu.wav}.
753
754 @end table
755 ETEXI
756
757 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
758 "-soundhw c1,... enable audio support\n"
759 " and only specified sound cards (comma separated list)\n"
760 " use '-soundhw help' to get the list of supported cards\n"
761 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
762 STEXI
763 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
764 @findex -soundhw
765 Enable audio and selected sound hardware. Use 'help' to print all
766 available sound hardware. For example:
767
768 @example
769 @value{qemu_system_x86} -soundhw sb16,adlib disk.img
770 @value{qemu_system_x86} -soundhw es1370 disk.img
771 @value{qemu_system_x86} -soundhw ac97 disk.img
772 @value{qemu_system_x86} -soundhw hda disk.img
773 @value{qemu_system_x86} -soundhw all disk.img
774 @value{qemu_system_x86} -soundhw help
775 @end example
776
777 Note that Linux's i810_audio OSS kernel (for AC97) module might
778 require manually specifying clocking.
779
780 @example
781 modprobe i810_audio clocking=48000
782 @end example
783 ETEXI
784
785 DEF("device", HAS_ARG, QEMU_OPTION_device,
786 "-device driver[,prop[=value][,...]]\n"
787 " add device (based on driver)\n"
788 " prop=value,... sets driver properties\n"
789 " use '-device help' to print all possible drivers\n"
790 " use '-device driver,help' to print all possible properties\n",
791 QEMU_ARCH_ALL)
792 STEXI
793 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
794 @findex -device
795 Add device @var{driver}. @var{prop}=@var{value} sets driver
796 properties. Valid properties depend on the driver. To get help on
797 possible drivers and properties, use @code{-device help} and
798 @code{-device @var{driver},help}.
799
800 Some drivers are:
801 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}][,guid=@var{uuid}]
802
803 Add an IPMI BMC. This is a simulation of a hardware management
804 interface processor that normally sits on a system. It provides
805 a watchdog and the ability to reset and power control the system.
806 You need to connect this to an IPMI interface to make it useful
807
808 The IPMI slave address to use for the BMC. The default is 0x20.
809 This address is the BMC's address on the I2C network of management
810 controllers. If you don't know what this means, it is safe to ignore
811 it.
812
813 @table @option
814 @item id=@var{id}
815 The BMC id for interfaces to use this device.
816 @item slave_addr=@var{val}
817 Define slave address to use for the BMC. The default is 0x20.
818 @item sdrfile=@var{file}
819 file containing raw Sensor Data Records (SDR) data. The default is none.
820 @item fruareasize=@var{val}
821 size of a Field Replaceable Unit (FRU) area. The default is 1024.
822 @item frudatafile=@var{file}
823 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
824 @item guid=@var{uuid}
825 value for the GUID for the BMC, in standard UUID format. If this is set,
826 get "Get GUID" command to the BMC will return it. Otherwise "Get GUID"
827 will return an error.
828 @end table
829
830 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
831
832 Add a connection to an external IPMI BMC simulator. Instead of
833 locally emulating the BMC like the above item, instead connect
834 to an external entity that provides the IPMI services.
835
836 A connection is made to an external BMC simulator. If you do this, it
837 is strongly recommended that you use the "reconnect=" chardev option
838 to reconnect to the simulator if the connection is lost. Note that if
839 this is not used carefully, it can be a security issue, as the
840 interface has the ability to send resets, NMIs, and power off the VM.
841 It's best if QEMU makes a connection to an external simulator running
842 on a secure port on localhost, so neither the simulator nor QEMU is
843 exposed to any outside network.
844
845 See the "lanserv/README.vm" file in the OpenIPMI library for more
846 details on the external interface.
847
848 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
849
850 Add a KCS IPMI interafce on the ISA bus. This also adds a
851 corresponding ACPI and SMBIOS entries, if appropriate.
852
853 @table @option
854 @item bmc=@var{id}
855 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
856 @item ioport=@var{val}
857 Define the I/O address of the interface. The default is 0xca0 for KCS.
858 @item irq=@var{val}
859 Define the interrupt to use. The default is 5. To disable interrupts,
860 set this to 0.
861 @end table
862
863 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
864
865 Like the KCS interface, but defines a BT interface. The default port is
866 0xe4 and the default interrupt is 5.
867
868 ETEXI
869
870 DEF("name", HAS_ARG, QEMU_OPTION_name,
871 "-name string1[,process=string2][,debug-threads=on|off]\n"
872 " set the name of the guest\n"
873 " string1 sets the window title and string2 the process name\n"
874 " When debug-threads is enabled, individual threads are given a separate name\n"
875 " NOTE: The thread names are for debugging and not a stable API.\n",
876 QEMU_ARCH_ALL)
877 STEXI
878 @item -name @var{name}
879 @findex -name
880 Sets the @var{name} of the guest.
881 This name will be displayed in the SDL window caption.
882 The @var{name} will also be used for the VNC server.
883 Also optionally set the top visible process name in Linux.
884 Naming of individual threads can also be enabled on Linux to aid debugging.
885 ETEXI
886
887 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
888 "-uuid %08x-%04x-%04x-%04x-%012x\n"
889 " specify machine UUID\n", QEMU_ARCH_ALL)
890 STEXI
891 @item -uuid @var{uuid}
892 @findex -uuid
893 Set system UUID.
894 ETEXI
895
896 STEXI
897 @end table
898 ETEXI
899 DEFHEADING()
900
901 DEFHEADING(Block device options:)
902 STEXI
903 @table @option
904 ETEXI
905
906 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
907 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
908 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
909 STEXI
910 @item -fda @var{file}
911 @itemx -fdb @var{file}
912 @findex -fda
913 @findex -fdb
914 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
915 ETEXI
916
917 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
918 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
919 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
920 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
921 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
922 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
923 STEXI
924 @item -hda @var{file}
925 @itemx -hdb @var{file}
926 @itemx -hdc @var{file}
927 @itemx -hdd @var{file}
928 @findex -hda
929 @findex -hdb
930 @findex -hdc
931 @findex -hdd
932 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
933 ETEXI
934
935 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
936 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
937 QEMU_ARCH_ALL)
938 STEXI
939 @item -cdrom @var{file}
940 @findex -cdrom
941 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
942 @option{-cdrom} at the same time). You can use the host CD-ROM by
943 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
944 ETEXI
945
946 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
947 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
948 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
949 " [,read-only=on|off][,auto-read-only=on|off]\n"
950 " [,force-share=on|off][,detect-zeroes=on|off|unmap]\n"
951 " [,driver specific parameters...]\n"
952 " configure a block backend\n", QEMU_ARCH_ALL)
953 STEXI
954 @item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]]
955 @findex -blockdev
956
957 Define a new block driver node. Some of the options apply to all block drivers,
958 other options are only accepted for a specific block driver. See below for a
959 list of generic options and options for the most common block drivers.
960
961 Options that expect a reference to another node (e.g. @code{file}) can be
962 given in two ways. Either you specify the node name of an already existing node
963 (file=@var{node-name}), or you define a new node inline, adding options
964 for the referenced node after a dot (file.filename=@var{path},file.aio=native).
965
966 A block driver node created with @option{-blockdev} can be used for a guest
967 device by specifying its node name for the @code{drive} property in a
968 @option{-device} argument that defines a block device.
969
970 @table @option
971 @item Valid options for any block driver node:
972
973 @table @code
974 @item driver
975 Specifies the block driver to use for the given node.
976 @item node-name
977 This defines the name of the block driver node by which it will be referenced
978 later. The name must be unique, i.e. it must not match the name of a different
979 block driver node, or (if you use @option{-drive} as well) the ID of a drive.
980
981 If no node name is specified, it is automatically generated. The generated node
982 name is not intended to be predictable and changes between QEMU invocations.
983 For the top level, an explicit node name must be specified.
984 @item read-only
985 Open the node read-only. Guest write attempts will fail.
986
987 Note that some block drivers support only read-only access, either generally or
988 in certain configurations. In this case, the default value
989 @option{read-only=off} does not work and the option must be specified
990 explicitly.
991 @item auto-read-only
992 If @option{auto-read-only=on} is set, QEMU may fall back to read-only usage
993 even when @option{read-only=off} is requested, or even switch between modes as
994 needed, e.g. depending on whether the image file is writable or whether a
995 writing user is attached to the node.
996 @item force-share
997 Override the image locking system of QEMU by forcing the node to utilize
998 weaker shared access for permissions where it would normally request exclusive
999 access. When there is the potential for multiple instances to have the same
1000 file open (whether this invocation of QEMU is the first or the second
1001 instance), both instances must permit shared access for the second instance to
1002 succeed at opening the file.
1003
1004 Enabling @option{force-share=on} requires @option{read-only=on}.
1005 @item cache.direct
1006 The host page cache can be avoided with @option{cache.direct=on}. This will
1007 attempt to do disk IO directly to the guest's memory. QEMU may still perform an
1008 internal copy of the data.
1009 @item cache.no-flush
1010 In case you don't care about data integrity over host failures, you can use
1011 @option{cache.no-flush=on}. This option tells QEMU that it never needs to write
1012 any data to the disk but can instead keep things in cache. If anything goes
1013 wrong, like your host losing power, the disk storage getting disconnected
1014 accidentally, etc. your image will most probably be rendered unusable.
1015 @item discard=@var{discard}
1016 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls
1017 whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are
1018 ignored or passed to the filesystem. Some machine types may not support
1019 discard requests.
1020 @item detect-zeroes=@var{detect-zeroes}
1021 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
1022 conversion of plain zero writes by the OS to driver specific optimized
1023 zero write commands. You may even choose "unmap" if @var{discard} is set
1024 to "unmap" to allow a zero write to be converted to an @code{unmap} operation.
1025 @end table
1026
1027 @item Driver-specific options for @code{file}
1028
1029 This is the protocol-level block driver for accessing regular files.
1030
1031 @table @code
1032 @item filename
1033 The path to the image file in the local filesystem
1034 @item aio
1035 Specifies the AIO backend (threads/native, default: threads)
1036 @item locking
1037 Specifies whether the image file is protected with Linux OFD / POSIX locks. The
1038 default is to use the Linux Open File Descriptor API if available, otherwise no
1039 lock is applied. (auto/on/off, default: auto)
1040 @end table
1041 Example:
1042 @example
1043 -blockdev driver=file,node-name=disk,filename=disk.img
1044 @end example
1045
1046 @item Driver-specific options for @code{raw}
1047
1048 This is the image format block driver for raw images. It is usually
1049 stacked on top of a protocol level block driver such as @code{file}.
1050
1051 @table @code
1052 @item file
1053 Reference to or definition of the data source block driver node
1054 (e.g. a @code{file} driver node)
1055 @end table
1056 Example 1:
1057 @example
1058 -blockdev driver=file,node-name=disk_file,filename=disk.img
1059 -blockdev driver=raw,node-name=disk,file=disk_file
1060 @end example
1061 Example 2:
1062 @example
1063 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
1064 @end example
1065
1066 @item Driver-specific options for @code{qcow2}
1067
1068 This is the image format block driver for qcow2 images. It is usually
1069 stacked on top of a protocol level block driver such as @code{file}.
1070
1071 @table @code
1072 @item file
1073 Reference to or definition of the data source block driver node
1074 (e.g. a @code{file} driver node)
1075
1076 @item backing
1077 Reference to or definition of the backing file block device (default is taken
1078 from the image file). It is allowed to pass @code{null} here in order to disable
1079 the default backing file.
1080
1081 @item lazy-refcounts
1082 Whether to enable the lazy refcounts feature (on/off; default is taken from the
1083 image file)
1084
1085 @item cache-size
1086 The maximum total size of the L2 table and refcount block caches in bytes
1087 (default: the sum of l2-cache-size and refcount-cache-size)
1088
1089 @item l2-cache-size
1090 The maximum size of the L2 table cache in bytes
1091 (default: if cache-size is not specified - 32M on Linux platforms, and 8M on
1092 non-Linux platforms; otherwise, as large as possible within the cache-size,
1093 while permitting the requested or the minimal refcount cache size)
1094
1095 @item refcount-cache-size
1096 The maximum size of the refcount block cache in bytes
1097 (default: 4 times the cluster size; or if cache-size is specified, the part of
1098 it which is not used for the L2 cache)
1099
1100 @item cache-clean-interval
1101 Clean unused entries in the L2 and refcount caches. The interval is in seconds.
1102 The default value is 600 on supporting platforms, and 0 on other platforms.
1103 Setting it to 0 disables this feature.
1104
1105 @item pass-discard-request
1106 Whether discard requests to the qcow2 device should be forwarded to the data
1107 source (on/off; default: on if discard=unmap is specified, off otherwise)
1108
1109 @item pass-discard-snapshot
1110 Whether discard requests for the data source should be issued when a snapshot
1111 operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off;
1112 default: on)
1113
1114 @item pass-discard-other
1115 Whether discard requests for the data source should be issued on other
1116 occasions where a cluster gets freed (on/off; default: off)
1117
1118 @item overlap-check
1119 Which overlap checks to perform for writes to the image
1120 (none/constant/cached/all; default: cached). For details or finer
1121 granularity control refer to the QAPI documentation of @code{blockdev-add}.
1122 @end table
1123
1124 Example 1:
1125 @example
1126 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
1127 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
1128 @end example
1129 Example 2:
1130 @example
1131 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
1132 @end example
1133
1134 @item Driver-specific options for other drivers
1135 Please refer to the QAPI documentation of the @code{blockdev-add} QMP command.
1136
1137 @end table
1138
1139 ETEXI
1140
1141 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
1142 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
1143 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
1144 " [,snapshot=on|off][,rerror=ignore|stop|report]\n"
1145 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
1146 " [,readonly=on|off][,copy-on-read=on|off]\n"
1147 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
1148 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
1149 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
1150 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
1151 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
1152 " [[,iops_size=is]]\n"
1153 " [[,group=g]]\n"
1154 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
1155 STEXI
1156 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
1157 @findex -drive
1158
1159 Define a new drive. This includes creating a block driver node (the backend) as
1160 well as a guest device, and is mostly a shortcut for defining the corresponding
1161 @option{-blockdev} and @option{-device} options.
1162
1163 @option{-drive} accepts all options that are accepted by @option{-blockdev}. In
1164 addition, it knows the following options:
1165
1166 @table @option
1167 @item file=@var{file}
1168 This option defines which disk image (@pxref{disk_images}) to use with
1169 this drive. If the filename contains comma, you must double it
1170 (for instance, "file=my,,file" to use file "my,file").
1171
1172 Special files such as iSCSI devices can be specified using protocol
1173 specific URLs. See the section for "Device URL Syntax" for more information.
1174 @item if=@var{interface}
1175 This option defines on which type on interface the drive is connected.
1176 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
1177 @item bus=@var{bus},unit=@var{unit}
1178 These options define where is connected the drive by defining the bus number and
1179 the unit id.
1180 @item index=@var{index}
1181 This option defines where is connected the drive by using an index in the list
1182 of available connectors of a given interface type.
1183 @item media=@var{media}
1184 This option defines the type of the media: disk or cdrom.
1185 @item snapshot=@var{snapshot}
1186 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
1187 (see @option{-snapshot}).
1188 @item cache=@var{cache}
1189 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough"
1190 and controls how the host cache is used to access block data. This is a
1191 shortcut that sets the @option{cache.direct} and @option{cache.no-flush}
1192 options (as in @option{-blockdev}), and additionally @option{cache.writeback},
1193 which provides a default for the @option{write-cache} option of block guest
1194 devices (as in @option{-device}). The modes correspond to the following
1195 settings:
1196
1197 @c Our texi2pod.pl script doesn't support @multitable, so fall back to using
1198 @c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage
1199 @c and the HTML output.
1200 @example
1201 @ │ cache.writeback cache.direct cache.no-flush
1202 ─────────────┼─────────────────────────────────────────────────
1203 writeback │ on off off
1204 none │ on on off
1205 writethrough │ off off off
1206 directsync │ off on off
1207 unsafe │ on off on
1208 @end example
1209
1210 The default mode is @option{cache=writeback}.
1211
1212 @item aio=@var{aio}
1213 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
1214 @item format=@var{format}
1215 Specify which disk @var{format} will be used rather than detecting
1216 the format. Can be used to specify format=raw to avoid interpreting
1217 an untrusted format header.
1218 @item werror=@var{action},rerror=@var{action}
1219 Specify which @var{action} to take on write and read errors. Valid actions are:
1220 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
1221 "report" (report the error to the guest), "enospc" (pause QEMU only if the
1222 host disk is full; report the error to the guest otherwise).
1223 The default setting is @option{werror=enospc} and @option{rerror=report}.
1224 @item copy-on-read=@var{copy-on-read}
1225 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
1226 file sectors into the image file.
1227 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
1228 Specify bandwidth throttling limits in bytes per second, either for all request
1229 types or for reads or writes only. Small values can lead to timeouts or hangs
1230 inside the guest. A safe minimum for disks is 2 MB/s.
1231 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
1232 Specify bursts in bytes per second, either for all request types or for reads
1233 or writes only. Bursts allow the guest I/O to spike above the limit
1234 temporarily.
1235 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
1236 Specify request rate limits in requests per second, either for all request
1237 types or for reads or writes only.
1238 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
1239 Specify bursts in requests per second, either for all request types or for reads
1240 or writes only. Bursts allow the guest I/O to spike above the limit
1241 temporarily.
1242 @item iops_size=@var{is}
1243 Let every @var{is} bytes of a request count as a new request for iops
1244 throttling purposes. Use this option to prevent guests from circumventing iops
1245 limits by sending fewer but larger requests.
1246 @item group=@var{g}
1247 Join a throttling quota group with given name @var{g}. All drives that are
1248 members of the same group are accounted for together. Use this option to
1249 prevent guests from circumventing throttling limits by using many small disks
1250 instead of a single larger disk.
1251 @end table
1252
1253 By default, the @option{cache.writeback=on} mode is used. It will report data
1254 writes as completed as soon as the data is present in the host page cache.
1255 This is safe as long as your guest OS makes sure to correctly flush disk caches
1256 where needed. If your guest OS does not handle volatile disk write caches
1257 correctly and your host crashes or loses power, then the guest may experience
1258 data corruption.
1259
1260 For such guests, you should consider using @option{cache.writeback=off}. This
1261 means that the host page cache will be used to read and write data, but write
1262 notification will be sent to the guest only after QEMU has made sure to flush
1263 each write to the disk. Be aware that this has a major impact on performance.
1264
1265 When using the @option{-snapshot} option, unsafe caching is always used.
1266
1267 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
1268 useful when the backing file is over a slow network. By default copy-on-read
1269 is off.
1270
1271 Instead of @option{-cdrom} you can use:
1272 @example
1273 @value{qemu_system} -drive file=file,index=2,media=cdrom
1274 @end example
1275
1276 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
1277 use:
1278 @example
1279 @value{qemu_system} -drive file=file,index=0,media=disk
1280 @value{qemu_system} -drive file=file,index=1,media=disk
1281 @value{qemu_system} -drive file=file,index=2,media=disk
1282 @value{qemu_system} -drive file=file,index=3,media=disk
1283 @end example
1284
1285 You can open an image using pre-opened file descriptors from an fd set:
1286 @example
1287 @value{qemu_system} \
1288 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
1289 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \
1290 -drive file=/dev/fdset/2,index=0,media=disk
1291 @end example
1292
1293 You can connect a CDROM to the slave of ide0:
1294 @example
1295 @value{qemu_system_x86} -drive file=file,if=ide,index=1,media=cdrom
1296 @end example
1297
1298 If you don't specify the "file=" argument, you define an empty drive:
1299 @example
1300 @value{qemu_system_x86} -drive if=ide,index=1,media=cdrom
1301 @end example
1302
1303 Instead of @option{-fda}, @option{-fdb}, you can use:
1304 @example
1305 @value{qemu_system_x86} -drive file=file,index=0,if=floppy
1306 @value{qemu_system_x86} -drive file=file,index=1,if=floppy
1307 @end example
1308
1309 By default, @var{interface} is "ide" and @var{index} is automatically
1310 incremented:
1311 @example
1312 @value{qemu_system_x86} -drive file=a -drive file=b"
1313 @end example
1314 is interpreted like:
1315 @example
1316 @value{qemu_system_x86} -hda a -hdb b
1317 @end example
1318 ETEXI
1319
1320 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
1321 "-mtdblock file use 'file' as on-board Flash memory image\n",
1322 QEMU_ARCH_ALL)
1323 STEXI
1324 @item -mtdblock @var{file}
1325 @findex -mtdblock
1326 Use @var{file} as on-board Flash memory image.
1327 ETEXI
1328
1329 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
1330 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
1331 STEXI
1332 @item -sd @var{file}
1333 @findex -sd
1334 Use @var{file} as SecureDigital card image.
1335 ETEXI
1336
1337 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
1338 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
1339 STEXI
1340 @item -pflash @var{file}
1341 @findex -pflash
1342 Use @var{file} as a parallel flash image.
1343 ETEXI
1344
1345 DEF("snapshot", 0, QEMU_OPTION_snapshot,
1346 "-snapshot write to temporary files instead of disk image files\n",
1347 QEMU_ARCH_ALL)
1348 STEXI
1349 @item -snapshot
1350 @findex -snapshot
1351 Write to temporary files instead of disk image files. In this case,
1352 the raw disk image you use is not written back. You can however force
1353 the write back by pressing @key{C-a s} (@pxref{disk_images}).
1354 ETEXI
1355
1356 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1357 "-fsdev local,id=id,path=path,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1358 " [,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode]\n"
1359 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1360 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1361 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1362 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1363 " [[,throttling.iops-size=is]]\n"
1364 "-fsdev proxy,id=id,socket=socket[,writeout=immediate][,readonly]\n"
1365 "-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=immediate][,readonly]\n"
1366 "-fsdev synth,id=id\n",
1367 QEMU_ARCH_ALL)
1368
1369 STEXI
1370
1371 @item -fsdev local,id=@var{id},path=@var{path},security_model=@var{security_model} [,writeout=@var{writeout}][,readonly][,fmode=@var{fmode}][,dmode=@var{dmode}] [,throttling.@var{option}=@var{value}[,throttling.@var{option}=@var{value}[,...]]]
1372 @itemx -fsdev proxy,id=@var{id},socket=@var{socket}[,writeout=@var{writeout}][,readonly]
1373 @itemx -fsdev proxy,id=@var{id},sock_fd=@var{sock_fd}[,writeout=@var{writeout}][,readonly]
1374 @itemx -fsdev synth,id=@var{id}[,readonly]
1375 @findex -fsdev
1376 Define a new file system device. Valid options are:
1377 @table @option
1378 @item local
1379 Accesses to the filesystem are done by QEMU.
1380 @item proxy
1381 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1382 @item synth
1383 Synthetic filesystem, only used by QTests.
1384 @item id=@var{id}
1385 Specifies identifier for this device.
1386 @item path=@var{path}
1387 Specifies the export path for the file system device. Files under
1388 this path will be available to the 9p client on the guest.
1389 @item security_model=@var{security_model}
1390 Specifies the security model to be used for this export path.
1391 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1392 In "passthrough" security model, files are stored using the same
1393 credentials as they are created on the guest. This requires QEMU
1394 to run as root. In "mapped-xattr" security model, some of the file
1395 attributes like uid, gid, mode bits and link target are stored as
1396 file attributes. For "mapped-file" these attributes are stored in the
1397 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1398 interact with other unix tools. "none" security model is same as
1399 passthrough except the sever won't report failures if it fails to
1400 set file attributes like ownership. Security model is mandatory
1401 only for local fsdriver. Other fsdrivers (like proxy) don't take
1402 security model as a parameter.
1403 @item writeout=@var{writeout}
1404 This is an optional argument. The only supported value is "immediate".
1405 This means that host page cache will be used to read and write data but
1406 write notification will be sent to the guest only when the data has been
1407 reported as written by the storage subsystem.
1408 @item readonly
1409 Enables exporting 9p share as a readonly mount for guests. By default
1410 read-write access is given.
1411 @item socket=@var{socket}
1412 Enables proxy filesystem driver to use passed socket file for communicating
1413 with virtfs-proxy-helper(1).
1414 @item sock_fd=@var{sock_fd}
1415 Enables proxy filesystem driver to use passed socket descriptor for
1416 communicating with virtfs-proxy-helper(1). Usually a helper like libvirt
1417 will create socketpair and pass one of the fds as sock_fd.
1418 @item fmode=@var{fmode}
1419 Specifies the default mode for newly created files on the host. Works only
1420 with security models "mapped-xattr" and "mapped-file".
1421 @item dmode=@var{dmode}
1422 Specifies the default mode for newly created directories on the host. Works
1423 only with security models "mapped-xattr" and "mapped-file".
1424 @item throttling.bps-total=@var{b},throttling.bps-read=@var{r},throttling.bps-write=@var{w}
1425 Specify bandwidth throttling limits in bytes per second, either for all request
1426 types or for reads or writes only.
1427 @item throttling.bps-total-max=@var{bm},bps-read-max=@var{rm},bps-write-max=@var{wm}
1428 Specify bursts in bytes per second, either for all request types or for reads
1429 or writes only. Bursts allow the guest I/O to spike above the limit
1430 temporarily.
1431 @item throttling.iops-total=@var{i},throttling.iops-read=@var{r}, throttling.iops-write=@var{w}
1432 Specify request rate limits in requests per second, either for all request
1433 types or for reads or writes only.
1434 @item throttling.iops-total-max=@var{im},throttling.iops-read-max=@var{irm}, throttling.iops-write-max=@var{iwm}
1435 Specify bursts in requests per second, either for all request types or for reads
1436 or writes only. Bursts allow the guest I/O to spike above the limit temporarily.
1437 @item throttling.iops-size=@var{is}
1438 Let every @var{is} bytes of a request count as a new request for iops
1439 throttling purposes.
1440 @end table
1441
1442 -fsdev option is used along with -device driver "virtio-9p-...".
1443 @item -device virtio-9p-@var{type},fsdev=@var{id},mount_tag=@var{mount_tag}
1444 Options for virtio-9p-... driver are:
1445 @table @option
1446 @item @var{type}
1447 Specifies the variant to be used. Supported values are "pci", "ccw" or "device",
1448 depending on the machine type.
1449 @item fsdev=@var{id}
1450 Specifies the id value specified along with -fsdev option.
1451 @item mount_tag=@var{mount_tag}
1452 Specifies the tag name to be used by the guest to mount this export point.
1453 @end table
1454
1455 ETEXI
1456
1457 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1458 "-virtfs local,path=path,mount_tag=tag,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1459 " [,id=id][,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode][,multidevs=remap|forbid|warn]\n"
1460 "-virtfs proxy,mount_tag=tag,socket=socket[,id=id][,writeout=immediate][,readonly]\n"
1461 "-virtfs proxy,mount_tag=tag,sock_fd=sock_fd[,id=id][,writeout=immediate][,readonly]\n"
1462 "-virtfs synth,mount_tag=tag[,id=id][,readonly]\n",
1463 QEMU_ARCH_ALL)
1464
1465 STEXI
1466
1467 @item -virtfs local,path=@var{path},mount_tag=@var{mount_tag} ,security_model=@var{security_model}[,writeout=@var{writeout}][,readonly] [,fmode=@var{fmode}][,dmode=@var{dmode}][,multidevs=@var{multidevs}]
1468 @itemx -virtfs proxy,socket=@var{socket},mount_tag=@var{mount_tag} [,writeout=@var{writeout}][,readonly]
1469 @itemx -virtfs proxy,sock_fd=@var{sock_fd},mount_tag=@var{mount_tag} [,writeout=@var{writeout}][,readonly]
1470 @itemx -virtfs synth,mount_tag=@var{mount_tag}
1471 @findex -virtfs
1472
1473 Define a new filesystem device and expose it to the guest using a virtio-9p-device. The general form of a Virtual File system pass-through options are:
1474 @table @option
1475 @item local
1476 Accesses to the filesystem are done by QEMU.
1477 @item proxy
1478 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1479 @item synth
1480 Synthetic filesystem, only used by QTests.
1481 @item id=@var{id}
1482 Specifies identifier for the filesystem device
1483 @item path=@var{path}
1484 Specifies the export path for the file system device. Files under
1485 this path will be available to the 9p client on the guest.
1486 @item security_model=@var{security_model}
1487 Specifies the security model to be used for this export path.
1488 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1489 In "passthrough" security model, files are stored using the same
1490 credentials as they are created on the guest. This requires QEMU
1491 to run as root. In "mapped-xattr" security model, some of the file
1492 attributes like uid, gid, mode bits and link target are stored as
1493 file attributes. For "mapped-file" these attributes are stored in the
1494 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1495 interact with other unix tools. "none" security model is same as
1496 passthrough except the sever won't report failures if it fails to
1497 set file attributes like ownership. Security model is mandatory only
1498 for local fsdriver. Other fsdrivers (like proxy) don't take security
1499 model as a parameter.
1500 @item writeout=@var{writeout}
1501 This is an optional argument. The only supported value is "immediate".
1502 This means that host page cache will be used to read and write data but
1503 write notification will be sent to the guest only when the data has been
1504 reported as written by the storage subsystem.
1505 @item readonly
1506 Enables exporting 9p share as a readonly mount for guests. By default
1507 read-write access is given.
1508 @item socket=@var{socket}
1509 Enables proxy filesystem driver to use passed socket file for
1510 communicating with virtfs-proxy-helper(1). Usually a helper like libvirt
1511 will create socketpair and pass one of the fds as sock_fd.
1512 @item sock_fd
1513 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
1514 descriptor for interfacing with virtfs-proxy-helper(1).
1515 @item fmode=@var{fmode}
1516 Specifies the default mode for newly created files on the host. Works only
1517 with security models "mapped-xattr" and "mapped-file".
1518 @item dmode=@var{dmode}
1519 Specifies the default mode for newly created directories on the host. Works
1520 only with security models "mapped-xattr" and "mapped-file".
1521 @item mount_tag=@var{mount_tag}
1522 Specifies the tag name to be used by the guest to mount this export point.
1523 @item multidevs=@var{multidevs}
1524 Specifies how to deal with multiple devices being shared with a 9p export.
1525 Supported behaviours are either "remap", "forbid" or "warn". The latter is
1526 the default behaviour on which virtfs 9p expects only one device to be
1527 shared with the same export, and if more than one device is shared and
1528 accessed via the same 9p export then only a warning message is logged
1529 (once) by qemu on host side. In order to avoid file ID collisions on guest
1530 you should either create a separate virtfs export for each device to be
1531 shared with guests (recommended way) or you might use "remap" instead which
1532 allows you to share multiple devices with only one export instead, which is
1533 achieved by remapping the original inode numbers from host to guest in a
1534 way that would prevent such collisions. Remapping inodes in such use cases
1535 is required because the original device IDs from host are never passed and
1536 exposed on guest. Instead all files of an export shared with virtfs always
1537 share the same device id on guest. So two files with identical inode
1538 numbers but from actually different devices on host would otherwise cause a
1539 file ID collision and hence potential misbehaviours on guest. "forbid" on
1540 the other hand assumes like "warn" that only one device is shared by the
1541 same export, however it will not only log a warning message but also
1542 deny access to additional devices on guest. Note though that "forbid" does
1543 currently not block all possible file access operations (e.g. readdir()
1544 would still return entries from other devices).
1545 @end table
1546 ETEXI
1547
1548 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1549 "-iscsi [user=user][,password=password]\n"
1550 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1551 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1552 " [,timeout=timeout]\n"
1553 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1554
1555 STEXI
1556 @item -iscsi
1557 @findex -iscsi
1558 Configure iSCSI session parameters.
1559 ETEXI
1560
1561 STEXI
1562 @end table
1563 ETEXI
1564 DEFHEADING()
1565
1566 DEFHEADING(USB options:)
1567 STEXI
1568 @table @option
1569 ETEXI
1570
1571 DEF("usb", 0, QEMU_OPTION_usb,
1572 "-usb enable on-board USB host controller (if not enabled by default)\n",
1573 QEMU_ARCH_ALL)
1574 STEXI
1575 @item -usb
1576 @findex -usb
1577 Enable USB emulation on machine types with an on-board USB host controller (if
1578 not enabled by default). Note that on-board USB host controllers may not
1579 support USB 3.0. In this case @option{-device qemu-xhci} can be used instead
1580 on machines with PCI.
1581 ETEXI
1582
1583 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1584 "-usbdevice name add the host or guest USB device 'name'\n",
1585 QEMU_ARCH_ALL)
1586 STEXI
1587
1588 @item -usbdevice @var{devname}
1589 @findex -usbdevice
1590 Add the USB device @var{devname}. Note that this option is deprecated,
1591 please use @code{-device usb-...} instead. @xref{usb_devices}.
1592
1593 @table @option
1594
1595 @item mouse
1596 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1597
1598 @item tablet
1599 Pointer device that uses absolute coordinates (like a touchscreen). This
1600 means QEMU is able to report the mouse position without having to grab the
1601 mouse. Also overrides the PS/2 mouse emulation when activated.
1602
1603 @item braille
1604 Braille device. This will use BrlAPI to display the braille output on a real
1605 or fake device.
1606
1607 @end table
1608 ETEXI
1609
1610 STEXI
1611 @end table
1612 ETEXI
1613 DEFHEADING()
1614
1615 DEFHEADING(Display options:)
1616 STEXI
1617 @table @option
1618 ETEXI
1619
1620 DEF("display", HAS_ARG, QEMU_OPTION_display,
1621 #if defined(CONFIG_SPICE)
1622 "-display spice-app[,gl=on|off]\n"
1623 #endif
1624 #if defined(CONFIG_SDL)
1625 "-display sdl[,alt_grab=on|off][,ctrl_grab=on|off]\n"
1626 " [,window_close=on|off][,gl=on|core|es|off]\n"
1627 #endif
1628 #if defined(CONFIG_GTK)
1629 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1630 #endif
1631 #if defined(CONFIG_VNC)
1632 "-display vnc=<display>[,<optargs>]\n"
1633 #endif
1634 #if defined(CONFIG_CURSES)
1635 "-display curses[,charset=<encoding>]\n"
1636 #endif
1637 #if defined(CONFIG_OPENGL)
1638 "-display egl-headless[,rendernode=<file>]\n"
1639 #endif
1640 "-display none\n"
1641 " select display backend type\n"
1642 " The default display is equivalent to\n "
1643 #if defined(CONFIG_GTK)
1644 "\"-display gtk\"\n"
1645 #elif defined(CONFIG_SDL)
1646 "\"-display sdl\"\n"
1647 #elif defined(CONFIG_COCOA)
1648 "\"-display cocoa\"\n"
1649 #elif defined(CONFIG_VNC)
1650 "\"-vnc localhost:0,to=99,id=default\"\n"
1651 #else
1652 "\"-display none\"\n"
1653 #endif
1654 , QEMU_ARCH_ALL)
1655 STEXI
1656 @item -display @var{type}
1657 @findex -display
1658 Select type of display to use. This option is a replacement for the
1659 old style -sdl/-curses/... options. Valid values for @var{type} are
1660 @table @option
1661 @item sdl
1662 Display video output via SDL (usually in a separate graphics
1663 window; see the SDL documentation for other possibilities).
1664 @item curses
1665 Display video output via curses. For graphics device models which
1666 support a text mode, QEMU can display this output using a
1667 curses/ncurses interface. Nothing is displayed when the graphics
1668 device is in graphical mode or if the graphics device does not support
1669 a text mode. Generally only the VGA device models support text mode.
1670 The font charset used by the guest can be specified with the
1671 @code{charset} option, for example @code{charset=CP850} for IBM CP850
1672 encoding. The default is @code{CP437}.
1673 @item none
1674 Do not display video output. The guest will still see an emulated
1675 graphics card, but its output will not be displayed to the QEMU
1676 user. This option differs from the -nographic option in that it
1677 only affects what is done with video output; -nographic also changes
1678 the destination of the serial and parallel port data.
1679 @item gtk
1680 Display video output in a GTK window. This interface provides drop-down
1681 menus and other UI elements to configure and control the VM during
1682 runtime.
1683 @item vnc
1684 Start a VNC server on display <arg>
1685 @item egl-headless
1686 Offload all OpenGL operations to a local DRI device. For any graphical display,
1687 this display needs to be paired with either VNC or SPICE displays.
1688 @item spice-app
1689 Start QEMU as a Spice server and launch the default Spice client
1690 application. The Spice server will redirect the serial consoles and
1691 QEMU monitors. (Since 4.0)
1692 @end table
1693 ETEXI
1694
1695 DEF("nographic", 0, QEMU_OPTION_nographic,
1696 "-nographic disable graphical output and redirect serial I/Os to console\n",
1697 QEMU_ARCH_ALL)
1698 STEXI
1699 @item -nographic
1700 @findex -nographic
1701 Normally, if QEMU is compiled with graphical window support, it displays
1702 output such as guest graphics, guest console, and the QEMU monitor in a
1703 window. With this option, you can totally disable graphical output so
1704 that QEMU is a simple command line application. The emulated serial port
1705 is redirected on the console and muxed with the monitor (unless
1706 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1707 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1708 switching between the console and monitor.
1709 ETEXI
1710
1711 DEF("curses", 0, QEMU_OPTION_curses,
1712 "-curses shorthand for -display curses\n",
1713 QEMU_ARCH_ALL)
1714 STEXI
1715 @item -curses
1716 @findex -curses
1717 Normally, if QEMU is compiled with graphical window support, it displays
1718 output such as guest graphics, guest console, and the QEMU monitor in a
1719 window. With this option, QEMU can display the VGA output when in text
1720 mode using a curses/ncurses interface. Nothing is displayed in graphical
1721 mode.
1722 ETEXI
1723
1724 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1725 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1726 QEMU_ARCH_ALL)
1727 STEXI
1728 @item -alt-grab
1729 @findex -alt-grab
1730 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1731 affects the special keys (for fullscreen, monitor-mode switching, etc).
1732 ETEXI
1733
1734 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1735 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1736 QEMU_ARCH_ALL)
1737 STEXI
1738 @item -ctrl-grab
1739 @findex -ctrl-grab
1740 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1741 affects the special keys (for fullscreen, monitor-mode switching, etc).
1742 ETEXI
1743
1744 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1745 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1746 STEXI
1747 @item -no-quit
1748 @findex -no-quit
1749 Disable SDL window close capability.
1750 ETEXI
1751
1752 DEF("sdl", 0, QEMU_OPTION_sdl,
1753 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1754 STEXI
1755 @item -sdl
1756 @findex -sdl
1757 Enable SDL.
1758 ETEXI
1759
1760 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1761 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1762 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1763 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1764 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1765 " [,tls-ciphers=<list>]\n"
1766 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1767 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1768 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1769 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1770 " [,jpeg-wan-compression=[auto|never|always]]\n"
1771 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1772 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1773 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1774 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1775 " [,gl=[on|off]][,rendernode=<file>]\n"
1776 " enable spice\n"
1777 " at least one of {port, tls-port} is mandatory\n",
1778 QEMU_ARCH_ALL)
1779 STEXI
1780 @item -spice @var{option}[,@var{option}[,...]]
1781 @findex -spice
1782 Enable the spice remote desktop protocol. Valid options are
1783
1784 @table @option
1785
1786 @item port=<nr>
1787 Set the TCP port spice is listening on for plaintext channels.
1788
1789 @item addr=<addr>
1790 Set the IP address spice is listening on. Default is any address.
1791
1792 @item ipv4
1793 @itemx ipv6
1794 @itemx unix
1795 Force using the specified IP version.
1796
1797 @item password=<secret>
1798 Set the password you need to authenticate.
1799
1800 @item sasl
1801 Require that the client use SASL to authenticate with the spice.
1802 The exact choice of authentication method used is controlled from the
1803 system / user's SASL configuration file for the 'qemu' service. This
1804 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1805 unprivileged user, an environment variable SASL_CONF_PATH can be used
1806 to make it search alternate locations for the service config.
1807 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1808 it is recommended that SASL always be combined with the 'tls' and
1809 'x509' settings to enable use of SSL and server certificates. This
1810 ensures a data encryption preventing compromise of authentication
1811 credentials.
1812
1813 @item disable-ticketing
1814 Allow client connects without authentication.
1815
1816 @item disable-copy-paste
1817 Disable copy paste between the client and the guest.
1818
1819 @item disable-agent-file-xfer
1820 Disable spice-vdagent based file-xfer between the client and the guest.
1821
1822 @item tls-port=<nr>
1823 Set the TCP port spice is listening on for encrypted channels.
1824
1825 @item x509-dir=<dir>
1826 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1827
1828 @item x509-key-file=<file>
1829 @itemx x509-key-password=<file>
1830 @itemx x509-cert-file=<file>
1831 @itemx x509-cacert-file=<file>
1832 @itemx x509-dh-key-file=<file>
1833 The x509 file names can also be configured individually.
1834
1835 @item tls-ciphers=<list>
1836 Specify which ciphers to use.
1837
1838 @item tls-channel=[main|display|cursor|inputs|record|playback]
1839 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1840 Force specific channel to be used with or without TLS encryption. The
1841 options can be specified multiple times to configure multiple
1842 channels. The special name "default" can be used to set the default
1843 mode. For channels which are not explicitly forced into one mode the
1844 spice client is allowed to pick tls/plaintext as he pleases.
1845
1846 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1847 Configure image compression (lossless).
1848 Default is auto_glz.
1849
1850 @item jpeg-wan-compression=[auto|never|always]
1851 @itemx zlib-glz-wan-compression=[auto|never|always]
1852 Configure wan image compression (lossy for slow links).
1853 Default is auto.
1854
1855 @item streaming-video=[off|all|filter]
1856 Configure video stream detection. Default is off.
1857
1858 @item agent-mouse=[on|off]
1859 Enable/disable passing mouse events via vdagent. Default is on.
1860
1861 @item playback-compression=[on|off]
1862 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1863
1864 @item seamless-migration=[on|off]
1865 Enable/disable spice seamless migration. Default is off.
1866
1867 @item gl=[on|off]
1868 Enable/disable OpenGL context. Default is off.
1869
1870 @item rendernode=<file>
1871 DRM render node for OpenGL rendering. If not specified, it will pick
1872 the first available. (Since 2.9)
1873
1874 @end table
1875 ETEXI
1876
1877 DEF("portrait", 0, QEMU_OPTION_portrait,
1878 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1879 QEMU_ARCH_ALL)
1880 STEXI
1881 @item -portrait
1882 @findex -portrait
1883 Rotate graphical output 90 deg left (only PXA LCD).
1884 ETEXI
1885
1886 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1887 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1888 QEMU_ARCH_ALL)
1889 STEXI
1890 @item -rotate @var{deg}
1891 @findex -rotate
1892 Rotate graphical output some deg left (only PXA LCD).
1893 ETEXI
1894
1895 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1896 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1897 " select video card type\n", QEMU_ARCH_ALL)
1898 STEXI
1899 @item -vga @var{type}
1900 @findex -vga
1901 Select type of VGA card to emulate. Valid values for @var{type} are
1902 @table @option
1903 @item cirrus
1904 Cirrus Logic GD5446 Video card. All Windows versions starting from
1905 Windows 95 should recognize and use this graphic card. For optimal
1906 performances, use 16 bit color depth in the guest and the host OS.
1907 (This card was the default before QEMU 2.2)
1908 @item std
1909 Standard VGA card with Bochs VBE extensions. If your guest OS
1910 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1911 to use high resolution modes (>= 1280x1024x16) then you should use
1912 this option. (This card is the default since QEMU 2.2)
1913 @item vmware
1914 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1915 recent XFree86/XOrg server or Windows guest with a driver for this
1916 card.
1917 @item qxl
1918 QXL paravirtual graphic card. It is VGA compatible (including VESA
1919 2.0 VBE support). Works best with qxl guest drivers installed though.
1920 Recommended choice when using the spice protocol.
1921 @item tcx
1922 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1923 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1924 fixed resolution of 1024x768.
1925 @item cg3
1926 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1927 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1928 resolutions aimed at people wishing to run older Solaris versions.
1929 @item virtio
1930 Virtio VGA card.
1931 @item none
1932 Disable VGA card.
1933 @end table
1934 ETEXI
1935
1936 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1937 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1938 STEXI
1939 @item -full-screen
1940 @findex -full-screen
1941 Start in full screen.
1942 ETEXI
1943
1944 DEF("g", 1, QEMU_OPTION_g ,
1945 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1946 QEMU_ARCH_PPC | QEMU_ARCH_SPARC | QEMU_ARCH_M68K)
1947 STEXI
1948 @item -g @var{width}x@var{height}[x@var{depth}]
1949 @findex -g
1950 Set the initial graphical resolution and depth (PPC, SPARC only).
1951 ETEXI
1952
1953 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1954 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1955 STEXI
1956 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1957 @findex -vnc
1958 Normally, if QEMU is compiled with graphical window support, it displays
1959 output such as guest graphics, guest console, and the QEMU monitor in a
1960 window. With this option, you can have QEMU listen on VNC display
1961 @var{display} and redirect the VGA display over the VNC session. It is
1962 very useful to enable the usb tablet device when using this option
1963 (option @option{-device usb-tablet}). When using the VNC display, you
1964 must use the @option{-k} parameter to set the keyboard layout if you are
1965 not using en-us. Valid syntax for the @var{display} is
1966
1967 @table @option
1968
1969 @item to=@var{L}
1970
1971 With this option, QEMU will try next available VNC @var{display}s, until the
1972 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1973 available, e.g. port 5900+@var{display} is already used by another
1974 application. By default, to=0.
1975
1976 @item @var{host}:@var{d}
1977
1978 TCP connections will only be allowed from @var{host} on display @var{d}.
1979 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1980 be omitted in which case the server will accept connections from any host.
1981
1982 @item unix:@var{path}
1983
1984 Connections will be allowed over UNIX domain sockets where @var{path} is the
1985 location of a unix socket to listen for connections on.
1986
1987 @item none
1988
1989 VNC is initialized but not started. The monitor @code{change} command
1990 can be used to later start the VNC server.
1991
1992 @end table
1993
1994 Following the @var{display} value there may be one or more @var{option} flags
1995 separated by commas. Valid options are
1996
1997 @table @option
1998
1999 @item reverse
2000
2001 Connect to a listening VNC client via a ``reverse'' connection. The
2002 client is specified by the @var{display}. For reverse network
2003 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
2004 is a TCP port number, not a display number.
2005
2006 @item websocket
2007
2008 Opens an additional TCP listening port dedicated to VNC Websocket connections.
2009 If a bare @var{websocket} option is given, the Websocket port is
2010 5700+@var{display}. An alternative port can be specified with the
2011 syntax @code{websocket}=@var{port}.
2012
2013 If @var{host} is specified connections will only be allowed from this host.
2014 It is possible to control the websocket listen address independently, using
2015 the syntax @code{websocket}=@var{host}:@var{port}.
2016
2017 If no TLS credentials are provided, the websocket connection runs in
2018 unencrypted mode. If TLS credentials are provided, the websocket connection
2019 requires encrypted client connections.
2020
2021 @item password
2022
2023 Require that password based authentication is used for client connections.
2024
2025 The password must be set separately using the @code{set_password} command in
2026 the @ref{pcsys_monitor}. The syntax to change your password is:
2027 @code{set_password <protocol> <password>} where <protocol> could be either
2028 "vnc" or "spice".
2029
2030 If you would like to change <protocol> password expiration, you should use
2031 @code{expire_password <protocol> <expiration-time>} where expiration time could
2032 be one of the following options: now, never, +seconds or UNIX time of
2033 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
2034 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
2035 date and time).
2036
2037 You can also use keywords "now" or "never" for the expiration time to
2038 allow <protocol> password to expire immediately or never expire.
2039
2040 @item tls-creds=@var{ID}
2041
2042 Provides the ID of a set of TLS credentials to use to secure the
2043 VNC server. They will apply to both the normal VNC server socket
2044 and the websocket socket (if enabled). Setting TLS credentials
2045 will cause the VNC server socket to enable the VeNCrypt auth
2046 mechanism. The credentials should have been previously created
2047 using the @option{-object tls-creds} argument.
2048
2049 @item tls-authz=@var{ID}
2050
2051 Provides the ID of the QAuthZ authorization object against which
2052 the client's x509 distinguished name will validated. This object is
2053 only resolved at time of use, so can be deleted and recreated on the
2054 fly while the VNC server is active. If missing, it will default
2055 to denying access.
2056
2057 @item sasl
2058
2059 Require that the client use SASL to authenticate with the VNC server.
2060 The exact choice of authentication method used is controlled from the
2061 system / user's SASL configuration file for the 'qemu' service. This
2062 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
2063 unprivileged user, an environment variable SASL_CONF_PATH can be used
2064 to make it search alternate locations for the service config.
2065 While some SASL auth methods can also provide data encryption (eg GSSAPI),
2066 it is recommended that SASL always be combined with the 'tls' and
2067 'x509' settings to enable use of SSL and server certificates. This
2068 ensures a data encryption preventing compromise of authentication
2069 credentials. See the @ref{vnc_security} section for details on using
2070 SASL authentication.
2071
2072 @item sasl-authz=@var{ID}
2073
2074 Provides the ID of the QAuthZ authorization object against which
2075 the client's SASL username will validated. This object is
2076 only resolved at time of use, so can be deleted and recreated on the
2077 fly while the VNC server is active. If missing, it will default
2078 to denying access.
2079
2080 @item acl
2081
2082 Legacy method for enabling authorization of clients against the
2083 x509 distinguished name and SASL username. It results in the creation
2084 of two @code{authz-list} objects with IDs of @code{vnc.username} and
2085 @code{vnc.x509dname}. The rules for these objects must be configured
2086 with the HMP ACL commands.
2087
2088 This option is deprecated and should no longer be used. The new
2089 @option{sasl-authz} and @option{tls-authz} options are a
2090 replacement.
2091
2092 @item lossy
2093
2094 Enable lossy compression methods (gradient, JPEG, ...). If this
2095 option is set, VNC client may receive lossy framebuffer updates
2096 depending on its encoding settings. Enabling this option can save
2097 a lot of bandwidth at the expense of quality.
2098
2099 @item non-adaptive
2100
2101 Disable adaptive encodings. Adaptive encodings are enabled by default.
2102 An adaptive encoding will try to detect frequently updated screen regions,
2103 and send updates in these regions using a lossy encoding (like JPEG).
2104 This can be really helpful to save bandwidth when playing videos. Disabling
2105 adaptive encodings restores the original static behavior of encodings
2106 like Tight.
2107
2108 @item share=[allow-exclusive|force-shared|ignore]
2109
2110 Set display sharing policy. 'allow-exclusive' allows clients to ask
2111 for exclusive access. As suggested by the rfb spec this is
2112 implemented by dropping other connections. Connecting multiple
2113 clients in parallel requires all clients asking for a shared session
2114 (vncviewer: -shared switch). This is the default. 'force-shared'
2115 disables exclusive client access. Useful for shared desktop sessions,
2116 where you don't want someone forgetting specify -shared disconnect
2117 everybody else. 'ignore' completely ignores the shared flag and
2118 allows everybody connect unconditionally. Doesn't conform to the rfb
2119 spec but is traditional QEMU behavior.
2120
2121 @item key-delay-ms
2122
2123 Set keyboard delay, for key down and key up events, in milliseconds.
2124 Default is 10. Keyboards are low-bandwidth devices, so this slowdown
2125 can help the device and guest to keep up and not lose events in case
2126 events are arriving in bulk. Possible causes for the latter are flaky
2127 network connections, or scripts for automated testing.
2128
2129 @item audiodev=@var{audiodev}
2130
2131 Use the specified @var{audiodev} when the VNC client requests audio
2132 transmission. When not using an -audiodev argument, this option must
2133 be omitted, otherwise is must be present and specify a valid audiodev.
2134
2135 @end table
2136 ETEXI
2137
2138 STEXI
2139 @end table
2140 ETEXI
2141 ARCHHEADING(, QEMU_ARCH_I386)
2142
2143 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
2144 STEXI
2145 @table @option
2146 ETEXI
2147
2148 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
2149 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
2150 QEMU_ARCH_I386)
2151 STEXI
2152 @item -win2k-hack
2153 @findex -win2k-hack
2154 Use it when installing Windows 2000 to avoid a disk full bug. After
2155 Windows 2000 is installed, you no longer need this option (this option
2156 slows down the IDE transfers).
2157 ETEXI
2158
2159 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
2160 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
2161 QEMU_ARCH_I386)
2162 STEXI
2163 @item -no-fd-bootchk
2164 @findex -no-fd-bootchk
2165 Disable boot signature checking for floppy disks in BIOS. May
2166 be needed to boot from old floppy disks.
2167 ETEXI
2168
2169 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
2170 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2171 STEXI
2172 @item -no-acpi
2173 @findex -no-acpi
2174 Disable ACPI (Advanced Configuration and Power Interface) support. Use
2175 it if your guest OS complains about ACPI problems (PC target machine
2176 only).
2177 ETEXI
2178
2179 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
2180 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
2181 STEXI
2182 @item -no-hpet
2183 @findex -no-hpet
2184 Disable HPET support.
2185 ETEXI
2186
2187 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
2188 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
2189 " ACPI table description\n", QEMU_ARCH_I386)
2190 STEXI
2191 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
2192 @findex -acpitable
2193 Add ACPI table with specified header fields and context from specified files.
2194 For file=, take whole ACPI table from the specified files, including all
2195 ACPI headers (possible overridden by other options).
2196 For data=, only data
2197 portion of the table is used, all header information is specified in the
2198 command line.
2199 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
2200 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
2201 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
2202 spec.
2203 ETEXI
2204
2205 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
2206 "-smbios file=binary\n"
2207 " load SMBIOS entry from binary file\n"
2208 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
2209 " [,uefi=on|off]\n"
2210 " specify SMBIOS type 0 fields\n"
2211 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2212 " [,uuid=uuid][,sku=str][,family=str]\n"
2213 " specify SMBIOS type 1 fields\n"
2214 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2215 " [,asset=str][,location=str]\n"
2216 " specify SMBIOS type 2 fields\n"
2217 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
2218 " [,sku=str]\n"
2219 " specify SMBIOS type 3 fields\n"
2220 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
2221 " [,asset=str][,part=str]\n"
2222 " specify SMBIOS type 4 fields\n"
2223 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
2224 " [,asset=str][,part=str][,speed=%d]\n"
2225 " specify SMBIOS type 17 fields\n",
2226 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2227 STEXI
2228 @item -smbios file=@var{binary}
2229 @findex -smbios
2230 Load SMBIOS entry from binary file.
2231
2232 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
2233 Specify SMBIOS type 0 fields
2234
2235 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
2236 Specify SMBIOS type 1 fields
2237
2238 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}]
2239 Specify SMBIOS type 2 fields
2240
2241 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
2242 Specify SMBIOS type 3 fields
2243
2244 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
2245 Specify SMBIOS type 4 fields
2246
2247 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
2248 Specify SMBIOS type 17 fields
2249 ETEXI
2250
2251 STEXI
2252 @end table
2253 ETEXI
2254 DEFHEADING()
2255
2256 DEFHEADING(Network options:)
2257 STEXI
2258 @table @option
2259 ETEXI
2260
2261 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
2262 #ifdef CONFIG_SLIRP
2263 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
2264 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
2265 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
2266 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
2267 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
2268 #ifndef _WIN32
2269 "[,smb=dir[,smbserver=addr]]\n"
2270 #endif
2271 " configure a user mode network backend with ID 'str',\n"
2272 " its DHCP server and optional services\n"
2273 #endif
2274 #ifdef _WIN32
2275 "-netdev tap,id=str,ifname=name\n"
2276 " configure a host TAP network backend with ID 'str'\n"
2277 #else
2278 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
2279 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
2280 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
2281 " [,poll-us=n]\n"
2282 " configure a host TAP network backend with ID 'str'\n"
2283 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2284 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
2285 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
2286 " to deconfigure it\n"
2287 " use '[down]script=no' to disable script execution\n"
2288 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
2289 " configure it\n"
2290 " use 'fd=h' to connect to an already opened TAP interface\n"
2291 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
2292 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
2293 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
2294 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
2295 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
2296 " use vhost=on to enable experimental in kernel accelerator\n"
2297 " (only has effect for virtio guests which use MSIX)\n"
2298 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
2299 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
2300 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
2301 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
2302 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
2303 " spent on busy polling for vhost net\n"
2304 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
2305 " configure a host TAP network backend with ID 'str' that is\n"
2306 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2307 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
2308 #endif
2309 #ifdef __linux__
2310 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
2311 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
2312 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
2313 " [,rxcookie=rxcookie][,offset=offset]\n"
2314 " configure a network backend with ID 'str' connected to\n"
2315 " an Ethernet over L2TPv3 pseudowire.\n"
2316 " Linux kernel 3.3+ as well as most routers can talk\n"
2317 " L2TPv3. This transport allows connecting a VM to a VM,\n"
2318 " VM to a router and even VM to Host. It is a nearly-universal\n"
2319 " standard (RFC3391). Note - this implementation uses static\n"
2320 " pre-configured tunnels (same as the Linux kernel).\n"
2321 " use 'src=' to specify source address\n"
2322 " use 'dst=' to specify destination address\n"
2323 " use 'udp=on' to specify udp encapsulation\n"
2324 " use 'srcport=' to specify source udp port\n"
2325 " use 'dstport=' to specify destination udp port\n"
2326 " use 'ipv6=on' to force v6\n"
2327 " L2TPv3 uses cookies to prevent misconfiguration as\n"
2328 " well as a weak security measure\n"
2329 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
2330 " use 'txcookie=0x012345678' to specify a txcookie\n"
2331 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
2332 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
2333 " use 'pincounter=on' to work around broken counter handling in peer\n"
2334 " use 'offset=X' to add an extra offset between header and data\n"
2335 #endif
2336 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
2337 " configure a network backend to connect to another network\n"
2338 " using a socket connection\n"
2339 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
2340 " configure a network backend to connect to a multicast maddr and port\n"
2341 " use 'localaddr=addr' to specify the host address to send packets from\n"
2342 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
2343 " configure a network backend to connect to another network\n"
2344 " using an UDP tunnel\n"
2345 #ifdef CONFIG_VDE
2346 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
2347 " configure a network backend to connect to port 'n' of a vde switch\n"
2348 " running on host and listening for incoming connections on 'socketpath'.\n"
2349 " Use group 'groupname' and mode 'octalmode' to change default\n"
2350 " ownership and permissions for communication port.\n"
2351 #endif
2352 #ifdef CONFIG_NETMAP
2353 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
2354 " attach to the existing netmap-enabled network interface 'name', or to a\n"
2355 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
2356 " netmap device, defaults to '/dev/netmap')\n"
2357 #endif
2358 #ifdef CONFIG_POSIX
2359 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2360 " configure a vhost-user network, backed by a chardev 'dev'\n"
2361 #endif
2362 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
2363 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL)
2364 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
2365 "-nic [tap|bridge|"
2366 #ifdef CONFIG_SLIRP
2367 "user|"
2368 #endif
2369 #ifdef __linux__
2370 "l2tpv3|"
2371 #endif
2372 #ifdef CONFIG_VDE
2373 "vde|"
2374 #endif
2375 #ifdef CONFIG_NETMAP
2376 "netmap|"
2377 #endif
2378 #ifdef CONFIG_POSIX
2379 "vhost-user|"
2380 #endif
2381 "socket][,option][,...][mac=macaddr]\n"
2382 " initialize an on-board / default host NIC (using MAC address\n"
2383 " macaddr) and connect it to the given host network backend\n"
2384 "-nic none use it alone to have zero network devices (the default is to\n"
2385 " provided a 'user' network connection)\n",
2386 QEMU_ARCH_ALL)
2387 DEF("net", HAS_ARG, QEMU_OPTION_net,
2388 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2389 " configure or create an on-board (or machine default) NIC and\n"
2390 " connect it to hub 0 (please use -nic unless you need a hub)\n"
2391 "-net ["
2392 #ifdef CONFIG_SLIRP
2393 "user|"
2394 #endif
2395 "tap|"
2396 "bridge|"
2397 #ifdef CONFIG_VDE
2398 "vde|"
2399 #endif
2400 #ifdef CONFIG_NETMAP
2401 "netmap|"
2402 #endif
2403 "socket][,option][,option][,...]\n"
2404 " old way to initialize a host network interface\n"
2405 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2406 STEXI
2407 @item -nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]
2408 @findex -nic
2409 This option is a shortcut for configuring both the on-board (default) guest
2410 NIC hardware and the host network backend in one go. The host backend options
2411 are the same as with the corresponding @option{-netdev} options below.
2412 The guest NIC model can be set with @option{model=@var{modelname}}.
2413 Use @option{model=help} to list the available device types.
2414 The hardware MAC address can be set with @option{mac=@var{macaddr}}.
2415
2416 The following two example do exactly the same, to show how @option{-nic} can
2417 be used to shorten the command line length (note that the e1000 is the default
2418 on i386, so the @option{model=e1000} parameter could even be omitted here, too):
2419 @example
2420 @value{qemu_system} -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
2421 @value{qemu_system} -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
2422 @end example
2423
2424 @item -nic none
2425 Indicate that no network devices should be configured. It is used to override
2426 the default configuration (default NIC with ``user'' host network backend)
2427 which is activated if no other networking options are provided.
2428
2429 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
2430 @findex -netdev
2431 Configure user mode host network backend which requires no administrator
2432 privilege to run. Valid options are:
2433
2434 @table @option
2435 @item id=@var{id}
2436 Assign symbolic name for use in monitor commands.
2437
2438 @item ipv4=on|off and ipv6=on|off
2439 Specify that either IPv4 or IPv6 must be enabled. If neither is specified
2440 both protocols are enabled.
2441
2442 @item net=@var{addr}[/@var{mask}]
2443 Set IP network address the guest will see. Optionally specify the netmask,
2444 either in the form a.b.c.d or as number of valid top-most bits. Default is
2445 10.0.2.0/24.
2446
2447 @item host=@var{addr}
2448 Specify the guest-visible address of the host. Default is the 2nd IP in the
2449 guest network, i.e. x.x.x.2.
2450
2451 @item ipv6-net=@var{addr}[/@var{int}]
2452 Set IPv6 network address the guest will see (default is fec0::/64). The
2453 network prefix is given in the usual hexadecimal IPv6 address
2454 notation. The prefix size is optional, and is given as the number of
2455 valid top-most bits (default is 64).
2456
2457 @item ipv6-host=@var{addr}
2458 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
2459 the guest network, i.e. xxxx::2.
2460
2461 @item restrict=on|off
2462 If this option is enabled, the guest will be isolated, i.e. it will not be
2463 able to contact the host and no guest IP packets will be routed over the host
2464 to the outside. This option does not affect any explicitly set forwarding rules.
2465
2466 @item hostname=@var{name}
2467 Specifies the client hostname reported by the built-in DHCP server.
2468
2469 @item dhcpstart=@var{addr}
2470 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
2471 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
2472
2473 @item dns=@var{addr}
2474 Specify the guest-visible address of the virtual nameserver. The address must
2475 be different from the host address. Default is the 3rd IP in the guest network,
2476 i.e. x.x.x.3.
2477
2478 @item ipv6-dns=@var{addr}
2479 Specify the guest-visible address of the IPv6 virtual nameserver. The address
2480 must be different from the host address. Default is the 3rd IP in the guest
2481 network, i.e. xxxx::3.
2482
2483 @item dnssearch=@var{domain}
2484 Provides an entry for the domain-search list sent by the built-in
2485 DHCP server. More than one domain suffix can be transmitted by specifying
2486 this option multiple times. If supported, this will cause the guest to
2487 automatically try to append the given domain suffix(es) in case a domain name
2488 can not be resolved.
2489
2490 Example:
2491 @example
2492 @value{qemu_system} -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2493 @end example
2494
2495 @item domainname=@var{domain}
2496 Specifies the client domain name reported by the built-in DHCP server.
2497
2498 @item tftp=@var{dir}
2499 When using the user mode network stack, activate a built-in TFTP
2500 server. The files in @var{dir} will be exposed as the root of a TFTP server.
2501 The TFTP client on the guest must be configured in binary mode (use the command
2502 @code{bin} of the Unix TFTP client).
2503
2504 @item tftp-server-name=@var{name}
2505 In BOOTP reply, broadcast @var{name} as the "TFTP server name" (RFC2132 option
2506 66). This can be used to advise the guest to load boot files or configurations
2507 from a different server than the host address.
2508
2509 @item bootfile=@var{file}
2510 When using the user mode network stack, broadcast @var{file} as the BOOTP
2511 filename. In conjunction with @option{tftp}, this can be used to network boot
2512 a guest from a local directory.
2513
2514 Example (using pxelinux):
2515 @example
2516 @value{qemu_system} -hda linux.img -boot n -device e1000,netdev=n1 \
2517 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2518 @end example
2519
2520 @item smb=@var{dir}[,smbserver=@var{addr}]
2521 When using the user mode network stack, activate a built-in SMB
2522 server so that Windows OSes can access to the host files in @file{@var{dir}}
2523 transparently. The IP address of the SMB server can be set to @var{addr}. By
2524 default the 4th IP in the guest network is used, i.e. x.x.x.4.
2525
2526 In the guest Windows OS, the line:
2527 @example
2528 10.0.2.4 smbserver
2529 @end example
2530 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
2531 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
2532
2533 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2534
2535 Note that a SAMBA server must be installed on the host OS.
2536
2537 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
2538 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
2539 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
2540 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
2541 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
2542 be bound to a specific host interface. If no connection type is set, TCP is
2543 used. This option can be given multiple times.
2544
2545 For example, to redirect host X11 connection from screen 1 to guest
2546 screen 0, use the following:
2547
2548 @example
2549 # on the host
2550 @value{qemu_system} -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2551 # this host xterm should open in the guest X11 server
2552 xterm -display :1
2553 @end example
2554
2555 To redirect telnet connections from host port 5555 to telnet port on
2556 the guest, use the following:
2557
2558 @example
2559 # on the host
2560 @value{qemu_system} -nic user,hostfwd=tcp::5555-:23
2561 telnet localhost 5555
2562 @end example
2563
2564 Then when you use on the host @code{telnet localhost 5555}, you
2565 connect to the guest telnet server.
2566
2567 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
2568 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
2569 Forward guest TCP connections to the IP address @var{server} on port @var{port}
2570 to the character device @var{dev} or to a program executed by @var{cmd:command}
2571 which gets spawned for each connection. This option can be given multiple times.
2572
2573 You can either use a chardev directly and have that one used throughout QEMU's
2574 lifetime, like in the following example:
2575
2576 @example
2577 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2578 # the guest accesses it
2579 @value{qemu_system} -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
2580 @end example
2581
2582 Or you can execute a command on every TCP connection established by the guest,
2583 so that QEMU behaves similar to an inetd process for that virtual server:
2584
2585 @example
2586 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2587 # and connect the TCP stream to its stdin/stdout
2588 @value{qemu_system} -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2589 @end example
2590
2591 @end table
2592
2593 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2594 Configure a host TAP network backend with ID @var{id}.
2595
2596 Use the network script @var{file} to configure it and the network script
2597 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2598 automatically provides one. The default network configure script is
2599 @file{/etc/qemu-ifup} and the default network deconfigure script is
2600 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2601 to disable script execution.
2602
2603 If running QEMU as an unprivileged user, use the network helper
2604 @var{helper} to configure the TAP interface and attach it to the bridge.
2605 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2606 and the default bridge device is @file{br0}.
2607
2608 @option{fd}=@var{h} can be used to specify the handle of an already
2609 opened host TAP interface.
2610
2611 Examples:
2612
2613 @example
2614 #launch a QEMU instance with the default network script
2615 @value{qemu_system} linux.img -nic tap
2616 @end example
2617
2618 @example
2619 #launch a QEMU instance with two NICs, each one connected
2620 #to a TAP device
2621 @value{qemu_system} linux.img \
2622 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \
2623 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
2624 @end example
2625
2626 @example
2627 #launch a QEMU instance with the default network helper to
2628 #connect a TAP device to bridge br0
2629 @value{qemu_system} linux.img -device virtio-net-pci,netdev=n1 \
2630 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
2631 @end example
2632
2633 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2634 Connect a host TAP network interface to a host bridge device.
2635
2636 Use the network helper @var{helper} to configure the TAP interface and
2637 attach it to the bridge. The default network helper executable is
2638 @file{/path/to/qemu-bridge-helper} and the default bridge
2639 device is @file{br0}.
2640
2641 Examples:
2642
2643 @example
2644 #launch a QEMU instance with the default network helper to
2645 #connect a TAP device to bridge br0
2646 @value{qemu_system} linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
2647 @end example
2648
2649 @example
2650 #launch a QEMU instance with the default network helper to
2651 #connect a TAP device to bridge qemubr0
2652 @value{qemu_system} linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
2653 @end example
2654
2655 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2656
2657 This host network backend can be used to connect the guest's network to
2658 another QEMU virtual machine using a TCP socket connection. If @option{listen}
2659 is specified, QEMU waits for incoming connections on @var{port}
2660 (@var{host} is optional). @option{connect} is used to connect to
2661 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2662 specifies an already opened TCP socket.
2663
2664 Example:
2665 @example
2666 # launch a first QEMU instance
2667 @value{qemu_system} linux.img \
2668 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2669 -netdev socket,id=n1,listen=:1234
2670 # connect the network of this instance to the network of the first instance
2671 @value{qemu_system} linux.img \
2672 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2673 -netdev socket,id=n2,connect=127.0.0.1:1234
2674 @end example
2675
2676 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2677
2678 Configure a socket host network backend to share the guest's network traffic
2679 with another QEMU virtual machines using a UDP multicast socket, effectively
2680 making a bus for every QEMU with same multicast address @var{maddr} and @var{port}.
2681 NOTES:
2682 @enumerate
2683 @item
2684 Several QEMU can be running on different hosts and share same bus (assuming
2685 correct multicast setup for these hosts).
2686 @item
2687 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2688 @url{http://user-mode-linux.sf.net}.
2689 @item
2690 Use @option{fd=h} to specify an already opened UDP multicast socket.
2691 @end enumerate
2692
2693 Example:
2694 @example
2695 # launch one QEMU instance
2696 @value{qemu_system} linux.img \
2697 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2698 -netdev socket,id=n1,mcast=230.0.0.1:1234
2699 # launch another QEMU instance on same "bus"
2700 @value{qemu_system} linux.img \
2701 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2702 -netdev socket,id=n2,mcast=230.0.0.1:1234
2703 # launch yet another QEMU instance on same "bus"
2704 @value{qemu_system} linux.img \
2705 -device e1000,netdev=n3,mac=52:54:00:12:34:58 \
2706 -netdev socket,id=n3,mcast=230.0.0.1:1234
2707 @end example
2708
2709 Example (User Mode Linux compat.):
2710 @example
2711 # launch QEMU instance (note mcast address selected is UML's default)
2712 @value{qemu_system} linux.img \
2713 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2714 -netdev socket,id=n1,mcast=239.192.168.1:1102
2715 # launch UML
2716 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2717 @end example
2718
2719 Example (send packets from host's 1.2.3.4):
2720 @example
2721 @value{qemu_system} linux.img \
2722 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2723 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2724 @end example
2725
2726 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2727 Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a
2728 popular protocol to transport Ethernet (and other Layer 2) data frames between
2729 two systems. It is present in routers, firewalls and the Linux kernel
2730 (from version 3.3 onwards).
2731
2732 This transport allows a VM to communicate to another VM, router or firewall directly.
2733
2734 @table @option
2735 @item src=@var{srcaddr}
2736 source address (mandatory)
2737 @item dst=@var{dstaddr}
2738 destination address (mandatory)
2739 @item udp
2740 select udp encapsulation (default is ip).
2741 @item srcport=@var{srcport}
2742 source udp port.
2743 @item dstport=@var{dstport}
2744 destination udp port.
2745 @item ipv6
2746 force v6, otherwise defaults to v4.
2747 @item rxcookie=@var{rxcookie}
2748 @itemx txcookie=@var{txcookie}
2749 Cookies are a weak form of security in the l2tpv3 specification.
2750 Their function is mostly to prevent misconfiguration. By default they are 32
2751 bit.
2752 @item cookie64
2753 Set cookie size to 64 bit instead of the default 32
2754 @item counter=off
2755 Force a 'cut-down' L2TPv3 with no counter as in
2756 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2757 @item pincounter=on
2758 Work around broken counter handling in peer. This may also help on
2759 networks which have packet reorder.
2760 @item offset=@var{offset}
2761 Add an extra offset between header and data
2762 @end table
2763
2764 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2765 on the remote Linux host 1.2.3.4:
2766 @example
2767 # Setup tunnel on linux host using raw ip as encapsulation
2768 # on 1.2.3.4
2769 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2770 encap udp udp_sport 16384 udp_dport 16384
2771 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2772 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2773 ifconfig vmtunnel0 mtu 1500
2774 ifconfig vmtunnel0 up
2775 brctl addif br-lan vmtunnel0
2776
2777
2778 # on 4.3.2.1
2779 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2780
2781 @value{qemu_system} linux.img -device e1000,netdev=n1 \
2782 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2783
2784 @end example
2785
2786 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2787 Configure VDE backend to connect to PORT @var{n} of a vde switch running on host and
2788 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2789 and MODE @var{octalmode} to change default ownership and permissions for
2790 communication port. This option is only available if QEMU has been compiled
2791 with vde support enabled.
2792
2793 Example:
2794 @example
2795 # launch vde switch
2796 vde_switch -F -sock /tmp/myswitch
2797 # launch QEMU instance
2798 @value{qemu_system} linux.img -nic vde,sock=/tmp/myswitch
2799 @end example
2800
2801 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2802
2803 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2804 be a unix domain socket backed one. The vhost-user uses a specifically defined
2805 protocol to pass vhost ioctl replacement messages to an application on the other
2806 end of the socket. On non-MSIX guests, the feature can be forced with
2807 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2808 be created for multiqueue vhost-user.
2809
2810 Example:
2811 @example
2812 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2813 -numa node,memdev=mem \
2814 -chardev socket,id=chr0,path=/path/to/socket \
2815 -netdev type=vhost-user,id=net0,chardev=chr0 \
2816 -device virtio-net-pci,netdev=net0
2817 @end example
2818
2819 @item -netdev hubport,id=@var{id},hubid=@var{hubid}[,netdev=@var{nd}]
2820
2821 Create a hub port on the emulated hub with ID @var{hubid}.
2822
2823 The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a
2824 single netdev. Alternatively, you can also connect the hubport to another
2825 netdev with ID @var{nd} by using the @option{netdev=@var{nd}} option.
2826
2827 @item -net nic[,netdev=@var{nd}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
2828 @findex -net
2829 Legacy option to configure or create an on-board (or machine default) Network
2830 Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e.
2831 the default hub), or to the netdev @var{nd}.
2832 The NIC is an e1000 by default on the PC target. Optionally, the MAC address
2833 can be changed to @var{mac}, the device address set to @var{addr} (PCI cards
2834 only), and a @var{name} can be assigned for use in monitor commands.
2835 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
2836 that the card should have; this option currently only affects virtio cards; set
2837 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
2838 NIC is created. QEMU can emulate several different models of network card.
2839 Use @code{-net nic,model=help} for a list of available devices for your target.
2840
2841 @item -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=@var{name}]
2842 Configure a host network backend (with the options corresponding to the same
2843 @option{-netdev} option) and connect it to the emulated hub 0 (the default
2844 hub). Use @var{name} to specify the name of the hub port.
2845 ETEXI
2846
2847 STEXI
2848 @end table
2849 ETEXI
2850 DEFHEADING()
2851
2852 DEFHEADING(Character device options:)
2853
2854 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2855 "-chardev help\n"
2856 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2857 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2858 " [,server][,nowait][,telnet][,websocket][,reconnect=seconds][,mux=on|off]\n"
2859 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID][,tls-authz=ID] (tcp)\n"
2860 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,websocket][,reconnect=seconds]\n"
2861 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2862 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2863 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2864 " [,logfile=PATH][,logappend=on|off]\n"
2865 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2866 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2867 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2868 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2869 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2870 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2871 #ifdef _WIN32
2872 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2873 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2874 #else
2875 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2876 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2877 #endif
2878 #ifdef CONFIG_BRLAPI
2879 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2880 #endif
2881 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2882 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2883 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2884 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2885 #endif
2886 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2887 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2888 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2889 #endif
2890 #if defined(CONFIG_SPICE)
2891 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2892 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2893 #endif
2894 , QEMU_ARCH_ALL
2895 )
2896
2897 STEXI
2898
2899 The general form of a character device option is:
2900 @table @option
2901 @item -chardev @var{backend},id=@var{id}[,mux=on|off][,@var{options}]
2902 @findex -chardev
2903 Backend is one of:
2904 @option{null},
2905 @option{socket},
2906 @option{udp},
2907 @option{msmouse},
2908 @option{vc},
2909 @option{ringbuf},
2910 @option{file},
2911 @option{pipe},
2912 @option{console},
2913 @option{serial},
2914 @option{pty},
2915 @option{stdio},
2916 @option{braille},
2917 @option{tty},
2918 @option{parallel},
2919 @option{parport},
2920 @option{spicevmc},
2921 @option{spiceport}.
2922 The specific backend will determine the applicable options.
2923
2924 Use @code{-chardev help} to print all available chardev backend types.
2925
2926 All devices must have an id, which can be any string up to 127 characters long.
2927 It is used to uniquely identify this device in other command line directives.
2928
2929 A character device may be used in multiplexing mode by multiple front-ends.
2930 Specify @option{mux=on} to enable this mode.
2931 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2932 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2933 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2934 create a multiplexer with your specified ID, and you can then configure multiple
2935 front ends to use that chardev ID for their input/output. Up to four different
2936 front ends can be connected to a single multiplexed chardev. (Without
2937 multiplexing enabled, a chardev can only be used by a single front end.)
2938 For instance you could use this to allow a single stdio chardev to be used by
2939 two serial ports and the QEMU monitor:
2940
2941 @example
2942 -chardev stdio,mux=on,id=char0 \
2943 -mon chardev=char0,mode=readline \
2944 -serial chardev:char0 \
2945 -serial chardev:char0
2946 @end example
2947
2948 You can have more than one multiplexer in a system configuration; for instance
2949 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2950 multiplexed between the QEMU monitor and a parallel port:
2951
2952 @example
2953 -chardev stdio,mux=on,id=char0 \
2954 -mon chardev=char0,mode=readline \
2955 -parallel chardev:char0 \
2956 -chardev tcp,...,mux=on,id=char1 \
2957 -serial chardev:char1 \
2958 -serial chardev:char1
2959 @end example
2960
2961 When you're using a multiplexed character device, some escape sequences are
2962 interpreted in the input. @xref{mux_keys, Keys in the character backend
2963 multiplexer}.
2964
2965 Note that some other command line options may implicitly create multiplexed
2966 character backends; for instance @option{-serial mon:stdio} creates a
2967 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2968 and @option{-nographic} also multiplexes the console and the monitor to
2969 stdio.
2970
2971 There is currently no support for multiplexing in the other direction
2972 (where a single QEMU front end takes input and output from multiple chardevs).
2973
2974 Every backend supports the @option{logfile} option, which supplies the path
2975 to a file to record all data transmitted via the backend. The @option{logappend}
2976 option controls whether the log file will be truncated or appended to when
2977 opened.
2978
2979 @end table
2980
2981 The available backends are:
2982
2983 @table @option
2984 @item -chardev null,id=@var{id}
2985 A void device. This device will not emit any data, and will drop any data it
2986 receives. The null backend does not take any options.
2987
2988 @item -chardev socket,id=@var{id}[,@var{TCP options} or @var{unix options}][,server][,nowait][,telnet][,websocket][,reconnect=@var{seconds}][,tls-creds=@var{id}][,tls-authz=@var{id}]
2989
2990 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2991 unix socket will be created if @option{path} is specified. Behaviour is
2992 undefined if TCP options are specified for a unix socket.
2993
2994 @option{server} specifies that the socket shall be a listening socket.
2995
2996 @option{nowait} specifies that QEMU should not block waiting for a client to
2997 connect to a listening socket.
2998
2999 @option{telnet} specifies that traffic on the socket should interpret telnet
3000 escape sequences.
3001
3002 @option{websocket} specifies that the socket uses WebSocket protocol for
3003 communication.
3004
3005 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
3006 the remote end goes away. qemu will delay this many seconds and then attempt
3007 to reconnect. Zero disables reconnecting, and is the default.
3008
3009 @option{tls-creds} requests enablement of the TLS protocol for encryption,
3010 and specifies the id of the TLS credentials to use for the handshake. The
3011 credentials must be previously created with the @option{-object tls-creds}
3012 argument.
3013
3014 @option{tls-auth} provides the ID of the QAuthZ authorization object against
3015 which the client's x509 distinguished name will be validated. This object is
3016 only resolved at time of use, so can be deleted and recreated on the fly
3017 while the chardev server is active. If missing, it will default to denying
3018 access.
3019
3020 TCP and unix socket options are given below:
3021
3022 @table @option
3023
3024 @item TCP options: port=@var{port}[,host=@var{host}][,to=@var{to}][,ipv4][,ipv6][,nodelay]
3025
3026 @option{host} for a listening socket specifies the local address to be bound.
3027 For a connecting socket species the remote host to connect to. @option{host} is
3028 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
3029
3030 @option{port} for a listening socket specifies the local port to be bound. For a
3031 connecting socket specifies the port on the remote host to connect to.
3032 @option{port} can be given as either a port number or a service name.
3033 @option{port} is required.
3034
3035 @option{to} is only relevant to listening sockets. If it is specified, and
3036 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
3037 to and including @option{to} until it succeeds. @option{to} must be specified
3038 as a port number.
3039
3040 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
3041 If neither is specified the socket may use either protocol.
3042
3043 @option{nodelay} disables the Nagle algorithm.
3044
3045 @item unix options: path=@var{path}
3046
3047 @option{path} specifies the local path of the unix socket. @option{path} is
3048 required.
3049
3050 @end table
3051
3052 @item -chardev udp,id=@var{id}[,host=@var{host}],port=@var{port}[,localaddr=@var{localaddr}][,localport=@var{localport}][,ipv4][,ipv6]
3053
3054 Sends all traffic from the guest to a remote host over UDP.
3055
3056 @option{host} specifies the remote host to connect to. If not specified it
3057 defaults to @code{localhost}.
3058
3059 @option{port} specifies the port on the remote host to connect to. @option{port}
3060 is required.
3061
3062 @option{localaddr} specifies the local address to bind to. If not specified it
3063 defaults to @code{0.0.0.0}.
3064
3065 @option{localport} specifies the local port to bind to. If not specified any
3066 available local port will be used.
3067
3068 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
3069 If neither is specified the device may use either protocol.
3070
3071 @item -chardev msmouse,id=@var{id}
3072
3073 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
3074 take any options.
3075
3076 @item -chardev vc,id=@var{id}[[,width=@var{width}][,height=@var{height}]][[,cols=@var{cols}][,rows=@var{rows}]]
3077
3078 Connect to a QEMU text console. @option{vc} may optionally be given a specific
3079 size.
3080
3081 @option{width} and @option{height} specify the width and height respectively of
3082 the console, in pixels.
3083
3084 @option{cols} and @option{rows} specify that the console be sized to fit a text
3085 console with the given dimensions.
3086
3087 @item -chardev ringbuf,id=@var{id}[,size=@var{size}]
3088
3089 Create a ring buffer with fixed size @option{size}.
3090 @var{size} must be a power of two and defaults to @code{64K}.
3091
3092 @item -chardev file,id=@var{id},path=@var{path}
3093
3094 Log all traffic received from the guest to a file.
3095
3096 @option{path} specifies the path of the file to be opened. This file will be
3097 created if it does not already exist, and overwritten if it does. @option{path}
3098 is required.
3099
3100 @item -chardev pipe,id=@var{id},path=@var{path}
3101
3102 Create a two-way connection to the guest. The behaviour differs slightly between
3103 Windows hosts and other hosts:
3104
3105 On Windows, a single duplex pipe will be created at
3106 @file{\\.pipe\@option{path}}.
3107
3108 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
3109 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
3110 received by the guest. Data written by the guest can be read from
3111 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
3112 be present.
3113
3114 @option{path} forms part of the pipe path as described above. @option{path} is
3115 required.
3116
3117 @item -chardev console,id=@var{id}
3118
3119 Send traffic from the guest to QEMU's standard output. @option{console} does not
3120 take any options.
3121
3122 @option{console} is only available on Windows hosts.
3123
3124 @item -chardev serial,id=@var{id},path=@option{path}
3125
3126 Send traffic from the guest to a serial device on the host.
3127
3128 On Unix hosts serial will actually accept any tty device,
3129 not only serial lines.
3130
3131 @option{path} specifies the name of the serial device to open.
3132
3133 @item -chardev pty,id=@var{id}
3134
3135 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
3136 not take any options.
3137
3138 @option{pty} is not available on Windows hosts.
3139
3140 @item -chardev stdio,id=@var{id}[,signal=on|off]
3141 Connect to standard input and standard output of the QEMU process.
3142
3143 @option{signal} controls if signals are enabled on the terminal, that includes
3144 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
3145 default, use @option{signal=off} to disable it.
3146
3147 @item -chardev braille,id=@var{id}
3148
3149 Connect to a local BrlAPI server. @option{braille} does not take any options.
3150
3151 @item -chardev tty,id=@var{id},path=@var{path}
3152
3153 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
3154 DragonFlyBSD hosts. It is an alias for @option{serial}.
3155
3156 @option{path} specifies the path to the tty. @option{path} is required.
3157
3158 @item -chardev parallel,id=@var{id},path=@var{path}
3159 @itemx -chardev parport,id=@var{id},path=@var{path}
3160
3161 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
3162
3163 Connect to a local parallel port.
3164
3165 @option{path} specifies the path to the parallel port device. @option{path} is
3166 required.
3167
3168 @item -chardev spicevmc,id=@var{id},debug=@var{debug},name=@var{name}
3169
3170 @option{spicevmc} is only available when spice support is built in.
3171
3172 @option{debug} debug level for spicevmc
3173
3174 @option{name} name of spice channel to connect to
3175
3176 Connect to a spice virtual machine channel, such as vdiport.
3177
3178 @item -chardev spiceport,id=@var{id},debug=@var{debug},name=@var{name}
3179
3180 @option{spiceport} is only available when spice support is built in.
3181
3182 @option{debug} debug level for spicevmc
3183
3184 @option{name} name of spice port to connect to
3185
3186 Connect to a spice port, allowing a Spice client to handle the traffic
3187 identified by a name (preferably a fqdn).
3188 ETEXI
3189
3190 STEXI
3191 @end table
3192 ETEXI
3193 DEFHEADING()
3194
3195 #ifdef CONFIG_TPM
3196 DEFHEADING(TPM device options:)
3197
3198 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
3199 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
3200 " use path to provide path to a character device; default is /dev/tpm0\n"
3201 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
3202 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
3203 "-tpmdev emulator,id=id,chardev=dev\n"
3204 " configure the TPM device using chardev backend\n",
3205 QEMU_ARCH_ALL)
3206 STEXI
3207
3208 The general form of a TPM device option is:
3209 @table @option
3210
3211 @item -tpmdev @var{backend},id=@var{id}[,@var{options}]
3212 @findex -tpmdev
3213
3214 The specific backend type will determine the applicable options.
3215 The @code{-tpmdev} option creates the TPM backend and requires a
3216 @code{-device} option that specifies the TPM frontend interface model.
3217
3218 Use @code{-tpmdev help} to print all available TPM backend types.
3219
3220 @end table
3221
3222 The available backends are:
3223
3224 @table @option
3225
3226 @item -tpmdev passthrough,id=@var{id},path=@var{path},cancel-path=@var{cancel-path}
3227
3228 (Linux-host only) Enable access to the host's TPM using the passthrough
3229 driver.
3230
3231 @option{path} specifies the path to the host's TPM device, i.e., on
3232 a Linux host this would be @code{/dev/tpm0}.
3233 @option{path} is optional and by default @code{/dev/tpm0} is used.
3234
3235 @option{cancel-path} specifies the path to the host TPM device's sysfs
3236 entry allowing for cancellation of an ongoing TPM command.
3237 @option{cancel-path} is optional and by default QEMU will search for the
3238 sysfs entry to use.
3239
3240 Some notes about using the host's TPM with the passthrough driver:
3241
3242 The TPM device accessed by the passthrough driver must not be
3243 used by any other application on the host.
3244
3245 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
3246 the VM's firmware (BIOS/UEFI) will not be able to initialize the
3247 TPM again and may therefore not show a TPM-specific menu that would
3248 otherwise allow the user to configure the TPM, e.g., allow the user to
3249 enable/disable or activate/deactivate the TPM.
3250 Further, if TPM ownership is released from within a VM then the host's TPM
3251 will get disabled and deactivated. To enable and activate the
3252 TPM again afterwards, the host has to be rebooted and the user is
3253 required to enter the firmware's menu to enable and activate the TPM.
3254 If the TPM is left disabled and/or deactivated most TPM commands will fail.
3255
3256 To create a passthrough TPM use the following two options:
3257 @example
3258 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
3259 @end example
3260 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
3261 @code{tpmdev=tpm0} in the device option.
3262
3263 @item -tpmdev emulator,id=@var{id},chardev=@var{dev}
3264
3265 (Linux-host only) Enable access to a TPM emulator using Unix domain socket based
3266 chardev backend.
3267
3268 @option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server.
3269
3270 To create a TPM emulator backend device with chardev socket backend:
3271 @example
3272
3273 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
3274
3275 @end example
3276
3277 ETEXI
3278
3279 STEXI
3280 @end table
3281 ETEXI
3282 DEFHEADING()
3283
3284 #endif
3285
3286 DEFHEADING(Linux/Multiboot boot specific:)
3287 STEXI
3288
3289 When using these options, you can use a given Linux or Multiboot
3290 kernel without installing it in the disk image. It can be useful
3291 for easier testing of various kernels.
3292
3293 @table @option
3294 ETEXI
3295
3296 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
3297 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
3298 STEXI
3299 @item -kernel @var{bzImage}
3300 @findex -kernel
3301 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
3302 or in multiboot format.
3303 ETEXI
3304
3305 DEF("append", HAS_ARG, QEMU_OPTION_append, \
3306 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
3307 STEXI
3308 @item -append @var{cmdline}
3309 @findex -append
3310 Use @var{cmdline} as kernel command line
3311 ETEXI
3312
3313 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
3314 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
3315 STEXI
3316 @item -initrd @var{file}
3317 @findex -initrd
3318 Use @var{file} as initial ram disk.
3319
3320 @item -initrd "@var{file1} arg=foo,@var{file2}"
3321
3322 This syntax is only available with multiboot.
3323
3324 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
3325 first module.
3326 ETEXI
3327
3328 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
3329 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
3330 STEXI
3331 @item -dtb @var{file}
3332 @findex -dtb
3333 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
3334 on boot.
3335 ETEXI
3336
3337 STEXI
3338 @end table
3339 ETEXI
3340 DEFHEADING()
3341
3342 DEFHEADING(Debug/Expert options:)
3343 STEXI
3344 @table @option
3345 ETEXI
3346
3347 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
3348 "-fw_cfg [name=]<name>,file=<file>\n"
3349 " add named fw_cfg entry with contents from file\n"
3350 "-fw_cfg [name=]<name>,string=<str>\n"
3351 " add named fw_cfg entry with contents from string\n",
3352 QEMU_ARCH_ALL)
3353 STEXI
3354
3355 @item -fw_cfg [name=]@var{name},file=@var{file}
3356 @findex -fw_cfg
3357 Add named fw_cfg entry with contents from file @var{file}.
3358
3359 @item -fw_cfg [name=]@var{name},string=@var{str}
3360 Add named fw_cfg entry with contents from string @var{str}.
3361
3362 The terminating NUL character of the contents of @var{str} will not be
3363 included as part of the fw_cfg item data. To insert contents with
3364 embedded NUL characters, you have to use the @var{file} parameter.
3365
3366 The fw_cfg entries are passed by QEMU through to the guest.
3367
3368 Example:
3369 @example
3370 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3371 @end example
3372 creates an fw_cfg entry named opt/com.mycompany/blob with contents
3373 from ./my_blob.bin.
3374
3375 ETEXI
3376
3377 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3378 "-serial dev redirect the serial port to char device 'dev'\n",
3379 QEMU_ARCH_ALL)
3380 STEXI
3381 @item -serial @var{dev}
3382 @findex -serial
3383 Redirect the virtual serial port to host character device
3384 @var{dev}. The default device is @code{vc} in graphical mode and
3385 @code{stdio} in non graphical mode.
3386
3387 This option can be used several times to simulate up to 4 serial
3388 ports.
3389
3390 Use @code{-serial none} to disable all serial ports.
3391
3392 Available character devices are:
3393 @table @option
3394 @item vc[:@var{W}x@var{H}]
3395 Virtual console. Optionally, a width and height can be given in pixel with
3396 @example
3397 vc:800x600
3398 @end example
3399 It is also possible to specify width or height in characters:
3400 @example
3401 vc:80Cx24C
3402 @end example
3403 @item pty
3404 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3405 @item none
3406 No device is allocated.
3407 @item null
3408 void device
3409 @item chardev:@var{id}
3410 Use a named character device defined with the @code{-chardev} option.
3411 @item /dev/XXX
3412 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3413 parameters are set according to the emulated ones.
3414 @item /dev/parport@var{N}
3415 [Linux only, parallel port only] Use host parallel port
3416 @var{N}. Currently SPP and EPP parallel port features can be used.
3417 @item file:@var{filename}
3418 Write output to @var{filename}. No character can be read.
3419 @item stdio
3420 [Unix only] standard input/output
3421 @item pipe:@var{filename}
3422 name pipe @var{filename}
3423 @item COM@var{n}
3424 [Windows only] Use host serial port @var{n}
3425 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3426 This implements UDP Net Console.
3427 When @var{remote_host} or @var{src_ip} are not specified
3428 they default to @code{0.0.0.0}.
3429 When not using a specified @var{src_port} a random port is automatically chosen.
3430
3431 If you just want a simple readonly console you can use @code{netcat} or
3432 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3433 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3434 will appear in the netconsole session.
3435
3436 If you plan to send characters back via netconsole or you want to stop
3437 and start QEMU a lot of times, you should have QEMU use the same
3438 source port each time by using something like @code{-serial
3439 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3440 version of netcat which can listen to a TCP port and send and receive
3441 characters via udp. If you have a patched version of netcat which
3442 activates telnet remote echo and single char transfer, then you can
3443 use the following options to set up a netcat redirector to allow
3444 telnet on port 5555 to access the QEMU port.
3445 @table @code
3446 @item QEMU Options:
3447 -serial udp::4555@@:4556
3448 @item netcat options:
3449 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3450 @item telnet options:
3451 localhost 5555
3452 @end table
3453
3454 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3455 The TCP Net Console has two modes of operation. It can send the serial
3456 I/O to a location or wait for a connection from a location. By default
3457 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3458 the @var{server} option QEMU will wait for a client socket application
3459 to connect to the port before continuing, unless the @code{nowait}
3460 option was specified. The @code{nodelay} option disables the Nagle buffering
3461 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3462 set, if the connection goes down it will attempt to reconnect at the
3463 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3464 one TCP connection at a time is accepted. You can use @code{telnet} to
3465 connect to the corresponding character device.
3466 @table @code
3467 @item Example to send tcp console to 192.168.0.2 port 4444
3468 -serial tcp:192.168.0.2:4444
3469 @item Example to listen and wait on port 4444 for connection
3470 -serial tcp::4444,server
3471 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3472 -serial tcp:192.168.0.100:4444,server,nowait
3473 @end table
3474
3475 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3476 The telnet protocol is used instead of raw tcp sockets. The options
3477 work the same as if you had specified @code{-serial tcp}. The
3478 difference is that the port acts like a telnet server or client using
3479 telnet option negotiation. This will also allow you to send the
3480 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3481 sequence. Typically in unix telnet you do it with Control-] and then
3482 type "send break" followed by pressing the enter key.
3483
3484 @item websocket:@var{host}:@var{port},server[,nowait][,nodelay]
3485 The WebSocket protocol is used instead of raw tcp socket. The port acts as
3486 a WebSocket server. Client mode is not supported.
3487
3488 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3489 A unix domain socket is used instead of a tcp socket. The option works the
3490 same as if you had specified @code{-serial tcp} except the unix domain socket
3491 @var{path} is used for connections.
3492
3493 @item mon:@var{dev_string}
3494 This is a special option to allow the monitor to be multiplexed onto
3495 another serial port. The monitor is accessed with key sequence of
3496 @key{Control-a} and then pressing @key{c}.
3497 @var{dev_string} should be any one of the serial devices specified
3498 above. An example to multiplex the monitor onto a telnet server
3499 listening on port 4444 would be:
3500 @table @code
3501 @item -serial mon:telnet::4444,server,nowait
3502 @end table
3503 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3504 QEMU any more but will be passed to the guest instead.
3505
3506 @item braille
3507 Braille device. This will use BrlAPI to display the braille output on a real
3508 or fake device.
3509
3510 @item msmouse
3511 Three button serial mouse. Configure the guest to use Microsoft protocol.
3512 @end table
3513 ETEXI
3514
3515 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3516 "-parallel dev redirect the parallel port to char device 'dev'\n",
3517 QEMU_ARCH_ALL)
3518 STEXI
3519 @item -parallel @var{dev}
3520 @findex -parallel
3521 Redirect the virtual parallel port to host device @var{dev} (same
3522 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3523 be used to use hardware devices connected on the corresponding host
3524 parallel port.
3525
3526 This option can be used several times to simulate up to 3 parallel
3527 ports.
3528
3529 Use @code{-parallel none} to disable all parallel ports.
3530 ETEXI
3531
3532 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3533 "-monitor dev redirect the monitor to char device 'dev'\n",
3534 QEMU_ARCH_ALL)
3535 STEXI
3536 @item -monitor @var{dev}
3537 @findex -monitor
3538 Redirect the monitor to host device @var{dev} (same devices as the
3539 serial port).
3540 The default device is @code{vc} in graphical mode and @code{stdio} in
3541 non graphical mode.
3542 Use @code{-monitor none} to disable the default monitor.
3543 ETEXI
3544 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3545 "-qmp dev like -monitor but opens in 'control' mode\n",
3546 QEMU_ARCH_ALL)
3547 STEXI
3548 @item -qmp @var{dev}
3549 @findex -qmp
3550 Like -monitor but opens in 'control' mode.
3551 ETEXI
3552 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3553 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3554 QEMU_ARCH_ALL)
3555 STEXI
3556 @item -qmp-pretty @var{dev}
3557 @findex -qmp-pretty
3558 Like -qmp but uses pretty JSON formatting.
3559 ETEXI
3560
3561 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3562 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3563 STEXI
3564 @item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
3565 @findex -mon
3566 Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing
3567 easing human reading and debugging.
3568 ETEXI
3569
3570 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3571 "-debugcon dev redirect the debug console to char device 'dev'\n",
3572 QEMU_ARCH_ALL)
3573 STEXI
3574 @item -debugcon @var{dev}
3575 @findex -debugcon
3576 Redirect the debug console to host device @var{dev} (same devices as the
3577 serial port). The debug console is an I/O port which is typically port
3578 0xe9; writing to that I/O port sends output to this device.
3579 The default device is @code{vc} in graphical mode and @code{stdio} in
3580 non graphical mode.
3581 ETEXI
3582
3583 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3584 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3585 STEXI
3586 @item -pidfile @var{file}
3587 @findex -pidfile
3588 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3589 from a script.
3590 ETEXI
3591
3592 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3593 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3594 STEXI
3595 @item -singlestep
3596 @findex -singlestep
3597 Run the emulation in single step mode.
3598 ETEXI
3599
3600 DEF("preconfig", 0, QEMU_OPTION_preconfig, \
3601 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3602 QEMU_ARCH_ALL)
3603 STEXI
3604 @item --preconfig
3605 @findex --preconfig
3606 Pause QEMU for interactive configuration before the machine is created,
3607 which allows querying and configuring properties that will affect
3608 machine initialization. Use QMP command 'x-exit-preconfig' to exit
3609 the preconfig state and move to the next state (i.e. run guest if -S
3610 isn't used or pause the second time if -S is used). This option is
3611 experimental.
3612 ETEXI
3613
3614 DEF("S", 0, QEMU_OPTION_S, \
3615 "-S freeze CPU at startup (use 'c' to start execution)\n",
3616 QEMU_ARCH_ALL)
3617 STEXI
3618 @item -S
3619 @findex -S
3620 Do not start CPU at startup (you must type 'c' in the monitor).
3621 ETEXI
3622
3623 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3624 "-realtime [mlock=on|off]\n"
3625 " run qemu with realtime features\n"
3626 " mlock=on|off controls mlock support (default: on)\n",
3627 QEMU_ARCH_ALL)
3628 STEXI
3629 @item -realtime mlock=on|off
3630 @findex -realtime
3631 Run qemu with realtime features.
3632 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3633 (enabled by default).
3634 ETEXI
3635
3636 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3637 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3638 " run qemu with overcommit hints\n"
3639 " mem-lock=on|off controls memory lock support (default: off)\n"
3640 " cpu-pm=on|off controls cpu power management (default: off)\n",
3641 QEMU_ARCH_ALL)
3642 STEXI
3643 @item -overcommit mem-lock=on|off
3644 @item -overcommit cpu-pm=on|off
3645 @findex -overcommit
3646 Run qemu with hints about host resource overcommit. The default is
3647 to assume that host overcommits all resources.
3648
3649 Locking qemu and guest memory can be enabled via @option{mem-lock=on} (disabled
3650 by default). This works when host memory is not overcommitted and reduces the
3651 worst-case latency for guest. This is equivalent to @option{realtime}.
3652
3653 Guest ability to manage power state of host cpus (increasing latency for other
3654 processes on the same host cpu, but decreasing latency for guest) can be
3655 enabled via @option{cpu-pm=on} (disabled by default). This works best when
3656 host CPU is not overcommitted. When used, host estimates of CPU cycle and power
3657 utilization will be incorrect, not taking into account guest idle time.
3658 ETEXI
3659
3660 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3661 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3662 STEXI
3663 @item -gdb @var{dev}
3664 @findex -gdb
3665 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3666 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3667 stdio are reasonable use case. The latter is allowing to start QEMU from
3668 within gdb and establish the connection via a pipe:
3669 @example
3670 (gdb) target remote | exec @value{qemu_system} -gdb stdio ...
3671 @end example
3672 ETEXI
3673
3674 DEF("s", 0, QEMU_OPTION_s, \
3675 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3676 QEMU_ARCH_ALL)
3677 STEXI
3678 @item -s
3679 @findex -s
3680 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3681 (@pxref{gdb_usage}).
3682 ETEXI
3683
3684 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3685 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3686 QEMU_ARCH_ALL)
3687 STEXI
3688 @item -d @var{item1}[,...]
3689 @findex -d
3690 Enable logging of specified items. Use '-d help' for a list of log items.
3691 ETEXI
3692
3693 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3694 "-D logfile output log to logfile (default stderr)\n",
3695 QEMU_ARCH_ALL)
3696 STEXI
3697 @item -D @var{logfile}
3698 @findex -D
3699 Output log in @var{logfile} instead of to stderr
3700 ETEXI
3701
3702 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3703 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3704 QEMU_ARCH_ALL)
3705 STEXI
3706 @item -dfilter @var{range1}[,...]
3707 @findex -dfilter
3708 Filter debug output to that relevant to a range of target addresses. The filter
3709 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3710 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3711 addresses and sizes required. For example:
3712 @example
3713 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3714 @end example
3715 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3716 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3717 block starting at 0xffffffc00005f000.
3718 ETEXI
3719
3720 DEF("seed", HAS_ARG, QEMU_OPTION_seed, \
3721 "-seed number seed the pseudo-random number generator\n",
3722 QEMU_ARCH_ALL)
3723 STEXI
3724 @item -seed @var{number}
3725 @findex -seed
3726 Force the guest to use a deterministic pseudo-random number generator, seeded
3727 with @var{number}. This does not affect crypto routines within the host.
3728 ETEXI
3729
3730 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3731 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3732 QEMU_ARCH_ALL)
3733 STEXI
3734 @item -L @var{path}
3735 @findex -L
3736 Set the directory for the BIOS, VGA BIOS and keymaps.
3737
3738 To list all the data directories, use @code{-L help}.
3739 ETEXI
3740
3741 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3742 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3743 STEXI
3744 @item -bios @var{file}
3745 @findex -bios
3746 Set the filename for the BIOS.
3747 ETEXI
3748
3749 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3750 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3751 STEXI
3752 @item -enable-kvm
3753 @findex -enable-kvm
3754 Enable KVM full virtualization support. This option is only available
3755 if KVM support is enabled when compiling.
3756 ETEXI
3757
3758 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3759 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3760 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3761 "-xen-attach attach to existing xen domain\n"
3762 " libxl will use this when starting QEMU\n",
3763 QEMU_ARCH_ALL)
3764 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3765 "-xen-domid-restrict restrict set of available xen operations\n"
3766 " to specified domain id. (Does not affect\n"
3767 " xenpv machine type).\n",
3768 QEMU_ARCH_ALL)
3769 STEXI
3770 @item -xen-domid @var{id}
3771 @findex -xen-domid
3772 Specify xen guest domain @var{id} (XEN only).
3773 @item -xen-attach
3774 @findex -xen-attach
3775 Attach to existing xen domain.
3776 libxl will use this when starting QEMU (XEN only).
3777 @findex -xen-domid-restrict
3778 Restrict set of available xen operations to specified domain id (XEN only).
3779 ETEXI
3780
3781 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3782 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3783 STEXI
3784 @item -no-reboot
3785 @findex -no-reboot
3786 Exit instead of rebooting.
3787 ETEXI
3788
3789 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3790 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3791 STEXI
3792 @item -no-shutdown
3793 @findex -no-shutdown
3794 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3795 This allows for instance switching to monitor to commit changes to the
3796 disk image.
3797 ETEXI
3798
3799 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3800 "-loadvm [tag|id]\n" \
3801 " start right away with a saved state (loadvm in monitor)\n",
3802 QEMU_ARCH_ALL)
3803 STEXI
3804 @item -loadvm @var{file}
3805 @findex -loadvm
3806 Start right away with a saved state (@code{loadvm} in monitor)
3807 ETEXI
3808
3809 #ifndef _WIN32
3810 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3811 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3812 #endif
3813 STEXI
3814 @item -daemonize
3815 @findex -daemonize
3816 Daemonize the QEMU process after initialization. QEMU will not detach from
3817 standard IO until it is ready to receive connections on any of its devices.
3818 This option is a useful way for external programs to launch QEMU without having
3819 to cope with initialization race conditions.
3820 ETEXI
3821
3822 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3823 "-option-rom rom load a file, rom, into the option ROM space\n",
3824 QEMU_ARCH_ALL)
3825 STEXI
3826 @item -option-rom @var{file}
3827 @findex -option-rom
3828 Load the contents of @var{file} as an option ROM.
3829 This option is useful to load things like EtherBoot.
3830 ETEXI
3831
3832 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3833 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3834 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3835 QEMU_ARCH_ALL)
3836
3837 STEXI
3838
3839 @item -rtc [base=utc|localtime|@var{datetime}][,clock=host|rt|vm][,driftfix=none|slew]
3840 @findex -rtc
3841 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3842 UTC or local time, respectively. @code{localtime} is required for correct date in
3843 MS-DOS or Windows. To start at a specific point in time, provide @var{datetime} in the
3844 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3845
3846 By default the RTC is driven by the host system time. This allows using of the
3847 RTC as accurate reference clock inside the guest, specifically if the host
3848 time is smoothly following an accurate external reference clock, e.g. via NTP.
3849 If you want to isolate the guest time from the host, you can set @option{clock}
3850 to @code{rt} instead, which provides a host monotonic clock if host support it.
3851 To even prevent the RTC from progressing during suspension, you can set @option{clock}
3852 to @code{vm} (virtual clock). @samp{clock=vm} is recommended especially in
3853 icount mode in order to preserve determinism; however, note that in icount mode
3854 the speed of the virtual clock is variable and can in general differ from the
3855 host clock.
3856
3857 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3858 specifically with Windows' ACPI HAL. This option will try to figure out how
3859 many timer interrupts were not processed by the Windows guest and will
3860 re-inject them.
3861 ETEXI
3862
3863 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3864 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3865 " enable virtual instruction counter with 2^N clock ticks per\n" \
3866 " instruction, enable aligning the host and virtual clocks\n" \
3867 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3868 STEXI
3869 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3870 @findex -icount
3871 Enable virtual instruction counter. The virtual cpu will execute one
3872 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3873 then the virtual cpu speed will be automatically adjusted to keep virtual
3874 time within a few seconds of real time.
3875
3876 When the virtual cpu is sleeping, the virtual time will advance at default
3877 speed unless @option{sleep=on|off} is specified.
3878 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3879 instantly whenever the virtual cpu goes to sleep mode and will not advance
3880 if no timer is enabled. This behavior give deterministic execution times from
3881 the guest point of view.
3882
3883 Note that while this option can give deterministic behavior, it does not
3884 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3885 order cores with complex cache hierarchies. The number of instructions
3886 executed often has little or no correlation with actual performance.
3887
3888 @option{align=on} will activate the delay algorithm which will try
3889 to synchronise the host clock and the virtual clock. The goal is to
3890 have a guest running at the real frequency imposed by the shift option.
3891 Whenever the guest clock is behind the host clock and if
3892 @option{align=on} is specified then we print a message to the user
3893 to inform about the delay.
3894 Currently this option does not work when @option{shift} is @code{auto}.
3895 Note: The sync algorithm will work for those shift values for which
3896 the guest clock runs ahead of the host clock. Typically this happens
3897 when the shift value is high (how high depends on the host machine).
3898
3899 When @option{rr} option is specified deterministic record/replay is enabled.
3900 Replay log is written into @var{filename} file in record mode and
3901 read from this file in replay mode.
3902
3903 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3904 at the start of execution recording. In replay mode this option is used
3905 to load the initial VM state.
3906 ETEXI
3907
3908 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3909 "-watchdog model\n" \
3910 " enable virtual hardware watchdog [default=none]\n",
3911 QEMU_ARCH_ALL)
3912 STEXI
3913 @item -watchdog @var{model}
3914 @findex -watchdog
3915 Create a virtual hardware watchdog device. Once enabled (by a guest
3916 action), the watchdog must be periodically polled by an agent inside
3917 the guest or else the guest will be restarted. Choose a model for
3918 which your guest has drivers.
3919
3920 The @var{model} is the model of hardware watchdog to emulate. Use
3921 @code{-watchdog help} to list available hardware models. Only one
3922 watchdog can be enabled for a guest.
3923
3924 The following models may be available:
3925 @table @option
3926 @item ib700
3927 iBASE 700 is a very simple ISA watchdog with a single timer.
3928 @item i6300esb
3929 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3930 dual-timer watchdog.
3931 @item diag288
3932 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3933 (currently KVM only).
3934 @end table
3935 ETEXI
3936
3937 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3938 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
3939 " action when watchdog fires [default=reset]\n",
3940 QEMU_ARCH_ALL)
3941 STEXI
3942 @item -watchdog-action @var{action}
3943 @findex -watchdog-action
3944
3945 The @var{action} controls what QEMU will do when the watchdog timer
3946 expires.
3947 The default is
3948 @code{reset} (forcefully reset the guest).
3949 Other possible actions are:
3950 @code{shutdown} (attempt to gracefully shutdown the guest),
3951 @code{poweroff} (forcefully poweroff the guest),
3952 @code{inject-nmi} (inject a NMI into the guest),
3953 @code{pause} (pause the guest),
3954 @code{debug} (print a debug message and continue), or
3955 @code{none} (do nothing).
3956
3957 Note that the @code{shutdown} action requires that the guest responds
3958 to ACPI signals, which it may not be able to do in the sort of
3959 situations where the watchdog would have expired, and thus
3960 @code{-watchdog-action shutdown} is not recommended for production use.
3961
3962 Examples:
3963
3964 @table @code
3965 @item -watchdog i6300esb -watchdog-action pause
3966 @itemx -watchdog ib700
3967 @end table
3968 ETEXI
3969
3970 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3971 "-echr chr set terminal escape character instead of ctrl-a\n",
3972 QEMU_ARCH_ALL)
3973 STEXI
3974
3975 @item -echr @var{numeric_ascii_value}
3976 @findex -echr
3977 Change the escape character used for switching to the monitor when using
3978 monitor and serial sharing. The default is @code{0x01} when using the
3979 @code{-nographic} option. @code{0x01} is equal to pressing
3980 @code{Control-a}. You can select a different character from the ascii
3981 control keys where 1 through 26 map to Control-a through Control-z. For
3982 instance you could use the either of the following to change the escape
3983 character to Control-t.
3984 @table @code
3985 @item -echr 0x14
3986 @itemx -echr 20
3987 @end table
3988 ETEXI
3989
3990 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3991 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3992 STEXI
3993 @item -show-cursor
3994 @findex -show-cursor
3995 Show cursor.
3996 ETEXI
3997
3998 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3999 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
4000 STEXI
4001 @item -tb-size @var{n}
4002 @findex -tb-size
4003 Set TCG translation block cache size. Deprecated, use @samp{-accel tcg,tb-size=@var{n}}
4004 instead.
4005 ETEXI
4006
4007 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
4008 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
4009 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
4010 "-incoming unix:socketpath\n" \
4011 " prepare for incoming migration, listen on\n" \
4012 " specified protocol and socket address\n" \
4013 "-incoming fd:fd\n" \
4014 "-incoming exec:cmdline\n" \
4015 " accept incoming migration on given file descriptor\n" \
4016 " or from given external command\n" \
4017 "-incoming defer\n" \
4018 " wait for the URI to be specified via migrate_incoming\n",
4019 QEMU_ARCH_ALL)
4020 STEXI
4021 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
4022 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
4023 @findex -incoming
4024 Prepare for incoming migration, listen on a given tcp port.
4025
4026 @item -incoming unix:@var{socketpath}
4027 Prepare for incoming migration, listen on a given unix socket.
4028
4029 @item -incoming fd:@var{fd}
4030 Accept incoming migration from a given filedescriptor.
4031
4032 @item -incoming exec:@var{cmdline}
4033 Accept incoming migration as an output from specified external command.
4034
4035 @item -incoming defer
4036 Wait for the URI to be specified via migrate_incoming. The monitor can
4037 be used to change settings (such as migration parameters) prior to issuing
4038 the migrate_incoming to allow the migration to begin.
4039 ETEXI
4040
4041 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
4042 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
4043 STEXI
4044 @item -only-migratable
4045 @findex -only-migratable
4046 Only allow migratable devices. Devices will not be allowed to enter an
4047 unmigratable state.
4048 ETEXI
4049
4050 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
4051 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
4052 STEXI
4053 @item -nodefaults
4054 @findex -nodefaults
4055 Don't create default devices. Normally, QEMU sets the default devices like serial
4056 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
4057 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
4058 default devices.
4059 ETEXI
4060
4061 #ifndef _WIN32
4062 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
4063 "-chroot dir chroot to dir just before starting the VM\n",
4064 QEMU_ARCH_ALL)
4065 #endif
4066 STEXI
4067 @item -chroot @var{dir}
4068 @findex -chroot
4069 Immediately before starting guest execution, chroot to the specified
4070 directory. Especially useful in combination with -runas.
4071 ETEXI
4072
4073 #ifndef _WIN32
4074 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
4075 "-runas user change to user id user just before starting the VM\n" \
4076 " user can be numeric uid:gid instead\n",
4077 QEMU_ARCH_ALL)
4078 #endif
4079 STEXI
4080 @item -runas @var{user}
4081 @findex -runas
4082 Immediately before starting guest execution, drop root privileges, switching
4083 to the specified user.
4084 ETEXI
4085
4086 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
4087 "-prom-env variable=value\n"
4088 " set OpenBIOS nvram variables\n",
4089 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
4090 STEXI
4091 @item -prom-env @var{variable}=@var{value}
4092 @findex -prom-env
4093 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
4094 ETEXI
4095 DEF("semihosting", 0, QEMU_OPTION_semihosting,
4096 "-semihosting semihosting mode\n",
4097 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4098 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4099 STEXI
4100 @item -semihosting
4101 @findex -semihosting
4102 Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).
4103 ETEXI
4104 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
4105 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]\n" \
4106 " semihosting configuration\n",
4107 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4108 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4109 STEXI
4110 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]
4111 @findex -semihosting-config
4112 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II only).
4113 @table @option
4114 @item target=@code{native|gdb|auto}
4115 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
4116 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
4117 during debug sessions and @code{native} otherwise.
4118 @item chardev=@var{str1}
4119 Send the output to a chardev backend output for native or auto output when not in gdb
4120 @item arg=@var{str1},arg=@var{str2},...
4121 Allows the user to pass input arguments, and can be used multiple times to build
4122 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
4123 command line is still supported for backward compatibility. If both the
4124 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
4125 specified, the former is passed to semihosting as it always takes precedence.
4126 @end table
4127 ETEXI
4128 DEF("old-param", 0, QEMU_OPTION_old_param,
4129 "-old-param old param mode\n", QEMU_ARCH_ARM)
4130 STEXI
4131 @item -old-param
4132 @findex -old-param (ARM)
4133 Old param mode (ARM only).
4134 ETEXI
4135
4136 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
4137 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
4138 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
4139 " Enable seccomp mode 2 system call filter (default 'off').\n" \
4140 " use 'obsolete' to allow obsolete system calls that are provided\n" \
4141 " by the kernel, but typically no longer used by modern\n" \
4142 " C library implementations.\n" \
4143 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \
4144 " its privileges by blacklisting all set*uid|gid system calls.\n" \
4145 " The value 'children' will deny set*uid|gid system calls for\n" \
4146 " main QEMU process but will allow forks and execves to run unprivileged\n" \
4147 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
4148 " blacklisting *fork and execve\n" \
4149 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
4150 QEMU_ARCH_ALL)
4151 STEXI
4152 @item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}]
4153 @findex -sandbox
4154 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
4155 disable it. The default is 'off'.
4156 @table @option
4157 @item obsolete=@var{string}
4158 Enable Obsolete system calls
4159 @item elevateprivileges=@var{string}
4160 Disable set*uid|gid system calls
4161 @item spawn=@var{string}
4162 Disable *fork and execve
4163 @item resourcecontrol=@var{string}
4164 Disable process affinity and schedular priority
4165 @end table
4166 ETEXI
4167
4168 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
4169 "-readconfig <file>\n", QEMU_ARCH_ALL)
4170 STEXI
4171 @item -readconfig @var{file}
4172 @findex -readconfig
4173 Read device configuration from @var{file}. This approach is useful when you want to spawn
4174 QEMU process with many command line options but you don't want to exceed the command line
4175 character limit.
4176 ETEXI
4177 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
4178 "-writeconfig <file>\n"
4179 " read/write config file\n", QEMU_ARCH_ALL)
4180 STEXI
4181 @item -writeconfig @var{file}
4182 @findex -writeconfig
4183 Write device configuration to @var{file}. The @var{file} can be either filename to save
4184 command line and device configuration into file or dash @code{-}) character to print the
4185 output to stdout. This can be later used as input file for @code{-readconfig} option.
4186 ETEXI
4187
4188 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
4189 "-no-user-config\n"
4190 " do not load default user-provided config files at startup\n",
4191 QEMU_ARCH_ALL)
4192 STEXI
4193 @item -no-user-config
4194 @findex -no-user-config
4195 The @code{-no-user-config} option makes QEMU not load any of the user-provided
4196 config files on @var{sysconfdir}.
4197 ETEXI
4198
4199 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
4200 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
4201 " specify tracing options\n",
4202 QEMU_ARCH_ALL)
4203 STEXI
4204 HXCOMM This line is not accurate, as some sub-options are backend-specific but
4205 HXCOMM HX does not support conditional compilation of text.
4206 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
4207 @findex -trace
4208 @include qemu-option-trace.texi
4209 ETEXI
4210 DEF("plugin", HAS_ARG, QEMU_OPTION_plugin,
4211 "-plugin [file=]<file>[,arg=<string>]\n"
4212 " load a plugin\n",
4213 QEMU_ARCH_ALL)
4214 STEXI
4215 @item -plugin file=@var{file}[,arg=@var{string}]
4216 @findex -plugin
4217
4218 Load a plugin.
4219
4220 @table @option
4221 @item file=@var{file}
4222 Load the given plugin from a shared library file.
4223 @item arg=@var{string}
4224 Argument string passed to the plugin. (Can be given multiple times.)
4225 @end table
4226 ETEXI
4227
4228 HXCOMM Internal use
4229 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
4230 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
4231
4232 #ifdef __linux__
4233 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
4234 "-enable-fips enable FIPS 140-2 compliance\n",
4235 QEMU_ARCH_ALL)
4236 #endif
4237 STEXI
4238 @item -enable-fips
4239 @findex -enable-fips
4240 Enable FIPS 140-2 compliance mode.
4241 ETEXI
4242
4243 HXCOMM Deprecated by -accel tcg
4244 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
4245
4246 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
4247 "-msg timestamp[=on|off]\n"
4248 " control error message format\n"
4249 " timestamp=on enables timestamps (default: off)\n",
4250 QEMU_ARCH_ALL)
4251 STEXI
4252 @item -msg timestamp[=on|off]
4253 @findex -msg
4254 Control error message format.
4255 @table @option
4256 @item timestamp=on|off
4257 Prefix messages with a timestamp. Default is off.
4258 @end table
4259 ETEXI
4260
4261 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
4262 "-dump-vmstate <file>\n"
4263 " Output vmstate information in JSON format to file.\n"
4264 " Use the scripts/vmstate-static-checker.py file to\n"
4265 " check for possible regressions in migration code\n"
4266 " by comparing two such vmstate dumps.\n",
4267 QEMU_ARCH_ALL)
4268 STEXI
4269 @item -dump-vmstate @var{file}
4270 @findex -dump-vmstate
4271 Dump json-encoded vmstate information for current machine type to file
4272 in @var{file}
4273 ETEXI
4274
4275 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile,
4276 "-enable-sync-profile\n"
4277 " enable synchronization profiling\n",
4278 QEMU_ARCH_ALL)
4279 STEXI
4280 @item -enable-sync-profile
4281 @findex -enable-sync-profile
4282 Enable synchronization profiling.
4283 ETEXI
4284
4285 STEXI
4286 @end table
4287 ETEXI
4288 DEFHEADING()
4289
4290 DEFHEADING(Generic object creation:)
4291 STEXI
4292 @table @option
4293 ETEXI
4294
4295 DEF("object", HAS_ARG, QEMU_OPTION_object,
4296 "-object TYPENAME[,PROP1=VALUE1,...]\n"
4297 " create a new object of type TYPENAME setting properties\n"
4298 " in the order they are specified. Note that the 'id'\n"
4299 " property must be set. These objects are placed in the\n"
4300 " '/objects' path.\n",
4301 QEMU_ARCH_ALL)
4302 STEXI
4303 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
4304 @findex -object
4305 Create a new object of type @var{typename} setting properties
4306 in the order they are specified. Note that the 'id'
4307 property must be set. These objects are placed in the
4308 '/objects' path.
4309
4310 @table @option
4311
4312 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},align=@var{align}
4313
4314 Creates a memory file backend object, which can be used to back
4315 the guest RAM with huge pages.
4316
4317 The @option{id} parameter is a unique ID that will be used to reference this
4318 memory region when configuring the @option{-numa} argument.
4319
4320 The @option{size} option provides the size of the memory region, and accepts
4321 common suffixes, eg @option{500M}.
4322
4323 The @option{mem-path} provides the path to either a shared memory or huge page
4324 filesystem mount.
4325
4326 The @option{share} boolean option determines whether the memory
4327 region is marked as private to QEMU, or shared. The latter allows
4328 a co-operating external process to access the QEMU memory region.
4329
4330 The @option{share} is also required for pvrdma devices due to
4331 limitations in the RDMA API provided by Linux.
4332
4333 Setting share=on might affect the ability to configure NUMA
4334 bindings for the memory backend under some circumstances, see
4335 Documentation/vm/numa_memory_policy.txt on the Linux kernel
4336 source tree for additional details.
4337
4338 Setting the @option{discard-data} boolean option to @var{on}
4339 indicates that file contents can be destroyed when QEMU exits,
4340 to avoid unnecessarily flushing data to the backing file. Note
4341 that @option{discard-data} is only an optimization, and QEMU
4342 might not discard file contents if it aborts unexpectedly or is
4343 terminated using SIGKILL.
4344
4345 The @option{merge} boolean option enables memory merge, also known as
4346 MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for
4347 memory deduplication.
4348
4349 Setting the @option{dump} boolean option to @var{off} excludes the memory from
4350 core dumps. This feature is also known as MADV_DONTDUMP.
4351
4352 The @option{prealloc} boolean option enables memory preallocation.
4353
4354 The @option{host-nodes} option binds the memory range to a list of NUMA host
4355 nodes.
4356
4357 The @option{policy} option sets the NUMA policy to one of the following values:
4358
4359 @table @option
4360 @item @var{default}
4361 default host policy
4362
4363 @item @var{preferred}
4364 prefer the given host node list for allocation
4365
4366 @item @var{bind}
4367 restrict memory allocation to the given host node list
4368
4369 @item @var{interleave}
4370 interleave memory allocations across the given host node list
4371 @end table
4372
4373 The @option{align} option specifies the base address alignment when
4374 QEMU mmap(2) @option{mem-path}, and accepts common suffixes, eg
4375 @option{2M}. Some backend store specified by @option{mem-path}
4376 requires an alignment different than the default one used by QEMU, eg
4377 the device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
4378 such cases, users can specify the required alignment via this option.
4379
4380 The @option{pmem} option specifies whether the backing file specified
4381 by @option{mem-path} is in host persistent memory that can be accessed
4382 using the SNIA NVM programming model (e.g. Intel NVDIMM).
4383 If @option{pmem} is set to 'on', QEMU will take necessary operations to
4384 guarantee the persistence of its own writes to @option{mem-path}
4385 (e.g. in vNVDIMM label emulation and live migration).
4386 Also, we will map the backend-file with MAP_SYNC flag, which ensures the
4387 file metadata is in sync for @option{mem-path} in case of host crash
4388 or a power failure. MAP_SYNC requires support from both the host kernel
4389 (since Linux kernel 4.15) and the filesystem of @option{mem-path} mounted
4390 with DAX option.
4391
4392 @item -object memory-backend-ram,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave}
4393
4394 Creates a memory backend object, which can be used to back the guest RAM.
4395 Memory backend objects offer more control than the @option{-m} option that is
4396 traditionally used to define guest RAM. Please refer to
4397 @option{memory-backend-file} for a description of the options.
4398
4399 @item -object memory-backend-memfd,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},seal=@var{on|off},hugetlb=@var{on|off},hugetlbsize=@var{size}
4400
4401 Creates an anonymous memory file backend object, which allows QEMU to
4402 share the memory with an external process (e.g. when using
4403 vhost-user). The memory is allocated with memfd and optional
4404 sealing. (Linux only)
4405
4406 The @option{seal} option creates a sealed-file, that will block
4407 further resizing the memory ('on' by default).
4408
4409 The @option{hugetlb} option specify the file to be created resides in
4410 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction with
4411 the @option{hugetlb} option, the @option{hugetlbsize} option specify
4412 the hugetlb page size on systems that support multiple hugetlb page
4413 sizes (it must be a power of 2 value supported by the system).
4414
4415 In some versions of Linux, the @option{hugetlb} option is incompatible
4416 with the @option{seal} option (requires at least Linux 4.16).
4417
4418 Please refer to @option{memory-backend-file} for a description of the
4419 other options.
4420
4421 The @option{share} boolean option is @var{on} by default with memfd.
4422
4423 @item -object rng-builtin,id=@var{id}
4424
4425 Creates a random number generator backend which obtains entropy from
4426 QEMU builtin functions. The @option{id} parameter is a unique ID that
4427 will be used to reference this entropy backend from the @option{virtio-rng}
4428 device. By default, the @option{virtio-rng} device uses this RNG backend.
4429
4430 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
4431
4432 Creates a random number generator backend which obtains entropy from
4433 a device on the host. The @option{id} parameter is a unique ID that
4434 will be used to reference this entropy backend from the @option{virtio-rng}
4435 device. The @option{filename} parameter specifies which file to obtain
4436 entropy from and if omitted defaults to @option{/dev/urandom}.
4437
4438 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
4439
4440 Creates a random number generator backend which obtains entropy from
4441 an external daemon running on the host. The @option{id} parameter is
4442 a unique ID that will be used to reference this entropy backend from
4443 the @option{virtio-rng} device. The @option{chardev} parameter is
4444 the unique ID of a character device backend that provides the connection
4445 to the RNG daemon.
4446
4447 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
4448
4449 Creates a TLS anonymous credentials object, which can be used to provide
4450 TLS support on network backends. The @option{id} parameter is a unique
4451 ID which network backends will use to access the credentials. The
4452 @option{endpoint} is either @option{server} or @option{client} depending
4453 on whether the QEMU network backend that uses the credentials will be
4454 acting as a client or as a server. If @option{verify-peer} is enabled
4455 (the default) then once the handshake is completed, the peer credentials
4456 will be verified, though this is a no-op for anonymous credentials.
4457
4458 The @var{dir} parameter tells QEMU where to find the credential
4459 files. For server endpoints, this directory may contain a file
4460 @var{dh-params.pem} providing diffie-hellman parameters to use
4461 for the TLS server. If the file is missing, QEMU will generate
4462 a set of DH parameters at startup. This is a computationally
4463 expensive operation that consumes random pool entropy, so it is
4464 recommended that a persistent set of parameters be generated
4465 upfront and saved.
4466
4467 @item -object tls-creds-psk,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/keys/dir}[,username=@var{username}]
4468
4469 Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide
4470 TLS support on network backends. The @option{id} parameter is a unique
4471 ID which network backends will use to access the credentials. The
4472 @option{endpoint} is either @option{server} or @option{client} depending
4473 on whether the QEMU network backend that uses the credentials will be
4474 acting as a client or as a server. For clients only, @option{username}
4475 is the username which will be sent to the server. If omitted
4476 it defaults to ``qemu''.
4477
4478 The @var{dir} parameter tells QEMU where to find the keys file.
4479 It is called ``@var{dir}/keys.psk'' and contains ``username:key''
4480 pairs. This file can most easily be created using the GnuTLS
4481 @code{psktool} program.
4482
4483 For server endpoints, @var{dir} may also contain a file
4484 @var{dh-params.pem} providing diffie-hellman parameters to use
4485 for the TLS server. If the file is missing, QEMU will generate
4486 a set of DH parameters at startup. This is a computationally
4487 expensive operation that consumes random pool entropy, so it is
4488 recommended that a persistent set of parameters be generated
4489 up front and saved.
4490
4491 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},priority=@var{priority},verify-peer=@var{on|off},passwordid=@var{id}
4492
4493 Creates a TLS anonymous credentials object, which can be used to provide
4494 TLS support on network backends. The @option{id} parameter is a unique
4495 ID which network backends will use to access the credentials. The
4496 @option{endpoint} is either @option{server} or @option{client} depending
4497 on whether the QEMU network backend that uses the credentials will be
4498 acting as a client or as a server. If @option{verify-peer} is enabled
4499 (the default) then once the handshake is completed, the peer credentials
4500 will be verified. With x509 certificates, this implies that the clients
4501 must be provided with valid client certificates too.
4502
4503 The @var{dir} parameter tells QEMU where to find the credential
4504 files. For server endpoints, this directory may contain a file
4505 @var{dh-params.pem} providing diffie-hellman parameters to use
4506 for the TLS server. If the file is missing, QEMU will generate
4507 a set of DH parameters at startup. This is a computationally
4508 expensive operation that consumes random pool entropy, so it is
4509 recommended that a persistent set of parameters be generated
4510 upfront and saved.
4511
4512 For x509 certificate credentials the directory will contain further files
4513 providing the x509 certificates. The certificates must be stored
4514 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4515 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4516 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4517
4518 For the @var{server-key.pem} and @var{client-key.pem} files which
4519 contain sensitive private keys, it is possible to use an encrypted
4520 version by providing the @var{passwordid} parameter. This provides
4521 the ID of a previously created @code{secret} object containing the
4522 password for decryption.
4523
4524 The @var{priority} parameter allows to override the global default
4525 priority used by gnutls. This can be useful if the system administrator
4526 needs to use a weaker set of crypto priorities for QEMU without
4527 potentially forcing the weakness onto all applications. Or conversely
4528 if one wants wants a stronger default for QEMU than for all other
4529 applications, they can do this through this parameter. Its format is
4530 a gnutls priority string as described at
4531 @url{https://gnutls.org/manual/html_node/Priority-Strings.html}.
4532
4533 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4534
4535 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4536 packets arriving in a given interval on netdev @var{netdevid} are delayed
4537 until the end of the interval. Interval is in microseconds.
4538 @option{status} is optional that indicate whether the netfilter is
4539 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4540
4541 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4542
4543 @option{all}: the filter is attached both to the receive and the transmit
4544 queue of the netdev (default).
4545
4546 @option{rx}: the filter is attached to the receive queue of the netdev,
4547 where it will receive packets sent to the netdev.
4548
4549 @option{tx}: the filter is attached to the transmit queue of the netdev,
4550 where it will receive packets sent by the netdev.
4551
4552 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4553
4554 filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.
4555
4556 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4557
4558 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4559 @var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag,
4560 filter-redirector will redirect packet with vnet_hdr_len.
4561 Create a filter-redirector we need to differ outdev id from indev id, id can not
4562 be the same. we can just use indev or outdev, but at least one of indev or outdev
4563 need to be specified.
4564
4565 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support]
4566
4567 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4568 secondary from primary to keep secondary tcp connection,and rewrite
4569 tcp packet to primary from secondary make tcp packet can be handled by
4570 client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.
4571
4572 usage:
4573 colo secondary:
4574 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4575 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4576 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4577
4578 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4579
4580 Dump the network traffic on netdev @var{dev} to the file specified by
4581 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4582 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4583 or Wireshark.
4584
4585 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid},iothread=@var{id}[,vnet_hdr_support][,notify_dev=@var{id}]
4586
4587 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4588 secondary packet. If the packets are same, we will output primary
4589 packet to outdev@var{chardevid}, else we will notify colo-frame
4590 do checkpoint and send primary packet to outdev@var{chardevid}.
4591 In order to improve efficiency, we need to put the task of comparison
4592 in another thread. If it has the vnet_hdr_support flag, colo compare
4593 will send/recv packet with vnet_hdr_len.
4594 If you want to use Xen COLO, will need the notify_dev to notify Xen
4595 colo-frame to do checkpoint.
4596
4597 we must use it with the help of filter-mirror and filter-redirector.
4598
4599 @example
4600
4601 KVM COLO
4602
4603 primary:
4604 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4605 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4606 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4607 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4608 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4609 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4610 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4611 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4612 -object iothread,id=iothread1
4613 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4614 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4615 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4616 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1
4617
4618 secondary:
4619 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4620 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4621 -chardev socket,id=red0,host=3.3.3.3,port=9003
4622 -chardev socket,id=red1,host=3.3.3.3,port=9004
4623 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4624 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4625
4626
4627 Xen COLO
4628
4629 primary:
4630 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4631 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4632 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4633 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4634 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4635 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4636 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4637 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4638 -chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
4639 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4640 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4641 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4642 -object iothread,id=iothread1
4643 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1
4644
4645 secondary:
4646 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4647 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4648 -chardev socket,id=red0,host=3.3.3.3,port=9003
4649 -chardev socket,id=red1,host=3.3.3.3,port=9004
4650 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4651 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4652
4653 @end example
4654
4655 If you want to know the detail of above command line, you can read
4656 the colo-compare git log.
4657
4658 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4659
4660 Creates a cryptodev backend which executes crypto opreation from
4661 the QEMU cipher APIS. The @var{id} parameter is
4662 a unique ID that will be used to reference this cryptodev backend from
4663 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4664 which specify the queue number of cryptodev backend, the default of
4665 @var{queues} is 1.
4666
4667 @example
4668
4669 # @value{qemu_system} \
4670 [...] \
4671 -object cryptodev-backend-builtin,id=cryptodev0 \
4672 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4673 [...]
4674 @end example
4675
4676 @item -object cryptodev-vhost-user,id=@var{id},chardev=@var{chardevid}[,queues=@var{queues}]
4677
4678 Creates a vhost-user cryptodev backend, backed by a chardev @var{chardevid}.
4679 The @var{id} parameter is a unique ID that will be used to reference this
4680 cryptodev backend from the @option{virtio-crypto} device.
4681 The chardev should be a unix domain socket backed one. The vhost-user uses
4682 a specifically defined protocol to pass vhost ioctl replacement messages
4683 to an application on the other end of the socket.
4684 The @var{queues} parameter is optional, which specify the queue number
4685 of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1.
4686
4687 @example
4688
4689 # @value{qemu_system} \
4690 [...] \
4691 -chardev socket,id=chardev0,path=/path/to/socket \
4692 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
4693 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4694 [...]
4695 @end example
4696
4697 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4698 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4699
4700 Defines a secret to store a password, encryption key, or some other sensitive
4701 data. The sensitive data can either be passed directly via the @var{data}
4702 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4703 parameter is insecure unless the sensitive data is encrypted.
4704
4705 The sensitive data can be provided in raw format (the default), or base64.
4706 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4707 so base64 is recommended for sending binary data. QEMU will convert from
4708 which ever format is provided to the format it needs internally. eg, an
4709 RBD password can be provided in raw format, even though it will be base64
4710 encoded when passed onto the RBD sever.
4711
4712 For added protection, it is possible to encrypt the data associated with
4713 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4714 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4715 parameter provides the ID of a previously defined secret that contains
4716 the AES-256 decryption key. This key should be 32-bytes long and be
4717 base64 encoded. The @var{iv} parameter provides the random initialization
4718 vector used for encryption of this particular secret and should be a
4719 base64 encrypted string of the 16-byte IV.
4720
4721 The simplest (insecure) usage is to provide the secret inline
4722
4723 @example
4724
4725 # @value{qemu_system} -object secret,id=sec0,data=letmein,format=raw
4726
4727 @end example
4728
4729 The simplest secure usage is to provide the secret via a file
4730
4731 # printf "letmein" > mypasswd.txt
4732 # @value{qemu_system} -object secret,id=sec0,file=mypasswd.txt,format=raw
4733
4734 For greater security, AES-256-CBC should be used. To illustrate usage,
4735 consider the openssl command line tool which can encrypt the data. Note
4736 that when encrypting, the plaintext must be padded to the cipher block
4737 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4738
4739 First a master key needs to be created in base64 encoding:
4740
4741 @example
4742 # openssl rand -base64 32 > key.b64
4743 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4744 @end example
4745
4746 Each secret to be encrypted needs to have a random initialization vector
4747 generated. These do not need to be kept secret
4748
4749 @example
4750 # openssl rand -base64 16 > iv.b64
4751 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4752 @end example
4753
4754 The secret to be defined can now be encrypted, in this case we're
4755 telling openssl to base64 encode the result, but it could be left
4756 as raw bytes if desired.
4757
4758 @example
4759 # SECRET=$(printf "letmein" |
4760 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4761 @end example
4762
4763 When launching QEMU, create a master secret pointing to @code{key.b64}
4764 and specify that to be used to decrypt the user password. Pass the
4765 contents of @code{iv.b64} to the second secret
4766
4767 @example
4768 # @value{qemu_system} \
4769 -object secret,id=secmaster0,format=base64,file=key.b64 \
4770 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4771 data=$SECRET,iv=$(<iv.b64)
4772 @end example
4773
4774 @item -object sev-guest,id=@var{id},cbitpos=@var{cbitpos},reduced-phys-bits=@var{val},[sev-device=@var{string},policy=@var{policy},handle=@var{handle},dh-cert-file=@var{file},session-file=@var{file}]
4775
4776 Create a Secure Encrypted Virtualization (SEV) guest object, which can be used
4777 to provide the guest memory encryption support on AMD processors.
4778
4779 When memory encryption is enabled, one of the physical address bit (aka the
4780 C-bit) is utilized to mark if a memory page is protected. The @option{cbitpos}
4781 is used to provide the C-bit position. The C-bit position is Host family dependent
4782 hence user must provide this value. On EPYC, the value should be 47.
4783
4784 When memory encryption is enabled, we loose certain bits in physical address space.
4785 The @option{reduced-phys-bits} is used to provide the number of bits we loose in
4786 physical address space. Similar to C-bit, the value is Host family dependent.
4787 On EPYC, the value should be 5.
4788
4789 The @option{sev-device} provides the device file to use for communicating with
4790 the SEV firmware running inside AMD Secure Processor. The default device is
4791 '/dev/sev'. If hardware supports memory encryption then /dev/sev devices are
4792 created by CCP driver.
4793
4794 The @option{policy} provides the guest policy to be enforced by the SEV firmware
4795 and restrict what configuration and operational commands can be performed on this
4796 guest by the hypervisor. The policy should be provided by the guest owner and is
4797 bound to the guest and cannot be changed throughout the lifetime of the guest.
4798 The default is 0.
4799
4800 If guest @option{policy} allows sharing the key with another SEV guest then
4801 @option{handle} can be use to provide handle of the guest from which to share
4802 the key.
4803
4804 The @option{dh-cert-file} and @option{session-file} provides the guest owner's
4805 Public Diffie-Hillman key defined in SEV spec. The PDH and session parameters
4806 are used for establishing a cryptographic session with the guest owner to
4807 negotiate keys used for attestation. The file must be encoded in base64.
4808
4809 e.g to launch a SEV guest
4810 @example
4811 # @value{qemu_system_x86} \
4812 ......
4813 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
4814 -machine ...,memory-encryption=sev0
4815 .....
4816
4817 @end example
4818
4819
4820 @item -object authz-simple,id=@var{id},identity=@var{string}
4821
4822 Create an authorization object that will control access to network services.
4823
4824 The @option{identity} parameter is identifies the user and its format
4825 depends on the network service that authorization object is associated
4826 with. For authorizing based on TLS x509 certificates, the identity must
4827 be the x509 distinguished name. Note that care must be taken to escape
4828 any commas in the distinguished name.
4829
4830 An example authorization object to validate a x509 distinguished name
4831 would look like:
4832 @example
4833 # @value{qemu_system} \
4834 ...
4835 -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' \
4836 ...
4837 @end example
4838
4839 Note the use of quotes due to the x509 distinguished name containing
4840 whitespace, and escaping of ','.
4841
4842 @item -object authz-listfile,id=@var{id},filename=@var{path},refresh=@var{yes|no}
4843
4844 Create an authorization object that will control access to network services.
4845
4846 The @option{filename} parameter is the fully qualified path to a file
4847 containing the access control list rules in JSON format.
4848
4849 An example set of rules that match against SASL usernames might look
4850 like:
4851
4852 @example
4853 @{
4854 "rules": [
4855 @{ "match": "fred", "policy": "allow", "format": "exact" @},
4856 @{ "match": "bob", "policy": "allow", "format": "exact" @},
4857 @{ "match": "danb", "policy": "deny", "format": "glob" @},
4858 @{ "match": "dan*", "policy": "allow", "format": "exact" @},
4859 ],
4860 "policy": "deny"
4861 @}
4862 @end example
4863
4864 When checking access the object will iterate over all the rules and
4865 the first rule to match will have its @option{policy} value returned
4866 as the result. If no rules match, then the default @option{policy}
4867 value is returned.
4868
4869 The rules can either be an exact string match, or they can use the
4870 simple UNIX glob pattern matching to allow wildcards to be used.
4871
4872 If @option{refresh} is set to true the file will be monitored
4873 and automatically reloaded whenever its content changes.
4874
4875 As with the @code{authz-simple} object, the format of the identity
4876 strings being matched depends on the network service, but is usually
4877 a TLS x509 distinguished name, or a SASL username.
4878
4879 An example authorization object to validate a SASL username
4880 would look like:
4881 @example
4882 # @value{qemu_system} \
4883 ...
4884 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes
4885 ...
4886 @end example
4887
4888 @item -object authz-pam,id=@var{id},service=@var{string}
4889
4890 Create an authorization object that will control access to network services.
4891
4892 The @option{service} parameter provides the name of a PAM service to use
4893 for authorization. It requires that a file @code{/etc/pam.d/@var{service}}
4894 exist to provide the configuration for the @code{account} subsystem.
4895
4896 An example authorization object to validate a TLS x509 distinguished
4897 name would look like:
4898
4899 @example
4900 # @value{qemu_system} \
4901 ...
4902 -object authz-pam,id=auth0,service=qemu-vnc
4903 ...
4904 @end example
4905
4906 There would then be a corresponding config file for PAM at
4907 @code{/etc/pam.d/qemu-vnc} that contains:
4908
4909 @example
4910 account requisite pam_listfile.so item=user sense=allow \
4911 file=/etc/qemu/vnc.allow
4912 @end example
4913
4914 Finally the @code{/etc/qemu/vnc.allow} file would contain
4915 the list of x509 distingished names that are permitted
4916 access
4917
4918 @example
4919 CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB
4920 @end example
4921
4922 @item -object iothread,id=@var{id},poll-max-ns=@var{poll-max-ns},poll-grow=@var{poll-grow},poll-shrink=@var{poll-shrink}
4923
4924 Creates a dedicated event loop thread that devices can be assigned to. This is
4925 known as an IOThread. By default device emulation happens in vCPU threads or
4926 the main event loop thread. This can become a scalability bottleneck.
4927 IOThreads allow device emulation and I/O to run on other host CPUs.
4928
4929 The @option{id} parameter is a unique ID that will be used to reference this
4930 IOThread from @option{-device ...,iothread=@var{id}}. Multiple devices can be
4931 assigned to an IOThread. Note that not all devices support an
4932 @option{iothread} parameter.
4933
4934 The @code{query-iothreads} QMP command lists IOThreads and reports their thread
4935 IDs so that the user can configure host CPU pinning/affinity.
4936
4937 IOThreads use an adaptive polling algorithm to reduce event loop latency.
4938 Instead of entering a blocking system call to monitor file descriptors and then
4939 pay the cost of being woken up when an event occurs, the polling algorithm
4940 spins waiting for events for a short time. The algorithm's default parameters
4941 are suitable for many cases but can be adjusted based on knowledge of the
4942 workload and/or host device latency.
4943
4944 The @option{poll-max-ns} parameter is the maximum number of nanoseconds to busy
4945 wait for events. Polling can be disabled by setting this value to 0.
4946
4947 The @option{poll-grow} parameter is the multiplier used to increase the polling
4948 time when the algorithm detects it is missing events due to not polling long
4949 enough.
4950
4951 The @option{poll-shrink} parameter is the divisor used to decrease the polling
4952 time when the algorithm detects it is spending too long polling without
4953 encountering events.
4954
4955 The polling parameters can be modified at run-time using the @code{qom-set} command (where @code{iothread1} is the IOThread's @code{id}):
4956
4957 @example
4958 (qemu) qom-set /objects/iothread1 poll-max-ns 100000
4959 @end example
4960
4961 @end table
4962
4963 ETEXI
4964
4965
4966 HXCOMM This is the last statement. Insert new options before this line!
4967 STEXI
4968 @end table
4969 ETEXI