]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
qemu-options: Remove stray colons from output of --help
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax or tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
46 " s390-squash-mcss=on|off (deprecated) controls support for squashing into default css (default=off)\n",
47 QEMU_ARCH_ALL)
48 STEXI
49 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
50 @findex -machine
51 Select the emulated machine by @var{name}. Use @code{-machine help} to list
52 available machines.
53
54 For architectures which aim to support live migration compatibility
55 across releases, each release will introduce a new versioned machine
56 type. For example, the 2.8.0 release introduced machine types
57 ``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures.
58
59 To allow live migration of guests from QEMU version 2.8.0, to QEMU
60 version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8''
61 and ``pc-q35-2.8'' machines too. To allow users live migrating VMs
62 to skip multiple intermediate releases when upgrading, new releases
63 of QEMU will support machine types from many previous versions.
64
65 Supported machine properties are:
66 @table @option
67 @item accel=@var{accels1}[:@var{accels2}[:...]]
68 This is used to enable an accelerator. Depending on the target architecture,
69 kvm, xen, hax or tcg can be available. By default, tcg is used. If there is
70 more than one accelerator specified, the next one is used if the previous one
71 fails to initialize.
72 @item kernel_irqchip=on|off
73 Controls in-kernel irqchip support for the chosen accelerator when available.
74 @item gfx_passthru=on|off
75 Enables IGD GFX passthrough support for the chosen machine when available.
76 @item vmport=on|off|auto
77 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
78 value based on accel. For accel=xen the default is off otherwise the default
79 is on.
80 @item kvm_shadow_mem=size
81 Defines the size of the KVM shadow MMU.
82 @item dump-guest-core=on|off
83 Include guest memory in a core dump. The default is on.
84 @item mem-merge=on|off
85 Enables or disables memory merge support. This feature, when supported by
86 the host, de-duplicates identical memory pages among VMs instances
87 (enabled by default).
88 @item aes-key-wrap=on|off
89 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
90 controls whether AES wrapping keys will be created to allow
91 execution of AES cryptographic functions. The default is on.
92 @item dea-key-wrap=on|off
93 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
94 controls whether DEA wrapping keys will be created to allow
95 execution of DEA cryptographic functions. The default is on.
96 @item nvdimm=on|off
97 Enables or disables NVDIMM support. The default is off.
98 @item s390-squash-mcss=on|off
99 Enables or disables squashing subchannels into the default css.
100 The default is off.
101 NOTE: This property is deprecated and will be removed in future releases.
102 The ``s390-squash-mcss=on`` property has been obsoleted by allowing the
103 cssid to be chosen freely. Instead of squashing subchannels into the
104 default channel subsystem image for guests that do not support multiple
105 channel subsystems, all devices can be put into the default channel
106 subsystem image.
107 @item enforce-config-section=on|off
108 If @option{enforce-config-section} is set to @var{on}, force migration
109 code to send configuration section even if the machine-type sets the
110 @option{migration.send-configuration} property to @var{off}.
111 NOTE: this parameter is deprecated. Please use @option{-global}
112 @option{migration.send-configuration}=@var{on|off} instead.
113 @end table
114 ETEXI
115
116 HXCOMM Deprecated by -machine
117 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
118
119 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
120 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
121 STEXI
122 @item -cpu @var{model}
123 @findex -cpu
124 Select CPU model (@code{-cpu help} for list and additional feature selection)
125 ETEXI
126
127 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
128 "-accel [accel=]accelerator[,thread=single|multi]\n"
129 " select accelerator (kvm, xen, hax or tcg; use 'help' for a list)\n"
130 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
131 STEXI
132 @item -accel @var{name}[,prop=@var{value}[,...]]
133 @findex -accel
134 This is used to enable an accelerator. Depending on the target architecture,
135 kvm, xen, hax or tcg can be available. By default, tcg is used. If there is
136 more than one accelerator specified, the next one is used if the previous one
137 fails to initialize.
138 @table @option
139 @item thread=single|multi
140 Controls number of TCG threads. When the TCG is multi-threaded there will be one
141 thread per vCPU therefor taking advantage of additional host cores. The default
142 is to enable multi-threading where both the back-end and front-ends support it and
143 no incompatible TCG features have been enabled (e.g. icount/replay).
144 @end table
145 ETEXI
146
147 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
148 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
149 " set the number of CPUs to 'n' [default=1]\n"
150 " maxcpus= maximum number of total cpus, including\n"
151 " offline CPUs for hotplug, etc\n"
152 " cores= number of CPU cores on one socket\n"
153 " threads= number of threads on one CPU core\n"
154 " sockets= number of discrete sockets in the system\n",
155 QEMU_ARCH_ALL)
156 STEXI
157 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
158 @findex -smp
159 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
160 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
161 to 4.
162 For the PC target, the number of @var{cores} per socket, the number
163 of @var{threads} per cores and the total number of @var{sockets} can be
164 specified. Missing values will be computed. If any on the three values is
165 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
166 specifies the maximum number of hotpluggable CPUs.
167 ETEXI
168
169 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
170 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
171 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
172 "-numa dist,src=source,dst=destination,val=distance\n", QEMU_ARCH_ALL)
173 STEXI
174 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
175 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
176 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
177 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
178 @findex -numa
179 Define a NUMA node and assign RAM and VCPUs to it.
180 Set the NUMA distance from a source node to a destination node.
181
182 Legacy VCPU assignment uses @samp{cpus} option where
183 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
184 @samp{cpus} option represent a contiguous range of CPU indexes
185 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
186 set of VCPUs can be represented by providing multiple @samp{cpus}
187 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
188 split between them.
189
190 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
191 a NUMA node:
192 @example
193 -numa node,cpus=0-2,cpus=5
194 @end example
195
196 @samp{cpu} option is a new alternative to @samp{cpus} option
197 which uses @samp{socket-id|core-id|thread-id} properties to assign
198 CPU objects to a @var{node} using topology layout properties of CPU.
199 The set of properties is machine specific, and depends on used
200 machine type/@samp{smp} options. It could be queried with
201 @samp{hotpluggable-cpus} monitor command.
202 @samp{node-id} property specifies @var{node} to which CPU object
203 will be assigned, it's required for @var{node} to be declared
204 with @samp{node} option before it's used with @samp{cpu} option.
205
206 For example:
207 @example
208 -M pc \
209 -smp 1,sockets=2,maxcpus=2 \
210 -numa node,nodeid=0 -numa node,nodeid=1 \
211 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
212 @end example
213
214 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
215 assigns RAM from a given memory backend device to a node. If
216 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
217 split equally between them.
218
219 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
220 if one node uses @samp{memdev}, all of them have to use it.
221
222 @var{source} and @var{destination} are NUMA node IDs.
223 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
224 The distance from a node to itself is always 10. If any pair of nodes is
225 given a distance, then all pairs must be given distances. Although, when
226 distances are only given in one direction for each pair of nodes, then
227 the distances in the opposite directions are assumed to be the same. If,
228 however, an asymmetrical pair of distances is given for even one node
229 pair, then all node pairs must be provided distance values for both
230 directions, even when they are symmetrical. When a node is unreachable
231 from another node, set the pair's distance to 255.
232
233 Note that the -@option{numa} option doesn't allocate any of the
234 specified resources, it just assigns existing resources to NUMA
235 nodes. This means that one still has to use the @option{-m},
236 @option{-smp} options to allocate RAM and VCPUs respectively.
237
238 ETEXI
239
240 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
241 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
242 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
243 STEXI
244 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
245 @findex -add-fd
246
247 Add a file descriptor to an fd set. Valid options are:
248
249 @table @option
250 @item fd=@var{fd}
251 This option defines the file descriptor of which a duplicate is added to fd set.
252 The file descriptor cannot be stdin, stdout, or stderr.
253 @item set=@var{set}
254 This option defines the ID of the fd set to add the file descriptor to.
255 @item opaque=@var{opaque}
256 This option defines a free-form string that can be used to describe @var{fd}.
257 @end table
258
259 You can open an image using pre-opened file descriptors from an fd set:
260 @example
261 qemu-system-i386
262 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
263 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
264 -drive file=/dev/fdset/2,index=0,media=disk
265 @end example
266 ETEXI
267
268 DEF("set", HAS_ARG, QEMU_OPTION_set,
269 "-set group.id.arg=value\n"
270 " set <arg> parameter for item <id> of type <group>\n"
271 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
272 STEXI
273 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
274 @findex -set
275 Set parameter @var{arg} for item @var{id} of type @var{group}
276 ETEXI
277
278 DEF("global", HAS_ARG, QEMU_OPTION_global,
279 "-global driver.property=value\n"
280 "-global driver=driver,property=property,value=value\n"
281 " set a global default for a driver property\n",
282 QEMU_ARCH_ALL)
283 STEXI
284 @item -global @var{driver}.@var{prop}=@var{value}
285 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
286 @findex -global
287 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
288
289 @example
290 qemu-system-i386 -global ide-hd.physical_block_size=4096 disk-image.img
291 @end example
292
293 In particular, you can use this to set driver properties for devices which are
294 created automatically by the machine model. To create a device which is not
295 created automatically and set properties on it, use -@option{device}.
296
297 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
298 driver=@var{driver},property=@var{prop},value=@var{value}. The
299 longhand syntax works even when @var{driver} contains a dot.
300 ETEXI
301
302 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
303 "-boot [order=drives][,once=drives][,menu=on|off]\n"
304 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
305 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
306 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
307 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
308 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
309 QEMU_ARCH_ALL)
310 STEXI
311 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
312 @findex -boot
313 Specify boot order @var{drives} as a string of drive letters. Valid
314 drive letters depend on the target architecture. The x86 PC uses: a, b
315 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
316 from network adapter 1-4), hard disk boot is the default. To apply a
317 particular boot order only on the first startup, specify it via
318 @option{once}. Note that the @option{order} or @option{once} parameter
319 should not be used together with the @option{bootindex} property of
320 devices, since the firmware implementations normally do not support both
321 at the same time.
322
323 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
324 as firmware/BIOS supports them. The default is non-interactive boot.
325
326 A splash picture could be passed to bios, enabling user to show it as logo,
327 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
328 supports them. Currently Seabios for X86 system support it.
329 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
330 format(true color). The resolution should be supported by the SVGA mode, so
331 the recommended is 320x240, 640x480, 800x640.
332
333 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
334 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
335 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
336 system support it.
337
338 Do strict boot via @option{strict=on} as far as firmware/BIOS
339 supports it. This only effects when boot priority is changed by
340 bootindex options. The default is non-strict boot.
341
342 @example
343 # try to boot from network first, then from hard disk
344 qemu-system-i386 -boot order=nc
345 # boot from CD-ROM first, switch back to default order after reboot
346 qemu-system-i386 -boot once=d
347 # boot with a splash picture for 5 seconds.
348 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
349 @end example
350
351 Note: The legacy format '-boot @var{drives}' is still supported but its
352 use is discouraged as it may be removed from future versions.
353 ETEXI
354
355 DEF("m", HAS_ARG, QEMU_OPTION_m,
356 "-m [size=]megs[,slots=n,maxmem=size]\n"
357 " configure guest RAM\n"
358 " size: initial amount of guest memory\n"
359 " slots: number of hotplug slots (default: none)\n"
360 " maxmem: maximum amount of guest memory (default: none)\n"
361 "NOTE: Some architectures might enforce a specific granularity\n",
362 QEMU_ARCH_ALL)
363 STEXI
364 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
365 @findex -m
366 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
367 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
368 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
369 could be used to set amount of hotpluggable memory slots and maximum amount of
370 memory. Note that @var{maxmem} must be aligned to the page size.
371
372 For example, the following command-line sets the guest startup RAM size to
373 1GB, creates 3 slots to hotplug additional memory and sets the maximum
374 memory the guest can reach to 4GB:
375
376 @example
377 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
378 @end example
379
380 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
381 be enabled and the guest startup RAM will never increase.
382 ETEXI
383
384 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
385 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
386 STEXI
387 @item -mem-path @var{path}
388 @findex -mem-path
389 Allocate guest RAM from a temporarily created file in @var{path}.
390 ETEXI
391
392 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
393 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
394 QEMU_ARCH_ALL)
395 STEXI
396 @item -mem-prealloc
397 @findex -mem-prealloc
398 Preallocate memory when using -mem-path.
399 ETEXI
400
401 DEF("k", HAS_ARG, QEMU_OPTION_k,
402 "-k language use keyboard layout (for example 'fr' for French)\n",
403 QEMU_ARCH_ALL)
404 STEXI
405 @item -k @var{language}
406 @findex -k
407 Use keyboard layout @var{language} (for example @code{fr} for
408 French). This option is only needed where it is not easy to get raw PC
409 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
410 display). You don't normally need to use it on PC/Linux or PC/Windows
411 hosts.
412
413 The available layouts are:
414 @example
415 ar de-ch es fo fr-ca hu ja mk no pt-br sv
416 da en-gb et fr fr-ch is lt nl pl ru th
417 de en-us fi fr-be hr it lv nl-be pt sl tr
418 @end example
419
420 The default is @code{en-us}.
421 ETEXI
422
423
424 DEF("audio-help", 0, QEMU_OPTION_audio_help,
425 "-audio-help print list of audio drivers and their options\n",
426 QEMU_ARCH_ALL)
427 STEXI
428 @item -audio-help
429 @findex -audio-help
430 Will show the audio subsystem help: list of drivers, tunable
431 parameters.
432 ETEXI
433
434 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
435 "-soundhw c1,... enable audio support\n"
436 " and only specified sound cards (comma separated list)\n"
437 " use '-soundhw help' to get the list of supported cards\n"
438 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
439 STEXI
440 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
441 @findex -soundhw
442 Enable audio and selected sound hardware. Use 'help' to print all
443 available sound hardware.
444
445 @example
446 qemu-system-i386 -soundhw sb16,adlib disk.img
447 qemu-system-i386 -soundhw es1370 disk.img
448 qemu-system-i386 -soundhw ac97 disk.img
449 qemu-system-i386 -soundhw hda disk.img
450 qemu-system-i386 -soundhw all disk.img
451 qemu-system-i386 -soundhw help
452 @end example
453
454 Note that Linux's i810_audio OSS kernel (for AC97) module might
455 require manually specifying clocking.
456
457 @example
458 modprobe i810_audio clocking=48000
459 @end example
460 ETEXI
461
462 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
463 "-balloon none disable balloon device\n"
464 "-balloon virtio[,addr=str]\n"
465 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
466 STEXI
467 @item -balloon none
468 @findex -balloon
469 Disable balloon device.
470 @item -balloon virtio[,addr=@var{addr}]
471 Enable virtio balloon device (default), optionally with PCI address
472 @var{addr}.
473 ETEXI
474
475 DEF("device", HAS_ARG, QEMU_OPTION_device,
476 "-device driver[,prop[=value][,...]]\n"
477 " add device (based on driver)\n"
478 " prop=value,... sets driver properties\n"
479 " use '-device help' to print all possible drivers\n"
480 " use '-device driver,help' to print all possible properties\n",
481 QEMU_ARCH_ALL)
482 STEXI
483 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
484 @findex -device
485 Add device @var{driver}. @var{prop}=@var{value} sets driver
486 properties. Valid properties depend on the driver. To get help on
487 possible drivers and properties, use @code{-device help} and
488 @code{-device @var{driver},help}.
489
490 Some drivers are:
491 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}]
492
493 Add an IPMI BMC. This is a simulation of a hardware management
494 interface processor that normally sits on a system. It provides
495 a watchdog and the ability to reset and power control the system.
496 You need to connect this to an IPMI interface to make it useful
497
498 The IPMI slave address to use for the BMC. The default is 0x20.
499 This address is the BMC's address on the I2C network of management
500 controllers. If you don't know what this means, it is safe to ignore
501 it.
502
503 @table @option
504 @item bmc=@var{id}
505 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
506 @item slave_addr=@var{val}
507 Define slave address to use for the BMC. The default is 0x20.
508 @item sdrfile=@var{file}
509 file containing raw Sensor Data Records (SDR) data. The default is none.
510 @item fruareasize=@var{val}
511 size of a Field Replaceable Unit (FRU) area. The default is 1024.
512 @item frudatafile=@var{file}
513 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
514 @end table
515
516 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
517
518 Add a connection to an external IPMI BMC simulator. Instead of
519 locally emulating the BMC like the above item, instead connect
520 to an external entity that provides the IPMI services.
521
522 A connection is made to an external BMC simulator. If you do this, it
523 is strongly recommended that you use the "reconnect=" chardev option
524 to reconnect to the simulator if the connection is lost. Note that if
525 this is not used carefully, it can be a security issue, as the
526 interface has the ability to send resets, NMIs, and power off the VM.
527 It's best if QEMU makes a connection to an external simulator running
528 on a secure port on localhost, so neither the simulator nor QEMU is
529 exposed to any outside network.
530
531 See the "lanserv/README.vm" file in the OpenIPMI library for more
532 details on the external interface.
533
534 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
535
536 Add a KCS IPMI interafce on the ISA bus. This also adds a
537 corresponding ACPI and SMBIOS entries, if appropriate.
538
539 @table @option
540 @item bmc=@var{id}
541 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
542 @item ioport=@var{val}
543 Define the I/O address of the interface. The default is 0xca0 for KCS.
544 @item irq=@var{val}
545 Define the interrupt to use. The default is 5. To disable interrupts,
546 set this to 0.
547 @end table
548
549 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
550
551 Like the KCS interface, but defines a BT interface. The default port is
552 0xe4 and the default interrupt is 5.
553
554 ETEXI
555
556 DEF("name", HAS_ARG, QEMU_OPTION_name,
557 "-name string1[,process=string2][,debug-threads=on|off]\n"
558 " set the name of the guest\n"
559 " string1 sets the window title and string2 the process name (on Linux)\n"
560 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
561 " NOTE: The thread names are for debugging and not a stable API.\n",
562 QEMU_ARCH_ALL)
563 STEXI
564 @item -name @var{name}
565 @findex -name
566 Sets the @var{name} of the guest.
567 This name will be displayed in the SDL window caption.
568 The @var{name} will also be used for the VNC server.
569 Also optionally set the top visible process name in Linux.
570 Naming of individual threads can also be enabled on Linux to aid debugging.
571 ETEXI
572
573 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
574 "-uuid %08x-%04x-%04x-%04x-%012x\n"
575 " specify machine UUID\n", QEMU_ARCH_ALL)
576 STEXI
577 @item -uuid @var{uuid}
578 @findex -uuid
579 Set system UUID.
580 ETEXI
581
582 STEXI
583 @end table
584 ETEXI
585 DEFHEADING()
586
587 DEFHEADING(Block device options:)
588 STEXI
589 @table @option
590 ETEXI
591
592 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
593 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
594 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
595 STEXI
596 @item -fda @var{file}
597 @itemx -fdb @var{file}
598 @findex -fda
599 @findex -fdb
600 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
601 ETEXI
602
603 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
604 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
605 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
606 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
607 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
608 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
609 STEXI
610 @item -hda @var{file}
611 @itemx -hdb @var{file}
612 @itemx -hdc @var{file}
613 @itemx -hdd @var{file}
614 @findex -hda
615 @findex -hdb
616 @findex -hdc
617 @findex -hdd
618 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
619 ETEXI
620
621 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
622 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
623 QEMU_ARCH_ALL)
624 STEXI
625 @item -cdrom @var{file}
626 @findex -cdrom
627 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
628 @option{-cdrom} at the same time). You can use the host CD-ROM by
629 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
630 ETEXI
631
632 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
633 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
634 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
635 " [,read-only=on|off][,detect-zeroes=on|off|unmap]\n"
636 " [,driver specific parameters...]\n"
637 " configure a block backend\n", QEMU_ARCH_ALL)
638 STEXI
639 @item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]]
640 @findex -blockdev
641
642 Define a new block driver node. Some of the options apply to all block drivers,
643 other options are only accepted for a specific block driver. See below for a
644 list of generic options and options for the most common block drivers.
645
646 Options that expect a reference to another node (e.g. @code{file}) can be
647 given in two ways. Either you specify the node name of an already existing node
648 (file=@var{node-name}), or you define a new node inline, adding options
649 for the referenced node after a dot (file.filename=@var{path},file.aio=native).
650
651 A block driver node created with @option{-blockdev} can be used for a guest
652 device by specifying its node name for the @code{drive} property in a
653 @option{-device} argument that defines a block device.
654
655 @table @option
656 @item Valid options for any block driver node:
657
658 @table @code
659 @item driver
660 Specifies the block driver to use for the given node.
661 @item node-name
662 This defines the name of the block driver node by which it will be referenced
663 later. The name must be unique, i.e. it must not match the name of a different
664 block driver node, or (if you use @option{-drive} as well) the ID of a drive.
665
666 If no node name is specified, it is automatically generated. The generated node
667 name is not intended to be predictable and changes between QEMU invocations.
668 For the top level, an explicit node name must be specified.
669 @item read-only
670 Open the node read-only. Guest write attempts will fail.
671 @item cache.direct
672 The host page cache can be avoided with @option{cache.direct=on}. This will
673 attempt to do disk IO directly to the guest's memory. QEMU may still perform an
674 internal copy of the data.
675 @item cache.no-flush
676 In case you don't care about data integrity over host failures, you can use
677 @option{cache.no-flush=on}. This option tells QEMU that it never needs to write
678 any data to the disk but can instead keep things in cache. If anything goes
679 wrong, like your host losing power, the disk storage getting disconnected
680 accidentally, etc. your image will most probably be rendered unusable.
681 @item discard=@var{discard}
682 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls
683 whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are
684 ignored or passed to the filesystem. Some machine types may not support
685 discard requests.
686 @item detect-zeroes=@var{detect-zeroes}
687 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
688 conversion of plain zero writes by the OS to driver specific optimized
689 zero write commands. You may even choose "unmap" if @var{discard} is set
690 to "unmap" to allow a zero write to be converted to an @code{unmap} operation.
691 @end table
692
693 @item Driver-specific options for @code{file}
694
695 This is the protocol-level block driver for accessing regular files.
696
697 @table @code
698 @item filename
699 The path to the image file in the local filesystem
700 @item aio
701 Specifies the AIO backend (threads/native, default: threads)
702 @item locking
703 Specifies whether the image file is protected with Linux OFD / POSIX locks. The
704 default is to use the Linux Open File Descriptor API if available, otherwise no
705 lock is applied. (auto/on/off, default: auto)
706 @end table
707 Example:
708 @example
709 -blockdev driver=file,node-name=disk,filename=disk.img
710 @end example
711
712 @item Driver-specific options for @code{raw}
713
714 This is the image format block driver for raw images. It is usually
715 stacked on top of a protocol level block driver such as @code{file}.
716
717 @table @code
718 @item file
719 Reference to or definition of the data source block driver node
720 (e.g. a @code{file} driver node)
721 @end table
722 Example 1:
723 @example
724 -blockdev driver=file,node-name=disk_file,filename=disk.img
725 -blockdev driver=raw,node-name=disk,file=disk_file
726 @end example
727 Example 2:
728 @example
729 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
730 @end example
731
732 @item Driver-specific options for @code{qcow2}
733
734 This is the image format block driver for qcow2 images. It is usually
735 stacked on top of a protocol level block driver such as @code{file}.
736
737 @table @code
738 @item file
739 Reference to or definition of the data source block driver node
740 (e.g. a @code{file} driver node)
741
742 @item backing
743 Reference to or definition of the backing file block device (default is taken
744 from the image file). It is allowed to pass an empty string here in order to
745 disable the default backing file.
746
747 @item lazy-refcounts
748 Whether to enable the lazy refcounts feature (on/off; default is taken from the
749 image file)
750
751 @item cache-size
752 The maximum total size of the L2 table and refcount block caches in bytes
753 (default: 1048576 bytes or 8 clusters, whichever is larger)
754
755 @item l2-cache-size
756 The maximum size of the L2 table cache in bytes
757 (default: 4/5 of the total cache size)
758
759 @item refcount-cache-size
760 The maximum size of the refcount block cache in bytes
761 (default: 1/5 of the total cache size)
762
763 @item cache-clean-interval
764 Clean unused entries in the L2 and refcount caches. The interval is in seconds.
765 The default value is 0 and it disables this feature.
766
767 @item pass-discard-request
768 Whether discard requests to the qcow2 device should be forwarded to the data
769 source (on/off; default: on if discard=unmap is specified, off otherwise)
770
771 @item pass-discard-snapshot
772 Whether discard requests for the data source should be issued when a snapshot
773 operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off;
774 default: on)
775
776 @item pass-discard-other
777 Whether discard requests for the data source should be issued on other
778 occasions where a cluster gets freed (on/off; default: off)
779
780 @item overlap-check
781 Which overlap checks to perform for writes to the image
782 (none/constant/cached/all; default: cached). For details or finer
783 granularity control refer to the QAPI documentation of @code{blockdev-add}.
784 @end table
785
786 Example 1:
787 @example
788 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
789 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
790 @end example
791 Example 2:
792 @example
793 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
794 @end example
795
796 @item Driver-specific options for other drivers
797 Please refer to the QAPI documentation of the @code{blockdev-add} QMP command.
798
799 @end table
800
801 ETEXI
802
803 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
804 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
805 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
806 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
807 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
808 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
809 " [,readonly=on|off][,copy-on-read=on|off]\n"
810 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
811 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
812 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
813 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
814 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
815 " [[,iops_size=is]]\n"
816 " [[,group=g]]\n"
817 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
818 STEXI
819 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
820 @findex -drive
821
822 Define a new drive. This includes creating a block driver node (the backend) as
823 well as a guest device, and is mostly a shortcut for defining the corresponding
824 @option{-blockdev} and @option{-device} options.
825
826 @option{-drive} accepts all options that are accepted by @option{-blockdev}. In
827 addition, it knows the following options:
828
829 @table @option
830 @item file=@var{file}
831 This option defines which disk image (@pxref{disk_images}) to use with
832 this drive. If the filename contains comma, you must double it
833 (for instance, "file=my,,file" to use file "my,file").
834
835 Special files such as iSCSI devices can be specified using protocol
836 specific URLs. See the section for "Device URL Syntax" for more information.
837 @item if=@var{interface}
838 This option defines on which type on interface the drive is connected.
839 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
840 @item bus=@var{bus},unit=@var{unit}
841 These options define where is connected the drive by defining the bus number and
842 the unit id.
843 @item index=@var{index}
844 This option defines where is connected the drive by using an index in the list
845 of available connectors of a given interface type.
846 @item media=@var{media}
847 This option defines the type of the media: disk or cdrom.
848 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
849 These options have the same definition as they have in @option{-hdachs}.
850 These parameters are deprecated, use the corresponding parameters
851 of @code{-device} instead.
852 @item snapshot=@var{snapshot}
853 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
854 (see @option{-snapshot}).
855 @item cache=@var{cache}
856 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough"
857 and controls how the host cache is used to access block data. This is a
858 shortcut that sets the @option{cache.direct} and @option{cache.no-flush}
859 options (as in @option{-blockdev}), and additionally @option{cache.writeback},
860 which provides a default for the @option{write-cache} option of block guest
861 devices (as in @option{-device}). The modes correspond to the following
862 settings:
863
864 @c Our texi2pod.pl script doesn't support @multitable, so fall back to using
865 @c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage
866 @c and the HTML output.
867 @example
868 @ │ cache.writeback cache.direct cache.no-flush
869 ─────────────┼─────────────────────────────────────────────────
870 writeback │ on off off
871 none │ on on off
872 writethrough │ off off off
873 directsync │ off on off
874 unsafe │ on off on
875 @end example
876
877 The default mode is @option{cache=writeback}.
878
879 @item aio=@var{aio}
880 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
881 @item format=@var{format}
882 Specify which disk @var{format} will be used rather than detecting
883 the format. Can be used to specify format=raw to avoid interpreting
884 an untrusted format header.
885 @item serial=@var{serial}
886 This option specifies the serial number to assign to the device. This
887 parameter is deprecated, use the corresponding parameter of @code{-device}
888 instead.
889 @item addr=@var{addr}
890 Specify the controller's PCI address (if=virtio only). This parameter is
891 deprecated, use the corresponding parameter of @code{-device} instead.
892 @item werror=@var{action},rerror=@var{action}
893 Specify which @var{action} to take on write and read errors. Valid actions are:
894 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
895 "report" (report the error to the guest), "enospc" (pause QEMU only if the
896 host disk is full; report the error to the guest otherwise).
897 The default setting is @option{werror=enospc} and @option{rerror=report}.
898 @item copy-on-read=@var{copy-on-read}
899 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
900 file sectors into the image file.
901 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
902 Specify bandwidth throttling limits in bytes per second, either for all request
903 types or for reads or writes only. Small values can lead to timeouts or hangs
904 inside the guest. A safe minimum for disks is 2 MB/s.
905 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
906 Specify bursts in bytes per second, either for all request types or for reads
907 or writes only. Bursts allow the guest I/O to spike above the limit
908 temporarily.
909 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
910 Specify request rate limits in requests per second, either for all request
911 types or for reads or writes only.
912 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
913 Specify bursts in requests per second, either for all request types or for reads
914 or writes only. Bursts allow the guest I/O to spike above the limit
915 temporarily.
916 @item iops_size=@var{is}
917 Let every @var{is} bytes of a request count as a new request for iops
918 throttling purposes. Use this option to prevent guests from circumventing iops
919 limits by sending fewer but larger requests.
920 @item group=@var{g}
921 Join a throttling quota group with given name @var{g}. All drives that are
922 members of the same group are accounted for together. Use this option to
923 prevent guests from circumventing throttling limits by using many small disks
924 instead of a single larger disk.
925 @end table
926
927 By default, the @option{cache.writeback=on} mode is used. It will report data
928 writes as completed as soon as the data is present in the host page cache.
929 This is safe as long as your guest OS makes sure to correctly flush disk caches
930 where needed. If your guest OS does not handle volatile disk write caches
931 correctly and your host crashes or loses power, then the guest may experience
932 data corruption.
933
934 For such guests, you should consider using @option{cache.writeback=off}. This
935 means that the host page cache will be used to read and write data, but write
936 notification will be sent to the guest only after QEMU has made sure to flush
937 each write to the disk. Be aware that this has a major impact on performance.
938
939 When using the @option{-snapshot} option, unsafe caching is always used.
940
941 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
942 useful when the backing file is over a slow network. By default copy-on-read
943 is off.
944
945 Instead of @option{-cdrom} you can use:
946 @example
947 qemu-system-i386 -drive file=file,index=2,media=cdrom
948 @end example
949
950 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
951 use:
952 @example
953 qemu-system-i386 -drive file=file,index=0,media=disk
954 qemu-system-i386 -drive file=file,index=1,media=disk
955 qemu-system-i386 -drive file=file,index=2,media=disk
956 qemu-system-i386 -drive file=file,index=3,media=disk
957 @end example
958
959 You can open an image using pre-opened file descriptors from an fd set:
960 @example
961 qemu-system-i386
962 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
963 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
964 -drive file=/dev/fdset/2,index=0,media=disk
965 @end example
966
967 You can connect a CDROM to the slave of ide0:
968 @example
969 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
970 @end example
971
972 If you don't specify the "file=" argument, you define an empty drive:
973 @example
974 qemu-system-i386 -drive if=ide,index=1,media=cdrom
975 @end example
976
977 Instead of @option{-fda}, @option{-fdb}, you can use:
978 @example
979 qemu-system-i386 -drive file=file,index=0,if=floppy
980 qemu-system-i386 -drive file=file,index=1,if=floppy
981 @end example
982
983 By default, @var{interface} is "ide" and @var{index} is automatically
984 incremented:
985 @example
986 qemu-system-i386 -drive file=a -drive file=b"
987 @end example
988 is interpreted like:
989 @example
990 qemu-system-i386 -hda a -hdb b
991 @end example
992 ETEXI
993
994 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
995 "-mtdblock file use 'file' as on-board Flash memory image\n",
996 QEMU_ARCH_ALL)
997 STEXI
998 @item -mtdblock @var{file}
999 @findex -mtdblock
1000 Use @var{file} as on-board Flash memory image.
1001 ETEXI
1002
1003 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
1004 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
1005 STEXI
1006 @item -sd @var{file}
1007 @findex -sd
1008 Use @var{file} as SecureDigital card image.
1009 ETEXI
1010
1011 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
1012 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
1013 STEXI
1014 @item -pflash @var{file}
1015 @findex -pflash
1016 Use @var{file} as a parallel flash image.
1017 ETEXI
1018
1019 DEF("snapshot", 0, QEMU_OPTION_snapshot,
1020 "-snapshot write to temporary files instead of disk image files\n",
1021 QEMU_ARCH_ALL)
1022 STEXI
1023 @item -snapshot
1024 @findex -snapshot
1025 Write to temporary files instead of disk image files. In this case,
1026 the raw disk image you use is not written back. You can however force
1027 the write back by pressing @key{C-a s} (@pxref{disk_images}).
1028 ETEXI
1029
1030 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
1031 "-hdachs c,h,s[,t]\n" \
1032 " force hard disk 0 physical geometry and the optional BIOS\n" \
1033 " translation (t=none or lba) (usually QEMU can guess them)\n",
1034 QEMU_ARCH_ALL)
1035 STEXI
1036 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1037 @findex -hdachs
1038 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1039 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1040 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1041 all those parameters. This option is deprecated, please use
1042 @code{-device ide-hd,cyls=c,heads=h,secs=s,...} instead.
1043 ETEXI
1044
1045 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1046 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
1047 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n"
1048 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1049 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1050 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1051 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1052 " [[,throttling.iops-size=is]]\n",
1053 QEMU_ARCH_ALL)
1054
1055 STEXI
1056
1057 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1058 @findex -fsdev
1059 Define a new file system device. Valid options are:
1060 @table @option
1061 @item @var{fsdriver}
1062 This option specifies the fs driver backend to use.
1063 Currently "local", "handle" and "proxy" file system drivers are supported.
1064 @item id=@var{id}
1065 Specifies identifier for this device
1066 @item path=@var{path}
1067 Specifies the export path for the file system device. Files under
1068 this path will be available to the 9p client on the guest.
1069 @item security_model=@var{security_model}
1070 Specifies the security model to be used for this export path.
1071 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1072 In "passthrough" security model, files are stored using the same
1073 credentials as they are created on the guest. This requires QEMU
1074 to run as root. In "mapped-xattr" security model, some of the file
1075 attributes like uid, gid, mode bits and link target are stored as
1076 file attributes. For "mapped-file" these attributes are stored in the
1077 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1078 interact with other unix tools. "none" security model is same as
1079 passthrough except the sever won't report failures if it fails to
1080 set file attributes like ownership. Security model is mandatory
1081 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
1082 security model as a parameter.
1083 @item writeout=@var{writeout}
1084 This is an optional argument. The only supported value is "immediate".
1085 This means that host page cache will be used to read and write data but
1086 write notification will be sent to the guest only when the data has been
1087 reported as written by the storage subsystem.
1088 @item readonly
1089 Enables exporting 9p share as a readonly mount for guests. By default
1090 read-write access is given.
1091 @item socket=@var{socket}
1092 Enables proxy filesystem driver to use passed socket file for communicating
1093 with virtfs-proxy-helper
1094 @item sock_fd=@var{sock_fd}
1095 Enables proxy filesystem driver to use passed socket descriptor for
1096 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1097 will create socketpair and pass one of the fds as sock_fd
1098 @item fmode=@var{fmode}
1099 Specifies the default mode for newly created files on the host. Works only
1100 with security models "mapped-xattr" and "mapped-file".
1101 @item dmode=@var{dmode}
1102 Specifies the default mode for newly created directories on the host. Works
1103 only with security models "mapped-xattr" and "mapped-file".
1104 @end table
1105
1106 -fsdev option is used along with -device driver "virtio-9p-pci".
1107 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
1108 Options for virtio-9p-pci driver are:
1109 @table @option
1110 @item fsdev=@var{id}
1111 Specifies the id value specified along with -fsdev option
1112 @item mount_tag=@var{mount_tag}
1113 Specifies the tag name to be used by the guest to mount this export point
1114 @end table
1115
1116 ETEXI
1117
1118 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1119 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
1120 " [,id=id][,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n",
1121 QEMU_ARCH_ALL)
1122
1123 STEXI
1124
1125 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1126 @findex -virtfs
1127
1128 The general form of a Virtual File system pass-through options are:
1129 @table @option
1130 @item @var{fsdriver}
1131 This option specifies the fs driver backend to use.
1132 Currently "local", "handle" and "proxy" file system drivers are supported.
1133 @item id=@var{id}
1134 Specifies identifier for this device
1135 @item path=@var{path}
1136 Specifies the export path for the file system device. Files under
1137 this path will be available to the 9p client on the guest.
1138 @item security_model=@var{security_model}
1139 Specifies the security model to be used for this export path.
1140 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1141 In "passthrough" security model, files are stored using the same
1142 credentials as they are created on the guest. This requires QEMU
1143 to run as root. In "mapped-xattr" security model, some of the file
1144 attributes like uid, gid, mode bits and link target are stored as
1145 file attributes. For "mapped-file" these attributes are stored in the
1146 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1147 interact with other unix tools. "none" security model is same as
1148 passthrough except the sever won't report failures if it fails to
1149 set file attributes like ownership. Security model is mandatory only
1150 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
1151 model as a parameter.
1152 @item writeout=@var{writeout}
1153 This is an optional argument. The only supported value is "immediate".
1154 This means that host page cache will be used to read and write data but
1155 write notification will be sent to the guest only when the data has been
1156 reported as written by the storage subsystem.
1157 @item readonly
1158 Enables exporting 9p share as a readonly mount for guests. By default
1159 read-write access is given.
1160 @item socket=@var{socket}
1161 Enables proxy filesystem driver to use passed socket file for
1162 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1163 will create socketpair and pass one of the fds as sock_fd
1164 @item sock_fd
1165 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
1166 descriptor for interfacing with virtfs-proxy-helper
1167 @item fmode=@var{fmode}
1168 Specifies the default mode for newly created files on the host. Works only
1169 with security models "mapped-xattr" and "mapped-file".
1170 @item dmode=@var{dmode}
1171 Specifies the default mode for newly created directories on the host. Works
1172 only with security models "mapped-xattr" and "mapped-file".
1173 @end table
1174 ETEXI
1175
1176 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
1177 "-virtfs_synth Create synthetic file system image\n",
1178 QEMU_ARCH_ALL)
1179 STEXI
1180 @item -virtfs_synth
1181 @findex -virtfs_synth
1182 Create synthetic file system image
1183 ETEXI
1184
1185 STEXI
1186 @end table
1187 ETEXI
1188 DEFHEADING()
1189
1190 DEFHEADING(USB options:)
1191 STEXI
1192 @table @option
1193 ETEXI
1194
1195 DEF("usb", 0, QEMU_OPTION_usb,
1196 "-usb enable the USB driver (if it is not used by default yet)\n",
1197 QEMU_ARCH_ALL)
1198 STEXI
1199 @item -usb
1200 @findex -usb
1201 Enable the USB driver (if it is not used by default yet).
1202 ETEXI
1203
1204 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1205 "-usbdevice name add the host or guest USB device 'name'\n",
1206 QEMU_ARCH_ALL)
1207 STEXI
1208
1209 @item -usbdevice @var{devname}
1210 @findex -usbdevice
1211 Add the USB device @var{devname}. Note that this option is deprecated,
1212 please use @code{-device usb-...} instead. @xref{usb_devices}.
1213
1214 @table @option
1215
1216 @item mouse
1217 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1218
1219 @item tablet
1220 Pointer device that uses absolute coordinates (like a touchscreen). This
1221 means QEMU is able to report the mouse position without having to grab the
1222 mouse. Also overrides the PS/2 mouse emulation when activated.
1223
1224 @item disk:[format=@var{format}]:@var{file}
1225 Mass storage device based on file. The optional @var{format} argument
1226 will be used rather than detecting the format. Can be used to specify
1227 @code{format=raw} to avoid interpreting an untrusted format header.
1228
1229 @item host:@var{bus}.@var{addr}
1230 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
1231
1232 @item host:@var{vendor_id}:@var{product_id}
1233 Pass through the host device identified by @var{vendor_id}:@var{product_id}
1234 (Linux only).
1235
1236 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
1237 Serial converter to host character device @var{dev}, see @code{-serial} for the
1238 available devices.
1239
1240 @item braille
1241 Braille device. This will use BrlAPI to display the braille output on a real
1242 or fake device.
1243
1244 @item net:@var{options}
1245 Network adapter that supports CDC ethernet and RNDIS protocols.
1246
1247 @end table
1248 ETEXI
1249
1250 STEXI
1251 @end table
1252 ETEXI
1253 DEFHEADING()
1254
1255 DEFHEADING(Display options:)
1256 STEXI
1257 @table @option
1258 ETEXI
1259
1260 DEF("display", HAS_ARG, QEMU_OPTION_display,
1261 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
1262 " [,window_close=on|off][,gl=on|off]\n"
1263 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1264 "-display vnc=<display>[,<optargs>]\n"
1265 "-display curses\n"
1266 "-display none"
1267 " select display type\n"
1268 "The default display is equivalent to\n"
1269 #if defined(CONFIG_GTK)
1270 "\t\"-display gtk\"\n"
1271 #elif defined(CONFIG_SDL)
1272 "\t\"-display sdl\"\n"
1273 #elif defined(CONFIG_COCOA)
1274 "\t\"-display cocoa\"\n"
1275 #elif defined(CONFIG_VNC)
1276 "\t\"-vnc localhost:0,to=99,id=default\"\n"
1277 #else
1278 "\t\"-display none\"\n"
1279 #endif
1280 , QEMU_ARCH_ALL)
1281 STEXI
1282 @item -display @var{type}
1283 @findex -display
1284 Select type of display to use. This option is a replacement for the
1285 old style -sdl/-curses/... options. Valid values for @var{type} are
1286 @table @option
1287 @item sdl
1288 Display video output via SDL (usually in a separate graphics
1289 window; see the SDL documentation for other possibilities).
1290 @item curses
1291 Display video output via curses. For graphics device models which
1292 support a text mode, QEMU can display this output using a
1293 curses/ncurses interface. Nothing is displayed when the graphics
1294 device is in graphical mode or if the graphics device does not support
1295 a text mode. Generally only the VGA device models support text mode.
1296 @item none
1297 Do not display video output. The guest will still see an emulated
1298 graphics card, but its output will not be displayed to the QEMU
1299 user. This option differs from the -nographic option in that it
1300 only affects what is done with video output; -nographic also changes
1301 the destination of the serial and parallel port data.
1302 @item gtk
1303 Display video output in a GTK window. This interface provides drop-down
1304 menus and other UI elements to configure and control the VM during
1305 runtime.
1306 @item vnc
1307 Start a VNC server on display <arg>
1308 @end table
1309 ETEXI
1310
1311 DEF("nographic", 0, QEMU_OPTION_nographic,
1312 "-nographic disable graphical output and redirect serial I/Os to console\n",
1313 QEMU_ARCH_ALL)
1314 STEXI
1315 @item -nographic
1316 @findex -nographic
1317 Normally, if QEMU is compiled with graphical window support, it displays
1318 output such as guest graphics, guest console, and the QEMU monitor in a
1319 window. With this option, you can totally disable graphical output so
1320 that QEMU is a simple command line application. The emulated serial port
1321 is redirected on the console and muxed with the monitor (unless
1322 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1323 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1324 switching between the console and monitor.
1325 ETEXI
1326
1327 DEF("curses", 0, QEMU_OPTION_curses,
1328 "-curses shorthand for -display curses\n",
1329 QEMU_ARCH_ALL)
1330 STEXI
1331 @item -curses
1332 @findex -curses
1333 Normally, if QEMU is compiled with graphical window support, it displays
1334 output such as guest graphics, guest console, and the QEMU monitor in a
1335 window. With this option, QEMU can display the VGA output when in text
1336 mode using a curses/ncurses interface. Nothing is displayed in graphical
1337 mode.
1338 ETEXI
1339
1340 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1341 "-no-frame open SDL window without a frame and window decorations\n",
1342 QEMU_ARCH_ALL)
1343 STEXI
1344 @item -no-frame
1345 @findex -no-frame
1346 Do not use decorations for SDL windows and start them using the whole
1347 available screen space. This makes the using QEMU in a dedicated desktop
1348 workspace more convenient.
1349 ETEXI
1350
1351 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1352 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1353 QEMU_ARCH_ALL)
1354 STEXI
1355 @item -alt-grab
1356 @findex -alt-grab
1357 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1358 affects the special keys (for fullscreen, monitor-mode switching, etc).
1359 ETEXI
1360
1361 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1362 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1363 QEMU_ARCH_ALL)
1364 STEXI
1365 @item -ctrl-grab
1366 @findex -ctrl-grab
1367 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1368 affects the special keys (for fullscreen, monitor-mode switching, etc).
1369 ETEXI
1370
1371 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1372 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1373 STEXI
1374 @item -no-quit
1375 @findex -no-quit
1376 Disable SDL window close capability.
1377 ETEXI
1378
1379 DEF("sdl", 0, QEMU_OPTION_sdl,
1380 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1381 STEXI
1382 @item -sdl
1383 @findex -sdl
1384 Enable SDL.
1385 ETEXI
1386
1387 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1388 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1389 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1390 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1391 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1392 " [,tls-ciphers=<list>]\n"
1393 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1394 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1395 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1396 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1397 " [,jpeg-wan-compression=[auto|never|always]]\n"
1398 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1399 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1400 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1401 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1402 " [,gl=[on|off]][,rendernode=<file>]\n"
1403 " enable spice\n"
1404 " at least one of {port, tls-port} is mandatory\n",
1405 QEMU_ARCH_ALL)
1406 STEXI
1407 @item -spice @var{option}[,@var{option}[,...]]
1408 @findex -spice
1409 Enable the spice remote desktop protocol. Valid options are
1410
1411 @table @option
1412
1413 @item port=<nr>
1414 Set the TCP port spice is listening on for plaintext channels.
1415
1416 @item addr=<addr>
1417 Set the IP address spice is listening on. Default is any address.
1418
1419 @item ipv4
1420 @itemx ipv6
1421 @itemx unix
1422 Force using the specified IP version.
1423
1424 @item password=<secret>
1425 Set the password you need to authenticate.
1426
1427 @item sasl
1428 Require that the client use SASL to authenticate with the spice.
1429 The exact choice of authentication method used is controlled from the
1430 system / user's SASL configuration file for the 'qemu' service. This
1431 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1432 unprivileged user, an environment variable SASL_CONF_PATH can be used
1433 to make it search alternate locations for the service config.
1434 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1435 it is recommended that SASL always be combined with the 'tls' and
1436 'x509' settings to enable use of SSL and server certificates. This
1437 ensures a data encryption preventing compromise of authentication
1438 credentials.
1439
1440 @item disable-ticketing
1441 Allow client connects without authentication.
1442
1443 @item disable-copy-paste
1444 Disable copy paste between the client and the guest.
1445
1446 @item disable-agent-file-xfer
1447 Disable spice-vdagent based file-xfer between the client and the guest.
1448
1449 @item tls-port=<nr>
1450 Set the TCP port spice is listening on for encrypted channels.
1451
1452 @item x509-dir=<dir>
1453 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1454
1455 @item x509-key-file=<file>
1456 @itemx x509-key-password=<file>
1457 @itemx x509-cert-file=<file>
1458 @itemx x509-cacert-file=<file>
1459 @itemx x509-dh-key-file=<file>
1460 The x509 file names can also be configured individually.
1461
1462 @item tls-ciphers=<list>
1463 Specify which ciphers to use.
1464
1465 @item tls-channel=[main|display|cursor|inputs|record|playback]
1466 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1467 Force specific channel to be used with or without TLS encryption. The
1468 options can be specified multiple times to configure multiple
1469 channels. The special name "default" can be used to set the default
1470 mode. For channels which are not explicitly forced into one mode the
1471 spice client is allowed to pick tls/plaintext as he pleases.
1472
1473 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1474 Configure image compression (lossless).
1475 Default is auto_glz.
1476
1477 @item jpeg-wan-compression=[auto|never|always]
1478 @itemx zlib-glz-wan-compression=[auto|never|always]
1479 Configure wan image compression (lossy for slow links).
1480 Default is auto.
1481
1482 @item streaming-video=[off|all|filter]
1483 Configure video stream detection. Default is off.
1484
1485 @item agent-mouse=[on|off]
1486 Enable/disable passing mouse events via vdagent. Default is on.
1487
1488 @item playback-compression=[on|off]
1489 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1490
1491 @item seamless-migration=[on|off]
1492 Enable/disable spice seamless migration. Default is off.
1493
1494 @item gl=[on|off]
1495 Enable/disable OpenGL context. Default is off.
1496
1497 @item rendernode=<file>
1498 DRM render node for OpenGL rendering. If not specified, it will pick
1499 the first available. (Since 2.9)
1500
1501 @end table
1502 ETEXI
1503
1504 DEF("portrait", 0, QEMU_OPTION_portrait,
1505 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1506 QEMU_ARCH_ALL)
1507 STEXI
1508 @item -portrait
1509 @findex -portrait
1510 Rotate graphical output 90 deg left (only PXA LCD).
1511 ETEXI
1512
1513 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1514 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1515 QEMU_ARCH_ALL)
1516 STEXI
1517 @item -rotate @var{deg}
1518 @findex -rotate
1519 Rotate graphical output some deg left (only PXA LCD).
1520 ETEXI
1521
1522 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1523 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1524 " select video card type\n", QEMU_ARCH_ALL)
1525 STEXI
1526 @item -vga @var{type}
1527 @findex -vga
1528 Select type of VGA card to emulate. Valid values for @var{type} are
1529 @table @option
1530 @item cirrus
1531 Cirrus Logic GD5446 Video card. All Windows versions starting from
1532 Windows 95 should recognize and use this graphic card. For optimal
1533 performances, use 16 bit color depth in the guest and the host OS.
1534 (This card was the default before QEMU 2.2)
1535 @item std
1536 Standard VGA card with Bochs VBE extensions. If your guest OS
1537 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1538 to use high resolution modes (>= 1280x1024x16) then you should use
1539 this option. (This card is the default since QEMU 2.2)
1540 @item vmware
1541 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1542 recent XFree86/XOrg server or Windows guest with a driver for this
1543 card.
1544 @item qxl
1545 QXL paravirtual graphic card. It is VGA compatible (including VESA
1546 2.0 VBE support). Works best with qxl guest drivers installed though.
1547 Recommended choice when using the spice protocol.
1548 @item tcx
1549 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1550 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1551 fixed resolution of 1024x768.
1552 @item cg3
1553 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1554 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1555 resolutions aimed at people wishing to run older Solaris versions.
1556 @item virtio
1557 Virtio VGA card.
1558 @item none
1559 Disable VGA card.
1560 @end table
1561 ETEXI
1562
1563 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1564 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1565 STEXI
1566 @item -full-screen
1567 @findex -full-screen
1568 Start in full screen.
1569 ETEXI
1570
1571 DEF("g", 1, QEMU_OPTION_g ,
1572 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1573 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1574 STEXI
1575 @item -g @var{width}x@var{height}[x@var{depth}]
1576 @findex -g
1577 Set the initial graphical resolution and depth (PPC, SPARC only).
1578 ETEXI
1579
1580 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1581 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1582 STEXI
1583 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1584 @findex -vnc
1585 Normally, if QEMU is compiled with graphical window support, it displays
1586 output such as guest graphics, guest console, and the QEMU monitor in a
1587 window. With this option, you can have QEMU listen on VNC display
1588 @var{display} and redirect the VGA display over the VNC session. It is
1589 very useful to enable the usb tablet device when using this option
1590 (option @option{-device usb-tablet}). When using the VNC display, you
1591 must use the @option{-k} parameter to set the keyboard layout if you are
1592 not using en-us. Valid syntax for the @var{display} is
1593
1594 @table @option
1595
1596 @item to=@var{L}
1597
1598 With this option, QEMU will try next available VNC @var{display}s, until the
1599 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1600 available, e.g. port 5900+@var{display} is already used by another
1601 application. By default, to=0.
1602
1603 @item @var{host}:@var{d}
1604
1605 TCP connections will only be allowed from @var{host} on display @var{d}.
1606 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1607 be omitted in which case the server will accept connections from any host.
1608
1609 @item unix:@var{path}
1610
1611 Connections will be allowed over UNIX domain sockets where @var{path} is the
1612 location of a unix socket to listen for connections on.
1613
1614 @item none
1615
1616 VNC is initialized but not started. The monitor @code{change} command
1617 can be used to later start the VNC server.
1618
1619 @end table
1620
1621 Following the @var{display} value there may be one or more @var{option} flags
1622 separated by commas. Valid options are
1623
1624 @table @option
1625
1626 @item reverse
1627
1628 Connect to a listening VNC client via a ``reverse'' connection. The
1629 client is specified by the @var{display}. For reverse network
1630 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1631 is a TCP port number, not a display number.
1632
1633 @item websocket
1634
1635 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1636 If a bare @var{websocket} option is given, the Websocket port is
1637 5700+@var{display}. An alternative port can be specified with the
1638 syntax @code{websocket}=@var{port}.
1639
1640 If @var{host} is specified connections will only be allowed from this host.
1641 It is possible to control the websocket listen address independently, using
1642 the syntax @code{websocket}=@var{host}:@var{port}.
1643
1644 If no TLS credentials are provided, the websocket connection runs in
1645 unencrypted mode. If TLS credentials are provided, the websocket connection
1646 requires encrypted client connections.
1647
1648 @item password
1649
1650 Require that password based authentication is used for client connections.
1651
1652 The password must be set separately using the @code{set_password} command in
1653 the @ref{pcsys_monitor}. The syntax to change your password is:
1654 @code{set_password <protocol> <password>} where <protocol> could be either
1655 "vnc" or "spice".
1656
1657 If you would like to change <protocol> password expiration, you should use
1658 @code{expire_password <protocol> <expiration-time>} where expiration time could
1659 be one of the following options: now, never, +seconds or UNIX time of
1660 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1661 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1662 date and time).
1663
1664 You can also use keywords "now" or "never" for the expiration time to
1665 allow <protocol> password to expire immediately or never expire.
1666
1667 @item tls-creds=@var{ID}
1668
1669 Provides the ID of a set of TLS credentials to use to secure the
1670 VNC server. They will apply to both the normal VNC server socket
1671 and the websocket socket (if enabled). Setting TLS credentials
1672 will cause the VNC server socket to enable the VeNCrypt auth
1673 mechanism. The credentials should have been previously created
1674 using the @option{-object tls-creds} argument.
1675
1676 The @option{tls-creds} parameter obsoletes the @option{tls},
1677 @option{x509}, and @option{x509verify} options, and as such
1678 it is not permitted to set both new and old type options at
1679 the same time.
1680
1681 @item tls
1682
1683 Require that client use TLS when communicating with the VNC server. This
1684 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1685 attack. It is recommended that this option be combined with either the
1686 @option{x509} or @option{x509verify} options.
1687
1688 This option is now deprecated in favor of using the @option{tls-creds}
1689 argument.
1690
1691 @item x509=@var{/path/to/certificate/dir}
1692
1693 Valid if @option{tls} is specified. Require that x509 credentials are used
1694 for negotiating the TLS session. The server will send its x509 certificate
1695 to the client. It is recommended that a password be set on the VNC server
1696 to provide authentication of the client when this is used. The path following
1697 this option specifies where the x509 certificates are to be loaded from.
1698 See the @ref{vnc_security} section for details on generating certificates.
1699
1700 This option is now deprecated in favour of using the @option{tls-creds}
1701 argument.
1702
1703 @item x509verify=@var{/path/to/certificate/dir}
1704
1705 Valid if @option{tls} is specified. Require that x509 credentials are used
1706 for negotiating the TLS session. The server will send its x509 certificate
1707 to the client, and request that the client send its own x509 certificate.
1708 The server will validate the client's certificate against the CA certificate,
1709 and reject clients when validation fails. If the certificate authority is
1710 trusted, this is a sufficient authentication mechanism. You may still wish
1711 to set a password on the VNC server as a second authentication layer. The
1712 path following this option specifies where the x509 certificates are to
1713 be loaded from. See the @ref{vnc_security} section for details on generating
1714 certificates.
1715
1716 This option is now deprecated in favour of using the @option{tls-creds}
1717 argument.
1718
1719 @item sasl
1720
1721 Require that the client use SASL to authenticate with the VNC server.
1722 The exact choice of authentication method used is controlled from the
1723 system / user's SASL configuration file for the 'qemu' service. This
1724 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1725 unprivileged user, an environment variable SASL_CONF_PATH can be used
1726 to make it search alternate locations for the service config.
1727 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1728 it is recommended that SASL always be combined with the 'tls' and
1729 'x509' settings to enable use of SSL and server certificates. This
1730 ensures a data encryption preventing compromise of authentication
1731 credentials. See the @ref{vnc_security} section for details on using
1732 SASL authentication.
1733
1734 @item acl
1735
1736 Turn on access control lists for checking of the x509 client certificate
1737 and SASL party. For x509 certs, the ACL check is made against the
1738 certificate's distinguished name. This is something that looks like
1739 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1740 made against the username, which depending on the SASL plugin, may
1741 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1742 When the @option{acl} flag is set, the initial access list will be
1743 empty, with a @code{deny} policy. Thus no one will be allowed to
1744 use the VNC server until the ACLs have been loaded. This can be
1745 achieved using the @code{acl} monitor command.
1746
1747 @item lossy
1748
1749 Enable lossy compression methods (gradient, JPEG, ...). If this
1750 option is set, VNC client may receive lossy framebuffer updates
1751 depending on its encoding settings. Enabling this option can save
1752 a lot of bandwidth at the expense of quality.
1753
1754 @item non-adaptive
1755
1756 Disable adaptive encodings. Adaptive encodings are enabled by default.
1757 An adaptive encoding will try to detect frequently updated screen regions,
1758 and send updates in these regions using a lossy encoding (like JPEG).
1759 This can be really helpful to save bandwidth when playing videos. Disabling
1760 adaptive encodings restores the original static behavior of encodings
1761 like Tight.
1762
1763 @item share=[allow-exclusive|force-shared|ignore]
1764
1765 Set display sharing policy. 'allow-exclusive' allows clients to ask
1766 for exclusive access. As suggested by the rfb spec this is
1767 implemented by dropping other connections. Connecting multiple
1768 clients in parallel requires all clients asking for a shared session
1769 (vncviewer: -shared switch). This is the default. 'force-shared'
1770 disables exclusive client access. Useful for shared desktop sessions,
1771 where you don't want someone forgetting specify -shared disconnect
1772 everybody else. 'ignore' completely ignores the shared flag and
1773 allows everybody connect unconditionally. Doesn't conform to the rfb
1774 spec but is traditional QEMU behavior.
1775
1776 @item key-delay-ms
1777
1778 Set keyboard delay, for key down and key up events, in milliseconds.
1779 Default is 10. Keyboards are low-bandwidth devices, so this slowdown
1780 can help the device and guest to keep up and not lose events in case
1781 events are arriving in bulk. Possible causes for the latter are flaky
1782 network connections, or scripts for automated testing.
1783
1784 @end table
1785 ETEXI
1786
1787 STEXI
1788 @end table
1789 ETEXI
1790 ARCHHEADING(, QEMU_ARCH_I386)
1791
1792 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1793 STEXI
1794 @table @option
1795 ETEXI
1796
1797 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1798 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1799 QEMU_ARCH_I386)
1800 STEXI
1801 @item -win2k-hack
1802 @findex -win2k-hack
1803 Use it when installing Windows 2000 to avoid a disk full bug. After
1804 Windows 2000 is installed, you no longer need this option (this option
1805 slows down the IDE transfers).
1806 ETEXI
1807
1808 HXCOMM Deprecated by -rtc
1809 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1810
1811 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1812 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1813 QEMU_ARCH_I386)
1814 STEXI
1815 @item -no-fd-bootchk
1816 @findex -no-fd-bootchk
1817 Disable boot signature checking for floppy disks in BIOS. May
1818 be needed to boot from old floppy disks.
1819 ETEXI
1820
1821 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1822 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1823 STEXI
1824 @item -no-acpi
1825 @findex -no-acpi
1826 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1827 it if your guest OS complains about ACPI problems (PC target machine
1828 only).
1829 ETEXI
1830
1831 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1832 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1833 STEXI
1834 @item -no-hpet
1835 @findex -no-hpet
1836 Disable HPET support.
1837 ETEXI
1838
1839 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1840 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1841 " ACPI table description\n", QEMU_ARCH_I386)
1842 STEXI
1843 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1844 @findex -acpitable
1845 Add ACPI table with specified header fields and context from specified files.
1846 For file=, take whole ACPI table from the specified files, including all
1847 ACPI headers (possible overridden by other options).
1848 For data=, only data
1849 portion of the table is used, all header information is specified in the
1850 command line.
1851 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1852 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1853 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1854 spec.
1855 ETEXI
1856
1857 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1858 "-smbios file=binary\n"
1859 " load SMBIOS entry from binary file\n"
1860 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1861 " [,uefi=on|off]\n"
1862 " specify SMBIOS type 0 fields\n"
1863 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1864 " [,uuid=uuid][,sku=str][,family=str]\n"
1865 " specify SMBIOS type 1 fields\n"
1866 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1867 " [,asset=str][,location=str]\n"
1868 " specify SMBIOS type 2 fields\n"
1869 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1870 " [,sku=str]\n"
1871 " specify SMBIOS type 3 fields\n"
1872 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1873 " [,asset=str][,part=str]\n"
1874 " specify SMBIOS type 4 fields\n"
1875 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1876 " [,asset=str][,part=str][,speed=%d]\n"
1877 " specify SMBIOS type 17 fields\n",
1878 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1879 STEXI
1880 @item -smbios file=@var{binary}
1881 @findex -smbios
1882 Load SMBIOS entry from binary file.
1883
1884 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1885 Specify SMBIOS type 0 fields
1886
1887 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1888 Specify SMBIOS type 1 fields
1889
1890 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1891 Specify SMBIOS type 2 fields
1892
1893 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1894 Specify SMBIOS type 3 fields
1895
1896 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1897 Specify SMBIOS type 4 fields
1898
1899 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1900 Specify SMBIOS type 17 fields
1901 ETEXI
1902
1903 STEXI
1904 @end table
1905 ETEXI
1906 DEFHEADING()
1907
1908 DEFHEADING(Network options:)
1909 STEXI
1910 @table @option
1911 ETEXI
1912
1913 HXCOMM Legacy slirp options (now moved to -net user):
1914 #ifdef CONFIG_SLIRP
1915 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1916 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1917 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1918 #ifndef _WIN32
1919 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1920 #endif
1921 #endif
1922
1923 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1924 #ifdef CONFIG_SLIRP
1925 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1926 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1927 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1928 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,tftp=dir]\n"
1929 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1930 #ifndef _WIN32
1931 "[,smb=dir[,smbserver=addr]]\n"
1932 #endif
1933 " configure a user mode network backend with ID 'str',\n"
1934 " its DHCP server and optional services\n"
1935 #endif
1936 #ifdef _WIN32
1937 "-netdev tap,id=str,ifname=name\n"
1938 " configure a host TAP network backend with ID 'str'\n"
1939 #else
1940 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1941 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1942 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1943 " [,poll-us=n]\n"
1944 " configure a host TAP network backend with ID 'str'\n"
1945 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1946 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1947 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1948 " to deconfigure it\n"
1949 " use '[down]script=no' to disable script execution\n"
1950 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1951 " configure it\n"
1952 " use 'fd=h' to connect to an already opened TAP interface\n"
1953 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1954 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1955 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1956 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1957 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1958 " use vhost=on to enable experimental in kernel accelerator\n"
1959 " (only has effect for virtio guests which use MSIX)\n"
1960 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1961 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1962 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1963 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1964 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1965 " spent on busy polling for vhost net\n"
1966 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1967 " configure a host TAP network backend with ID 'str' that is\n"
1968 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1969 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1970 #endif
1971 #ifdef __linux__
1972 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1973 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1974 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1975 " [,rxcookie=rxcookie][,offset=offset]\n"
1976 " configure a network backend with ID 'str' connected to\n"
1977 " an Ethernet over L2TPv3 pseudowire.\n"
1978 " Linux kernel 3.3+ as well as most routers can talk\n"
1979 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1980 " VM to a router and even VM to Host. It is a nearly-universal\n"
1981 " standard (RFC3391). Note - this implementation uses static\n"
1982 " pre-configured tunnels (same as the Linux kernel).\n"
1983 " use 'src=' to specify source address\n"
1984 " use 'dst=' to specify destination address\n"
1985 " use 'udp=on' to specify udp encapsulation\n"
1986 " use 'srcport=' to specify source udp port\n"
1987 " use 'dstport=' to specify destination udp port\n"
1988 " use 'ipv6=on' to force v6\n"
1989 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1990 " well as a weak security measure\n"
1991 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1992 " use 'txcookie=0x012345678' to specify a txcookie\n"
1993 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1994 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1995 " use 'pincounter=on' to work around broken counter handling in peer\n"
1996 " use 'offset=X' to add an extra offset between header and data\n"
1997 #endif
1998 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1999 " configure a network backend to connect to another network\n"
2000 " using a socket connection\n"
2001 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
2002 " configure a network backend to connect to a multicast maddr and port\n"
2003 " use 'localaddr=addr' to specify the host address to send packets from\n"
2004 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
2005 " configure a network backend to connect to another network\n"
2006 " using an UDP tunnel\n"
2007 #ifdef CONFIG_VDE
2008 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
2009 " configure a network backend to connect to port 'n' of a vde switch\n"
2010 " running on host and listening for incoming connections on 'socketpath'.\n"
2011 " Use group 'groupname' and mode 'octalmode' to change default\n"
2012 " ownership and permissions for communication port.\n"
2013 #endif
2014 #ifdef CONFIG_NETMAP
2015 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
2016 " attach to the existing netmap-enabled network interface 'name', or to a\n"
2017 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
2018 " netmap device, defaults to '/dev/netmap')\n"
2019 #endif
2020 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2021 " configure a vhost-user network, backed by a chardev 'dev'\n"
2022 "-netdev hubport,id=str,hubid=n\n"
2023 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
2024 DEF("net", HAS_ARG, QEMU_OPTION_net,
2025 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2026 " old way to create a new NIC and connect it to VLAN 'n'\n"
2027 " (use the '-device devtype,netdev=str' option if possible instead)\n"
2028 "-net dump[,vlan=n][,file=f][,len=n]\n"
2029 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
2030 "-net none use it alone to have zero network devices. If no -net option\n"
2031 " is provided, the default is '-net nic -net user'\n"
2032 "-net ["
2033 #ifdef CONFIG_SLIRP
2034 "user|"
2035 #endif
2036 "tap|"
2037 "bridge|"
2038 #ifdef CONFIG_VDE
2039 "vde|"
2040 #endif
2041 #ifdef CONFIG_NETMAP
2042 "netmap|"
2043 #endif
2044 "socket][,vlan=n][,option][,option][,...]\n"
2045 " old way to initialize a host network interface\n"
2046 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2047 STEXI
2048 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
2049 @findex -net
2050 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
2051 = 0 is the default). The NIC is an e1000 by default on the PC
2052 target. Optionally, the MAC address can be changed to @var{mac}, the
2053 device address set to @var{addr} (PCI cards only),
2054 and a @var{name} can be assigned for use in monitor commands.
2055 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
2056 that the card should have; this option currently only affects virtio cards; set
2057 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
2058 NIC is created. QEMU can emulate several different models of network card.
2059 Valid values for @var{type} are
2060 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
2061 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
2062 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
2063 Not all devices are supported on all targets. Use @code{-net nic,model=help}
2064 for a list of available devices for your target.
2065
2066 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
2067 @findex -netdev
2068 @item -net user[,@var{option}][,@var{option}][,...]
2069 Use the user mode network stack which requires no administrator
2070 privilege to run. Valid options are:
2071
2072 @table @option
2073 @item vlan=@var{n}
2074 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
2075
2076 @item id=@var{id}
2077 @itemx name=@var{name}
2078 Assign symbolic name for use in monitor commands.
2079
2080 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must
2081 be enabled. If neither is specified both protocols are enabled.
2082
2083 @item net=@var{addr}[/@var{mask}]
2084 Set IP network address the guest will see. Optionally specify the netmask,
2085 either in the form a.b.c.d or as number of valid top-most bits. Default is
2086 10.0.2.0/24.
2087
2088 @item host=@var{addr}
2089 Specify the guest-visible address of the host. Default is the 2nd IP in the
2090 guest network, i.e. x.x.x.2.
2091
2092 @item ipv6-net=@var{addr}[/@var{int}]
2093 Set IPv6 network address the guest will see (default is fec0::/64). The
2094 network prefix is given in the usual hexadecimal IPv6 address
2095 notation. The prefix size is optional, and is given as the number of
2096 valid top-most bits (default is 64).
2097
2098 @item ipv6-host=@var{addr}
2099 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
2100 the guest network, i.e. xxxx::2.
2101
2102 @item restrict=on|off
2103 If this option is enabled, the guest will be isolated, i.e. it will not be
2104 able to contact the host and no guest IP packets will be routed over the host
2105 to the outside. This option does not affect any explicitly set forwarding rules.
2106
2107 @item hostname=@var{name}
2108 Specifies the client hostname reported by the built-in DHCP server.
2109
2110 @item dhcpstart=@var{addr}
2111 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
2112 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
2113
2114 @item dns=@var{addr}
2115 Specify the guest-visible address of the virtual nameserver. The address must
2116 be different from the host address. Default is the 3rd IP in the guest network,
2117 i.e. x.x.x.3.
2118
2119 @item ipv6-dns=@var{addr}
2120 Specify the guest-visible address of the IPv6 virtual nameserver. The address
2121 must be different from the host address. Default is the 3rd IP in the guest
2122 network, i.e. xxxx::3.
2123
2124 @item dnssearch=@var{domain}
2125 Provides an entry for the domain-search list sent by the built-in
2126 DHCP server. More than one domain suffix can be transmitted by specifying
2127 this option multiple times. If supported, this will cause the guest to
2128 automatically try to append the given domain suffix(es) in case a domain name
2129 can not be resolved.
2130
2131 Example:
2132 @example
2133 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
2134 @end example
2135
2136 @item tftp=@var{dir}
2137 When using the user mode network stack, activate a built-in TFTP
2138 server. The files in @var{dir} will be exposed as the root of a TFTP server.
2139 The TFTP client on the guest must be configured in binary mode (use the command
2140 @code{bin} of the Unix TFTP client).
2141
2142 @item bootfile=@var{file}
2143 When using the user mode network stack, broadcast @var{file} as the BOOTP
2144 filename. In conjunction with @option{tftp}, this can be used to network boot
2145 a guest from a local directory.
2146
2147 Example (using pxelinux):
2148 @example
2149 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2150 @end example
2151
2152 @item smb=@var{dir}[,smbserver=@var{addr}]
2153 When using the user mode network stack, activate a built-in SMB
2154 server so that Windows OSes can access to the host files in @file{@var{dir}}
2155 transparently. The IP address of the SMB server can be set to @var{addr}. By
2156 default the 4th IP in the guest network is used, i.e. x.x.x.4.
2157
2158 In the guest Windows OS, the line:
2159 @example
2160 10.0.2.4 smbserver
2161 @end example
2162 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
2163 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
2164
2165 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2166
2167 Note that a SAMBA server must be installed on the host OS.
2168 QEMU was tested successfully with smbd versions from Red Hat 9,
2169 Fedora Core 3 and OpenSUSE 11.x.
2170
2171 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
2172 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
2173 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
2174 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
2175 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
2176 be bound to a specific host interface. If no connection type is set, TCP is
2177 used. This option can be given multiple times.
2178
2179 For example, to redirect host X11 connection from screen 1 to guest
2180 screen 0, use the following:
2181
2182 @example
2183 # on the host
2184 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
2185 # this host xterm should open in the guest X11 server
2186 xterm -display :1
2187 @end example
2188
2189 To redirect telnet connections from host port 5555 to telnet port on
2190 the guest, use the following:
2191
2192 @example
2193 # on the host
2194 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
2195 telnet localhost 5555
2196 @end example
2197
2198 Then when you use on the host @code{telnet localhost 5555}, you
2199 connect to the guest telnet server.
2200
2201 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
2202 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
2203 Forward guest TCP connections to the IP address @var{server} on port @var{port}
2204 to the character device @var{dev} or to a program executed by @var{cmd:command}
2205 which gets spawned for each connection. This option can be given multiple times.
2206
2207 You can either use a chardev directly and have that one used throughout QEMU's
2208 lifetime, like in the following example:
2209
2210 @example
2211 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2212 # the guest accesses it
2213 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
2214 @end example
2215
2216 Or you can execute a command on every TCP connection established by the guest,
2217 so that QEMU behaves similar to an inetd process for that virtual server:
2218
2219 @example
2220 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2221 # and connect the TCP stream to its stdin/stdout
2222 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2223 @end example
2224
2225 @end table
2226
2227 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
2228 processed and applied to -net user. Mixing them with the new configuration
2229 syntax gives undefined results. Their use for new applications is discouraged
2230 as they will be removed from future versions.
2231
2232 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2233 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2234 Connect the host TAP network interface @var{name} to VLAN @var{n}.
2235
2236 Use the network script @var{file} to configure it and the network script
2237 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2238 automatically provides one. The default network configure script is
2239 @file{/etc/qemu-ifup} and the default network deconfigure script is
2240 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2241 to disable script execution.
2242
2243 If running QEMU as an unprivileged user, use the network helper
2244 @var{helper} to configure the TAP interface and attach it to the bridge.
2245 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2246 and the default bridge device is @file{br0}.
2247
2248 @option{fd}=@var{h} can be used to specify the handle of an already
2249 opened host TAP interface.
2250
2251 Examples:
2252
2253 @example
2254 #launch a QEMU instance with the default network script
2255 qemu-system-i386 linux.img -net nic -net tap
2256 @end example
2257
2258 @example
2259 #launch a QEMU instance with two NICs, each one connected
2260 #to a TAP device
2261 qemu-system-i386 linux.img \
2262 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
2263 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
2264 @end example
2265
2266 @example
2267 #launch a QEMU instance with the default network helper to
2268 #connect a TAP device to bridge br0
2269 qemu-system-i386 linux.img \
2270 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
2271 @end example
2272
2273 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2274 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
2275 Connect a host TAP network interface to a host bridge device.
2276
2277 Use the network helper @var{helper} to configure the TAP interface and
2278 attach it to the bridge. The default network helper executable is
2279 @file{/path/to/qemu-bridge-helper} and the default bridge
2280 device is @file{br0}.
2281
2282 Examples:
2283
2284 @example
2285 #launch a QEMU instance with the default network helper to
2286 #connect a TAP device to bridge br0
2287 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
2288 @end example
2289
2290 @example
2291 #launch a QEMU instance with the default network helper to
2292 #connect a TAP device to bridge qemubr0
2293 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
2294 @end example
2295
2296 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2297 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2298
2299 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
2300 machine using a TCP socket connection. If @option{listen} is
2301 specified, QEMU waits for incoming connections on @var{port}
2302 (@var{host} is optional). @option{connect} is used to connect to
2303 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2304 specifies an already opened TCP socket.
2305
2306 Example:
2307 @example
2308 # launch a first QEMU instance
2309 qemu-system-i386 linux.img \
2310 -net nic,macaddr=52:54:00:12:34:56 \
2311 -net socket,listen=:1234
2312 # connect the VLAN 0 of this instance to the VLAN 0
2313 # of the first instance
2314 qemu-system-i386 linux.img \
2315 -net nic,macaddr=52:54:00:12:34:57 \
2316 -net socket,connect=127.0.0.1:1234
2317 @end example
2318
2319 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2320 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2321
2322 Create a VLAN @var{n} shared with another QEMU virtual
2323 machines using a UDP multicast socket, effectively making a bus for
2324 every QEMU with same multicast address @var{maddr} and @var{port}.
2325 NOTES:
2326 @enumerate
2327 @item
2328 Several QEMU can be running on different hosts and share same bus (assuming
2329 correct multicast setup for these hosts).
2330 @item
2331 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2332 @url{http://user-mode-linux.sf.net}.
2333 @item
2334 Use @option{fd=h} to specify an already opened UDP multicast socket.
2335 @end enumerate
2336
2337 Example:
2338 @example
2339 # launch one QEMU instance
2340 qemu-system-i386 linux.img \
2341 -net nic,macaddr=52:54:00:12:34:56 \
2342 -net socket,mcast=230.0.0.1:1234
2343 # launch another QEMU instance on same "bus"
2344 qemu-system-i386 linux.img \
2345 -net nic,macaddr=52:54:00:12:34:57 \
2346 -net socket,mcast=230.0.0.1:1234
2347 # launch yet another QEMU instance on same "bus"
2348 qemu-system-i386 linux.img \
2349 -net nic,macaddr=52:54:00:12:34:58 \
2350 -net socket,mcast=230.0.0.1:1234
2351 @end example
2352
2353 Example (User Mode Linux compat.):
2354 @example
2355 # launch QEMU instance (note mcast address selected
2356 # is UML's default)
2357 qemu-system-i386 linux.img \
2358 -net nic,macaddr=52:54:00:12:34:56 \
2359 -net socket,mcast=239.192.168.1:1102
2360 # launch UML
2361 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2362 @end example
2363
2364 Example (send packets from host's 1.2.3.4):
2365 @example
2366 qemu-system-i386 linux.img \
2367 -net nic,macaddr=52:54:00:12:34:56 \
2368 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2369 @end example
2370
2371 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2372 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2373 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
2374 protocol to transport Ethernet (and other Layer 2) data frames between
2375 two systems. It is present in routers, firewalls and the Linux kernel
2376 (from version 3.3 onwards).
2377
2378 This transport allows a VM to communicate to another VM, router or firewall directly.
2379
2380 @item src=@var{srcaddr}
2381 source address (mandatory)
2382 @item dst=@var{dstaddr}
2383 destination address (mandatory)
2384 @item udp
2385 select udp encapsulation (default is ip).
2386 @item srcport=@var{srcport}
2387 source udp port.
2388 @item dstport=@var{dstport}
2389 destination udp port.
2390 @item ipv6
2391 force v6, otherwise defaults to v4.
2392 @item rxcookie=@var{rxcookie}
2393 @itemx txcookie=@var{txcookie}
2394 Cookies are a weak form of security in the l2tpv3 specification.
2395 Their function is mostly to prevent misconfiguration. By default they are 32
2396 bit.
2397 @item cookie64
2398 Set cookie size to 64 bit instead of the default 32
2399 @item counter=off
2400 Force a 'cut-down' L2TPv3 with no counter as in
2401 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2402 @item pincounter=on
2403 Work around broken counter handling in peer. This may also help on
2404 networks which have packet reorder.
2405 @item offset=@var{offset}
2406 Add an extra offset between header and data
2407
2408 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2409 on the remote Linux host 1.2.3.4:
2410 @example
2411 # Setup tunnel on linux host using raw ip as encapsulation
2412 # on 1.2.3.4
2413 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2414 encap udp udp_sport 16384 udp_dport 16384
2415 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2416 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2417 ifconfig vmtunnel0 mtu 1500
2418 ifconfig vmtunnel0 up
2419 brctl addif br-lan vmtunnel0
2420
2421
2422 # on 4.3.2.1
2423 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2424
2425 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2426
2427
2428 @end example
2429
2430 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2431 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2432 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2433 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2434 and MODE @var{octalmode} to change default ownership and permissions for
2435 communication port. This option is only available if QEMU has been compiled
2436 with vde support enabled.
2437
2438 Example:
2439 @example
2440 # launch vde switch
2441 vde_switch -F -sock /tmp/myswitch
2442 # launch QEMU instance
2443 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2444 @end example
2445
2446 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2447
2448 Create a hub port on QEMU "vlan" @var{hubid}.
2449
2450 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2451 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2452 required hub automatically.
2453
2454 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2455
2456 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2457 be a unix domain socket backed one. The vhost-user uses a specifically defined
2458 protocol to pass vhost ioctl replacement messages to an application on the other
2459 end of the socket. On non-MSIX guests, the feature can be forced with
2460 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2461 be created for multiqueue vhost-user.
2462
2463 Example:
2464 @example
2465 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2466 -numa node,memdev=mem \
2467 -chardev socket,id=chr0,path=/path/to/socket \
2468 -netdev type=vhost-user,id=net0,chardev=chr0 \
2469 -device virtio-net-pci,netdev=net0
2470 @end example
2471
2472 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2473 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2474 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2475 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2476 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2477
2478 @item -net none
2479 Indicate that no network devices should be configured. It is used to
2480 override the default configuration (@option{-net nic -net user}) which
2481 is activated if no @option{-net} options are provided.
2482 ETEXI
2483
2484 STEXI
2485 @end table
2486 ETEXI
2487 DEFHEADING()
2488
2489 DEFHEADING(Character device options:)
2490 STEXI
2491
2492 The general form of a character device option is:
2493 @table @option
2494 ETEXI
2495
2496 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2497 "-chardev help\n"
2498 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2499 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2500 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2501 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2502 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2503 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2504 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2505 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2506 " [,logfile=PATH][,logappend=on|off]\n"
2507 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2508 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2509 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2510 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2511 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2512 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2513 #ifdef _WIN32
2514 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2515 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2516 #else
2517 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2518 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2519 #endif
2520 #ifdef CONFIG_BRLAPI
2521 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2522 #endif
2523 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2524 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2525 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2526 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2527 #endif
2528 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2529 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2530 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2531 #endif
2532 #if defined(CONFIG_SPICE)
2533 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2534 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2535 #endif
2536 , QEMU_ARCH_ALL
2537 )
2538
2539 STEXI
2540 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2541 @findex -chardev
2542 Backend is one of:
2543 @option{null},
2544 @option{socket},
2545 @option{udp},
2546 @option{msmouse},
2547 @option{vc},
2548 @option{ringbuf},
2549 @option{file},
2550 @option{pipe},
2551 @option{console},
2552 @option{serial},
2553 @option{pty},
2554 @option{stdio},
2555 @option{braille},
2556 @option{tty},
2557 @option{parallel},
2558 @option{parport},
2559 @option{spicevmc}.
2560 @option{spiceport}.
2561 The specific backend will determine the applicable options.
2562
2563 Use "-chardev help" to print all available chardev backend types.
2564
2565 All devices must have an id, which can be any string up to 127 characters long.
2566 It is used to uniquely identify this device in other command line directives.
2567
2568 A character device may be used in multiplexing mode by multiple front-ends.
2569 Specify @option{mux=on} to enable this mode.
2570 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2571 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2572 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2573 create a multiplexer with your specified ID, and you can then configure multiple
2574 front ends to use that chardev ID for their input/output. Up to four different
2575 front ends can be connected to a single multiplexed chardev. (Without
2576 multiplexing enabled, a chardev can only be used by a single front end.)
2577 For instance you could use this to allow a single stdio chardev to be used by
2578 two serial ports and the QEMU monitor:
2579
2580 @example
2581 -chardev stdio,mux=on,id=char0 \
2582 -mon chardev=char0,mode=readline \
2583 -serial chardev:char0 \
2584 -serial chardev:char0
2585 @end example
2586
2587 You can have more than one multiplexer in a system configuration; for instance
2588 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2589 multiplexed between the QEMU monitor and a parallel port:
2590
2591 @example
2592 -chardev stdio,mux=on,id=char0 \
2593 -mon chardev=char0,mode=readline \
2594 -parallel chardev:char0 \
2595 -chardev tcp,...,mux=on,id=char1 \
2596 -serial chardev:char1 \
2597 -serial chardev:char1
2598 @end example
2599
2600 When you're using a multiplexed character device, some escape sequences are
2601 interpreted in the input. @xref{mux_keys, Keys in the character backend
2602 multiplexer}.
2603
2604 Note that some other command line options may implicitly create multiplexed
2605 character backends; for instance @option{-serial mon:stdio} creates a
2606 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2607 and @option{-nographic} also multiplexes the console and the monitor to
2608 stdio.
2609
2610 There is currently no support for multiplexing in the other direction
2611 (where a single QEMU front end takes input and output from multiple chardevs).
2612
2613 Every backend supports the @option{logfile} option, which supplies the path
2614 to a file to record all data transmitted via the backend. The @option{logappend}
2615 option controls whether the log file will be truncated or appended to when
2616 opened.
2617
2618 Further options to each backend are described below.
2619
2620 @item -chardev null ,id=@var{id}
2621 A void device. This device will not emit any data, and will drop any data it
2622 receives. The null backend does not take any options.
2623
2624 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}]
2625
2626 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2627 unix socket will be created if @option{path} is specified. Behaviour is
2628 undefined if TCP options are specified for a unix socket.
2629
2630 @option{server} specifies that the socket shall be a listening socket.
2631
2632 @option{nowait} specifies that QEMU should not block waiting for a client to
2633 connect to a listening socket.
2634
2635 @option{telnet} specifies that traffic on the socket should interpret telnet
2636 escape sequences.
2637
2638 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2639 the remote end goes away. qemu will delay this many seconds and then attempt
2640 to reconnect. Zero disables reconnecting, and is the default.
2641
2642 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2643 and specifies the id of the TLS credentials to use for the handshake. The
2644 credentials must be previously created with the @option{-object tls-creds}
2645 argument.
2646
2647 TCP and unix socket options are given below:
2648
2649 @table @option
2650
2651 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2652
2653 @option{host} for a listening socket specifies the local address to be bound.
2654 For a connecting socket species the remote host to connect to. @option{host} is
2655 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2656
2657 @option{port} for a listening socket specifies the local port to be bound. For a
2658 connecting socket specifies the port on the remote host to connect to.
2659 @option{port} can be given as either a port number or a service name.
2660 @option{port} is required.
2661
2662 @option{to} is only relevant to listening sockets. If it is specified, and
2663 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2664 to and including @option{to} until it succeeds. @option{to} must be specified
2665 as a port number.
2666
2667 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2668 If neither is specified the socket may use either protocol.
2669
2670 @option{nodelay} disables the Nagle algorithm.
2671
2672 @item unix options: path=@var{path}
2673
2674 @option{path} specifies the local path of the unix socket. @option{path} is
2675 required.
2676
2677 @end table
2678
2679 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2680
2681 Sends all traffic from the guest to a remote host over UDP.
2682
2683 @option{host} specifies the remote host to connect to. If not specified it
2684 defaults to @code{localhost}.
2685
2686 @option{port} specifies the port on the remote host to connect to. @option{port}
2687 is required.
2688
2689 @option{localaddr} specifies the local address to bind to. If not specified it
2690 defaults to @code{0.0.0.0}.
2691
2692 @option{localport} specifies the local port to bind to. If not specified any
2693 available local port will be used.
2694
2695 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2696 If neither is specified the device may use either protocol.
2697
2698 @item -chardev msmouse ,id=@var{id}
2699
2700 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2701 take any options.
2702
2703 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2704
2705 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2706 size.
2707
2708 @option{width} and @option{height} specify the width and height respectively of
2709 the console, in pixels.
2710
2711 @option{cols} and @option{rows} specify that the console be sized to fit a text
2712 console with the given dimensions.
2713
2714 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2715
2716 Create a ring buffer with fixed size @option{size}.
2717 @var{size} must be a power of two and defaults to @code{64K}.
2718
2719 @item -chardev file ,id=@var{id} ,path=@var{path}
2720
2721 Log all traffic received from the guest to a file.
2722
2723 @option{path} specifies the path of the file to be opened. This file will be
2724 created if it does not already exist, and overwritten if it does. @option{path}
2725 is required.
2726
2727 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2728
2729 Create a two-way connection to the guest. The behaviour differs slightly between
2730 Windows hosts and other hosts:
2731
2732 On Windows, a single duplex pipe will be created at
2733 @file{\\.pipe\@option{path}}.
2734
2735 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2736 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2737 received by the guest. Data written by the guest can be read from
2738 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2739 be present.
2740
2741 @option{path} forms part of the pipe path as described above. @option{path} is
2742 required.
2743
2744 @item -chardev console ,id=@var{id}
2745
2746 Send traffic from the guest to QEMU's standard output. @option{console} does not
2747 take any options.
2748
2749 @option{console} is only available on Windows hosts.
2750
2751 @item -chardev serial ,id=@var{id} ,path=@option{path}
2752
2753 Send traffic from the guest to a serial device on the host.
2754
2755 On Unix hosts serial will actually accept any tty device,
2756 not only serial lines.
2757
2758 @option{path} specifies the name of the serial device to open.
2759
2760 @item -chardev pty ,id=@var{id}
2761
2762 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2763 not take any options.
2764
2765 @option{pty} is not available on Windows hosts.
2766
2767 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2768 Connect to standard input and standard output of the QEMU process.
2769
2770 @option{signal} controls if signals are enabled on the terminal, that includes
2771 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2772 default, use @option{signal=off} to disable it.
2773
2774 @item -chardev braille ,id=@var{id}
2775
2776 Connect to a local BrlAPI server. @option{braille} does not take any options.
2777
2778 @item -chardev tty ,id=@var{id} ,path=@var{path}
2779
2780 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2781 DragonFlyBSD hosts. It is an alias for @option{serial}.
2782
2783 @option{path} specifies the path to the tty. @option{path} is required.
2784
2785 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2786 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2787
2788 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2789
2790 Connect to a local parallel port.
2791
2792 @option{path} specifies the path to the parallel port device. @option{path} is
2793 required.
2794
2795 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2796
2797 @option{spicevmc} is only available when spice support is built in.
2798
2799 @option{debug} debug level for spicevmc
2800
2801 @option{name} name of spice channel to connect to
2802
2803 Connect to a spice virtual machine channel, such as vdiport.
2804
2805 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2806
2807 @option{spiceport} is only available when spice support is built in.
2808
2809 @option{debug} debug level for spicevmc
2810
2811 @option{name} name of spice port to connect to
2812
2813 Connect to a spice port, allowing a Spice client to handle the traffic
2814 identified by a name (preferably a fqdn).
2815 ETEXI
2816
2817 STEXI
2818 @end table
2819 ETEXI
2820 DEFHEADING()
2821
2822 DEFHEADING(Device URL Syntax:)
2823 STEXI
2824
2825 In addition to using normal file images for the emulated storage devices,
2826 QEMU can also use networked resources such as iSCSI devices. These are
2827 specified using a special URL syntax.
2828
2829 @table @option
2830 @item iSCSI
2831 iSCSI support allows QEMU to access iSCSI resources directly and use as
2832 images for the guest storage. Both disk and cdrom images are supported.
2833
2834 Syntax for specifying iSCSI LUNs is
2835 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2836
2837 By default qemu will use the iSCSI initiator-name
2838 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2839 line or a configuration file.
2840
2841 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2842 stalled requests and force a reestablishment of the session. The timeout
2843 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2844 1.15.0 or greater is required for this feature.
2845
2846 Example (without authentication):
2847 @example
2848 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2849 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2850 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2851 @end example
2852
2853 Example (CHAP username/password via URL):
2854 @example
2855 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2856 @end example
2857
2858 Example (CHAP username/password via environment variables):
2859 @example
2860 LIBISCSI_CHAP_USERNAME="user" \
2861 LIBISCSI_CHAP_PASSWORD="password" \
2862 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2863 @end example
2864
2865 iSCSI support is an optional feature of QEMU and only available when
2866 compiled and linked against libiscsi.
2867 ETEXI
2868 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2869 "-iscsi [user=user][,password=password]\n"
2870 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2871 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2872 " [,timeout=timeout]\n"
2873 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2874 STEXI
2875
2876 iSCSI parameters such as username and password can also be specified via
2877 a configuration file. See qemu-doc for more information and examples.
2878
2879 @item NBD
2880 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2881 as Unix Domain Sockets.
2882
2883 Syntax for specifying a NBD device using TCP
2884 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2885
2886 Syntax for specifying a NBD device using Unix Domain Sockets
2887 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2888
2889
2890 Example for TCP
2891 @example
2892 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2893 @end example
2894
2895 Example for Unix Domain Sockets
2896 @example
2897 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2898 @end example
2899
2900 @item SSH
2901 QEMU supports SSH (Secure Shell) access to remote disks.
2902
2903 Examples:
2904 @example
2905 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2906 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2907 @end example
2908
2909 Currently authentication must be done using ssh-agent. Other
2910 authentication methods may be supported in future.
2911
2912 @item Sheepdog
2913 Sheepdog is a distributed storage system for QEMU.
2914 QEMU supports using either local sheepdog devices or remote networked
2915 devices.
2916
2917 Syntax for specifying a sheepdog device
2918 @example
2919 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2920 @end example
2921
2922 Example
2923 @example
2924 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2925 @end example
2926
2927 See also @url{https://sheepdog.github.io/sheepdog/}.
2928
2929 @item GlusterFS
2930 GlusterFS is a user space distributed file system.
2931 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2932 TCP, Unix Domain Sockets and RDMA transport protocols.
2933
2934 Syntax for specifying a VM disk image on GlusterFS volume is
2935 @example
2936
2937 URI:
2938 gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
2939
2940 JSON:
2941 'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
2942 @ "server":[@{"type":"tcp","host":"...","port":"..."@},
2943 @ @{"type":"unix","socket":"..."@}]@}@}'
2944 @end example
2945
2946
2947 Example
2948 @example
2949 URI:
2950 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
2951 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log
2952
2953 JSON:
2954 qemu-system-x86_64 'json:@{"driver":"qcow2",
2955 @ "file":@{"driver":"gluster",
2956 @ "volume":"testvol","path":"a.img",
2957 @ "debug":9,"logfile":"/var/log/qemu-gluster.log",
2958 @ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
2959 @ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
2960 qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
2961 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
2962 @ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
2963 @ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
2964 @end example
2965
2966 See also @url{http://www.gluster.org}.
2967
2968 @item HTTP/HTTPS/FTP/FTPS
2969 QEMU supports read-only access to files accessed over http(s) and ftp(s).
2970
2971 Syntax using a single filename:
2972 @example
2973 <protocol>://[<username>[:<password>]@@]<host>/<path>
2974 @end example
2975
2976 where:
2977 @table @option
2978 @item protocol
2979 'http', 'https', 'ftp', or 'ftps'.
2980
2981 @item username
2982 Optional username for authentication to the remote server.
2983
2984 @item password
2985 Optional password for authentication to the remote server.
2986
2987 @item host
2988 Address of the remote server.
2989
2990 @item path
2991 Path on the remote server, including any query string.
2992 @end table
2993
2994 The following options are also supported:
2995 @table @option
2996 @item url
2997 The full URL when passing options to the driver explicitly.
2998
2999 @item readahead
3000 The amount of data to read ahead with each range request to the remote server.
3001 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
3002 does not have a suffix, it will be assumed to be in bytes. The value must be a
3003 multiple of 512 bytes. It defaults to 256k.
3004
3005 @item sslverify
3006 Whether to verify the remote server's certificate when connecting over SSL. It
3007 can have the value 'on' or 'off'. It defaults to 'on'.
3008
3009 @item cookie
3010 Send this cookie (it can also be a list of cookies separated by ';') with
3011 each outgoing request. Only supported when using protocols such as HTTP
3012 which support cookies, otherwise ignored.
3013
3014 @item timeout
3015 Set the timeout in seconds of the CURL connection. This timeout is the time
3016 that CURL waits for a response from the remote server to get the size of the
3017 image to be downloaded. If not set, the default timeout of 5 seconds is used.
3018 @end table
3019
3020 Note that when passing options to qemu explicitly, @option{driver} is the value
3021 of <protocol>.
3022
3023 Example: boot from a remote Fedora 20 live ISO image
3024 @example
3025 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
3026
3027 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
3028 @end example
3029
3030 Example: boot from a remote Fedora 20 cloud image using a local overlay for
3031 writes, copy-on-read, and a readahead of 64k
3032 @example
3033 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
3034
3035 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
3036 @end example
3037
3038 Example: boot from an image stored on a VMware vSphere server with a self-signed
3039 certificate using a local overlay for writes, a readahead of 64k and a timeout
3040 of 10 seconds.
3041 @example
3042 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
3043
3044 qemu-system-x86_64 -drive file=/tmp/test.qcow2
3045 @end example
3046 ETEXI
3047
3048 STEXI
3049 @end table
3050 ETEXI
3051
3052 DEFHEADING(Bluetooth(R) options:)
3053 STEXI
3054 @table @option
3055 ETEXI
3056
3057 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
3058 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
3059 "-bt hci,host[:id]\n" \
3060 " use host's HCI with the given name\n" \
3061 "-bt hci[,vlan=n]\n" \
3062 " emulate a standard HCI in virtual scatternet 'n'\n" \
3063 "-bt vhci[,vlan=n]\n" \
3064 " add host computer to virtual scatternet 'n' using VHCI\n" \
3065 "-bt device:dev[,vlan=n]\n" \
3066 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
3067 QEMU_ARCH_ALL)
3068 STEXI
3069 @item -bt hci[...]
3070 @findex -bt
3071 Defines the function of the corresponding Bluetooth HCI. -bt options
3072 are matched with the HCIs present in the chosen machine type. For
3073 example when emulating a machine with only one HCI built into it, only
3074 the first @code{-bt hci[...]} option is valid and defines the HCI's
3075 logic. The Transport Layer is decided by the machine type. Currently
3076 the machines @code{n800} and @code{n810} have one HCI and all other
3077 machines have none.
3078
3079 @anchor{bt-hcis}
3080 The following three types are recognized:
3081
3082 @table @option
3083 @item -bt hci,null
3084 (default) The corresponding Bluetooth HCI assumes no internal logic
3085 and will not respond to any HCI commands or emit events.
3086
3087 @item -bt hci,host[:@var{id}]
3088 (@code{bluez} only) The corresponding HCI passes commands / events
3089 to / from the physical HCI identified by the name @var{id} (default:
3090 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
3091 capable systems like Linux.
3092
3093 @item -bt hci[,vlan=@var{n}]
3094 Add a virtual, standard HCI that will participate in the Bluetooth
3095 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
3096 VLANs, devices inside a bluetooth network @var{n} can only communicate
3097 with other devices in the same network (scatternet).
3098 @end table
3099
3100 @item -bt vhci[,vlan=@var{n}]
3101 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
3102 to the host bluetooth stack instead of to the emulated target. This
3103 allows the host and target machines to participate in a common scatternet
3104 and communicate. Requires the Linux @code{vhci} driver installed. Can
3105 be used as following:
3106
3107 @example
3108 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
3109 @end example
3110
3111 @item -bt device:@var{dev}[,vlan=@var{n}]
3112 Emulate a bluetooth device @var{dev} and place it in network @var{n}
3113 (default @code{0}). QEMU can only emulate one type of bluetooth devices
3114 currently:
3115
3116 @table @option
3117 @item keyboard
3118 Virtual wireless keyboard implementing the HIDP bluetooth profile.
3119 @end table
3120 ETEXI
3121
3122 STEXI
3123 @end table
3124 ETEXI
3125 DEFHEADING()
3126
3127 #ifdef CONFIG_TPM
3128 DEFHEADING(TPM device options:)
3129
3130 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
3131 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
3132 " use path to provide path to a character device; default is /dev/tpm0\n"
3133 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
3134 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
3135 "-tpmdev emulator,id=id,chardev=dev\n"
3136 " configure the TPM device using chardev backend\n",
3137 QEMU_ARCH_ALL)
3138 STEXI
3139
3140 The general form of a TPM device option is:
3141 @table @option
3142
3143 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
3144 @findex -tpmdev
3145 Backend type must be either one of the following:
3146 @option{passthrough}, @option{emulator}.
3147
3148 The specific backend type will determine the applicable options.
3149 The @code{-tpmdev} option creates the TPM backend and requires a
3150 @code{-device} option that specifies the TPM frontend interface model.
3151
3152 Options to each backend are described below.
3153
3154 Use 'help' to print all available TPM backend types.
3155 @example
3156 qemu -tpmdev help
3157 @end example
3158
3159 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
3160
3161 (Linux-host only) Enable access to the host's TPM using the passthrough
3162 driver.
3163
3164 @option{path} specifies the path to the host's TPM device, i.e., on
3165 a Linux host this would be @code{/dev/tpm0}.
3166 @option{path} is optional and by default @code{/dev/tpm0} is used.
3167
3168 @option{cancel-path} specifies the path to the host TPM device's sysfs
3169 entry allowing for cancellation of an ongoing TPM command.
3170 @option{cancel-path} is optional and by default QEMU will search for the
3171 sysfs entry to use.
3172
3173 Some notes about using the host's TPM with the passthrough driver:
3174
3175 The TPM device accessed by the passthrough driver must not be
3176 used by any other application on the host.
3177
3178 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
3179 the VM's firmware (BIOS/UEFI) will not be able to initialize the
3180 TPM again and may therefore not show a TPM-specific menu that would
3181 otherwise allow the user to configure the TPM, e.g., allow the user to
3182 enable/disable or activate/deactivate the TPM.
3183 Further, if TPM ownership is released from within a VM then the host's TPM
3184 will get disabled and deactivated. To enable and activate the
3185 TPM again afterwards, the host has to be rebooted and the user is
3186 required to enter the firmware's menu to enable and activate the TPM.
3187 If the TPM is left disabled and/or deactivated most TPM commands will fail.
3188
3189 To create a passthrough TPM use the following two options:
3190 @example
3191 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
3192 @end example
3193 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
3194 @code{tpmdev=tpm0} in the device option.
3195
3196 @item -tpmdev emulator, id=@var{id}, chardev=@var{dev}
3197
3198 (Linux-host only) Enable access to a TPM emulator using Unix domain socket based
3199 chardev backend.
3200
3201 @option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server.
3202
3203 To create a TPM emulator backend device with chardev socket backend:
3204 @example
3205
3206 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
3207
3208 @end example
3209
3210 @end table
3211
3212 ETEXI
3213
3214 DEFHEADING()
3215
3216 #endif
3217
3218 DEFHEADING(Linux/Multiboot boot specific:)
3219 STEXI
3220
3221 When using these options, you can use a given Linux or Multiboot
3222 kernel without installing it in the disk image. It can be useful
3223 for easier testing of various kernels.
3224
3225 @table @option
3226 ETEXI
3227
3228 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
3229 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
3230 STEXI
3231 @item -kernel @var{bzImage}
3232 @findex -kernel
3233 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
3234 or in multiboot format.
3235 ETEXI
3236
3237 DEF("append", HAS_ARG, QEMU_OPTION_append, \
3238 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
3239 STEXI
3240 @item -append @var{cmdline}
3241 @findex -append
3242 Use @var{cmdline} as kernel command line
3243 ETEXI
3244
3245 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
3246 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
3247 STEXI
3248 @item -initrd @var{file}
3249 @findex -initrd
3250 Use @var{file} as initial ram disk.
3251
3252 @item -initrd "@var{file1} arg=foo,@var{file2}"
3253
3254 This syntax is only available with multiboot.
3255
3256 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
3257 first module.
3258 ETEXI
3259
3260 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
3261 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
3262 STEXI
3263 @item -dtb @var{file}
3264 @findex -dtb
3265 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
3266 on boot.
3267 ETEXI
3268
3269 STEXI
3270 @end table
3271 ETEXI
3272 DEFHEADING()
3273
3274 DEFHEADING(Debug/Expert options:)
3275 STEXI
3276 @table @option
3277 ETEXI
3278
3279 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
3280 "-fw_cfg [name=]<name>,file=<file>\n"
3281 " add named fw_cfg entry with contents from file\n"
3282 "-fw_cfg [name=]<name>,string=<str>\n"
3283 " add named fw_cfg entry with contents from string\n",
3284 QEMU_ARCH_ALL)
3285 STEXI
3286
3287 @item -fw_cfg [name=]@var{name},file=@var{file}
3288 @findex -fw_cfg
3289 Add named fw_cfg entry with contents from file @var{file}.
3290
3291 @item -fw_cfg [name=]@var{name},string=@var{str}
3292 Add named fw_cfg entry with contents from string @var{str}.
3293
3294 The terminating NUL character of the contents of @var{str} will not be
3295 included as part of the fw_cfg item data. To insert contents with
3296 embedded NUL characters, you have to use the @var{file} parameter.
3297
3298 The fw_cfg entries are passed by QEMU through to the guest.
3299
3300 Example:
3301 @example
3302 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3303 @end example
3304 creates an fw_cfg entry named opt/com.mycompany/blob with contents
3305 from ./my_blob.bin.
3306
3307 ETEXI
3308
3309 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3310 "-serial dev redirect the serial port to char device 'dev'\n",
3311 QEMU_ARCH_ALL)
3312 STEXI
3313 @item -serial @var{dev}
3314 @findex -serial
3315 Redirect the virtual serial port to host character device
3316 @var{dev}. The default device is @code{vc} in graphical mode and
3317 @code{stdio} in non graphical mode.
3318
3319 This option can be used several times to simulate up to 4 serial
3320 ports.
3321
3322 Use @code{-serial none} to disable all serial ports.
3323
3324 Available character devices are:
3325 @table @option
3326 @item vc[:@var{W}x@var{H}]
3327 Virtual console. Optionally, a width and height can be given in pixel with
3328 @example
3329 vc:800x600
3330 @end example
3331 It is also possible to specify width or height in characters:
3332 @example
3333 vc:80Cx24C
3334 @end example
3335 @item pty
3336 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3337 @item none
3338 No device is allocated.
3339 @item null
3340 void device
3341 @item chardev:@var{id}
3342 Use a named character device defined with the @code{-chardev} option.
3343 @item /dev/XXX
3344 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3345 parameters are set according to the emulated ones.
3346 @item /dev/parport@var{N}
3347 [Linux only, parallel port only] Use host parallel port
3348 @var{N}. Currently SPP and EPP parallel port features can be used.
3349 @item file:@var{filename}
3350 Write output to @var{filename}. No character can be read.
3351 @item stdio
3352 [Unix only] standard input/output
3353 @item pipe:@var{filename}
3354 name pipe @var{filename}
3355 @item COM@var{n}
3356 [Windows only] Use host serial port @var{n}
3357 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3358 This implements UDP Net Console.
3359 When @var{remote_host} or @var{src_ip} are not specified
3360 they default to @code{0.0.0.0}.
3361 When not using a specified @var{src_port} a random port is automatically chosen.
3362
3363 If you just want a simple readonly console you can use @code{netcat} or
3364 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3365 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3366 will appear in the netconsole session.
3367
3368 If you plan to send characters back via netconsole or you want to stop
3369 and start QEMU a lot of times, you should have QEMU use the same
3370 source port each time by using something like @code{-serial
3371 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3372 version of netcat which can listen to a TCP port and send and receive
3373 characters via udp. If you have a patched version of netcat which
3374 activates telnet remote echo and single char transfer, then you can
3375 use the following options to set up a netcat redirector to allow
3376 telnet on port 5555 to access the QEMU port.
3377 @table @code
3378 @item QEMU Options:
3379 -serial udp::4555@@:4556
3380 @item netcat options:
3381 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3382 @item telnet options:
3383 localhost 5555
3384 @end table
3385
3386 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3387 The TCP Net Console has two modes of operation. It can send the serial
3388 I/O to a location or wait for a connection from a location. By default
3389 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3390 the @var{server} option QEMU will wait for a client socket application
3391 to connect to the port before continuing, unless the @code{nowait}
3392 option was specified. The @code{nodelay} option disables the Nagle buffering
3393 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3394 set, if the connection goes down it will attempt to reconnect at the
3395 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3396 one TCP connection at a time is accepted. You can use @code{telnet} to
3397 connect to the corresponding character device.
3398 @table @code
3399 @item Example to send tcp console to 192.168.0.2 port 4444
3400 -serial tcp:192.168.0.2:4444
3401 @item Example to listen and wait on port 4444 for connection
3402 -serial tcp::4444,server
3403 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3404 -serial tcp:192.168.0.100:4444,server,nowait
3405 @end table
3406
3407 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3408 The telnet protocol is used instead of raw tcp sockets. The options
3409 work the same as if you had specified @code{-serial tcp}. The
3410 difference is that the port acts like a telnet server or client using
3411 telnet option negotiation. This will also allow you to send the
3412 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3413 sequence. Typically in unix telnet you do it with Control-] and then
3414 type "send break" followed by pressing the enter key.
3415
3416 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3417 A unix domain socket is used instead of a tcp socket. The option works the
3418 same as if you had specified @code{-serial tcp} except the unix domain socket
3419 @var{path} is used for connections.
3420
3421 @item mon:@var{dev_string}
3422 This is a special option to allow the monitor to be multiplexed onto
3423 another serial port. The monitor is accessed with key sequence of
3424 @key{Control-a} and then pressing @key{c}.
3425 @var{dev_string} should be any one of the serial devices specified
3426 above. An example to multiplex the monitor onto a telnet server
3427 listening on port 4444 would be:
3428 @table @code
3429 @item -serial mon:telnet::4444,server,nowait
3430 @end table
3431 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3432 QEMU any more but will be passed to the guest instead.
3433
3434 @item braille
3435 Braille device. This will use BrlAPI to display the braille output on a real
3436 or fake device.
3437
3438 @item msmouse
3439 Three button serial mouse. Configure the guest to use Microsoft protocol.
3440 @end table
3441 ETEXI
3442
3443 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3444 "-parallel dev redirect the parallel port to char device 'dev'\n",
3445 QEMU_ARCH_ALL)
3446 STEXI
3447 @item -parallel @var{dev}
3448 @findex -parallel
3449 Redirect the virtual parallel port to host device @var{dev} (same
3450 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3451 be used to use hardware devices connected on the corresponding host
3452 parallel port.
3453
3454 This option can be used several times to simulate up to 3 parallel
3455 ports.
3456
3457 Use @code{-parallel none} to disable all parallel ports.
3458 ETEXI
3459
3460 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3461 "-monitor dev redirect the monitor to char device 'dev'\n",
3462 QEMU_ARCH_ALL)
3463 STEXI
3464 @item -monitor @var{dev}
3465 @findex -monitor
3466 Redirect the monitor to host device @var{dev} (same devices as the
3467 serial port).
3468 The default device is @code{vc} in graphical mode and @code{stdio} in
3469 non graphical mode.
3470 Use @code{-monitor none} to disable the default monitor.
3471 ETEXI
3472 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3473 "-qmp dev like -monitor but opens in 'control' mode\n",
3474 QEMU_ARCH_ALL)
3475 STEXI
3476 @item -qmp @var{dev}
3477 @findex -qmp
3478 Like -monitor but opens in 'control' mode.
3479 ETEXI
3480 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3481 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3482 QEMU_ARCH_ALL)
3483 STEXI
3484 @item -qmp-pretty @var{dev}
3485 @findex -qmp-pretty
3486 Like -qmp but uses pretty JSON formatting.
3487 ETEXI
3488
3489 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3490 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3491 STEXI
3492 @item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
3493 @findex -mon
3494 Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing
3495 easing human reading and debugging.
3496 ETEXI
3497
3498 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3499 "-debugcon dev redirect the debug console to char device 'dev'\n",
3500 QEMU_ARCH_ALL)
3501 STEXI
3502 @item -debugcon @var{dev}
3503 @findex -debugcon
3504 Redirect the debug console to host device @var{dev} (same devices as the
3505 serial port). The debug console is an I/O port which is typically port
3506 0xe9; writing to that I/O port sends output to this device.
3507 The default device is @code{vc} in graphical mode and @code{stdio} in
3508 non graphical mode.
3509 ETEXI
3510
3511 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3512 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3513 STEXI
3514 @item -pidfile @var{file}
3515 @findex -pidfile
3516 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3517 from a script.
3518 ETEXI
3519
3520 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3521 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3522 STEXI
3523 @item -singlestep
3524 @findex -singlestep
3525 Run the emulation in single step mode.
3526 ETEXI
3527
3528 DEF("S", 0, QEMU_OPTION_S, \
3529 "-S freeze CPU at startup (use 'c' to start execution)\n",
3530 QEMU_ARCH_ALL)
3531 STEXI
3532 @item -S
3533 @findex -S
3534 Do not start CPU at startup (you must type 'c' in the monitor).
3535 ETEXI
3536
3537 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3538 "-realtime [mlock=on|off]\n"
3539 " run qemu with realtime features\n"
3540 " mlock=on|off controls mlock support (default: on)\n",
3541 QEMU_ARCH_ALL)
3542 STEXI
3543 @item -realtime mlock=on|off
3544 @findex -realtime
3545 Run qemu with realtime features.
3546 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3547 (enabled by default).
3548 ETEXI
3549
3550 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3551 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3552 STEXI
3553 @item -gdb @var{dev}
3554 @findex -gdb
3555 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3556 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3557 stdio are reasonable use case. The latter is allowing to start QEMU from
3558 within gdb and establish the connection via a pipe:
3559 @example
3560 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3561 @end example
3562 ETEXI
3563
3564 DEF("s", 0, QEMU_OPTION_s, \
3565 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3566 QEMU_ARCH_ALL)
3567 STEXI
3568 @item -s
3569 @findex -s
3570 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3571 (@pxref{gdb_usage}).
3572 ETEXI
3573
3574 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3575 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3576 QEMU_ARCH_ALL)
3577 STEXI
3578 @item -d @var{item1}[,...]
3579 @findex -d
3580 Enable logging of specified items. Use '-d help' for a list of log items.
3581 ETEXI
3582
3583 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3584 "-D logfile output log to logfile (default stderr)\n",
3585 QEMU_ARCH_ALL)
3586 STEXI
3587 @item -D @var{logfile}
3588 @findex -D
3589 Output log in @var{logfile} instead of to stderr
3590 ETEXI
3591
3592 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3593 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3594 QEMU_ARCH_ALL)
3595 STEXI
3596 @item -dfilter @var{range1}[,...]
3597 @findex -dfilter
3598 Filter debug output to that relevant to a range of target addresses. The filter
3599 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3600 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3601 addresses and sizes required. For example:
3602 @example
3603 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3604 @end example
3605 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3606 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3607 block starting at 0xffffffc00005f000.
3608 ETEXI
3609
3610 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3611 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3612 QEMU_ARCH_ALL)
3613 STEXI
3614 @item -L @var{path}
3615 @findex -L
3616 Set the directory for the BIOS, VGA BIOS and keymaps.
3617
3618 To list all the data directories, use @code{-L help}.
3619 ETEXI
3620
3621 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3622 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3623 STEXI
3624 @item -bios @var{file}
3625 @findex -bios
3626 Set the filename for the BIOS.
3627 ETEXI
3628
3629 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3630 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3631 STEXI
3632 @item -enable-kvm
3633 @findex -enable-kvm
3634 Enable KVM full virtualization support. This option is only available
3635 if KVM support is enabled when compiling.
3636 ETEXI
3637
3638 DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \
3639 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386)
3640 STEXI
3641 @item -enable-hax
3642 @findex -enable-hax
3643 Enable HAX (Hardware-based Acceleration eXecution) support. This option
3644 is only available if HAX support is enabled when compiling. HAX is only
3645 applicable to MAC and Windows platform, and thus does not conflict with
3646 KVM.
3647 ETEXI
3648
3649 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3650 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3651 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3652 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3653 " warning: should not be used when xend is in use\n",
3654 QEMU_ARCH_ALL)
3655 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3656 "-xen-attach attach to existing xen domain\n"
3657 " xend will use this when starting QEMU\n",
3658 QEMU_ARCH_ALL)
3659 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3660 "-xen-domid-restrict restrict set of available xen operations\n"
3661 " to specified domain id. (Does not affect\n"
3662 " xenpv machine type).\n",
3663 QEMU_ARCH_ALL)
3664 STEXI
3665 @item -xen-domid @var{id}
3666 @findex -xen-domid
3667 Specify xen guest domain @var{id} (XEN only).
3668 @item -xen-create
3669 @findex -xen-create
3670 Create domain using xen hypercalls, bypassing xend.
3671 Warning: should not be used when xend is in use (XEN only).
3672 @item -xen-attach
3673 @findex -xen-attach
3674 Attach to existing xen domain.
3675 xend will use this when starting QEMU (XEN only).
3676 @findex -xen-domid-restrict
3677 Restrict set of available xen operations to specified domain id (XEN only).
3678 ETEXI
3679
3680 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3681 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3682 STEXI
3683 @item -no-reboot
3684 @findex -no-reboot
3685 Exit instead of rebooting.
3686 ETEXI
3687
3688 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3689 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3690 STEXI
3691 @item -no-shutdown
3692 @findex -no-shutdown
3693 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3694 This allows for instance switching to monitor to commit changes to the
3695 disk image.
3696 ETEXI
3697
3698 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3699 "-loadvm [tag|id]\n" \
3700 " start right away with a saved state (loadvm in monitor)\n",
3701 QEMU_ARCH_ALL)
3702 STEXI
3703 @item -loadvm @var{file}
3704 @findex -loadvm
3705 Start right away with a saved state (@code{loadvm} in monitor)
3706 ETEXI
3707
3708 #ifndef _WIN32
3709 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3710 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3711 #endif
3712 STEXI
3713 @item -daemonize
3714 @findex -daemonize
3715 Daemonize the QEMU process after initialization. QEMU will not detach from
3716 standard IO until it is ready to receive connections on any of its devices.
3717 This option is a useful way for external programs to launch QEMU without having
3718 to cope with initialization race conditions.
3719 ETEXI
3720
3721 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3722 "-option-rom rom load a file, rom, into the option ROM space\n",
3723 QEMU_ARCH_ALL)
3724 STEXI
3725 @item -option-rom @var{file}
3726 @findex -option-rom
3727 Load the contents of @var{file} as an option ROM.
3728 This option is useful to load things like EtherBoot.
3729 ETEXI
3730
3731 HXCOMM Silently ignored for compatibility
3732 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3733
3734 HXCOMM Options deprecated by -rtc
3735 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3736 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3737
3738 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3739 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3740 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3741 QEMU_ARCH_ALL)
3742
3743 STEXI
3744
3745 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3746 @findex -rtc
3747 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3748 UTC or local time, respectively. @code{localtime} is required for correct date in
3749 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3750 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3751
3752 By default the RTC is driven by the host system time. This allows using of the
3753 RTC as accurate reference clock inside the guest, specifically if the host
3754 time is smoothly following an accurate external reference clock, e.g. via NTP.
3755 If you want to isolate the guest time from the host, you can set @option{clock}
3756 to @code{rt} instead. To even prevent it from progressing during suspension,
3757 you can set it to @code{vm}.
3758
3759 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3760 specifically with Windows' ACPI HAL. This option will try to figure out how
3761 many timer interrupts were not processed by the Windows guest and will
3762 re-inject them.
3763 ETEXI
3764
3765 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3766 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3767 " enable virtual instruction counter with 2^N clock ticks per\n" \
3768 " instruction, enable aligning the host and virtual clocks\n" \
3769 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3770 STEXI
3771 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3772 @findex -icount
3773 Enable virtual instruction counter. The virtual cpu will execute one
3774 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3775 then the virtual cpu speed will be automatically adjusted to keep virtual
3776 time within a few seconds of real time.
3777
3778 When the virtual cpu is sleeping, the virtual time will advance at default
3779 speed unless @option{sleep=on|off} is specified.
3780 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3781 instantly whenever the virtual cpu goes to sleep mode and will not advance
3782 if no timer is enabled. This behavior give deterministic execution times from
3783 the guest point of view.
3784
3785 Note that while this option can give deterministic behavior, it does not
3786 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3787 order cores with complex cache hierarchies. The number of instructions
3788 executed often has little or no correlation with actual performance.
3789
3790 @option{align=on} will activate the delay algorithm which will try
3791 to synchronise the host clock and the virtual clock. The goal is to
3792 have a guest running at the real frequency imposed by the shift option.
3793 Whenever the guest clock is behind the host clock and if
3794 @option{align=on} is specified then we print a message to the user
3795 to inform about the delay.
3796 Currently this option does not work when @option{shift} is @code{auto}.
3797 Note: The sync algorithm will work for those shift values for which
3798 the guest clock runs ahead of the host clock. Typically this happens
3799 when the shift value is high (how high depends on the host machine).
3800
3801 When @option{rr} option is specified deterministic record/replay is enabled.
3802 Replay log is written into @var{filename} file in record mode and
3803 read from this file in replay mode.
3804
3805 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3806 at the start of execution recording. In replay mode this option is used
3807 to load the initial VM state.
3808 ETEXI
3809
3810 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3811 "-watchdog model\n" \
3812 " enable virtual hardware watchdog [default=none]\n",
3813 QEMU_ARCH_ALL)
3814 STEXI
3815 @item -watchdog @var{model}
3816 @findex -watchdog
3817 Create a virtual hardware watchdog device. Once enabled (by a guest
3818 action), the watchdog must be periodically polled by an agent inside
3819 the guest or else the guest will be restarted. Choose a model for
3820 which your guest has drivers.
3821
3822 The @var{model} is the model of hardware watchdog to emulate. Use
3823 @code{-watchdog help} to list available hardware models. Only one
3824 watchdog can be enabled for a guest.
3825
3826 The following models may be available:
3827 @table @option
3828 @item ib700
3829 iBASE 700 is a very simple ISA watchdog with a single timer.
3830 @item i6300esb
3831 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3832 dual-timer watchdog.
3833 @item diag288
3834 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3835 (currently KVM only).
3836 @end table
3837 ETEXI
3838
3839 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3840 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3841 " action when watchdog fires [default=reset]\n",
3842 QEMU_ARCH_ALL)
3843 STEXI
3844 @item -watchdog-action @var{action}
3845 @findex -watchdog-action
3846
3847 The @var{action} controls what QEMU will do when the watchdog timer
3848 expires.
3849 The default is
3850 @code{reset} (forcefully reset the guest).
3851 Other possible actions are:
3852 @code{shutdown} (attempt to gracefully shutdown the guest),
3853 @code{poweroff} (forcefully poweroff the guest),
3854 @code{pause} (pause the guest),
3855 @code{debug} (print a debug message and continue), or
3856 @code{none} (do nothing).
3857
3858 Note that the @code{shutdown} action requires that the guest responds
3859 to ACPI signals, which it may not be able to do in the sort of
3860 situations where the watchdog would have expired, and thus
3861 @code{-watchdog-action shutdown} is not recommended for production use.
3862
3863 Examples:
3864
3865 @table @code
3866 @item -watchdog i6300esb -watchdog-action pause
3867 @itemx -watchdog ib700
3868 @end table
3869 ETEXI
3870
3871 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3872 "-echr chr set terminal escape character instead of ctrl-a\n",
3873 QEMU_ARCH_ALL)
3874 STEXI
3875
3876 @item -echr @var{numeric_ascii_value}
3877 @findex -echr
3878 Change the escape character used for switching to the monitor when using
3879 monitor and serial sharing. The default is @code{0x01} when using the
3880 @code{-nographic} option. @code{0x01} is equal to pressing
3881 @code{Control-a}. You can select a different character from the ascii
3882 control keys where 1 through 26 map to Control-a through Control-z. For
3883 instance you could use the either of the following to change the escape
3884 character to Control-t.
3885 @table @code
3886 @item -echr 0x14
3887 @itemx -echr 20
3888 @end table
3889 ETEXI
3890
3891 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3892 "-virtioconsole c\n" \
3893 " set virtio console\n", QEMU_ARCH_ALL)
3894 STEXI
3895 @item -virtioconsole @var{c}
3896 @findex -virtioconsole
3897 Set virtio console.
3898
3899 This option is maintained for backward compatibility.
3900
3901 Please use @code{-device virtconsole} for the new way of invocation.
3902 ETEXI
3903
3904 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3905 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3906 STEXI
3907 @item -show-cursor
3908 @findex -show-cursor
3909 Show cursor.
3910 ETEXI
3911
3912 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3913 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3914 STEXI
3915 @item -tb-size @var{n}
3916 @findex -tb-size
3917 Set TB size.
3918 ETEXI
3919
3920 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3921 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3922 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3923 "-incoming unix:socketpath\n" \
3924 " prepare for incoming migration, listen on\n" \
3925 " specified protocol and socket address\n" \
3926 "-incoming fd:fd\n" \
3927 "-incoming exec:cmdline\n" \
3928 " accept incoming migration on given file descriptor\n" \
3929 " or from given external command\n" \
3930 "-incoming defer\n" \
3931 " wait for the URI to be specified via migrate_incoming\n",
3932 QEMU_ARCH_ALL)
3933 STEXI
3934 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3935 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3936 @findex -incoming
3937 Prepare for incoming migration, listen on a given tcp port.
3938
3939 @item -incoming unix:@var{socketpath}
3940 Prepare for incoming migration, listen on a given unix socket.
3941
3942 @item -incoming fd:@var{fd}
3943 Accept incoming migration from a given filedescriptor.
3944
3945 @item -incoming exec:@var{cmdline}
3946 Accept incoming migration as an output from specified external command.
3947
3948 @item -incoming defer
3949 Wait for the URI to be specified via migrate_incoming. The monitor can
3950 be used to change settings (such as migration parameters) prior to issuing
3951 the migrate_incoming to allow the migration to begin.
3952 ETEXI
3953
3954 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3955 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3956 STEXI
3957 @item -only-migratable
3958 @findex -only-migratable
3959 Only allow migratable devices. Devices will not be allowed to enter an
3960 unmigratable state.
3961 ETEXI
3962
3963 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3964 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3965 STEXI
3966 @item -nodefaults
3967 @findex -nodefaults
3968 Don't create default devices. Normally, QEMU sets the default devices like serial
3969 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3970 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3971 default devices.
3972 ETEXI
3973
3974 #ifndef _WIN32
3975 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3976 "-chroot dir chroot to dir just before starting the VM\n",
3977 QEMU_ARCH_ALL)
3978 #endif
3979 STEXI
3980 @item -chroot @var{dir}
3981 @findex -chroot
3982 Immediately before starting guest execution, chroot to the specified
3983 directory. Especially useful in combination with -runas.
3984 ETEXI
3985
3986 #ifndef _WIN32
3987 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3988 "-runas user change to user id user just before starting the VM\n",
3989 QEMU_ARCH_ALL)
3990 #endif
3991 STEXI
3992 @item -runas @var{user}
3993 @findex -runas
3994 Immediately before starting guest execution, drop root privileges, switching
3995 to the specified user.
3996 ETEXI
3997
3998 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3999 "-prom-env variable=value\n"
4000 " set OpenBIOS nvram variables\n",
4001 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
4002 STEXI
4003 @item -prom-env @var{variable}=@var{value}
4004 @findex -prom-env
4005 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
4006 ETEXI
4007 DEF("semihosting", 0, QEMU_OPTION_semihosting,
4008 "-semihosting semihosting mode\n",
4009 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4010 QEMU_ARCH_MIPS)
4011 STEXI
4012 @item -semihosting
4013 @findex -semihosting
4014 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
4015 ETEXI
4016 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
4017 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
4018 " semihosting configuration\n",
4019 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4020 QEMU_ARCH_MIPS)
4021 STEXI
4022 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
4023 @findex -semihosting-config
4024 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
4025 @table @option
4026 @item target=@code{native|gdb|auto}
4027 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
4028 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
4029 during debug sessions and @code{native} otherwise.
4030 @item arg=@var{str1},arg=@var{str2},...
4031 Allows the user to pass input arguments, and can be used multiple times to build
4032 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
4033 command line is still supported for backward compatibility. If both the
4034 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
4035 specified, the former is passed to semihosting as it always takes precedence.
4036 @end table
4037 ETEXI
4038 DEF("old-param", 0, QEMU_OPTION_old_param,
4039 "-old-param old param mode\n", QEMU_ARCH_ARM)
4040 STEXI
4041 @item -old-param
4042 @findex -old-param (ARM)
4043 Old param mode (ARM only).
4044 ETEXI
4045
4046 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
4047 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
4048 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
4049 " Enable seccomp mode 2 system call filter (default 'off').\n" \
4050 " use 'obsolete' to allow obsolete system calls that are provided\n" \
4051 " by the kernel, but typically no longer used by modern\n" \
4052 " C library implementations.\n" \
4053 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \
4054 " its privileges by blacklisting all set*uid|gid system calls.\n" \
4055 " The value 'children' will deny set*uid|gid system calls for\n" \
4056 " main QEMU process but will allow forks and execves to run unprivileged\n" \
4057 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
4058 " blacklisting *fork and execve\n" \
4059 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
4060 QEMU_ARCH_ALL)
4061 STEXI
4062 @item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}]
4063 @findex -sandbox
4064 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
4065 disable it. The default is 'off'.
4066 @table @option
4067 @item obsolete=@var{string}
4068 Enable Obsolete system calls
4069 @item elevateprivileges=@var{string}
4070 Disable set*uid|gid system calls
4071 @item spawn=@var{string}
4072 Disable *fork and execve
4073 @item resourcecontrol=@var{string}
4074 Disable process affinity and schedular priority
4075 @end table
4076 ETEXI
4077
4078 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
4079 "-readconfig <file>\n", QEMU_ARCH_ALL)
4080 STEXI
4081 @item -readconfig @var{file}
4082 @findex -readconfig
4083 Read device configuration from @var{file}. This approach is useful when you want to spawn
4084 QEMU process with many command line options but you don't want to exceed the command line
4085 character limit.
4086 ETEXI
4087 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
4088 "-writeconfig <file>\n"
4089 " read/write config file\n", QEMU_ARCH_ALL)
4090 STEXI
4091 @item -writeconfig @var{file}
4092 @findex -writeconfig
4093 Write device configuration to @var{file}. The @var{file} can be either filename to save
4094 command line and device configuration into file or dash @code{-}) character to print the
4095 output to stdout. This can be later used as input file for @code{-readconfig} option.
4096 ETEXI
4097 HXCOMM Deprecated, same as -no-user-config
4098 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig, "", QEMU_ARCH_ALL)
4099 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
4100 "-no-user-config\n"
4101 " do not load default user-provided config files at startup\n",
4102 QEMU_ARCH_ALL)
4103 STEXI
4104 @item -no-user-config
4105 @findex -no-user-config
4106 The @code{-no-user-config} option makes QEMU not load any of the user-provided
4107 config files on @var{sysconfdir}.
4108 ETEXI
4109 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
4110 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
4111 " specify tracing options\n",
4112 QEMU_ARCH_ALL)
4113 STEXI
4114 HXCOMM This line is not accurate, as some sub-options are backend-specific but
4115 HXCOMM HX does not support conditional compilation of text.
4116 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
4117 @findex -trace
4118 @include qemu-option-trace.texi
4119 ETEXI
4120
4121 HXCOMM Internal use
4122 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
4123 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
4124
4125 #ifdef __linux__
4126 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
4127 "-enable-fips enable FIPS 140-2 compliance\n",
4128 QEMU_ARCH_ALL)
4129 #endif
4130 STEXI
4131 @item -enable-fips
4132 @findex -enable-fips
4133 Enable FIPS 140-2 compliance mode.
4134 ETEXI
4135
4136 HXCOMM Deprecated by -machine accel=tcg property
4137 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
4138
4139 HXCOMM Deprecated by kvm-pit driver properties
4140 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
4141 "", QEMU_ARCH_I386)
4142
4143 HXCOMM Deprecated (ignored)
4144 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
4145
4146 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
4147 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
4148
4149 HXCOMM Deprecated (ignored)
4150 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
4151
4152 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
4153 "-msg timestamp[=on|off]\n"
4154 " change the format of messages\n"
4155 " on|off controls leading timestamps (default:on)\n",
4156 QEMU_ARCH_ALL)
4157 STEXI
4158 @item -msg timestamp[=on|off]
4159 @findex -msg
4160 prepend a timestamp to each log message.(default:on)
4161 ETEXI
4162
4163 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
4164 "-dump-vmstate <file>\n"
4165 " Output vmstate information in JSON format to file.\n"
4166 " Use the scripts/vmstate-static-checker.py file to\n"
4167 " check for possible regressions in migration code\n"
4168 " by comparing two such vmstate dumps.\n",
4169 QEMU_ARCH_ALL)
4170 STEXI
4171 @item -dump-vmstate @var{file}
4172 @findex -dump-vmstate
4173 Dump json-encoded vmstate information for current machine type to file
4174 in @var{file}
4175 ETEXI
4176
4177 STEXI
4178 @end table
4179 ETEXI
4180 DEFHEADING()
4181
4182 DEFHEADING(Generic object creation:)
4183 STEXI
4184 @table @option
4185 ETEXI
4186
4187 DEF("object", HAS_ARG, QEMU_OPTION_object,
4188 "-object TYPENAME[,PROP1=VALUE1,...]\n"
4189 " create a new object of type TYPENAME setting properties\n"
4190 " in the order they are specified. Note that the 'id'\n"
4191 " property must be set. These objects are placed in the\n"
4192 " '/objects' path.\n",
4193 QEMU_ARCH_ALL)
4194 STEXI
4195 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
4196 @findex -object
4197 Create a new object of type @var{typename} setting properties
4198 in the order they are specified. Note that the 'id'
4199 property must be set. These objects are placed in the
4200 '/objects' path.
4201
4202 @table @option
4203
4204 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off}
4205
4206 Creates a memory file backend object, which can be used to back
4207 the guest RAM with huge pages. The @option{id} parameter is a
4208 unique ID that will be used to reference this memory region
4209 when configuring the @option{-numa} argument. The @option{size}
4210 option provides the size of the memory region, and accepts
4211 common suffixes, eg @option{500M}. The @option{mem-path} provides
4212 the path to either a shared memory or huge page filesystem mount.
4213 The @option{share} boolean option determines whether the memory
4214 region is marked as private to QEMU, or shared. The latter allows
4215 a co-operating external process to access the QEMU memory region.
4216 Setting the @option{discard-data} boolean option to @var{on}
4217 indicates that file contents can be destroyed when QEMU exits,
4218 to avoid unnecessarily flushing data to the backing file. Note
4219 that @option{discard-data} is only an optimization, and QEMU
4220 might not discard file contents if it aborts unexpectedly or is
4221 terminated using SIGKILL.
4222
4223 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
4224
4225 Creates a random number generator backend which obtains entropy from
4226 a device on the host. The @option{id} parameter is a unique ID that
4227 will be used to reference this entropy backend from the @option{virtio-rng}
4228 device. The @option{filename} parameter specifies which file to obtain
4229 entropy from and if omitted defaults to @option{/dev/random}.
4230
4231 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
4232
4233 Creates a random number generator backend which obtains entropy from
4234 an external daemon running on the host. The @option{id} parameter is
4235 a unique ID that will be used to reference this entropy backend from
4236 the @option{virtio-rng} device. The @option{chardev} parameter is
4237 the unique ID of a character device backend that provides the connection
4238 to the RNG daemon.
4239
4240 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
4241
4242 Creates a TLS anonymous credentials object, which can be used to provide
4243 TLS support on network backends. The @option{id} parameter is a unique
4244 ID which network backends will use to access the credentials. The
4245 @option{endpoint} is either @option{server} or @option{client} depending
4246 on whether the QEMU network backend that uses the credentials will be
4247 acting as a client or as a server. If @option{verify-peer} is enabled
4248 (the default) then once the handshake is completed, the peer credentials
4249 will be verified, though this is a no-op for anonymous credentials.
4250
4251 The @var{dir} parameter tells QEMU where to find the credential
4252 files. For server endpoints, this directory may contain a file
4253 @var{dh-params.pem} providing diffie-hellman parameters to use
4254 for the TLS server. If the file is missing, QEMU will generate
4255 a set of DH parameters at startup. This is a computationally
4256 expensive operation that consumes random pool entropy, so it is
4257 recommended that a persistent set of parameters be generated
4258 upfront and saved.
4259
4260 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
4261
4262 Creates a TLS anonymous credentials object, which can be used to provide
4263 TLS support on network backends. The @option{id} parameter is a unique
4264 ID which network backends will use to access the credentials. The
4265 @option{endpoint} is either @option{server} or @option{client} depending
4266 on whether the QEMU network backend that uses the credentials will be
4267 acting as a client or as a server. If @option{verify-peer} is enabled
4268 (the default) then once the handshake is completed, the peer credentials
4269 will be verified. With x509 certificates, this implies that the clients
4270 must be provided with valid client certificates too.
4271
4272 The @var{dir} parameter tells QEMU where to find the credential
4273 files. For server endpoints, this directory may contain a file
4274 @var{dh-params.pem} providing diffie-hellman parameters to use
4275 for the TLS server. If the file is missing, QEMU will generate
4276 a set of DH parameters at startup. This is a computationally
4277 expensive operation that consumes random pool entropy, so it is
4278 recommended that a persistent set of parameters be generated
4279 upfront and saved.
4280
4281 For x509 certificate credentials the directory will contain further files
4282 providing the x509 certificates. The certificates must be stored
4283 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4284 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4285 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4286
4287 For the @var{server-key.pem} and @var{client-key.pem} files which
4288 contain sensitive private keys, it is possible to use an encrypted
4289 version by providing the @var{passwordid} parameter. This provides
4290 the ID of a previously created @code{secret} object containing the
4291 password for decryption.
4292
4293 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4294
4295 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4296 packets arriving in a given interval on netdev @var{netdevid} are delayed
4297 until the end of the interval. Interval is in microseconds.
4298 @option{status} is optional that indicate whether the netfilter is
4299 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4300
4301 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4302
4303 @option{all}: the filter is attached both to the receive and the transmit
4304 queue of the netdev (default).
4305
4306 @option{rx}: the filter is attached to the receive queue of the netdev,
4307 where it will receive packets sent to the netdev.
4308
4309 @option{tx}: the filter is attached to the transmit queue of the netdev,
4310 where it will receive packets sent by the netdev.
4311
4312 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4313
4314 filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.
4315
4316 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4317
4318 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4319 @var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag,
4320 filter-redirector will redirect packet with vnet_hdr_len.
4321 Create a filter-redirector we need to differ outdev id from indev id, id can not
4322 be the same. we can just use indev or outdev, but at least one of indev or outdev
4323 need to be specified.
4324
4325 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support]
4326
4327 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4328 secondary from primary to keep secondary tcp connection,and rewrite
4329 tcp packet to primary from secondary make tcp packet can be handled by
4330 client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.
4331
4332 usage:
4333 colo secondary:
4334 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4335 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4336 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4337
4338 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4339
4340 Dump the network traffic on netdev @var{dev} to the file specified by
4341 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4342 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4343 or Wireshark.
4344
4345 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid}[,vnet_hdr_support]
4346
4347 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4348 secondary packet. If the packets are same, we will output primary
4349 packet to outdev@var{chardevid}, else we will notify colo-frame
4350 do checkpoint and send primary packet to outdev@var{chardevid}.
4351 if it has the vnet_hdr_support flag, colo compare will send/recv packet with vnet_hdr_len.
4352
4353 we must use it with the help of filter-mirror and filter-redirector.
4354
4355 @example
4356
4357 primary:
4358 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4359 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4360 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4361 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4362 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4363 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4364 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4365 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4366 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4367 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4368 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4369 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
4370
4371 secondary:
4372 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4373 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4374 -chardev socket,id=red0,host=3.3.3.3,port=9003
4375 -chardev socket,id=red1,host=3.3.3.3,port=9004
4376 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4377 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4378
4379 @end example
4380
4381 If you want to know the detail of above command line, you can read
4382 the colo-compare git log.
4383
4384 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4385
4386 Creates a cryptodev backend which executes crypto opreation from
4387 the QEMU cipher APIS. The @var{id} parameter is
4388 a unique ID that will be used to reference this cryptodev backend from
4389 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4390 which specify the queue number of cryptodev backend, the default of
4391 @var{queues} is 1.
4392
4393 @example
4394
4395 # qemu-system-x86_64 \
4396 [...] \
4397 -object cryptodev-backend-builtin,id=cryptodev0 \
4398 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4399 [...]
4400 @end example
4401
4402 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4403 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4404
4405 Defines a secret to store a password, encryption key, or some other sensitive
4406 data. The sensitive data can either be passed directly via the @var{data}
4407 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4408 parameter is insecure unless the sensitive data is encrypted.
4409
4410 The sensitive data can be provided in raw format (the default), or base64.
4411 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4412 so base64 is recommended for sending binary data. QEMU will convert from
4413 which ever format is provided to the format it needs internally. eg, an
4414 RBD password can be provided in raw format, even though it will be base64
4415 encoded when passed onto the RBD sever.
4416
4417 For added protection, it is possible to encrypt the data associated with
4418 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4419 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4420 parameter provides the ID of a previously defined secret that contains
4421 the AES-256 decryption key. This key should be 32-bytes long and be
4422 base64 encoded. The @var{iv} parameter provides the random initialization
4423 vector used for encryption of this particular secret and should be a
4424 base64 encrypted string of the 16-byte IV.
4425
4426 The simplest (insecure) usage is to provide the secret inline
4427
4428 @example
4429
4430 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4431
4432 @end example
4433
4434 The simplest secure usage is to provide the secret via a file
4435
4436 # printf "letmein" > mypasswd.txt
4437 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4438
4439 For greater security, AES-256-CBC should be used. To illustrate usage,
4440 consider the openssl command line tool which can encrypt the data. Note
4441 that when encrypting, the plaintext must be padded to the cipher block
4442 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4443
4444 First a master key needs to be created in base64 encoding:
4445
4446 @example
4447 # openssl rand -base64 32 > key.b64
4448 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4449 @end example
4450
4451 Each secret to be encrypted needs to have a random initialization vector
4452 generated. These do not need to be kept secret
4453
4454 @example
4455 # openssl rand -base64 16 > iv.b64
4456 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4457 @end example
4458
4459 The secret to be defined can now be encrypted, in this case we're
4460 telling openssl to base64 encode the result, but it could be left
4461 as raw bytes if desired.
4462
4463 @example
4464 # SECRET=$(printf "letmein" |
4465 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4466 @end example
4467
4468 When launching QEMU, create a master secret pointing to @code{key.b64}
4469 and specify that to be used to decrypt the user password. Pass the
4470 contents of @code{iv.b64} to the second secret
4471
4472 @example
4473 # $QEMU \
4474 -object secret,id=secmaster0,format=base64,file=key.b64 \
4475 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4476 data=$SECRET,iv=$(<iv.b64)
4477 @end example
4478
4479 @end table
4480
4481 ETEXI
4482
4483
4484 HXCOMM This is the last statement. Insert new options before this line!
4485 STEXI
4486 @end table
4487 ETEXI