]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
ipmi: Add documentation
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, tcg (default: tcg)\n"
35 " kernel_irqchip=on|off controls accelerated irqchip support\n"
36 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
37 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
38 " kvm_shadow_mem=size of KVM shadow MMU\n"
39 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
40 " mem-merge=on|off controls memory merge support (default: on)\n"
41 " iommu=on|off controls emulated Intel IOMMU (VT-d) support (default=off)\n"
42 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
43 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
44 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
45 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n",
46 QEMU_ARCH_ALL)
47 STEXI
48 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
49 @findex -machine
50 Select the emulated machine by @var{name}. Use @code{-machine help} to list
51 available machines. Supported machine properties are:
52 @table @option
53 @item accel=@var{accels1}[:@var{accels2}[:...]]
54 This is used to enable an accelerator. Depending on the target architecture,
55 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
56 than one accelerator specified, the next one is used if the previous one fails
57 to initialize.
58 @item kernel_irqchip=on|off
59 Controls in-kernel irqchip support for the chosen accelerator when available.
60 @item gfx_passthru=on|off
61 Enables IGD GFX passthrough support for the chosen machine when available.
62 @item vmport=on|off|auto
63 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
64 value based on accel. For accel=xen the default is off otherwise the default
65 is on.
66 @item kvm_shadow_mem=size
67 Defines the size of the KVM shadow MMU.
68 @item dump-guest-core=on|off
69 Include guest memory in a core dump. The default is on.
70 @item mem-merge=on|off
71 Enables or disables memory merge support. This feature, when supported by
72 the host, de-duplicates identical memory pages among VMs instances
73 (enabled by default).
74 @item iommu=on|off
75 Enables or disables emulated Intel IOMMU (VT-d) support. The default is off.
76 @item aes-key-wrap=on|off
77 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
78 controls whether AES wrapping keys will be created to allow
79 execution of AES cryptographic functions. The default is on.
80 @item dea-key-wrap=on|off
81 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
82 controls whether DEA wrapping keys will be created to allow
83 execution of DEA cryptographic functions. The default is on.
84 @end table
85 ETEXI
86
87 HXCOMM Deprecated by -machine
88 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
89
90 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
91 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
92 STEXI
93 @item -cpu @var{model}
94 @findex -cpu
95 Select CPU model (@code{-cpu help} for list and additional feature selection)
96 ETEXI
97
98 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
99 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
100 " set the number of CPUs to 'n' [default=1]\n"
101 " maxcpus= maximum number of total cpus, including\n"
102 " offline CPUs for hotplug, etc\n"
103 " cores= number of CPU cores on one socket\n"
104 " threads= number of threads on one CPU core\n"
105 " sockets= number of discrete sockets in the system\n",
106 QEMU_ARCH_ALL)
107 STEXI
108 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
109 @findex -smp
110 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
111 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
112 to 4.
113 For the PC target, the number of @var{cores} per socket, the number
114 of @var{threads} per cores and the total number of @var{sockets} can be
115 specified. Missing values will be computed. If any on the three values is
116 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
117 specifies the maximum number of hotpluggable CPUs.
118 ETEXI
119
120 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
121 "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n"
122 "-numa node[,memdev=id][,cpus=cpu[-cpu]][,nodeid=node]\n", QEMU_ARCH_ALL)
123 STEXI
124 @item -numa node[,mem=@var{size}][,cpus=@var{cpu[-cpu]}][,nodeid=@var{node}]
125 @itemx -numa node[,memdev=@var{id}][,cpus=@var{cpu[-cpu]}][,nodeid=@var{node}]
126 @findex -numa
127 Simulate a multi node NUMA system. If @samp{mem}, @samp{memdev}
128 and @samp{cpus} are omitted, resources are split equally. Also, note
129 that the -@option{numa} option doesn't allocate any of the specified
130 resources. That is, it just assigns existing resources to NUMA nodes. This
131 means that one still has to use the @option{-m}, @option{-smp} options
132 to allocate RAM and VCPUs respectively, and possibly @option{-object}
133 to specify the memory backend for the @samp{memdev} suboption.
134
135 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore, if one
136 node uses @samp{memdev}, all of them have to use it.
137 ETEXI
138
139 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
140 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
141 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
142 STEXI
143 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
144 @findex -add-fd
145
146 Add a file descriptor to an fd set. Valid options are:
147
148 @table @option
149 @item fd=@var{fd}
150 This option defines the file descriptor of which a duplicate is added to fd set.
151 The file descriptor cannot be stdin, stdout, or stderr.
152 @item set=@var{set}
153 This option defines the ID of the fd set to add the file descriptor to.
154 @item opaque=@var{opaque}
155 This option defines a free-form string that can be used to describe @var{fd}.
156 @end table
157
158 You can open an image using pre-opened file descriptors from an fd set:
159 @example
160 qemu-system-i386
161 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
162 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
163 -drive file=/dev/fdset/2,index=0,media=disk
164 @end example
165 ETEXI
166
167 DEF("set", HAS_ARG, QEMU_OPTION_set,
168 "-set group.id.arg=value\n"
169 " set <arg> parameter for item <id> of type <group>\n"
170 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
171 STEXI
172 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
173 @findex -set
174 Set parameter @var{arg} for item @var{id} of type @var{group}\n"
175 ETEXI
176
177 DEF("global", HAS_ARG, QEMU_OPTION_global,
178 "-global driver.property=value\n"
179 "-global driver=driver,property=property,value=value\n"
180 " set a global default for a driver property\n",
181 QEMU_ARCH_ALL)
182 STEXI
183 @item -global @var{driver}.@var{prop}=@var{value}
184 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
185 @findex -global
186 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
187
188 @example
189 qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk
190 @end example
191
192 In particular, you can use this to set driver properties for devices which are
193 created automatically by the machine model. To create a device which is not
194 created automatically and set properties on it, use -@option{device}.
195
196 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
197 driver=@var{driver},property=@var{prop},value=@var{value}. The
198 longhand syntax works even when @var{driver} contains a dot.
199 ETEXI
200
201 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
202 "-boot [order=drives][,once=drives][,menu=on|off]\n"
203 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
204 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
205 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
206 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
207 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
208 QEMU_ARCH_ALL)
209 STEXI
210 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
211 @findex -boot
212 Specify boot order @var{drives} as a string of drive letters. Valid
213 drive letters depend on the target architecture. The x86 PC uses: a, b
214 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
215 from network adapter 1-4), hard disk boot is the default. To apply a
216 particular boot order only on the first startup, specify it via
217 @option{once}.
218
219 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
220 as firmware/BIOS supports them. The default is non-interactive boot.
221
222 A splash picture could be passed to bios, enabling user to show it as logo,
223 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
224 supports them. Currently Seabios for X86 system support it.
225 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
226 format(true color). The resolution should be supported by the SVGA mode, so
227 the recommended is 320x240, 640x480, 800x640.
228
229 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
230 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
231 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
232 system support it.
233
234 Do strict boot via @option{strict=on} as far as firmware/BIOS
235 supports it. This only effects when boot priority is changed by
236 bootindex options. The default is non-strict boot.
237
238 @example
239 # try to boot from network first, then from hard disk
240 qemu-system-i386 -boot order=nc
241 # boot from CD-ROM first, switch back to default order after reboot
242 qemu-system-i386 -boot once=d
243 # boot with a splash picture for 5 seconds.
244 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
245 @end example
246
247 Note: The legacy format '-boot @var{drives}' is still supported but its
248 use is discouraged as it may be removed from future versions.
249 ETEXI
250
251 DEF("m", HAS_ARG, QEMU_OPTION_m,
252 "-m[emory] [size=]megs[,slots=n,maxmem=size]\n"
253 " configure guest RAM\n"
254 " size: initial amount of guest memory\n"
255 " slots: number of hotplug slots (default: none)\n"
256 " maxmem: maximum amount of guest memory (default: none)\n"
257 "NOTE: Some architectures might enforce a specific granularity\n",
258 QEMU_ARCH_ALL)
259 STEXI
260 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
261 @findex -m
262 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
263 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
264 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
265 could be used to set amount of hotpluggable memory slots and maximum amount of
266 memory. Note that @var{maxmem} must be aligned to the page size.
267
268 For example, the following command-line sets the guest startup RAM size to
269 1GB, creates 3 slots to hotplug additional memory and sets the maximum
270 memory the guest can reach to 4GB:
271
272 @example
273 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
274 @end example
275
276 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
277 be enabled and the guest startup RAM will never increase.
278 ETEXI
279
280 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
281 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
282 STEXI
283 @item -mem-path @var{path}
284 @findex -mem-path
285 Allocate guest RAM from a temporarily created file in @var{path}.
286 ETEXI
287
288 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
289 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
290 QEMU_ARCH_ALL)
291 STEXI
292 @item -mem-prealloc
293 @findex -mem-prealloc
294 Preallocate memory when using -mem-path.
295 ETEXI
296
297 DEF("k", HAS_ARG, QEMU_OPTION_k,
298 "-k language use keyboard layout (for example 'fr' for French)\n",
299 QEMU_ARCH_ALL)
300 STEXI
301 @item -k @var{language}
302 @findex -k
303 Use keyboard layout @var{language} (for example @code{fr} for
304 French). This option is only needed where it is not easy to get raw PC
305 keycodes (e.g. on Macs, with some X11 servers or with a VNC
306 display). You don't normally need to use it on PC/Linux or PC/Windows
307 hosts.
308
309 The available layouts are:
310 @example
311 ar de-ch es fo fr-ca hu ja mk no pt-br sv
312 da en-gb et fr fr-ch is lt nl pl ru th
313 de en-us fi fr-be hr it lv nl-be pt sl tr
314 @end example
315
316 The default is @code{en-us}.
317 ETEXI
318
319
320 DEF("audio-help", 0, QEMU_OPTION_audio_help,
321 "-audio-help print list of audio drivers and their options\n",
322 QEMU_ARCH_ALL)
323 STEXI
324 @item -audio-help
325 @findex -audio-help
326 Will show the audio subsystem help: list of drivers, tunable
327 parameters.
328 ETEXI
329
330 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
331 "-soundhw c1,... enable audio support\n"
332 " and only specified sound cards (comma separated list)\n"
333 " use '-soundhw help' to get the list of supported cards\n"
334 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
335 STEXI
336 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
337 @findex -soundhw
338 Enable audio and selected sound hardware. Use 'help' to print all
339 available sound hardware.
340
341 @example
342 qemu-system-i386 -soundhw sb16,adlib disk.img
343 qemu-system-i386 -soundhw es1370 disk.img
344 qemu-system-i386 -soundhw ac97 disk.img
345 qemu-system-i386 -soundhw hda disk.img
346 qemu-system-i386 -soundhw all disk.img
347 qemu-system-i386 -soundhw help
348 @end example
349
350 Note that Linux's i810_audio OSS kernel (for AC97) module might
351 require manually specifying clocking.
352
353 @example
354 modprobe i810_audio clocking=48000
355 @end example
356 ETEXI
357
358 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
359 "-balloon none disable balloon device\n"
360 "-balloon virtio[,addr=str]\n"
361 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
362 STEXI
363 @item -balloon none
364 @findex -balloon
365 Disable balloon device.
366 @item -balloon virtio[,addr=@var{addr}]
367 Enable virtio balloon device (default), optionally with PCI address
368 @var{addr}.
369 ETEXI
370
371 DEF("device", HAS_ARG, QEMU_OPTION_device,
372 "-device driver[,prop[=value][,...]]\n"
373 " add device (based on driver)\n"
374 " prop=value,... sets driver properties\n"
375 " use '-device help' to print all possible drivers\n"
376 " use '-device driver,help' to print all possible properties\n",
377 QEMU_ARCH_ALL)
378 STEXI
379 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
380 @findex -device
381 Add device @var{driver}. @var{prop}=@var{value} sets driver
382 properties. Valid properties depend on the driver. To get help on
383 possible drivers and properties, use @code{-device help} and
384 @code{-device @var{driver},help}.
385
386 Some drivers are:
387 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}]
388
389 Add an IPMI BMC. This is a simulation of a hardware management
390 interface processor that normally sits on a system. It provides
391 a watchdog and the ability to reset and power control the system.
392 You need to connect this to an IPMI interface to make it useful
393
394 The IPMI slave address to use for the BMC. The default is 0x20.
395 This address is the BMC's address on the I2C network of management
396 controllers. If you don't know what this means, it is safe to ignore
397 it.
398
399 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
400
401 Add a connection to an external IPMI BMC simulator. Instead of
402 locally emulating the BMC like the above item, instead connect
403 to an external entity that provides the IPMI services.
404
405 A connection is made to an external BMC simulator. If you do this, it
406 is strongly recommended that you use the "reconnect=" chardev option
407 to reconnect to the simulator if the connection is lost. Note that if
408 this is not used carefully, it can be a security issue, as the
409 interface has the ability to send resets, NMIs, and power off the VM.
410 It's best if QEMU makes a connection to an external simulator running
411 on a secure port on localhost, so neither the simulator nor QEMU is
412 exposed to any outside network.
413
414 See the "lanserv/README.vm" file in the OpenIPMI library for more
415 details on the external interface.
416
417 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
418
419 Add a KCS IPMI interafce on the ISA bus. This also adds a
420 corresponding ACPI and SMBIOS entries, if appropriate.
421
422 @table @option
423 @item bmc=@var{id}
424 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
425 @item ioport=@var{val}
426 Define the I/O address of the interface. The default is 0xca0 for KCS.
427 @item irq=@var{val}
428 Define the interrupt to use. The default is 5. To disable interrupts,
429 set this to 0.
430 @end table
431
432 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
433
434 Like the KCS interface, but defines a BT interface. The default port is
435 0xe4 and the default interrupt is 5.
436
437 ETEXI
438
439 DEF("name", HAS_ARG, QEMU_OPTION_name,
440 "-name string1[,process=string2][,debug-threads=on|off]\n"
441 " set the name of the guest\n"
442 " string1 sets the window title and string2 the process name (on Linux)\n"
443 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
444 " NOTE: The thread names are for debugging and not a stable API.\n",
445 QEMU_ARCH_ALL)
446 STEXI
447 @item -name @var{name}
448 @findex -name
449 Sets the @var{name} of the guest.
450 This name will be displayed in the SDL window caption.
451 The @var{name} will also be used for the VNC server.
452 Also optionally set the top visible process name in Linux.
453 Naming of individual threads can also be enabled on Linux to aid debugging.
454 ETEXI
455
456 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
457 "-uuid %08x-%04x-%04x-%04x-%012x\n"
458 " specify machine UUID\n", QEMU_ARCH_ALL)
459 STEXI
460 @item -uuid @var{uuid}
461 @findex -uuid
462 Set system UUID.
463 ETEXI
464
465 STEXI
466 @end table
467 ETEXI
468 DEFHEADING()
469
470 DEFHEADING(Block device options:)
471 STEXI
472 @table @option
473 ETEXI
474
475 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
476 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
477 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
478 STEXI
479 @item -fda @var{file}
480 @itemx -fdb @var{file}
481 @findex -fda
482 @findex -fdb
483 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
484 ETEXI
485
486 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
487 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
488 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
489 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
490 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
491 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
492 STEXI
493 @item -hda @var{file}
494 @itemx -hdb @var{file}
495 @itemx -hdc @var{file}
496 @itemx -hdd @var{file}
497 @findex -hda
498 @findex -hdb
499 @findex -hdc
500 @findex -hdd
501 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
502 ETEXI
503
504 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
505 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
506 QEMU_ARCH_ALL)
507 STEXI
508 @item -cdrom @var{file}
509 @findex -cdrom
510 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
511 @option{-cdrom} at the same time). You can use the host CD-ROM by
512 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
513 ETEXI
514
515 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
516 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
517 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
518 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
519 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
520 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
521 " [,readonly=on|off][,copy-on-read=on|off]\n"
522 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
523 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
524 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
525 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
526 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
527 " [[,iops_size=is]]\n"
528 " [[,group=g]]\n"
529 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
530 STEXI
531 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
532 @findex -drive
533
534 Define a new drive. Valid options are:
535
536 @table @option
537 @item file=@var{file}
538 This option defines which disk image (@pxref{disk_images}) to use with
539 this drive. If the filename contains comma, you must double it
540 (for instance, "file=my,,file" to use file "my,file").
541
542 Special files such as iSCSI devices can be specified using protocol
543 specific URLs. See the section for "Device URL Syntax" for more information.
544 @item if=@var{interface}
545 This option defines on which type on interface the drive is connected.
546 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
547 @item bus=@var{bus},unit=@var{unit}
548 These options define where is connected the drive by defining the bus number and
549 the unit id.
550 @item index=@var{index}
551 This option defines where is connected the drive by using an index in the list
552 of available connectors of a given interface type.
553 @item media=@var{media}
554 This option defines the type of the media: disk or cdrom.
555 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
556 These options have the same definition as they have in @option{-hdachs}.
557 @item snapshot=@var{snapshot}
558 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
559 (see @option{-snapshot}).
560 @item cache=@var{cache}
561 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
562 @item aio=@var{aio}
563 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
564 @item discard=@var{discard}
565 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests.
566 @item format=@var{format}
567 Specify which disk @var{format} will be used rather than detecting
568 the format. Can be used to specifiy format=raw to avoid interpreting
569 an untrusted format header.
570 @item serial=@var{serial}
571 This option specifies the serial number to assign to the device.
572 @item addr=@var{addr}
573 Specify the controller's PCI address (if=virtio only).
574 @item werror=@var{action},rerror=@var{action}
575 Specify which @var{action} to take on write and read errors. Valid actions are:
576 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
577 "report" (report the error to the guest), "enospc" (pause QEMU only if the
578 host disk is full; report the error to the guest otherwise).
579 The default setting is @option{werror=enospc} and @option{rerror=report}.
580 @item readonly
581 Open drive @option{file} as read-only. Guest write attempts will fail.
582 @item copy-on-read=@var{copy-on-read}
583 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
584 file sectors into the image file.
585 @item detect-zeroes=@var{detect-zeroes}
586 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
587 conversion of plain zero writes by the OS to driver specific optimized
588 zero write commands. You may even choose "unmap" if @var{discard} is set
589 to "unmap" to allow a zero write to be converted to an UNMAP operation.
590 @end table
591
592 By default, the @option{cache=writeback} mode is used. It will report data
593 writes as completed as soon as the data is present in the host page cache.
594 This is safe as long as your guest OS makes sure to correctly flush disk caches
595 where needed. If your guest OS does not handle volatile disk write caches
596 correctly and your host crashes or loses power, then the guest may experience
597 data corruption.
598
599 For such guests, you should consider using @option{cache=writethrough}. This
600 means that the host page cache will be used to read and write data, but write
601 notification will be sent to the guest only after QEMU has made sure to flush
602 each write to the disk. Be aware that this has a major impact on performance.
603
604 The host page cache can be avoided entirely with @option{cache=none}. This will
605 attempt to do disk IO directly to the guest's memory. QEMU may still perform
606 an internal copy of the data. Note that this is considered a writeback mode and
607 the guest OS must handle the disk write cache correctly in order to avoid data
608 corruption on host crashes.
609
610 The host page cache can be avoided while only sending write notifications to
611 the guest when the data has been flushed to the disk using
612 @option{cache=directsync}.
613
614 In case you don't care about data integrity over host failures, use
615 @option{cache=unsafe}. This option tells QEMU that it never needs to write any
616 data to the disk but can instead keep things in cache. If anything goes wrong,
617 like your host losing power, the disk storage getting disconnected accidentally,
618 etc. your image will most probably be rendered unusable. When using
619 the @option{-snapshot} option, unsafe caching is always used.
620
621 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
622 useful when the backing file is over a slow network. By default copy-on-read
623 is off.
624
625 Instead of @option{-cdrom} you can use:
626 @example
627 qemu-system-i386 -drive file=file,index=2,media=cdrom
628 @end example
629
630 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
631 use:
632 @example
633 qemu-system-i386 -drive file=file,index=0,media=disk
634 qemu-system-i386 -drive file=file,index=1,media=disk
635 qemu-system-i386 -drive file=file,index=2,media=disk
636 qemu-system-i386 -drive file=file,index=3,media=disk
637 @end example
638
639 You can open an image using pre-opened file descriptors from an fd set:
640 @example
641 qemu-system-i386
642 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
643 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
644 -drive file=/dev/fdset/2,index=0,media=disk
645 @end example
646
647 You can connect a CDROM to the slave of ide0:
648 @example
649 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
650 @end example
651
652 If you don't specify the "file=" argument, you define an empty drive:
653 @example
654 qemu-system-i386 -drive if=ide,index=1,media=cdrom
655 @end example
656
657 You can connect a SCSI disk with unit ID 6 on the bus #0:
658 @example
659 qemu-system-i386 -drive file=file,if=scsi,bus=0,unit=6
660 @end example
661
662 Instead of @option{-fda}, @option{-fdb}, you can use:
663 @example
664 qemu-system-i386 -drive file=file,index=0,if=floppy
665 qemu-system-i386 -drive file=file,index=1,if=floppy
666 @end example
667
668 By default, @var{interface} is "ide" and @var{index} is automatically
669 incremented:
670 @example
671 qemu-system-i386 -drive file=a -drive file=b"
672 @end example
673 is interpreted like:
674 @example
675 qemu-system-i386 -hda a -hdb b
676 @end example
677 ETEXI
678
679 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
680 "-mtdblock file use 'file' as on-board Flash memory image\n",
681 QEMU_ARCH_ALL)
682 STEXI
683 @item -mtdblock @var{file}
684 @findex -mtdblock
685 Use @var{file} as on-board Flash memory image.
686 ETEXI
687
688 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
689 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
690 STEXI
691 @item -sd @var{file}
692 @findex -sd
693 Use @var{file} as SecureDigital card image.
694 ETEXI
695
696 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
697 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
698 STEXI
699 @item -pflash @var{file}
700 @findex -pflash
701 Use @var{file} as a parallel flash image.
702 ETEXI
703
704 DEF("snapshot", 0, QEMU_OPTION_snapshot,
705 "-snapshot write to temporary files instead of disk image files\n",
706 QEMU_ARCH_ALL)
707 STEXI
708 @item -snapshot
709 @findex -snapshot
710 Write to temporary files instead of disk image files. In this case,
711 the raw disk image you use is not written back. You can however force
712 the write back by pressing @key{C-a s} (@pxref{disk_images}).
713 ETEXI
714
715 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
716 "-hdachs c,h,s[,t]\n" \
717 " force hard disk 0 physical geometry and the optional BIOS\n" \
718 " translation (t=none or lba) (usually QEMU can guess them)\n",
719 QEMU_ARCH_ALL)
720 STEXI
721 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
722 @findex -hdachs
723 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
724 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
725 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
726 all those parameters. This option is useful for old MS-DOS disk
727 images.
728 ETEXI
729
730 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
731 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
732 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
733 QEMU_ARCH_ALL)
734
735 STEXI
736
737 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
738 @findex -fsdev
739 Define a new file system device. Valid options are:
740 @table @option
741 @item @var{fsdriver}
742 This option specifies the fs driver backend to use.
743 Currently "local", "handle" and "proxy" file system drivers are supported.
744 @item id=@var{id}
745 Specifies identifier for this device
746 @item path=@var{path}
747 Specifies the export path for the file system device. Files under
748 this path will be available to the 9p client on the guest.
749 @item security_model=@var{security_model}
750 Specifies the security model to be used for this export path.
751 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
752 In "passthrough" security model, files are stored using the same
753 credentials as they are created on the guest. This requires QEMU
754 to run as root. In "mapped-xattr" security model, some of the file
755 attributes like uid, gid, mode bits and link target are stored as
756 file attributes. For "mapped-file" these attributes are stored in the
757 hidden .virtfs_metadata directory. Directories exported by this security model cannot
758 interact with other unix tools. "none" security model is same as
759 passthrough except the sever won't report failures if it fails to
760 set file attributes like ownership. Security model is mandatory
761 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
762 security model as a parameter.
763 @item writeout=@var{writeout}
764 This is an optional argument. The only supported value is "immediate".
765 This means that host page cache will be used to read and write data but
766 write notification will be sent to the guest only when the data has been
767 reported as written by the storage subsystem.
768 @item readonly
769 Enables exporting 9p share as a readonly mount for guests. By default
770 read-write access is given.
771 @item socket=@var{socket}
772 Enables proxy filesystem driver to use passed socket file for communicating
773 with virtfs-proxy-helper
774 @item sock_fd=@var{sock_fd}
775 Enables proxy filesystem driver to use passed socket descriptor for
776 communicating with virtfs-proxy-helper. Usually a helper like libvirt
777 will create socketpair and pass one of the fds as sock_fd
778 @end table
779
780 -fsdev option is used along with -device driver "virtio-9p-pci".
781 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
782 Options for virtio-9p-pci driver are:
783 @table @option
784 @item fsdev=@var{id}
785 Specifies the id value specified along with -fsdev option
786 @item mount_tag=@var{mount_tag}
787 Specifies the tag name to be used by the guest to mount this export point
788 @end table
789
790 ETEXI
791
792 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
793 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
794 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
795 QEMU_ARCH_ALL)
796
797 STEXI
798
799 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
800 @findex -virtfs
801
802 The general form of a Virtual File system pass-through options are:
803 @table @option
804 @item @var{fsdriver}
805 This option specifies the fs driver backend to use.
806 Currently "local", "handle" and "proxy" file system drivers are supported.
807 @item id=@var{id}
808 Specifies identifier for this device
809 @item path=@var{path}
810 Specifies the export path for the file system device. Files under
811 this path will be available to the 9p client on the guest.
812 @item security_model=@var{security_model}
813 Specifies the security model to be used for this export path.
814 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
815 In "passthrough" security model, files are stored using the same
816 credentials as they are created on the guest. This requires QEMU
817 to run as root. In "mapped-xattr" security model, some of the file
818 attributes like uid, gid, mode bits and link target are stored as
819 file attributes. For "mapped-file" these attributes are stored in the
820 hidden .virtfs_metadata directory. Directories exported by this security model cannot
821 interact with other unix tools. "none" security model is same as
822 passthrough except the sever won't report failures if it fails to
823 set file attributes like ownership. Security model is mandatory only
824 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
825 model as a parameter.
826 @item writeout=@var{writeout}
827 This is an optional argument. The only supported value is "immediate".
828 This means that host page cache will be used to read and write data but
829 write notification will be sent to the guest only when the data has been
830 reported as written by the storage subsystem.
831 @item readonly
832 Enables exporting 9p share as a readonly mount for guests. By default
833 read-write access is given.
834 @item socket=@var{socket}
835 Enables proxy filesystem driver to use passed socket file for
836 communicating with virtfs-proxy-helper. Usually a helper like libvirt
837 will create socketpair and pass one of the fds as sock_fd
838 @item sock_fd
839 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
840 descriptor for interfacing with virtfs-proxy-helper
841 @end table
842 ETEXI
843
844 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
845 "-virtfs_synth Create synthetic file system image\n",
846 QEMU_ARCH_ALL)
847 STEXI
848 @item -virtfs_synth
849 @findex -virtfs_synth
850 Create synthetic file system image
851 ETEXI
852
853 STEXI
854 @end table
855 ETEXI
856 DEFHEADING()
857
858 DEFHEADING(USB options:)
859 STEXI
860 @table @option
861 ETEXI
862
863 DEF("usb", 0, QEMU_OPTION_usb,
864 "-usb enable the USB driver (will be the default soon)\n",
865 QEMU_ARCH_ALL)
866 STEXI
867 @item -usb
868 @findex -usb
869 Enable the USB driver (will be the default soon)
870 ETEXI
871
872 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
873 "-usbdevice name add the host or guest USB device 'name'\n",
874 QEMU_ARCH_ALL)
875 STEXI
876
877 @item -usbdevice @var{devname}
878 @findex -usbdevice
879 Add the USB device @var{devname}. @xref{usb_devices}.
880
881 @table @option
882
883 @item mouse
884 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
885
886 @item tablet
887 Pointer device that uses absolute coordinates (like a touchscreen). This
888 means QEMU is able to report the mouse position without having to grab the
889 mouse. Also overrides the PS/2 mouse emulation when activated.
890
891 @item disk:[format=@var{format}]:@var{file}
892 Mass storage device based on file. The optional @var{format} argument
893 will be used rather than detecting the format. Can be used to specifiy
894 @code{format=raw} to avoid interpreting an untrusted format header.
895
896 @item host:@var{bus}.@var{addr}
897 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
898
899 @item host:@var{vendor_id}:@var{product_id}
900 Pass through the host device identified by @var{vendor_id}:@var{product_id}
901 (Linux only).
902
903 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
904 Serial converter to host character device @var{dev}, see @code{-serial} for the
905 available devices.
906
907 @item braille
908 Braille device. This will use BrlAPI to display the braille output on a real
909 or fake device.
910
911 @item net:@var{options}
912 Network adapter that supports CDC ethernet and RNDIS protocols.
913
914 @end table
915 ETEXI
916
917 STEXI
918 @end table
919 ETEXI
920 DEFHEADING()
921
922 DEFHEADING(Display options:)
923 STEXI
924 @table @option
925 ETEXI
926
927 DEF("display", HAS_ARG, QEMU_OPTION_display,
928 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
929 " [,window_close=on|off]|curses|none|\n"
930 " gtk[,grab_on_hover=on|off]|\n"
931 " vnc=<display>[,<optargs>]\n"
932 " select display type\n", QEMU_ARCH_ALL)
933 STEXI
934 @item -display @var{type}
935 @findex -display
936 Select type of display to use. This option is a replacement for the
937 old style -sdl/-curses/... options. Valid values for @var{type} are
938 @table @option
939 @item sdl
940 Display video output via SDL (usually in a separate graphics
941 window; see the SDL documentation for other possibilities).
942 @item curses
943 Display video output via curses. For graphics device models which
944 support a text mode, QEMU can display this output using a
945 curses/ncurses interface. Nothing is displayed when the graphics
946 device is in graphical mode or if the graphics device does not support
947 a text mode. Generally only the VGA device models support text mode.
948 @item none
949 Do not display video output. The guest will still see an emulated
950 graphics card, but its output will not be displayed to the QEMU
951 user. This option differs from the -nographic option in that it
952 only affects what is done with video output; -nographic also changes
953 the destination of the serial and parallel port data.
954 @item gtk
955 Display video output in a GTK window. This interface provides drop-down
956 menus and other UI elements to configure and control the VM during
957 runtime.
958 @item vnc
959 Start a VNC server on display <arg>
960 @end table
961 ETEXI
962
963 DEF("nographic", 0, QEMU_OPTION_nographic,
964 "-nographic disable graphical output and redirect serial I/Os to console\n",
965 QEMU_ARCH_ALL)
966 STEXI
967 @item -nographic
968 @findex -nographic
969 Normally, QEMU uses SDL to display the VGA output. With this option,
970 you can totally disable graphical output so that QEMU is a simple
971 command line application. The emulated serial port is redirected on
972 the console and muxed with the monitor (unless redirected elsewhere
973 explicitly). Therefore, you can still use QEMU to debug a Linux kernel
974 with a serial console. Use @key{C-a h} for help on switching between
975 the console and monitor.
976 ETEXI
977
978 DEF("curses", 0, QEMU_OPTION_curses,
979 "-curses use a curses/ncurses interface instead of SDL\n",
980 QEMU_ARCH_ALL)
981 STEXI
982 @item -curses
983 @findex -curses
984 Normally, QEMU uses SDL to display the VGA output. With this option,
985 QEMU can display the VGA output when in text mode using a
986 curses/ncurses interface. Nothing is displayed in graphical mode.
987 ETEXI
988
989 DEF("no-frame", 0, QEMU_OPTION_no_frame,
990 "-no-frame open SDL window without a frame and window decorations\n",
991 QEMU_ARCH_ALL)
992 STEXI
993 @item -no-frame
994 @findex -no-frame
995 Do not use decorations for SDL windows and start them using the whole
996 available screen space. This makes the using QEMU in a dedicated desktop
997 workspace more convenient.
998 ETEXI
999
1000 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1001 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1002 QEMU_ARCH_ALL)
1003 STEXI
1004 @item -alt-grab
1005 @findex -alt-grab
1006 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1007 affects the special keys (for fullscreen, monitor-mode switching, etc).
1008 ETEXI
1009
1010 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1011 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1012 QEMU_ARCH_ALL)
1013 STEXI
1014 @item -ctrl-grab
1015 @findex -ctrl-grab
1016 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1017 affects the special keys (for fullscreen, monitor-mode switching, etc).
1018 ETEXI
1019
1020 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1021 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1022 STEXI
1023 @item -no-quit
1024 @findex -no-quit
1025 Disable SDL window close capability.
1026 ETEXI
1027
1028 DEF("sdl", 0, QEMU_OPTION_sdl,
1029 "-sdl enable SDL\n", QEMU_ARCH_ALL)
1030 STEXI
1031 @item -sdl
1032 @findex -sdl
1033 Enable SDL.
1034 ETEXI
1035
1036 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1037 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1038 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1039 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1040 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1041 " [,tls-ciphers=<list>]\n"
1042 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1043 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1044 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1045 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1046 " [,jpeg-wan-compression=[auto|never|always]]\n"
1047 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1048 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1049 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1050 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1051 " enable spice\n"
1052 " at least one of {port, tls-port} is mandatory\n",
1053 QEMU_ARCH_ALL)
1054 STEXI
1055 @item -spice @var{option}[,@var{option}[,...]]
1056 @findex -spice
1057 Enable the spice remote desktop protocol. Valid options are
1058
1059 @table @option
1060
1061 @item port=<nr>
1062 Set the TCP port spice is listening on for plaintext channels.
1063
1064 @item addr=<addr>
1065 Set the IP address spice is listening on. Default is any address.
1066
1067 @item ipv4
1068 @itemx ipv6
1069 @itemx unix
1070 Force using the specified IP version.
1071
1072 @item password=<secret>
1073 Set the password you need to authenticate.
1074
1075 @item sasl
1076 Require that the client use SASL to authenticate with the spice.
1077 The exact choice of authentication method used is controlled from the
1078 system / user's SASL configuration file for the 'qemu' service. This
1079 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1080 unprivileged user, an environment variable SASL_CONF_PATH can be used
1081 to make it search alternate locations for the service config.
1082 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1083 it is recommended that SASL always be combined with the 'tls' and
1084 'x509' settings to enable use of SSL and server certificates. This
1085 ensures a data encryption preventing compromise of authentication
1086 credentials.
1087
1088 @item disable-ticketing
1089 Allow client connects without authentication.
1090
1091 @item disable-copy-paste
1092 Disable copy paste between the client and the guest.
1093
1094 @item disable-agent-file-xfer
1095 Disable spice-vdagent based file-xfer between the client and the guest.
1096
1097 @item tls-port=<nr>
1098 Set the TCP port spice is listening on for encrypted channels.
1099
1100 @item x509-dir=<dir>
1101 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1102
1103 @item x509-key-file=<file>
1104 @itemx x509-key-password=<file>
1105 @itemx x509-cert-file=<file>
1106 @itemx x509-cacert-file=<file>
1107 @itemx x509-dh-key-file=<file>
1108 The x509 file names can also be configured individually.
1109
1110 @item tls-ciphers=<list>
1111 Specify which ciphers to use.
1112
1113 @item tls-channel=[main|display|cursor|inputs|record|playback]
1114 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1115 Force specific channel to be used with or without TLS encryption. The
1116 options can be specified multiple times to configure multiple
1117 channels. The special name "default" can be used to set the default
1118 mode. For channels which are not explicitly forced into one mode the
1119 spice client is allowed to pick tls/plaintext as he pleases.
1120
1121 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1122 Configure image compression (lossless).
1123 Default is auto_glz.
1124
1125 @item jpeg-wan-compression=[auto|never|always]
1126 @itemx zlib-glz-wan-compression=[auto|never|always]
1127 Configure wan image compression (lossy for slow links).
1128 Default is auto.
1129
1130 @item streaming-video=[off|all|filter]
1131 Configure video stream detection. Default is filter.
1132
1133 @item agent-mouse=[on|off]
1134 Enable/disable passing mouse events via vdagent. Default is on.
1135
1136 @item playback-compression=[on|off]
1137 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1138
1139 @item seamless-migration=[on|off]
1140 Enable/disable spice seamless migration. Default is off.
1141
1142 @end table
1143 ETEXI
1144
1145 DEF("portrait", 0, QEMU_OPTION_portrait,
1146 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1147 QEMU_ARCH_ALL)
1148 STEXI
1149 @item -portrait
1150 @findex -portrait
1151 Rotate graphical output 90 deg left (only PXA LCD).
1152 ETEXI
1153
1154 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1155 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1156 QEMU_ARCH_ALL)
1157 STEXI
1158 @item -rotate @var{deg}
1159 @findex -rotate
1160 Rotate graphical output some deg left (only PXA LCD).
1161 ETEXI
1162
1163 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1164 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1165 " select video card type\n", QEMU_ARCH_ALL)
1166 STEXI
1167 @item -vga @var{type}
1168 @findex -vga
1169 Select type of VGA card to emulate. Valid values for @var{type} are
1170 @table @option
1171 @item cirrus
1172 Cirrus Logic GD5446 Video card. All Windows versions starting from
1173 Windows 95 should recognize and use this graphic card. For optimal
1174 performances, use 16 bit color depth in the guest and the host OS.
1175 (This one is the default)
1176 @item std
1177 Standard VGA card with Bochs VBE extensions. If your guest OS
1178 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1179 to use high resolution modes (>= 1280x1024x16) then you should use
1180 this option.
1181 @item vmware
1182 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1183 recent XFree86/XOrg server or Windows guest with a driver for this
1184 card.
1185 @item qxl
1186 QXL paravirtual graphic card. It is VGA compatible (including VESA
1187 2.0 VBE support). Works best with qxl guest drivers installed though.
1188 Recommended choice when using the spice protocol.
1189 @item tcx
1190 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1191 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1192 fixed resolution of 1024x768.
1193 @item cg3
1194 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1195 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1196 resolutions aimed at people wishing to run older Solaris versions.
1197 @item virtio
1198 Virtio VGA card.
1199 @item none
1200 Disable VGA card.
1201 @end table
1202 ETEXI
1203
1204 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1205 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1206 STEXI
1207 @item -full-screen
1208 @findex -full-screen
1209 Start in full screen.
1210 ETEXI
1211
1212 DEF("g", 1, QEMU_OPTION_g ,
1213 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1214 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1215 STEXI
1216 @item -g @var{width}x@var{height}[x@var{depth}]
1217 @findex -g
1218 Set the initial graphical resolution and depth (PPC, SPARC only).
1219 ETEXI
1220
1221 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1222 "-vnc display start a VNC server on display\n", QEMU_ARCH_ALL)
1223 STEXI
1224 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1225 @findex -vnc
1226 Normally, QEMU uses SDL to display the VGA output. With this option,
1227 you can have QEMU listen on VNC display @var{display} and redirect the VGA
1228 display over the VNC session. It is very useful to enable the usb
1229 tablet device when using this option (option @option{-usbdevice
1230 tablet}). When using the VNC display, you must use the @option{-k}
1231 parameter to set the keyboard layout if you are not using en-us. Valid
1232 syntax for the @var{display} is
1233
1234 @table @option
1235
1236 @item @var{host}:@var{d}
1237
1238 TCP connections will only be allowed from @var{host} on display @var{d}.
1239 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1240 be omitted in which case the server will accept connections from any host.
1241
1242 @item unix:@var{path}
1243
1244 Connections will be allowed over UNIX domain sockets where @var{path} is the
1245 location of a unix socket to listen for connections on.
1246
1247 @item none
1248
1249 VNC is initialized but not started. The monitor @code{change} command
1250 can be used to later start the VNC server.
1251
1252 @end table
1253
1254 Following the @var{display} value there may be one or more @var{option} flags
1255 separated by commas. Valid options are
1256
1257 @table @option
1258
1259 @item reverse
1260
1261 Connect to a listening VNC client via a ``reverse'' connection. The
1262 client is specified by the @var{display}. For reverse network
1263 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1264 is a TCP port number, not a display number.
1265
1266 @item websocket
1267
1268 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1269 By definition the Websocket port is 5700+@var{display}. If @var{host} is
1270 specified connections will only be allowed from this host.
1271 As an alternative the Websocket port could be specified by using
1272 @code{websocket}=@var{port}.
1273 If no TLS credentials are provided, the websocket connection runs in
1274 unencrypted mode. If TLS credentials are provided, the websocket connection
1275 requires encrypted client connections.
1276
1277 @item password
1278
1279 Require that password based authentication is used for client connections.
1280
1281 The password must be set separately using the @code{set_password} command in
1282 the @ref{pcsys_monitor}. The syntax to change your password is:
1283 @code{set_password <protocol> <password>} where <protocol> could be either
1284 "vnc" or "spice".
1285
1286 If you would like to change <protocol> password expiration, you should use
1287 @code{expire_password <protocol> <expiration-time>} where expiration time could
1288 be one of the following options: now, never, +seconds or UNIX time of
1289 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1290 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1291 date and time).
1292
1293 You can also use keywords "now" or "never" for the expiration time to
1294 allow <protocol> password to expire immediately or never expire.
1295
1296 @item tls-creds=@var{ID}
1297
1298 Provides the ID of a set of TLS credentials to use to secure the
1299 VNC server. They will apply to both the normal VNC server socket
1300 and the websocket socket (if enabled). Setting TLS credentials
1301 will cause the VNC server socket to enable the VeNCrypt auth
1302 mechanism. The credentials should have been previously created
1303 using the @option{-object tls-creds} argument.
1304
1305 The @option{tls-creds} parameter obsoletes the @option{tls},
1306 @option{x509}, and @option{x509verify} options, and as such
1307 it is not permitted to set both new and old type options at
1308 the same time.
1309
1310 @item tls
1311
1312 Require that client use TLS when communicating with the VNC server. This
1313 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1314 attack. It is recommended that this option be combined with either the
1315 @option{x509} or @option{x509verify} options.
1316
1317 This option is now deprecated in favor of using the @option{tls-creds}
1318 argument.
1319
1320 @item x509=@var{/path/to/certificate/dir}
1321
1322 Valid if @option{tls} is specified. Require that x509 credentials are used
1323 for negotiating the TLS session. The server will send its x509 certificate
1324 to the client. It is recommended that a password be set on the VNC server
1325 to provide authentication of the client when this is used. The path following
1326 this option specifies where the x509 certificates are to be loaded from.
1327 See the @ref{vnc_security} section for details on generating certificates.
1328
1329 This option is now deprecated in favour of using the @option{tls-creds}
1330 argument.
1331
1332 @item x509verify=@var{/path/to/certificate/dir}
1333
1334 Valid if @option{tls} is specified. Require that x509 credentials are used
1335 for negotiating the TLS session. The server will send its x509 certificate
1336 to the client, and request that the client send its own x509 certificate.
1337 The server will validate the client's certificate against the CA certificate,
1338 and reject clients when validation fails. If the certificate authority is
1339 trusted, this is a sufficient authentication mechanism. You may still wish
1340 to set a password on the VNC server as a second authentication layer. The
1341 path following this option specifies where the x509 certificates are to
1342 be loaded from. See the @ref{vnc_security} section for details on generating
1343 certificates.
1344
1345 This option is now deprecated in favour of using the @option{tls-creds}
1346 argument.
1347
1348 @item sasl
1349
1350 Require that the client use SASL to authenticate with the VNC server.
1351 The exact choice of authentication method used is controlled from the
1352 system / user's SASL configuration file for the 'qemu' service. This
1353 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1354 unprivileged user, an environment variable SASL_CONF_PATH can be used
1355 to make it search alternate locations for the service config.
1356 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1357 it is recommended that SASL always be combined with the 'tls' and
1358 'x509' settings to enable use of SSL and server certificates. This
1359 ensures a data encryption preventing compromise of authentication
1360 credentials. See the @ref{vnc_security} section for details on using
1361 SASL authentication.
1362
1363 @item acl
1364
1365 Turn on access control lists for checking of the x509 client certificate
1366 and SASL party. For x509 certs, the ACL check is made against the
1367 certificate's distinguished name. This is something that looks like
1368 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1369 made against the username, which depending on the SASL plugin, may
1370 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1371 When the @option{acl} flag is set, the initial access list will be
1372 empty, with a @code{deny} policy. Thus no one will be allowed to
1373 use the VNC server until the ACLs have been loaded. This can be
1374 achieved using the @code{acl} monitor command.
1375
1376 @item lossy
1377
1378 Enable lossy compression methods (gradient, JPEG, ...). If this
1379 option is set, VNC client may receive lossy framebuffer updates
1380 depending on its encoding settings. Enabling this option can save
1381 a lot of bandwidth at the expense of quality.
1382
1383 @item non-adaptive
1384
1385 Disable adaptive encodings. Adaptive encodings are enabled by default.
1386 An adaptive encoding will try to detect frequently updated screen regions,
1387 and send updates in these regions using a lossy encoding (like JPEG).
1388 This can be really helpful to save bandwidth when playing videos. Disabling
1389 adaptive encodings restores the original static behavior of encodings
1390 like Tight.
1391
1392 @item share=[allow-exclusive|force-shared|ignore]
1393
1394 Set display sharing policy. 'allow-exclusive' allows clients to ask
1395 for exclusive access. As suggested by the rfb spec this is
1396 implemented by dropping other connections. Connecting multiple
1397 clients in parallel requires all clients asking for a shared session
1398 (vncviewer: -shared switch). This is the default. 'force-shared'
1399 disables exclusive client access. Useful for shared desktop sessions,
1400 where you don't want someone forgetting specify -shared disconnect
1401 everybody else. 'ignore' completely ignores the shared flag and
1402 allows everybody connect unconditionally. Doesn't conform to the rfb
1403 spec but is traditional QEMU behavior.
1404
1405 @end table
1406 ETEXI
1407
1408 STEXI
1409 @end table
1410 ETEXI
1411 ARCHHEADING(, QEMU_ARCH_I386)
1412
1413 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1414 STEXI
1415 @table @option
1416 ETEXI
1417
1418 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1419 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1420 QEMU_ARCH_I386)
1421 STEXI
1422 @item -win2k-hack
1423 @findex -win2k-hack
1424 Use it when installing Windows 2000 to avoid a disk full bug. After
1425 Windows 2000 is installed, you no longer need this option (this option
1426 slows down the IDE transfers).
1427 ETEXI
1428
1429 HXCOMM Deprecated by -rtc
1430 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1431
1432 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1433 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1434 QEMU_ARCH_I386)
1435 STEXI
1436 @item -no-fd-bootchk
1437 @findex -no-fd-bootchk
1438 Disable boot signature checking for floppy disks in BIOS. May
1439 be needed to boot from old floppy disks.
1440 ETEXI
1441
1442 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1443 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1444 STEXI
1445 @item -no-acpi
1446 @findex -no-acpi
1447 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1448 it if your guest OS complains about ACPI problems (PC target machine
1449 only).
1450 ETEXI
1451
1452 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1453 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1454 STEXI
1455 @item -no-hpet
1456 @findex -no-hpet
1457 Disable HPET support.
1458 ETEXI
1459
1460 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1461 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1462 " ACPI table description\n", QEMU_ARCH_I386)
1463 STEXI
1464 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1465 @findex -acpitable
1466 Add ACPI table with specified header fields and context from specified files.
1467 For file=, take whole ACPI table from the specified files, including all
1468 ACPI headers (possible overridden by other options).
1469 For data=, only data
1470 portion of the table is used, all header information is specified in the
1471 command line.
1472 ETEXI
1473
1474 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1475 "-smbios file=binary\n"
1476 " load SMBIOS entry from binary file\n"
1477 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1478 " [,uefi=on|off]\n"
1479 " specify SMBIOS type 0 fields\n"
1480 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1481 " [,uuid=uuid][,sku=str][,family=str]\n"
1482 " specify SMBIOS type 1 fields\n"
1483 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1484 " [,asset=str][,location=str]\n"
1485 " specify SMBIOS type 2 fields\n"
1486 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1487 " [,sku=str]\n"
1488 " specify SMBIOS type 3 fields\n"
1489 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1490 " [,asset=str][,part=str]\n"
1491 " specify SMBIOS type 4 fields\n"
1492 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1493 " [,asset=str][,part=str][,speed=%d]\n"
1494 " specify SMBIOS type 17 fields\n",
1495 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1496 STEXI
1497 @item -smbios file=@var{binary}
1498 @findex -smbios
1499 Load SMBIOS entry from binary file.
1500
1501 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1502 Specify SMBIOS type 0 fields
1503
1504 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1505 Specify SMBIOS type 1 fields
1506
1507 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1508 Specify SMBIOS type 2 fields
1509
1510 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1511 Specify SMBIOS type 3 fields
1512
1513 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1514 Specify SMBIOS type 4 fields
1515
1516 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1517 Specify SMBIOS type 17 fields
1518 ETEXI
1519
1520 STEXI
1521 @end table
1522 ETEXI
1523 DEFHEADING()
1524
1525 DEFHEADING(Network options:)
1526 STEXI
1527 @table @option
1528 ETEXI
1529
1530 HXCOMM Legacy slirp options (now moved to -net user):
1531 #ifdef CONFIG_SLIRP
1532 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1533 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1534 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1535 #ifndef _WIN32
1536 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1537 #endif
1538 #endif
1539
1540 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1541 #ifdef CONFIG_SLIRP
1542 "-netdev user,id=str[,net=addr[/mask]][,host=addr][,restrict=on|off]\n"
1543 " [,hostname=host][,dhcpstart=addr][,dns=addr][,dnssearch=domain][,tftp=dir]\n"
1544 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1545 #ifndef _WIN32
1546 "[,smb=dir[,smbserver=addr]]\n"
1547 #endif
1548 " configure a user mode network backend with ID 'str',\n"
1549 " its DHCP server and optional services\n"
1550 #endif
1551 #ifdef _WIN32
1552 "-netdev tap,id=str,ifname=name\n"
1553 " configure a host TAP network backend with ID 'str'\n"
1554 #else
1555 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1556 " [,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1557 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1558 " configure a host TAP network backend with ID 'str'\n"
1559 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1560 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1561 " to deconfigure it\n"
1562 " use '[down]script=no' to disable script execution\n"
1563 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1564 " configure it\n"
1565 " use 'fd=h' to connect to an already opened TAP interface\n"
1566 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1567 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1568 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1569 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1570 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1571 " use vhost=on to enable experimental in kernel accelerator\n"
1572 " (only has effect for virtio guests which use MSIX)\n"
1573 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1574 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1575 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1576 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1577 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1578 " configure a host TAP network backend with ID 'str' that is\n"
1579 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1580 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1581 #endif
1582 #ifdef __linux__
1583 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1584 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1585 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1586 " [,rxcookie=rxcookie][,offset=offset]\n"
1587 " configure a network backend with ID 'str' connected to\n"
1588 " an Ethernet over L2TPv3 pseudowire.\n"
1589 " Linux kernel 3.3+ as well as most routers can talk\n"
1590 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1591 " VM to a router and even VM to Host. It is a nearly-universal\n"
1592 " standard (RFC3391). Note - this implementation uses static\n"
1593 " pre-configured tunnels (same as the Linux kernel).\n"
1594 " use 'src=' to specify source address\n"
1595 " use 'dst=' to specify destination address\n"
1596 " use 'udp=on' to specify udp encapsulation\n"
1597 " use 'srcport=' to specify source udp port\n"
1598 " use 'dstport=' to specify destination udp port\n"
1599 " use 'ipv6=on' to force v6\n"
1600 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1601 " well as a weak security measure\n"
1602 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1603 " use 'txcookie=0x012345678' to specify a txcookie\n"
1604 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1605 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1606 " use 'pincounter=on' to work around broken counter handling in peer\n"
1607 " use 'offset=X' to add an extra offset between header and data\n"
1608 #endif
1609 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1610 " configure a network backend to connect to another network\n"
1611 " using a socket connection\n"
1612 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1613 " configure a network backend to connect to a multicast maddr and port\n"
1614 " use 'localaddr=addr' to specify the host address to send packets from\n"
1615 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1616 " configure a network backend to connect to another network\n"
1617 " using an UDP tunnel\n"
1618 #ifdef CONFIG_VDE
1619 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1620 " configure a network backend to connect to port 'n' of a vde switch\n"
1621 " running on host and listening for incoming connections on 'socketpath'.\n"
1622 " Use group 'groupname' and mode 'octalmode' to change default\n"
1623 " ownership and permissions for communication port.\n"
1624 #endif
1625 #ifdef CONFIG_NETMAP
1626 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1627 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1628 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1629 " netmap device, defaults to '/dev/netmap')\n"
1630 #endif
1631 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1632 " configure a vhost-user network, backed by a chardev 'dev'\n"
1633 "-netdev hubport,id=str,hubid=n\n"
1634 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
1635 DEF("net", HAS_ARG, QEMU_OPTION_net,
1636 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1637 " old way to create a new NIC and connect it to VLAN 'n'\n"
1638 " (use the '-device devtype,netdev=str' option if possible instead)\n"
1639 "-net dump[,vlan=n][,file=f][,len=n]\n"
1640 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
1641 "-net none use it alone to have zero network devices. If no -net option\n"
1642 " is provided, the default is '-net nic -net user'\n"
1643 "-net ["
1644 #ifdef CONFIG_SLIRP
1645 "user|"
1646 #endif
1647 "tap|"
1648 "bridge|"
1649 #ifdef CONFIG_VDE
1650 "vde|"
1651 #endif
1652 #ifdef CONFIG_NETMAP
1653 "netmap|"
1654 #endif
1655 "socket][,vlan=n][,option][,option][,...]\n"
1656 " old way to initialize a host network interface\n"
1657 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1658 STEXI
1659 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
1660 @findex -net
1661 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
1662 = 0 is the default). The NIC is an e1000 by default on the PC
1663 target. Optionally, the MAC address can be changed to @var{mac}, the
1664 device address set to @var{addr} (PCI cards only),
1665 and a @var{name} can be assigned for use in monitor commands.
1666 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
1667 that the card should have; this option currently only affects virtio cards; set
1668 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
1669 NIC is created. QEMU can emulate several different models of network card.
1670 Valid values for @var{type} are
1671 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
1672 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
1673 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
1674 Not all devices are supported on all targets. Use @code{-net nic,model=help}
1675 for a list of available devices for your target.
1676
1677 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1678 @findex -netdev
1679 @item -net user[,@var{option}][,@var{option}][,...]
1680 Use the user mode network stack which requires no administrator
1681 privilege to run. Valid options are:
1682
1683 @table @option
1684 @item vlan=@var{n}
1685 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
1686
1687 @item id=@var{id}
1688 @itemx name=@var{name}
1689 Assign symbolic name for use in monitor commands.
1690
1691 @item net=@var{addr}[/@var{mask}]
1692 Set IP network address the guest will see. Optionally specify the netmask,
1693 either in the form a.b.c.d or as number of valid top-most bits. Default is
1694 10.0.2.0/24.
1695
1696 @item host=@var{addr}
1697 Specify the guest-visible address of the host. Default is the 2nd IP in the
1698 guest network, i.e. x.x.x.2.
1699
1700 @item restrict=on|off
1701 If this option is enabled, the guest will be isolated, i.e. it will not be
1702 able to contact the host and no guest IP packets will be routed over the host
1703 to the outside. This option does not affect any explicitly set forwarding rules.
1704
1705 @item hostname=@var{name}
1706 Specifies the client hostname reported by the built-in DHCP server.
1707
1708 @item dhcpstart=@var{addr}
1709 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
1710 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
1711
1712 @item dns=@var{addr}
1713 Specify the guest-visible address of the virtual nameserver. The address must
1714 be different from the host address. Default is the 3rd IP in the guest network,
1715 i.e. x.x.x.3.
1716
1717 @item dnssearch=@var{domain}
1718 Provides an entry for the domain-search list sent by the built-in
1719 DHCP server. More than one domain suffix can be transmitted by specifying
1720 this option multiple times. If supported, this will cause the guest to
1721 automatically try to append the given domain suffix(es) in case a domain name
1722 can not be resolved.
1723
1724 Example:
1725 @example
1726 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
1727 @end example
1728
1729 @item tftp=@var{dir}
1730 When using the user mode network stack, activate a built-in TFTP
1731 server. The files in @var{dir} will be exposed as the root of a TFTP server.
1732 The TFTP client on the guest must be configured in binary mode (use the command
1733 @code{bin} of the Unix TFTP client).
1734
1735 @item bootfile=@var{file}
1736 When using the user mode network stack, broadcast @var{file} as the BOOTP
1737 filename. In conjunction with @option{tftp}, this can be used to network boot
1738 a guest from a local directory.
1739
1740 Example (using pxelinux):
1741 @example
1742 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
1743 @end example
1744
1745 @item smb=@var{dir}[,smbserver=@var{addr}]
1746 When using the user mode network stack, activate a built-in SMB
1747 server so that Windows OSes can access to the host files in @file{@var{dir}}
1748 transparently. The IP address of the SMB server can be set to @var{addr}. By
1749 default the 4th IP in the guest network is used, i.e. x.x.x.4.
1750
1751 In the guest Windows OS, the line:
1752 @example
1753 10.0.2.4 smbserver
1754 @end example
1755 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
1756 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
1757
1758 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
1759
1760 Note that a SAMBA server must be installed on the host OS.
1761 QEMU was tested successfully with smbd versions from Red Hat 9,
1762 Fedora Core 3 and OpenSUSE 11.x.
1763
1764 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
1765 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
1766 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
1767 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
1768 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
1769 be bound to a specific host interface. If no connection type is set, TCP is
1770 used. This option can be given multiple times.
1771
1772 For example, to redirect host X11 connection from screen 1 to guest
1773 screen 0, use the following:
1774
1775 @example
1776 # on the host
1777 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
1778 # this host xterm should open in the guest X11 server
1779 xterm -display :1
1780 @end example
1781
1782 To redirect telnet connections from host port 5555 to telnet port on
1783 the guest, use the following:
1784
1785 @example
1786 # on the host
1787 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
1788 telnet localhost 5555
1789 @end example
1790
1791 Then when you use on the host @code{telnet localhost 5555}, you
1792 connect to the guest telnet server.
1793
1794 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
1795 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
1796 Forward guest TCP connections to the IP address @var{server} on port @var{port}
1797 to the character device @var{dev} or to a program executed by @var{cmd:command}
1798 which gets spawned for each connection. This option can be given multiple times.
1799
1800 You can either use a chardev directly and have that one used throughout QEMU's
1801 lifetime, like in the following example:
1802
1803 @example
1804 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
1805 # the guest accesses it
1806 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
1807 @end example
1808
1809 Or you can execute a command on every TCP connection established by the guest,
1810 so that QEMU behaves similar to an inetd process for that virtual server:
1811
1812 @example
1813 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
1814 # and connect the TCP stream to its stdin/stdout
1815 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
1816 @end example
1817
1818 @end table
1819
1820 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
1821 processed and applied to -net user. Mixing them with the new configuration
1822 syntax gives undefined results. Their use for new applications is discouraged
1823 as they will be removed from future versions.
1824
1825 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,helper=@var{helper}]
1826 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,helper=@var{helper}]
1827 Connect the host TAP network interface @var{name} to VLAN @var{n}.
1828
1829 Use the network script @var{file} to configure it and the network script
1830 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
1831 automatically provides one. The default network configure script is
1832 @file{/etc/qemu-ifup} and the default network deconfigure script is
1833 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
1834 to disable script execution.
1835
1836 If running QEMU as an unprivileged user, use the network helper
1837 @var{helper} to configure the TAP interface. The default network
1838 helper executable is @file{/path/to/qemu-bridge-helper}.
1839
1840 @option{fd}=@var{h} can be used to specify the handle of an already
1841 opened host TAP interface.
1842
1843 Examples:
1844
1845 @example
1846 #launch a QEMU instance with the default network script
1847 qemu-system-i386 linux.img -net nic -net tap
1848 @end example
1849
1850 @example
1851 #launch a QEMU instance with two NICs, each one connected
1852 #to a TAP device
1853 qemu-system-i386 linux.img \
1854 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
1855 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
1856 @end example
1857
1858 @example
1859 #launch a QEMU instance with the default network helper to
1860 #connect a TAP device to bridge br0
1861 qemu-system-i386 linux.img \
1862 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
1863 @end example
1864
1865 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
1866 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
1867 Connect a host TAP network interface to a host bridge device.
1868
1869 Use the network helper @var{helper} to configure the TAP interface and
1870 attach it to the bridge. The default network helper executable is
1871 @file{/path/to/qemu-bridge-helper} and the default bridge
1872 device is @file{br0}.
1873
1874 Examples:
1875
1876 @example
1877 #launch a QEMU instance with the default network helper to
1878 #connect a TAP device to bridge br0
1879 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
1880 @end example
1881
1882 @example
1883 #launch a QEMU instance with the default network helper to
1884 #connect a TAP device to bridge qemubr0
1885 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
1886 @end example
1887
1888 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1889 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1890
1891 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
1892 machine using a TCP socket connection. If @option{listen} is
1893 specified, QEMU waits for incoming connections on @var{port}
1894 (@var{host} is optional). @option{connect} is used to connect to
1895 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
1896 specifies an already opened TCP socket.
1897
1898 Example:
1899 @example
1900 # launch a first QEMU instance
1901 qemu-system-i386 linux.img \
1902 -net nic,macaddr=52:54:00:12:34:56 \
1903 -net socket,listen=:1234
1904 # connect the VLAN 0 of this instance to the VLAN 0
1905 # of the first instance
1906 qemu-system-i386 linux.img \
1907 -net nic,macaddr=52:54:00:12:34:57 \
1908 -net socket,connect=127.0.0.1:1234
1909 @end example
1910
1911 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1912 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1913
1914 Create a VLAN @var{n} shared with another QEMU virtual
1915 machines using a UDP multicast socket, effectively making a bus for
1916 every QEMU with same multicast address @var{maddr} and @var{port}.
1917 NOTES:
1918 @enumerate
1919 @item
1920 Several QEMU can be running on different hosts and share same bus (assuming
1921 correct multicast setup for these hosts).
1922 @item
1923 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1924 @url{http://user-mode-linux.sf.net}.
1925 @item
1926 Use @option{fd=h} to specify an already opened UDP multicast socket.
1927 @end enumerate
1928
1929 Example:
1930 @example
1931 # launch one QEMU instance
1932 qemu-system-i386 linux.img \
1933 -net nic,macaddr=52:54:00:12:34:56 \
1934 -net socket,mcast=230.0.0.1:1234
1935 # launch another QEMU instance on same "bus"
1936 qemu-system-i386 linux.img \
1937 -net nic,macaddr=52:54:00:12:34:57 \
1938 -net socket,mcast=230.0.0.1:1234
1939 # launch yet another QEMU instance on same "bus"
1940 qemu-system-i386 linux.img \
1941 -net nic,macaddr=52:54:00:12:34:58 \
1942 -net socket,mcast=230.0.0.1:1234
1943 @end example
1944
1945 Example (User Mode Linux compat.):
1946 @example
1947 # launch QEMU instance (note mcast address selected
1948 # is UML's default)
1949 qemu-system-i386 linux.img \
1950 -net nic,macaddr=52:54:00:12:34:56 \
1951 -net socket,mcast=239.192.168.1:1102
1952 # launch UML
1953 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
1954 @end example
1955
1956 Example (send packets from host's 1.2.3.4):
1957 @example
1958 qemu-system-i386 linux.img \
1959 -net nic,macaddr=52:54:00:12:34:56 \
1960 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
1961 @end example
1962
1963 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
1964 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
1965 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
1966 protocol to transport Ethernet (and other Layer 2) data frames between
1967 two systems. It is present in routers, firewalls and the Linux kernel
1968 (from version 3.3 onwards).
1969
1970 This transport allows a VM to communicate to another VM, router or firewall directly.
1971
1972 @item src=@var{srcaddr}
1973 source address (mandatory)
1974 @item dst=@var{dstaddr}
1975 destination address (mandatory)
1976 @item udp
1977 select udp encapsulation (default is ip).
1978 @item srcport=@var{srcport}
1979 source udp port.
1980 @item dstport=@var{dstport}
1981 destination udp port.
1982 @item ipv6
1983 force v6, otherwise defaults to v4.
1984 @item rxcookie=@var{rxcookie}
1985 @itemx txcookie=@var{txcookie}
1986 Cookies are a weak form of security in the l2tpv3 specification.
1987 Their function is mostly to prevent misconfiguration. By default they are 32
1988 bit.
1989 @item cookie64
1990 Set cookie size to 64 bit instead of the default 32
1991 @item counter=off
1992 Force a 'cut-down' L2TPv3 with no counter as in
1993 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
1994 @item pincounter=on
1995 Work around broken counter handling in peer. This may also help on
1996 networks which have packet reorder.
1997 @item offset=@var{offset}
1998 Add an extra offset between header and data
1999
2000 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2001 on the remote Linux host 1.2.3.4:
2002 @example
2003 # Setup tunnel on linux host using raw ip as encapsulation
2004 # on 1.2.3.4
2005 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2006 encap udp udp_sport 16384 udp_dport 16384
2007 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2008 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2009 ifconfig vmtunnel0 mtu 1500
2010 ifconfig vmtunnel0 up
2011 brctl addif br-lan vmtunnel0
2012
2013
2014 # on 4.3.2.1
2015 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2016
2017 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2018
2019
2020 @end example
2021
2022 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2023 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2024 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2025 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2026 and MODE @var{octalmode} to change default ownership and permissions for
2027 communication port. This option is only available if QEMU has been compiled
2028 with vde support enabled.
2029
2030 Example:
2031 @example
2032 # launch vde switch
2033 vde_switch -F -sock /tmp/myswitch
2034 # launch QEMU instance
2035 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2036 @end example
2037
2038 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2039
2040 Create a hub port on QEMU "vlan" @var{hubid}.
2041
2042 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2043 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2044 required hub automatically.
2045
2046 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2047
2048 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2049 be a unix domain socket backed one. The vhost-user uses a specifically defined
2050 protocol to pass vhost ioctl replacement messages to an application on the other
2051 end of the socket. On non-MSIX guests, the feature can be forced with
2052 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2053 be created for multiqueue vhost-user.
2054
2055 Example:
2056 @example
2057 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2058 -numa node,memdev=mem \
2059 -chardev socket,path=/path/to/socket \
2060 -netdev type=vhost-user,id=net0,chardev=chr0 \
2061 -device virtio-net-pci,netdev=net0
2062 @end example
2063
2064 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2065 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2066 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2067 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2068 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2069
2070 @item -net none
2071 Indicate that no network devices should be configured. It is used to
2072 override the default configuration (@option{-net nic -net user}) which
2073 is activated if no @option{-net} options are provided.
2074 ETEXI
2075
2076 STEXI
2077 @end table
2078 ETEXI
2079 DEFHEADING()
2080
2081 DEFHEADING(Character device options:)
2082 STEXI
2083
2084 The general form of a character device option is:
2085 @table @option
2086 ETEXI
2087
2088 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2089 "-chardev null,id=id[,mux=on|off]\n"
2090 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2091 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off] (tcp)\n"
2092 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off] (unix)\n"
2093 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2094 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2095 "-chardev msmouse,id=id[,mux=on|off]\n"
2096 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2097 " [,mux=on|off]\n"
2098 "-chardev ringbuf,id=id[,size=size]\n"
2099 "-chardev file,id=id,path=path[,mux=on|off]\n"
2100 "-chardev pipe,id=id,path=path[,mux=on|off]\n"
2101 #ifdef _WIN32
2102 "-chardev console,id=id[,mux=on|off]\n"
2103 "-chardev serial,id=id,path=path[,mux=on|off]\n"
2104 #else
2105 "-chardev pty,id=id[,mux=on|off]\n"
2106 "-chardev stdio,id=id[,mux=on|off][,signal=on|off]\n"
2107 #endif
2108 #ifdef CONFIG_BRLAPI
2109 "-chardev braille,id=id[,mux=on|off]\n"
2110 #endif
2111 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2112 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2113 "-chardev serial,id=id,path=path[,mux=on|off]\n"
2114 "-chardev tty,id=id,path=path[,mux=on|off]\n"
2115 #endif
2116 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2117 "-chardev parallel,id=id,path=path[,mux=on|off]\n"
2118 "-chardev parport,id=id,path=path[,mux=on|off]\n"
2119 #endif
2120 #if defined(CONFIG_SPICE)
2121 "-chardev spicevmc,id=id,name=name[,debug=debug]\n"
2122 "-chardev spiceport,id=id,name=name[,debug=debug]\n"
2123 #endif
2124 , QEMU_ARCH_ALL
2125 )
2126
2127 STEXI
2128 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2129 @findex -chardev
2130 Backend is one of:
2131 @option{null},
2132 @option{socket},
2133 @option{udp},
2134 @option{msmouse},
2135 @option{vc},
2136 @option{ringbuf},
2137 @option{file},
2138 @option{pipe},
2139 @option{console},
2140 @option{serial},
2141 @option{pty},
2142 @option{stdio},
2143 @option{braille},
2144 @option{tty},
2145 @option{parallel},
2146 @option{parport},
2147 @option{spicevmc}.
2148 @option{spiceport}.
2149 The specific backend will determine the applicable options.
2150
2151 All devices must have an id, which can be any string up to 127 characters long.
2152 It is used to uniquely identify this device in other command line directives.
2153
2154 A character device may be used in multiplexing mode by multiple front-ends.
2155 The key sequence of @key{Control-a} and @key{c} will rotate the input focus
2156 between attached front-ends. Specify @option{mux=on} to enable this mode.
2157
2158 Options to each backend are described below.
2159
2160 @item -chardev null ,id=@var{id}
2161 A void device. This device will not emit any data, and will drop any data it
2162 receives. The null backend does not take any options.
2163
2164 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}]
2165
2166 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2167 unix socket will be created if @option{path} is specified. Behaviour is
2168 undefined if TCP options are specified for a unix socket.
2169
2170 @option{server} specifies that the socket shall be a listening socket.
2171
2172 @option{nowait} specifies that QEMU should not block waiting for a client to
2173 connect to a listening socket.
2174
2175 @option{telnet} specifies that traffic on the socket should interpret telnet
2176 escape sequences.
2177
2178 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2179 the remote end goes away. qemu will delay this many seconds and then attempt
2180 to reconnect. Zero disables reconnecting, and is the default.
2181
2182 TCP and unix socket options are given below:
2183
2184 @table @option
2185
2186 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2187
2188 @option{host} for a listening socket specifies the local address to be bound.
2189 For a connecting socket species the remote host to connect to. @option{host} is
2190 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2191
2192 @option{port} for a listening socket specifies the local port to be bound. For a
2193 connecting socket specifies the port on the remote host to connect to.
2194 @option{port} can be given as either a port number or a service name.
2195 @option{port} is required.
2196
2197 @option{to} is only relevant to listening sockets. If it is specified, and
2198 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2199 to and including @option{to} until it succeeds. @option{to} must be specified
2200 as a port number.
2201
2202 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2203 If neither is specified the socket may use either protocol.
2204
2205 @option{nodelay} disables the Nagle algorithm.
2206
2207 @item unix options: path=@var{path}
2208
2209 @option{path} specifies the local path of the unix socket. @option{path} is
2210 required.
2211
2212 @end table
2213
2214 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2215
2216 Sends all traffic from the guest to a remote host over UDP.
2217
2218 @option{host} specifies the remote host to connect to. If not specified it
2219 defaults to @code{localhost}.
2220
2221 @option{port} specifies the port on the remote host to connect to. @option{port}
2222 is required.
2223
2224 @option{localaddr} specifies the local address to bind to. If not specified it
2225 defaults to @code{0.0.0.0}.
2226
2227 @option{localport} specifies the local port to bind to. If not specified any
2228 available local port will be used.
2229
2230 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2231 If neither is specified the device may use either protocol.
2232
2233 @item -chardev msmouse ,id=@var{id}
2234
2235 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2236 take any options.
2237
2238 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2239
2240 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2241 size.
2242
2243 @option{width} and @option{height} specify the width and height respectively of
2244 the console, in pixels.
2245
2246 @option{cols} and @option{rows} specify that the console be sized to fit a text
2247 console with the given dimensions.
2248
2249 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2250
2251 Create a ring buffer with fixed size @option{size}.
2252 @var{size} must be a power of two, and defaults to @code{64K}).
2253
2254 @item -chardev file ,id=@var{id} ,path=@var{path}
2255
2256 Log all traffic received from the guest to a file.
2257
2258 @option{path} specifies the path of the file to be opened. This file will be
2259 created if it does not already exist, and overwritten if it does. @option{path}
2260 is required.
2261
2262 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2263
2264 Create a two-way connection to the guest. The behaviour differs slightly between
2265 Windows hosts and other hosts:
2266
2267 On Windows, a single duplex pipe will be created at
2268 @file{\\.pipe\@option{path}}.
2269
2270 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2271 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2272 received by the guest. Data written by the guest can be read from
2273 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2274 be present.
2275
2276 @option{path} forms part of the pipe path as described above. @option{path} is
2277 required.
2278
2279 @item -chardev console ,id=@var{id}
2280
2281 Send traffic from the guest to QEMU's standard output. @option{console} does not
2282 take any options.
2283
2284 @option{console} is only available on Windows hosts.
2285
2286 @item -chardev serial ,id=@var{id} ,path=@option{path}
2287
2288 Send traffic from the guest to a serial device on the host.
2289
2290 On Unix hosts serial will actually accept any tty device,
2291 not only serial lines.
2292
2293 @option{path} specifies the name of the serial device to open.
2294
2295 @item -chardev pty ,id=@var{id}
2296
2297 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2298 not take any options.
2299
2300 @option{pty} is not available on Windows hosts.
2301
2302 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2303 Connect to standard input and standard output of the QEMU process.
2304
2305 @option{signal} controls if signals are enabled on the terminal, that includes
2306 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2307 default, use @option{signal=off} to disable it.
2308
2309 @option{stdio} is not available on Windows hosts.
2310
2311 @item -chardev braille ,id=@var{id}
2312
2313 Connect to a local BrlAPI server. @option{braille} does not take any options.
2314
2315 @item -chardev tty ,id=@var{id} ,path=@var{path}
2316
2317 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2318 DragonFlyBSD hosts. It is an alias for @option{serial}.
2319
2320 @option{path} specifies the path to the tty. @option{path} is required.
2321
2322 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2323 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2324
2325 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2326
2327 Connect to a local parallel port.
2328
2329 @option{path} specifies the path to the parallel port device. @option{path} is
2330 required.
2331
2332 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2333
2334 @option{spicevmc} is only available when spice support is built in.
2335
2336 @option{debug} debug level for spicevmc
2337
2338 @option{name} name of spice channel to connect to
2339
2340 Connect to a spice virtual machine channel, such as vdiport.
2341
2342 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2343
2344 @option{spiceport} is only available when spice support is built in.
2345
2346 @option{debug} debug level for spicevmc
2347
2348 @option{name} name of spice port to connect to
2349
2350 Connect to a spice port, allowing a Spice client to handle the traffic
2351 identified by a name (preferably a fqdn).
2352 ETEXI
2353
2354 STEXI
2355 @end table
2356 ETEXI
2357 DEFHEADING()
2358
2359 DEFHEADING(Device URL Syntax:)
2360 STEXI
2361
2362 In addition to using normal file images for the emulated storage devices,
2363 QEMU can also use networked resources such as iSCSI devices. These are
2364 specified using a special URL syntax.
2365
2366 @table @option
2367 @item iSCSI
2368 iSCSI support allows QEMU to access iSCSI resources directly and use as
2369 images for the guest storage. Both disk and cdrom images are supported.
2370
2371 Syntax for specifying iSCSI LUNs is
2372 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2373
2374 By default qemu will use the iSCSI initiator-name
2375 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2376 line or a configuration file.
2377
2378 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2379 stalled requests and force a reestablishment of the session. The timeout
2380 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2381 1.15.0 or greater is required for this feature.
2382
2383 Example (without authentication):
2384 @example
2385 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2386 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2387 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2388 @end example
2389
2390 Example (CHAP username/password via URL):
2391 @example
2392 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2393 @end example
2394
2395 Example (CHAP username/password via environment variables):
2396 @example
2397 LIBISCSI_CHAP_USERNAME="user" \
2398 LIBISCSI_CHAP_PASSWORD="password" \
2399 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2400 @end example
2401
2402 iSCSI support is an optional feature of QEMU and only available when
2403 compiled and linked against libiscsi.
2404 ETEXI
2405 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2406 "-iscsi [user=user][,password=password]\n"
2407 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2408 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2409 " [,timeout=timeout]\n"
2410 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2411 STEXI
2412
2413 iSCSI parameters such as username and password can also be specified via
2414 a configuration file. See qemu-doc for more information and examples.
2415
2416 @item NBD
2417 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2418 as Unix Domain Sockets.
2419
2420 Syntax for specifying a NBD device using TCP
2421 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2422
2423 Syntax for specifying a NBD device using Unix Domain Sockets
2424 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2425
2426
2427 Example for TCP
2428 @example
2429 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2430 @end example
2431
2432 Example for Unix Domain Sockets
2433 @example
2434 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2435 @end example
2436
2437 @item SSH
2438 QEMU supports SSH (Secure Shell) access to remote disks.
2439
2440 Examples:
2441 @example
2442 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2443 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2444 @end example
2445
2446 Currently authentication must be done using ssh-agent. Other
2447 authentication methods may be supported in future.
2448
2449 @item Sheepdog
2450 Sheepdog is a distributed storage system for QEMU.
2451 QEMU supports using either local sheepdog devices or remote networked
2452 devices.
2453
2454 Syntax for specifying a sheepdog device
2455 @example
2456 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2457 @end example
2458
2459 Example
2460 @example
2461 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2462 @end example
2463
2464 See also @url{http://http://www.osrg.net/sheepdog/}.
2465
2466 @item GlusterFS
2467 GlusterFS is an user space distributed file system.
2468 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2469 TCP, Unix Domain Sockets and RDMA transport protocols.
2470
2471 Syntax for specifying a VM disk image on GlusterFS volume is
2472 @example
2473 gluster[+transport]://[server[:port]]/volname/image[?socket=...]
2474 @end example
2475
2476
2477 Example
2478 @example
2479 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img
2480 @end example
2481
2482 See also @url{http://www.gluster.org}.
2483
2484 @item HTTP/HTTPS/FTP/FTPS/TFTP
2485 QEMU supports read-only access to files accessed over http(s), ftp(s) and tftp.
2486
2487 Syntax using a single filename:
2488 @example
2489 <protocol>://[<username>[:<password>]@@]<host>/<path>
2490 @end example
2491
2492 where:
2493 @table @option
2494 @item protocol
2495 'http', 'https', 'ftp', 'ftps', or 'tftp'.
2496
2497 @item username
2498 Optional username for authentication to the remote server.
2499
2500 @item password
2501 Optional password for authentication to the remote server.
2502
2503 @item host
2504 Address of the remote server.
2505
2506 @item path
2507 Path on the remote server, including any query string.
2508 @end table
2509
2510 The following options are also supported:
2511 @table @option
2512 @item url
2513 The full URL when passing options to the driver explicitly.
2514
2515 @item readahead
2516 The amount of data to read ahead with each range request to the remote server.
2517 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
2518 does not have a suffix, it will be assumed to be in bytes. The value must be a
2519 multiple of 512 bytes. It defaults to 256k.
2520
2521 @item sslverify
2522 Whether to verify the remote server's certificate when connecting over SSL. It
2523 can have the value 'on' or 'off'. It defaults to 'on'.
2524
2525 @item cookie
2526 Send this cookie (it can also be a list of cookies separated by ';') with
2527 each outgoing request. Only supported when using protocols such as HTTP
2528 which support cookies, otherwise ignored.
2529
2530 @item timeout
2531 Set the timeout in seconds of the CURL connection. This timeout is the time
2532 that CURL waits for a response from the remote server to get the size of the
2533 image to be downloaded. If not set, the default timeout of 5 seconds is used.
2534 @end table
2535
2536 Note that when passing options to qemu explicitly, @option{driver} is the value
2537 of <protocol>.
2538
2539 Example: boot from a remote Fedora 20 live ISO image
2540 @example
2541 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2542
2543 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2544 @end example
2545
2546 Example: boot from a remote Fedora 20 cloud image using a local overlay for
2547 writes, copy-on-read, and a readahead of 64k
2548 @example
2549 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
2550
2551 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
2552 @end example
2553
2554 Example: boot from an image stored on a VMware vSphere server with a self-signed
2555 certificate using a local overlay for writes, a readahead of 64k and a timeout
2556 of 10 seconds.
2557 @example
2558 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
2559
2560 qemu-system-x86_64 -drive file=/tmp/test.qcow2
2561 @end example
2562 ETEXI
2563
2564 STEXI
2565 @end table
2566 ETEXI
2567
2568 DEFHEADING(Bluetooth(R) options:)
2569 STEXI
2570 @table @option
2571 ETEXI
2572
2573 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2574 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2575 "-bt hci,host[:id]\n" \
2576 " use host's HCI with the given name\n" \
2577 "-bt hci[,vlan=n]\n" \
2578 " emulate a standard HCI in virtual scatternet 'n'\n" \
2579 "-bt vhci[,vlan=n]\n" \
2580 " add host computer to virtual scatternet 'n' using VHCI\n" \
2581 "-bt device:dev[,vlan=n]\n" \
2582 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2583 QEMU_ARCH_ALL)
2584 STEXI
2585 @item -bt hci[...]
2586 @findex -bt
2587 Defines the function of the corresponding Bluetooth HCI. -bt options
2588 are matched with the HCIs present in the chosen machine type. For
2589 example when emulating a machine with only one HCI built into it, only
2590 the first @code{-bt hci[...]} option is valid and defines the HCI's
2591 logic. The Transport Layer is decided by the machine type. Currently
2592 the machines @code{n800} and @code{n810} have one HCI and all other
2593 machines have none.
2594
2595 @anchor{bt-hcis}
2596 The following three types are recognized:
2597
2598 @table @option
2599 @item -bt hci,null
2600 (default) The corresponding Bluetooth HCI assumes no internal logic
2601 and will not respond to any HCI commands or emit events.
2602
2603 @item -bt hci,host[:@var{id}]
2604 (@code{bluez} only) The corresponding HCI passes commands / events
2605 to / from the physical HCI identified by the name @var{id} (default:
2606 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2607 capable systems like Linux.
2608
2609 @item -bt hci[,vlan=@var{n}]
2610 Add a virtual, standard HCI that will participate in the Bluetooth
2611 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2612 VLANs, devices inside a bluetooth network @var{n} can only communicate
2613 with other devices in the same network (scatternet).
2614 @end table
2615
2616 @item -bt vhci[,vlan=@var{n}]
2617 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2618 to the host bluetooth stack instead of to the emulated target. This
2619 allows the host and target machines to participate in a common scatternet
2620 and communicate. Requires the Linux @code{vhci} driver installed. Can
2621 be used as following:
2622
2623 @example
2624 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2625 @end example
2626
2627 @item -bt device:@var{dev}[,vlan=@var{n}]
2628 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2629 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2630 currently:
2631
2632 @table @option
2633 @item keyboard
2634 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2635 @end table
2636 ETEXI
2637
2638 STEXI
2639 @end table
2640 ETEXI
2641 DEFHEADING()
2642
2643 #ifdef CONFIG_TPM
2644 DEFHEADING(TPM device options:)
2645
2646 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2647 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2648 " use path to provide path to a character device; default is /dev/tpm0\n"
2649 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2650 " not provided it will be searched for in /sys/class/misc/tpm?/device\n",
2651 QEMU_ARCH_ALL)
2652 STEXI
2653
2654 The general form of a TPM device option is:
2655 @table @option
2656
2657 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
2658 @findex -tpmdev
2659 Backend type must be:
2660 @option{passthrough}.
2661
2662 The specific backend type will determine the applicable options.
2663 The @code{-tpmdev} option creates the TPM backend and requires a
2664 @code{-device} option that specifies the TPM frontend interface model.
2665
2666 Options to each backend are described below.
2667
2668 Use 'help' to print all available TPM backend types.
2669 @example
2670 qemu -tpmdev help
2671 @end example
2672
2673 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
2674
2675 (Linux-host only) Enable access to the host's TPM using the passthrough
2676 driver.
2677
2678 @option{path} specifies the path to the host's TPM device, i.e., on
2679 a Linux host this would be @code{/dev/tpm0}.
2680 @option{path} is optional and by default @code{/dev/tpm0} is used.
2681
2682 @option{cancel-path} specifies the path to the host TPM device's sysfs
2683 entry allowing for cancellation of an ongoing TPM command.
2684 @option{cancel-path} is optional and by default QEMU will search for the
2685 sysfs entry to use.
2686
2687 Some notes about using the host's TPM with the passthrough driver:
2688
2689 The TPM device accessed by the passthrough driver must not be
2690 used by any other application on the host.
2691
2692 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2693 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2694 TPM again and may therefore not show a TPM-specific menu that would
2695 otherwise allow the user to configure the TPM, e.g., allow the user to
2696 enable/disable or activate/deactivate the TPM.
2697 Further, if TPM ownership is released from within a VM then the host's TPM
2698 will get disabled and deactivated. To enable and activate the
2699 TPM again afterwards, the host has to be rebooted and the user is
2700 required to enter the firmware's menu to enable and activate the TPM.
2701 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2702
2703 To create a passthrough TPM use the following two options:
2704 @example
2705 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2706 @end example
2707 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2708 @code{tpmdev=tpm0} in the device option.
2709
2710 @end table
2711
2712 ETEXI
2713
2714 DEFHEADING()
2715
2716 #endif
2717
2718 DEFHEADING(Linux/Multiboot boot specific:)
2719 STEXI
2720
2721 When using these options, you can use a given Linux or Multiboot
2722 kernel without installing it in the disk image. It can be useful
2723 for easier testing of various kernels.
2724
2725 @table @option
2726 ETEXI
2727
2728 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2729 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2730 STEXI
2731 @item -kernel @var{bzImage}
2732 @findex -kernel
2733 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2734 or in multiboot format.
2735 ETEXI
2736
2737 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2738 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2739 STEXI
2740 @item -append @var{cmdline}
2741 @findex -append
2742 Use @var{cmdline} as kernel command line
2743 ETEXI
2744
2745 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2746 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2747 STEXI
2748 @item -initrd @var{file}
2749 @findex -initrd
2750 Use @var{file} as initial ram disk.
2751
2752 @item -initrd "@var{file1} arg=foo,@var{file2}"
2753
2754 This syntax is only available with multiboot.
2755
2756 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2757 first module.
2758 ETEXI
2759
2760 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2761 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2762 STEXI
2763 @item -dtb @var{file}
2764 @findex -dtb
2765 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2766 on boot.
2767 ETEXI
2768
2769 STEXI
2770 @end table
2771 ETEXI
2772 DEFHEADING()
2773
2774 DEFHEADING(Debug/Expert options:)
2775 STEXI
2776 @table @option
2777 ETEXI
2778
2779 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2780 "-fw_cfg [name=]<name>,file=<file>\n"
2781 " add named fw_cfg entry from file\n"
2782 "-fw_cfg [name=]<name>,string=<str>\n"
2783 " add named fw_cfg entry from string\n",
2784 QEMU_ARCH_ALL)
2785 STEXI
2786 @item -fw_cfg [name=]@var{name},file=@var{file}
2787 @findex -fw_cfg
2788 Add named fw_cfg entry from file. @var{name} determines the name of
2789 the entry in the fw_cfg file directory exposed to the guest.
2790
2791 @item -fw_cfg [name=]@var{name},string=@var{str}
2792 Add named fw_cfg entry from string.
2793 ETEXI
2794
2795 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
2796 "-serial dev redirect the serial port to char device 'dev'\n",
2797 QEMU_ARCH_ALL)
2798 STEXI
2799 @item -serial @var{dev}
2800 @findex -serial
2801 Redirect the virtual serial port to host character device
2802 @var{dev}. The default device is @code{vc} in graphical mode and
2803 @code{stdio} in non graphical mode.
2804
2805 This option can be used several times to simulate up to 4 serial
2806 ports.
2807
2808 Use @code{-serial none} to disable all serial ports.
2809
2810 Available character devices are:
2811 @table @option
2812 @item vc[:@var{W}x@var{H}]
2813 Virtual console. Optionally, a width and height can be given in pixel with
2814 @example
2815 vc:800x600
2816 @end example
2817 It is also possible to specify width or height in characters:
2818 @example
2819 vc:80Cx24C
2820 @end example
2821 @item pty
2822 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
2823 @item none
2824 No device is allocated.
2825 @item null
2826 void device
2827 @item chardev:@var{id}
2828 Use a named character device defined with the @code{-chardev} option.
2829 @item /dev/XXX
2830 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
2831 parameters are set according to the emulated ones.
2832 @item /dev/parport@var{N}
2833 [Linux only, parallel port only] Use host parallel port
2834 @var{N}. Currently SPP and EPP parallel port features can be used.
2835 @item file:@var{filename}
2836 Write output to @var{filename}. No character can be read.
2837 @item stdio
2838 [Unix only] standard input/output
2839 @item pipe:@var{filename}
2840 name pipe @var{filename}
2841 @item COM@var{n}
2842 [Windows only] Use host serial port @var{n}
2843 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
2844 This implements UDP Net Console.
2845 When @var{remote_host} or @var{src_ip} are not specified
2846 they default to @code{0.0.0.0}.
2847 When not using a specified @var{src_port} a random port is automatically chosen.
2848
2849 If you just want a simple readonly console you can use @code{netcat} or
2850 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
2851 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
2852 will appear in the netconsole session.
2853
2854 If you plan to send characters back via netconsole or you want to stop
2855 and start QEMU a lot of times, you should have QEMU use the same
2856 source port each time by using something like @code{-serial
2857 udp::4555@@:4556} to QEMU. Another approach is to use a patched
2858 version of netcat which can listen to a TCP port and send and receive
2859 characters via udp. If you have a patched version of netcat which
2860 activates telnet remote echo and single char transfer, then you can
2861 use the following options to step up a netcat redirector to allow
2862 telnet on port 5555 to access the QEMU port.
2863 @table @code
2864 @item QEMU Options:
2865 -serial udp::4555@@:4556
2866 @item netcat options:
2867 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
2868 @item telnet options:
2869 localhost 5555
2870 @end table
2871
2872 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
2873 The TCP Net Console has two modes of operation. It can send the serial
2874 I/O to a location or wait for a connection from a location. By default
2875 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
2876 the @var{server} option QEMU will wait for a client socket application
2877 to connect to the port before continuing, unless the @code{nowait}
2878 option was specified. The @code{nodelay} option disables the Nagle buffering
2879 algorithm. The @code{reconnect} option only applies if @var{noserver} is
2880 set, if the connection goes down it will attempt to reconnect at the
2881 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
2882 one TCP connection at a time is accepted. You can use @code{telnet} to
2883 connect to the corresponding character device.
2884 @table @code
2885 @item Example to send tcp console to 192.168.0.2 port 4444
2886 -serial tcp:192.168.0.2:4444
2887 @item Example to listen and wait on port 4444 for connection
2888 -serial tcp::4444,server
2889 @item Example to not wait and listen on ip 192.168.0.100 port 4444
2890 -serial tcp:192.168.0.100:4444,server,nowait
2891 @end table
2892
2893 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
2894 The telnet protocol is used instead of raw tcp sockets. The options
2895 work the same as if you had specified @code{-serial tcp}. The
2896 difference is that the port acts like a telnet server or client using
2897 telnet option negotiation. This will also allow you to send the
2898 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
2899 sequence. Typically in unix telnet you do it with Control-] and then
2900 type "send break" followed by pressing the enter key.
2901
2902 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
2903 A unix domain socket is used instead of a tcp socket. The option works the
2904 same as if you had specified @code{-serial tcp} except the unix domain socket
2905 @var{path} is used for connections.
2906
2907 @item mon:@var{dev_string}
2908 This is a special option to allow the monitor to be multiplexed onto
2909 another serial port. The monitor is accessed with key sequence of
2910 @key{Control-a} and then pressing @key{c}.
2911 @var{dev_string} should be any one of the serial devices specified
2912 above. An example to multiplex the monitor onto a telnet server
2913 listening on port 4444 would be:
2914 @table @code
2915 @item -serial mon:telnet::4444,server,nowait
2916 @end table
2917 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
2918 QEMU any more but will be passed to the guest instead.
2919
2920 @item braille
2921 Braille device. This will use BrlAPI to display the braille output on a real
2922 or fake device.
2923
2924 @item msmouse
2925 Three button serial mouse. Configure the guest to use Microsoft protocol.
2926 @end table
2927 ETEXI
2928
2929 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
2930 "-parallel dev redirect the parallel port to char device 'dev'\n",
2931 QEMU_ARCH_ALL)
2932 STEXI
2933 @item -parallel @var{dev}
2934 @findex -parallel
2935 Redirect the virtual parallel port to host device @var{dev} (same
2936 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
2937 be used to use hardware devices connected on the corresponding host
2938 parallel port.
2939
2940 This option can be used several times to simulate up to 3 parallel
2941 ports.
2942
2943 Use @code{-parallel none} to disable all parallel ports.
2944 ETEXI
2945
2946 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
2947 "-monitor dev redirect the monitor to char device 'dev'\n",
2948 QEMU_ARCH_ALL)
2949 STEXI
2950 @item -monitor @var{dev}
2951 @findex -monitor
2952 Redirect the monitor to host device @var{dev} (same devices as the
2953 serial port).
2954 The default device is @code{vc} in graphical mode and @code{stdio} in
2955 non graphical mode.
2956 Use @code{-monitor none} to disable the default monitor.
2957 ETEXI
2958 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
2959 "-qmp dev like -monitor but opens in 'control' mode\n",
2960 QEMU_ARCH_ALL)
2961 STEXI
2962 @item -qmp @var{dev}
2963 @findex -qmp
2964 Like -monitor but opens in 'control' mode.
2965 ETEXI
2966 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
2967 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
2968 QEMU_ARCH_ALL)
2969 STEXI
2970 @item -qmp-pretty @var{dev}
2971 @findex -qmp-pretty
2972 Like -qmp but uses pretty JSON formatting.
2973 ETEXI
2974
2975 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
2976 "-mon [chardev=]name[,mode=readline|control][,default]\n", QEMU_ARCH_ALL)
2977 STEXI
2978 @item -mon [chardev=]name[,mode=readline|control][,default]
2979 @findex -mon
2980 Setup monitor on chardev @var{name}.
2981 ETEXI
2982
2983 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
2984 "-debugcon dev redirect the debug console to char device 'dev'\n",
2985 QEMU_ARCH_ALL)
2986 STEXI
2987 @item -debugcon @var{dev}
2988 @findex -debugcon
2989 Redirect the debug console to host device @var{dev} (same devices as the
2990 serial port). The debug console is an I/O port which is typically port
2991 0xe9; writing to that I/O port sends output to this device.
2992 The default device is @code{vc} in graphical mode and @code{stdio} in
2993 non graphical mode.
2994 ETEXI
2995
2996 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
2997 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
2998 STEXI
2999 @item -pidfile @var{file}
3000 @findex -pidfile
3001 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3002 from a script.
3003 ETEXI
3004
3005 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3006 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3007 STEXI
3008 @item -singlestep
3009 @findex -singlestep
3010 Run the emulation in single step mode.
3011 ETEXI
3012
3013 DEF("S", 0, QEMU_OPTION_S, \
3014 "-S freeze CPU at startup (use 'c' to start execution)\n",
3015 QEMU_ARCH_ALL)
3016 STEXI
3017 @item -S
3018 @findex -S
3019 Do not start CPU at startup (you must type 'c' in the monitor).
3020 ETEXI
3021
3022 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3023 "-realtime [mlock=on|off]\n"
3024 " run qemu with realtime features\n"
3025 " mlock=on|off controls mlock support (default: on)\n",
3026 QEMU_ARCH_ALL)
3027 STEXI
3028 @item -realtime mlock=on|off
3029 @findex -realtime
3030 Run qemu with realtime features.
3031 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3032 (enabled by default).
3033 ETEXI
3034
3035 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3036 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3037 STEXI
3038 @item -gdb @var{dev}
3039 @findex -gdb
3040 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3041 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3042 stdio are reasonable use case. The latter is allowing to start QEMU from
3043 within gdb and establish the connection via a pipe:
3044 @example
3045 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3046 @end example
3047 ETEXI
3048
3049 DEF("s", 0, QEMU_OPTION_s, \
3050 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3051 QEMU_ARCH_ALL)
3052 STEXI
3053 @item -s
3054 @findex -s
3055 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3056 (@pxref{gdb_usage}).
3057 ETEXI
3058
3059 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3060 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3061 QEMU_ARCH_ALL)
3062 STEXI
3063 @item -d @var{item1}[,...]
3064 @findex -d
3065 Enable logging of specified items. Use '-d help' for a list of log items.
3066 ETEXI
3067
3068 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3069 "-D logfile output log to logfile (default stderr)\n",
3070 QEMU_ARCH_ALL)
3071 STEXI
3072 @item -D @var{logfile}
3073 @findex -D
3074 Output log in @var{logfile} instead of to stderr
3075 ETEXI
3076
3077 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3078 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3079 QEMU_ARCH_ALL)
3080 STEXI
3081 @item -L @var{path}
3082 @findex -L
3083 Set the directory for the BIOS, VGA BIOS and keymaps.
3084 ETEXI
3085
3086 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3087 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3088 STEXI
3089 @item -bios @var{file}
3090 @findex -bios
3091 Set the filename for the BIOS.
3092 ETEXI
3093
3094 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3095 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3096 STEXI
3097 @item -enable-kvm
3098 @findex -enable-kvm
3099 Enable KVM full virtualization support. This option is only available
3100 if KVM support is enabled when compiling.
3101 ETEXI
3102
3103 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3104 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3105 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3106 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3107 " warning: should not be used when xend is in use\n",
3108 QEMU_ARCH_ALL)
3109 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3110 "-xen-attach attach to existing xen domain\n"
3111 " xend will use this when starting QEMU\n",
3112 QEMU_ARCH_ALL)
3113 STEXI
3114 @item -xen-domid @var{id}
3115 @findex -xen-domid
3116 Specify xen guest domain @var{id} (XEN only).
3117 @item -xen-create
3118 @findex -xen-create
3119 Create domain using xen hypercalls, bypassing xend.
3120 Warning: should not be used when xend is in use (XEN only).
3121 @item -xen-attach
3122 @findex -xen-attach
3123 Attach to existing xen domain.
3124 xend will use this when starting QEMU (XEN only).
3125 ETEXI
3126
3127 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3128 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3129 STEXI
3130 @item -no-reboot
3131 @findex -no-reboot
3132 Exit instead of rebooting.
3133 ETEXI
3134
3135 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3136 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3137 STEXI
3138 @item -no-shutdown
3139 @findex -no-shutdown
3140 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3141 This allows for instance switching to monitor to commit changes to the
3142 disk image.
3143 ETEXI
3144
3145 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3146 "-loadvm [tag|id]\n" \
3147 " start right away with a saved state (loadvm in monitor)\n",
3148 QEMU_ARCH_ALL)
3149 STEXI
3150 @item -loadvm @var{file}
3151 @findex -loadvm
3152 Start right away with a saved state (@code{loadvm} in monitor)
3153 ETEXI
3154
3155 #ifndef _WIN32
3156 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3157 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3158 #endif
3159 STEXI
3160 @item -daemonize
3161 @findex -daemonize
3162 Daemonize the QEMU process after initialization. QEMU will not detach from
3163 standard IO until it is ready to receive connections on any of its devices.
3164 This option is a useful way for external programs to launch QEMU without having
3165 to cope with initialization race conditions.
3166 ETEXI
3167
3168 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3169 "-option-rom rom load a file, rom, into the option ROM space\n",
3170 QEMU_ARCH_ALL)
3171 STEXI
3172 @item -option-rom @var{file}
3173 @findex -option-rom
3174 Load the contents of @var{file} as an option ROM.
3175 This option is useful to load things like EtherBoot.
3176 ETEXI
3177
3178 HXCOMM Silently ignored for compatibility
3179 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3180
3181 HXCOMM Options deprecated by -rtc
3182 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3183 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3184
3185 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3186 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3187 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3188 QEMU_ARCH_ALL)
3189
3190 STEXI
3191
3192 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3193 @findex -rtc
3194 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3195 UTC or local time, respectively. @code{localtime} is required for correct date in
3196 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3197 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3198
3199 By default the RTC is driven by the host system time. This allows using of the
3200 RTC as accurate reference clock inside the guest, specifically if the host
3201 time is smoothly following an accurate external reference clock, e.g. via NTP.
3202 If you want to isolate the guest time from the host, you can set @option{clock}
3203 to @code{rt} instead. To even prevent it from progressing during suspension,
3204 you can set it to @code{vm}.
3205
3206 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3207 specifically with Windows' ACPI HAL. This option will try to figure out how
3208 many timer interrupts were not processed by the Windows guest and will
3209 re-inject them.
3210 ETEXI
3211
3212 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3213 "-icount [shift=N|auto][,align=on|off][,sleep=no,rr=record|replay,rrfile=<filename>]\n" \
3214 " enable virtual instruction counter with 2^N clock ticks per\n" \
3215 " instruction, enable aligning the host and virtual clocks\n" \
3216 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3217 STEXI
3218 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename}]
3219 @findex -icount
3220 Enable virtual instruction counter. The virtual cpu will execute one
3221 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3222 then the virtual cpu speed will be automatically adjusted to keep virtual
3223 time within a few seconds of real time.
3224
3225 When the virtual cpu is sleeping, the virtual time will advance at default
3226 speed unless @option{sleep=no} is specified.
3227 With @option{sleep=no}, the virtual time will jump to the next timer deadline
3228 instantly whenever the virtual cpu goes to sleep mode and will not advance
3229 if no timer is enabled. This behavior give deterministic execution times from
3230 the guest point of view.
3231
3232 Note that while this option can give deterministic behavior, it does not
3233 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3234 order cores with complex cache hierarchies. The number of instructions
3235 executed often has little or no correlation with actual performance.
3236
3237 @option{align=on} will activate the delay algorithm which will try
3238 to synchronise the host clock and the virtual clock. The goal is to
3239 have a guest running at the real frequency imposed by the shift option.
3240 Whenever the guest clock is behind the host clock and if
3241 @option{align=on} is specified then we print a message to the user
3242 to inform about the delay.
3243 Currently this option does not work when @option{shift} is @code{auto}.
3244 Note: The sync algorithm will work for those shift values for which
3245 the guest clock runs ahead of the host clock. Typically this happens
3246 when the shift value is high (how high depends on the host machine).
3247
3248 When @option{rr} option is specified deterministic record/replay is enabled.
3249 Replay log is written into @var{filename} file in record mode and
3250 read from this file in replay mode.
3251 ETEXI
3252
3253 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3254 "-watchdog model\n" \
3255 " enable virtual hardware watchdog [default=none]\n",
3256 QEMU_ARCH_ALL)
3257 STEXI
3258 @item -watchdog @var{model}
3259 @findex -watchdog
3260 Create a virtual hardware watchdog device. Once enabled (by a guest
3261 action), the watchdog must be periodically polled by an agent inside
3262 the guest or else the guest will be restarted. Choose a model for
3263 which your guest has drivers.
3264
3265 The @var{model} is the model of hardware watchdog to emulate. Use
3266 @code{-watchdog help} to list available hardware models. Only one
3267 watchdog can be enabled for a guest.
3268
3269 The following models may be available:
3270 @table @option
3271 @item ib700
3272 iBASE 700 is a very simple ISA watchdog with a single timer.
3273 @item i6300esb
3274 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3275 dual-timer watchdog.
3276 @item diag288
3277 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3278 (currently KVM only).
3279 @end table
3280 ETEXI
3281
3282 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3283 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3284 " action when watchdog fires [default=reset]\n",
3285 QEMU_ARCH_ALL)
3286 STEXI
3287 @item -watchdog-action @var{action}
3288 @findex -watchdog-action
3289
3290 The @var{action} controls what QEMU will do when the watchdog timer
3291 expires.
3292 The default is
3293 @code{reset} (forcefully reset the guest).
3294 Other possible actions are:
3295 @code{shutdown} (attempt to gracefully shutdown the guest),
3296 @code{poweroff} (forcefully poweroff the guest),
3297 @code{pause} (pause the guest),
3298 @code{debug} (print a debug message and continue), or
3299 @code{none} (do nothing).
3300
3301 Note that the @code{shutdown} action requires that the guest responds
3302 to ACPI signals, which it may not be able to do in the sort of
3303 situations where the watchdog would have expired, and thus
3304 @code{-watchdog-action shutdown} is not recommended for production use.
3305
3306 Examples:
3307
3308 @table @code
3309 @item -watchdog i6300esb -watchdog-action pause
3310 @itemx -watchdog ib700
3311 @end table
3312 ETEXI
3313
3314 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3315 "-echr chr set terminal escape character instead of ctrl-a\n",
3316 QEMU_ARCH_ALL)
3317 STEXI
3318
3319 @item -echr @var{numeric_ascii_value}
3320 @findex -echr
3321 Change the escape character used for switching to the monitor when using
3322 monitor and serial sharing. The default is @code{0x01} when using the
3323 @code{-nographic} option. @code{0x01} is equal to pressing
3324 @code{Control-a}. You can select a different character from the ascii
3325 control keys where 1 through 26 map to Control-a through Control-z. For
3326 instance you could use the either of the following to change the escape
3327 character to Control-t.
3328 @table @code
3329 @item -echr 0x14
3330 @itemx -echr 20
3331 @end table
3332 ETEXI
3333
3334 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3335 "-virtioconsole c\n" \
3336 " set virtio console\n", QEMU_ARCH_ALL)
3337 STEXI
3338 @item -virtioconsole @var{c}
3339 @findex -virtioconsole
3340 Set virtio console.
3341
3342 This option is maintained for backward compatibility.
3343
3344 Please use @code{-device virtconsole} for the new way of invocation.
3345 ETEXI
3346
3347 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3348 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3349 STEXI
3350 @item -show-cursor
3351 @findex -show-cursor
3352 Show cursor.
3353 ETEXI
3354
3355 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3356 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3357 STEXI
3358 @item -tb-size @var{n}
3359 @findex -tb-size
3360 Set TB size.
3361 ETEXI
3362
3363 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3364 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3365 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3366 "-incoming unix:socketpath\n" \
3367 " prepare for incoming migration, listen on\n" \
3368 " specified protocol and socket address\n" \
3369 "-incoming fd:fd\n" \
3370 "-incoming exec:cmdline\n" \
3371 " accept incoming migration on given file descriptor\n" \
3372 " or from given external command\n" \
3373 "-incoming defer\n" \
3374 " wait for the URI to be specified via migrate_incoming\n",
3375 QEMU_ARCH_ALL)
3376 STEXI
3377 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3378 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3379 @findex -incoming
3380 Prepare for incoming migration, listen on a given tcp port.
3381
3382 @item -incoming unix:@var{socketpath}
3383 Prepare for incoming migration, listen on a given unix socket.
3384
3385 @item -incoming fd:@var{fd}
3386 Accept incoming migration from a given filedescriptor.
3387
3388 @item -incoming exec:@var{cmdline}
3389 Accept incoming migration as an output from specified external command.
3390
3391 @item -incoming defer
3392 Wait for the URI to be specified via migrate_incoming. The monitor can
3393 be used to change settings (such as migration parameters) prior to issuing
3394 the migrate_incoming to allow the migration to begin.
3395 ETEXI
3396
3397 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3398 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3399 STEXI
3400 @item -nodefaults
3401 @findex -nodefaults
3402 Don't create default devices. Normally, QEMU sets the default devices like serial
3403 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3404 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3405 default devices.
3406 ETEXI
3407
3408 #ifndef _WIN32
3409 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3410 "-chroot dir chroot to dir just before starting the VM\n",
3411 QEMU_ARCH_ALL)
3412 #endif
3413 STEXI
3414 @item -chroot @var{dir}
3415 @findex -chroot
3416 Immediately before starting guest execution, chroot to the specified
3417 directory. Especially useful in combination with -runas.
3418 ETEXI
3419
3420 #ifndef _WIN32
3421 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3422 "-runas user change to user id user just before starting the VM\n",
3423 QEMU_ARCH_ALL)
3424 #endif
3425 STEXI
3426 @item -runas @var{user}
3427 @findex -runas
3428 Immediately before starting guest execution, drop root privileges, switching
3429 to the specified user.
3430 ETEXI
3431
3432 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3433 "-prom-env variable=value\n"
3434 " set OpenBIOS nvram variables\n",
3435 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3436 STEXI
3437 @item -prom-env @var{variable}=@var{value}
3438 @findex -prom-env
3439 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3440 ETEXI
3441 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3442 "-semihosting semihosting mode\n",
3443 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3444 QEMU_ARCH_MIPS)
3445 STEXI
3446 @item -semihosting
3447 @findex -semihosting
3448 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3449 ETEXI
3450 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3451 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3452 " semihosting configuration\n",
3453 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3454 QEMU_ARCH_MIPS)
3455 STEXI
3456 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3457 @findex -semihosting-config
3458 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3459 @table @option
3460 @item target=@code{native|gdb|auto}
3461 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3462 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3463 during debug sessions and @code{native} otherwise.
3464 @item arg=@var{str1},arg=@var{str2},...
3465 Allows the user to pass input arguments, and can be used multiple times to build
3466 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3467 command line is still supported for backward compatibility. If both the
3468 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3469 specified, the former is passed to semihosting as it always takes precedence.
3470 @end table
3471 ETEXI
3472 DEF("old-param", 0, QEMU_OPTION_old_param,
3473 "-old-param old param mode\n", QEMU_ARCH_ARM)
3474 STEXI
3475 @item -old-param
3476 @findex -old-param (ARM)
3477 Old param mode (ARM only).
3478 ETEXI
3479
3480 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3481 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n",
3482 QEMU_ARCH_ALL)
3483 STEXI
3484 @item -sandbox @var{arg}
3485 @findex -sandbox
3486 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3487 disable it. The default is 'off'.
3488 ETEXI
3489
3490 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3491 "-readconfig <file>\n", QEMU_ARCH_ALL)
3492 STEXI
3493 @item -readconfig @var{file}
3494 @findex -readconfig
3495 Read device configuration from @var{file}. This approach is useful when you want to spawn
3496 QEMU process with many command line options but you don't want to exceed the command line
3497 character limit.
3498 ETEXI
3499 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3500 "-writeconfig <file>\n"
3501 " read/write config file\n", QEMU_ARCH_ALL)
3502 STEXI
3503 @item -writeconfig @var{file}
3504 @findex -writeconfig
3505 Write device configuration to @var{file}. The @var{file} can be either filename to save
3506 command line and device configuration into file or dash @code{-}) character to print the
3507 output to stdout. This can be later used as input file for @code{-readconfig} option.
3508 ETEXI
3509 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig,
3510 "-nodefconfig\n"
3511 " do not load default config files at startup\n",
3512 QEMU_ARCH_ALL)
3513 STEXI
3514 @item -nodefconfig
3515 @findex -nodefconfig
3516 Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup.
3517 The @code{-nodefconfig} option will prevent QEMU from loading any of those config files.
3518 ETEXI
3519 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3520 "-no-user-config\n"
3521 " do not load user-provided config files at startup\n",
3522 QEMU_ARCH_ALL)
3523 STEXI
3524 @item -no-user-config
3525 @findex -no-user-config
3526 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3527 config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config
3528 files from @var{datadir}.
3529 ETEXI
3530 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3531 "-trace [events=<file>][,file=<file>]\n"
3532 " specify tracing options\n",
3533 QEMU_ARCH_ALL)
3534 STEXI
3535 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3536 HXCOMM HX does not support conditional compilation of text.
3537 @item -trace [events=@var{file}][,file=@var{file}]
3538 @findex -trace
3539
3540 Specify tracing options.
3541
3542 @table @option
3543 @item events=@var{file}
3544 Immediately enable events listed in @var{file}.
3545 The file must contain one event name (as listed in the @var{trace-events} file)
3546 per line.
3547 This option is only available if QEMU has been compiled with
3548 either @var{simple} or @var{stderr} tracing backend.
3549 @item file=@var{file}
3550 Log output traces to @var{file}.
3551
3552 This option is only available if QEMU has been compiled with
3553 the @var{simple} tracing backend.
3554 @end table
3555 ETEXI
3556
3557 HXCOMM Internal use
3558 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3559 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3560
3561 #ifdef __linux__
3562 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3563 "-enable-fips enable FIPS 140-2 compliance\n",
3564 QEMU_ARCH_ALL)
3565 #endif
3566 STEXI
3567 @item -enable-fips
3568 @findex -enable-fips
3569 Enable FIPS 140-2 compliance mode.
3570 ETEXI
3571
3572 HXCOMM Deprecated by -machine accel=tcg property
3573 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3574
3575 HXCOMM Deprecated by kvm-pit driver properties
3576 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
3577 "", QEMU_ARCH_I386)
3578
3579 HXCOMM Deprecated (ignored)
3580 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
3581
3582 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
3583 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
3584
3585 HXCOMM Deprecated (ignored)
3586 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
3587
3588 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3589 "-msg timestamp[=on|off]\n"
3590 " change the format of messages\n"
3591 " on|off controls leading timestamps (default:on)\n",
3592 QEMU_ARCH_ALL)
3593 STEXI
3594 @item -msg timestamp[=on|off]
3595 @findex -msg
3596 prepend a timestamp to each log message.(default:on)
3597 ETEXI
3598
3599 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3600 "-dump-vmstate <file>\n"
3601 " Output vmstate information in JSON format to file.\n"
3602 " Use the scripts/vmstate-static-checker.py file to\n"
3603 " check for possible regressions in migration code\n"
3604 " by comparing two such vmstate dumps.\n",
3605 QEMU_ARCH_ALL)
3606 STEXI
3607 @item -dump-vmstate @var{file}
3608 @findex -dump-vmstate
3609 Dump json-encoded vmstate information for current machine type to file
3610 in @var{file}
3611 ETEXI
3612
3613 DEFHEADING(Generic object creation)
3614
3615 DEF("object", HAS_ARG, QEMU_OPTION_object,
3616 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3617 " create a new object of type TYPENAME setting properties\n"
3618 " in the order they are specified. Note that the 'id'\n"
3619 " property must be set. These objects are placed in the\n"
3620 " '/objects' path.\n",
3621 QEMU_ARCH_ALL)
3622 STEXI
3623 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3624 @findex -object
3625 Create a new object of type @var{typename} setting properties
3626 in the order they are specified. Note that the 'id'
3627 property must be set. These objects are placed in the
3628 '/objects' path.
3629
3630 @table @option
3631
3632 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off}
3633
3634 Creates a memory file backend object, which can be used to back
3635 the guest RAM with huge pages. The @option{id} parameter is a
3636 unique ID that will be used to reference this memory region
3637 when configuring the @option{-numa} argument. The @option{size}
3638 option provides the size of the memory region, and accepts
3639 common suffixes, eg @option{500M}. The @option{mem-path} provides
3640 the path to either a shared memory or huge page filesystem mount.
3641 The @option{share} boolean option determines whether the memory
3642 region is marked as private to QEMU, or shared. The latter allows
3643 a co-operating external process to access the QEMU memory region.
3644
3645 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
3646
3647 Creates a random number generator backend which obtains entropy from
3648 a device on the host. The @option{id} parameter is a unique ID that
3649 will be used to reference this entropy backend from the @option{virtio-rng}
3650 device. The @option{filename} parameter specifies which file to obtain
3651 entropy from and if omitted defaults to @option{/dev/random}.
3652
3653 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
3654
3655 Creates a random number generator backend which obtains entropy from
3656 an external daemon running on the host. The @option{id} parameter is
3657 a unique ID that will be used to reference this entropy backend from
3658 the @option{virtio-rng} device. The @option{chardev} parameter is
3659 the unique ID of a character device backend that provides the connection
3660 to the RNG daemon.
3661
3662 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
3663
3664 Creates a TLS anonymous credentials object, which can be used to provide
3665 TLS support on network backends. The @option{id} parameter is a unique
3666 ID which network backends will use to access the credentials. The
3667 @option{endpoint} is either @option{server} or @option{client} depending
3668 on whether the QEMU network backend that uses the credentials will be
3669 acting as a client or as a server. If @option{verify-peer} is enabled
3670 (the default) then once the handshake is completed, the peer credentials
3671 will be verified, though this is a no-op for anonymous credentials.
3672
3673 The @var{dir} parameter tells QEMU where to find the credential
3674 files. For server endpoints, this directory may contain a file
3675 @var{dh-params.pem} providing diffie-hellman parameters to use
3676 for the TLS server. If the file is missing, QEMU will generate
3677 a set of DH parameters at startup. This is a computationally
3678 expensive operation that consumes random pool entropy, so it is
3679 recommended that a persistent set of parameters be generated
3680 upfront and saved.
3681
3682 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
3683
3684 Creates a TLS anonymous credentials object, which can be used to provide
3685 TLS support on network backends. The @option{id} parameter is a unique
3686 ID which network backends will use to access the credentials. The
3687 @option{endpoint} is either @option{server} or @option{client} depending
3688 on whether the QEMU network backend that uses the credentials will be
3689 acting as a client or as a server. If @option{verify-peer} is enabled
3690 (the default) then once the handshake is completed, the peer credentials
3691 will be verified. With x509 certificates, this implies that the clients
3692 must be provided with valid client certificates too.
3693
3694 The @var{dir} parameter tells QEMU where to find the credential
3695 files. For server endpoints, this directory may contain a file
3696 @var{dh-params.pem} providing diffie-hellman parameters to use
3697 for the TLS server. If the file is missing, QEMU will generate
3698 a set of DH parameters at startup. This is a computationally
3699 expensive operation that consumes random pool entropy, so it is
3700 recommended that a persistent set of parameters be generated
3701 upfront and saved.
3702
3703 For x509 certificate credentials the directory will contain further files
3704 providing the x509 certificates. The certificates must be stored
3705 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
3706 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
3707 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
3708
3709 For the @var{server-key.pem} and @var{client-key.pem} files which
3710 contain sensitive private keys, it is possible to use an encrypted
3711 version by providing the @var{passwordid} parameter. This provides
3712 the ID of a previously created @code{secret} object containing the
3713 password for decryption.
3714
3715 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}]
3716
3717 Interval @var{t} can't be 0, this filter batches the packet delivery: all
3718 packets arriving in a given interval on netdev @var{netdevid} are delayed
3719 until the end of the interval. Interval is in microseconds.
3720
3721 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
3722
3723 @option{all}: the filter is attached both to the receive and the transmit
3724 queue of the netdev (default).
3725
3726 @option{rx}: the filter is attached to the receive queue of the netdev,
3727 where it will receive packets sent to the netdev.
3728
3729 @option{tx}: the filter is attached to the transmit queue of the netdev,
3730 where it will receive packets sent by the netdev.
3731
3732 @item -object filter-dump,id=@var{id},netdev=@var{dev},file=@var{filename}][,maxlen=@var{len}]
3733
3734 Dump the network traffic on netdev @var{dev} to the file specified by
3735 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
3736 The file format is libpcap, so it can be analyzed with tools such as tcpdump
3737 or Wireshark.
3738
3739 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
3740 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
3741
3742 Defines a secret to store a password, encryption key, or some other sensitive
3743 data. The sensitive data can either be passed directly via the @var{data}
3744 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
3745 parameter is insecure unless the sensitive data is encrypted.
3746
3747 The sensitive data can be provided in raw format (the default), or base64.
3748 When encoded as JSON, the raw format only supports valid UTF-8 characters,
3749 so base64 is recommended for sending binary data. QEMU will convert from
3750 which ever format is provided to the format it needs internally. eg, an
3751 RBD password can be provided in raw format, even though it will be base64
3752 encoded when passed onto the RBD sever.
3753
3754 For added protection, it is possible to encrypt the data associated with
3755 a secret using the AES-256-CBC cipher. Use of encryption is indicated
3756 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
3757 parameter provides the ID of a previously defined secret that contains
3758 the AES-256 decryption key. This key should be 32-bytes long and be
3759 base64 encoded. The @var{iv} parameter provides the random initialization
3760 vector used for encryption of this particular secret and should be a
3761 base64 encrypted string of the 32-byte IV.
3762
3763 The simplest (insecure) usage is to provide the secret inline
3764
3765 @example
3766
3767 # $QEMU -object secret,id=sec0,data=letmein,format=raw
3768
3769 @end example
3770
3771 The simplest secure usage is to provide the secret via a file
3772
3773 # echo -n "letmein" > mypasswd.txt
3774 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
3775
3776 For greater security, AES-256-CBC should be used. To illustrate usage,
3777 consider the openssl command line tool which can encrypt the data. Note
3778 that when encrypting, the plaintext must be padded to the cipher block
3779 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
3780
3781 First a master key needs to be created in base64 encoding:
3782
3783 @example
3784 # openssl rand -base64 32 > key.b64
3785 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
3786 @end example
3787
3788 Each secret to be encrypted needs to have a random initialization vector
3789 generated. These do not need to be kept secret
3790
3791 @example
3792 # openssl rand -base64 16 > iv.b64
3793 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
3794 @end example
3795
3796 The secret to be defined can now be encrypted, in this case we're
3797 telling openssl to base64 encode the result, but it could be left
3798 as raw bytes if desired.
3799
3800 @example
3801 # SECRET=$(echo -n "letmein" |
3802 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
3803 @end example
3804
3805 When launching QEMU, create a master secret pointing to @code{key.b64}
3806 and specify that to be used to decrypt the user password. Pass the
3807 contents of @code{iv.b64} to the second secret
3808
3809 @example
3810 # $QEMU \
3811 -object secret,id=secmaster0,format=base64,file=key.b64 \
3812 -object secret,id=sec0,keyid=secmaster0,format=base64,\
3813 data=$SECRET,iv=$(<iv.b64)
3814 @end example
3815
3816 @end table
3817
3818 ETEXI
3819
3820
3821 HXCOMM This is the last statement. Insert new options before this line!
3822 STEXI
3823 @end table
3824 ETEXI