]> git.proxmox.com Git - mirror_qemu.git/blob - qmp-commands.hx
vl: redo -object parsing
[mirror_qemu.git] / qmp-commands.hx
1 HXCOMM QMP dispatch table and documentation
2 HXCOMM Text between SQMP and EQMP is copied to the QMP documention file and
3 HXCOMM does not show up in the other formats.
4
5 SQMP
6 QMP Supported Commands
7 ----------------------
8
9 This document describes all commands currently supported by QMP.
10
11 Most of the time their usage is exactly the same as in the user Monitor, this
12 means that any other document which also describe commands (the manpage,
13 QEMU's manual, etc) can and should be consulted.
14
15 QMP has two types of commands: regular and query commands. Regular commands
16 usually change the Virtual Machine's state someway, while query commands just
17 return information. The sections below are divided accordingly.
18
19 It's important to observe that all communication examples are formatted in
20 a reader-friendly way, so that they're easier to understand. However, in real
21 protocol usage, they're emitted as a single line.
22
23 Also, the following notation is used to denote data flow:
24
25 -> data issued by the Client
26 <- Server data response
27
28 Please, refer to the QMP specification (QMP/qmp-spec.txt) for detailed
29 information on the Server command and response formats.
30
31 NOTE: This document is temporary and will be replaced soon.
32
33 1. Stability Considerations
34 ===========================
35
36 The current QMP command set (described in this file) may be useful for a
37 number of use cases, however it's limited and several commands have bad
38 defined semantics, specially with regard to command completion.
39
40 These problems are going to be solved incrementally in the next QEMU releases
41 and we're going to establish a deprecation policy for badly defined commands.
42
43 If you're planning to adopt QMP, please observe the following:
44
45 1. The deprecation policy will take effect and be documented soon, please
46 check the documentation of each used command as soon as a new release of
47 QEMU is available
48
49 2. DO NOT rely on anything which is not explicit documented
50
51 3. Errors, in special, are not documented. Applications should NOT check
52 for specific errors classes or data (it's strongly recommended to only
53 check for the "error" key)
54
55 2. Regular Commands
56 ===================
57
58 Server's responses in the examples below are always a success response, please
59 refer to the QMP specification for more details on error responses.
60
61 EQMP
62
63 {
64 .name = "quit",
65 .args_type = "",
66 .mhandler.cmd_new = qmp_marshal_input_quit,
67 },
68
69 SQMP
70 quit
71 ----
72
73 Quit the emulator.
74
75 Arguments: None.
76
77 Example:
78
79 -> { "execute": "quit" }
80 <- { "return": {} }
81
82 EQMP
83
84 {
85 .name = "eject",
86 .args_type = "force:-f,device:B",
87 .mhandler.cmd_new = qmp_marshal_input_eject,
88 },
89
90 SQMP
91 eject
92 -----
93
94 Eject a removable medium.
95
96 Arguments:
97
98 - force: force ejection (json-bool, optional)
99 - device: device name (json-string)
100
101 Example:
102
103 -> { "execute": "eject", "arguments": { "device": "ide1-cd0" } }
104 <- { "return": {} }
105
106 Note: The "force" argument defaults to false.
107
108 EQMP
109
110 {
111 .name = "change",
112 .args_type = "device:B,target:F,arg:s?",
113 .mhandler.cmd_new = qmp_marshal_input_change,
114 },
115
116 SQMP
117 change
118 ------
119
120 Change a removable medium or VNC configuration.
121
122 Arguments:
123
124 - "device": device name (json-string)
125 - "target": filename or item (json-string)
126 - "arg": additional argument (json-string, optional)
127
128 Examples:
129
130 1. Change a removable medium
131
132 -> { "execute": "change",
133 "arguments": { "device": "ide1-cd0",
134 "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
135 <- { "return": {} }
136
137 2. Change VNC password
138
139 -> { "execute": "change",
140 "arguments": { "device": "vnc", "target": "password",
141 "arg": "foobar1" } }
142 <- { "return": {} }
143
144 EQMP
145
146 {
147 .name = "screendump",
148 .args_type = "filename:F",
149 .mhandler.cmd_new = qmp_marshal_input_screendump,
150 },
151
152 SQMP
153 screendump
154 ----------
155
156 Save screen into PPM image.
157
158 Arguments:
159
160 - "filename": file path (json-string)
161
162 Example:
163
164 -> { "execute": "screendump", "arguments": { "filename": "/tmp/image" } }
165 <- { "return": {} }
166
167 EQMP
168
169 {
170 .name = "stop",
171 .args_type = "",
172 .mhandler.cmd_new = qmp_marshal_input_stop,
173 },
174
175 SQMP
176 stop
177 ----
178
179 Stop the emulator.
180
181 Arguments: None.
182
183 Example:
184
185 -> { "execute": "stop" }
186 <- { "return": {} }
187
188 EQMP
189
190 {
191 .name = "cont",
192 .args_type = "",
193 .mhandler.cmd_new = qmp_marshal_input_cont,
194 },
195
196 SQMP
197 cont
198 ----
199
200 Resume emulation.
201
202 Arguments: None.
203
204 Example:
205
206 -> { "execute": "cont" }
207 <- { "return": {} }
208
209 EQMP
210
211 {
212 .name = "system_wakeup",
213 .args_type = "",
214 .mhandler.cmd_new = qmp_marshal_input_system_wakeup,
215 },
216
217 SQMP
218 system_wakeup
219 -------------
220
221 Wakeup guest from suspend.
222
223 Arguments: None.
224
225 Example:
226
227 -> { "execute": "system_wakeup" }
228 <- { "return": {} }
229
230 EQMP
231
232 {
233 .name = "system_reset",
234 .args_type = "",
235 .mhandler.cmd_new = qmp_marshal_input_system_reset,
236 },
237
238 SQMP
239 system_reset
240 ------------
241
242 Reset the system.
243
244 Arguments: None.
245
246 Example:
247
248 -> { "execute": "system_reset" }
249 <- { "return": {} }
250
251 EQMP
252
253 {
254 .name = "system_powerdown",
255 .args_type = "",
256 .mhandler.cmd_new = qmp_marshal_input_system_powerdown,
257 },
258
259 SQMP
260 system_powerdown
261 ----------------
262
263 Send system power down event.
264
265 Arguments: None.
266
267 Example:
268
269 -> { "execute": "system_powerdown" }
270 <- { "return": {} }
271
272 EQMP
273
274 {
275 .name = "device_add",
276 .args_type = "device:O",
277 .params = "driver[,prop=value][,...]",
278 .help = "add device, like -device on the command line",
279 .user_print = monitor_user_noop,
280 .mhandler.cmd_new = do_device_add,
281 },
282
283 SQMP
284 device_add
285 ----------
286
287 Add a device.
288
289 Arguments:
290
291 - "driver": the name of the new device's driver (json-string)
292 - "bus": the device's parent bus (device tree path, json-string, optional)
293 - "id": the device's ID, must be unique (json-string)
294 - device properties
295
296 Example:
297
298 -> { "execute": "device_add", "arguments": { "driver": "e1000", "id": "net1" } }
299 <- { "return": {} }
300
301 Notes:
302
303 (1) For detailed information about this command, please refer to the
304 'docs/qdev-device-use.txt' file.
305
306 (2) It's possible to list device properties by running QEMU with the
307 "-device DEVICE,\?" command-line argument, where DEVICE is the device's name
308
309 EQMP
310
311 {
312 .name = "device_del",
313 .args_type = "id:s",
314 .mhandler.cmd_new = qmp_marshal_input_device_del,
315 },
316
317 SQMP
318 device_del
319 ----------
320
321 Remove a device.
322
323 Arguments:
324
325 - "id": the device's ID (json-string)
326
327 Example:
328
329 -> { "execute": "device_del", "arguments": { "id": "net1" } }
330 <- { "return": {} }
331
332 EQMP
333
334 {
335 .name = "send-key",
336 .args_type = "keys:O,hold-time:i?",
337 .mhandler.cmd_new = qmp_marshal_input_send_key,
338 },
339
340 SQMP
341 send-key
342 ----------
343
344 Send keys to VM.
345
346 Arguments:
347
348 keys array:
349 - "key": key sequence (a json-array of key union values,
350 union can be number or qcode enum)
351
352 - hold-time: time to delay key up events, milliseconds. Defaults to 100
353 (json-int, optional)
354
355 Example:
356
357 -> { "execute": "send-key",
358 "arguments": { "keys": [ { "type": "qcode", "data": "ctrl" },
359 { "type": "qcode", "data": "alt" },
360 { "type": "qcode", "data": "delete" } ] } }
361 <- { "return": {} }
362
363 EQMP
364
365 {
366 .name = "cpu",
367 .args_type = "index:i",
368 .mhandler.cmd_new = qmp_marshal_input_cpu,
369 },
370
371 SQMP
372 cpu
373 ---
374
375 Set the default CPU.
376
377 Arguments:
378
379 - "index": the CPU's index (json-int)
380
381 Example:
382
383 -> { "execute": "cpu", "arguments": { "index": 0 } }
384 <- { "return": {} }
385
386 Note: CPUs' indexes are obtained with the 'query-cpus' command.
387
388 EQMP
389
390 {
391 .name = "cpu-add",
392 .args_type = "id:i",
393 .mhandler.cmd_new = qmp_marshal_input_cpu_add,
394 },
395
396 SQMP
397 cpu-add
398 -------
399
400 Adds virtual cpu
401
402 Arguments:
403
404 - "id": cpu id (json-int)
405
406 Example:
407
408 -> { "execute": "cpu-add", "arguments": { "id": 2 } }
409 <- { "return": {} }
410
411 EQMP
412
413 {
414 .name = "memsave",
415 .args_type = "val:l,size:i,filename:s,cpu:i?",
416 .mhandler.cmd_new = qmp_marshal_input_memsave,
417 },
418
419 SQMP
420 memsave
421 -------
422
423 Save to disk virtual memory dump starting at 'val' of size 'size'.
424
425 Arguments:
426
427 - "val": the starting address (json-int)
428 - "size": the memory size, in bytes (json-int)
429 - "filename": file path (json-string)
430 - "cpu": virtual CPU index (json-int, optional)
431
432 Example:
433
434 -> { "execute": "memsave",
435 "arguments": { "val": 10,
436 "size": 100,
437 "filename": "/tmp/virtual-mem-dump" } }
438 <- { "return": {} }
439
440 EQMP
441
442 {
443 .name = "pmemsave",
444 .args_type = "val:l,size:i,filename:s",
445 .mhandler.cmd_new = qmp_marshal_input_pmemsave,
446 },
447
448 SQMP
449 pmemsave
450 --------
451
452 Save to disk physical memory dump starting at 'val' of size 'size'.
453
454 Arguments:
455
456 - "val": the starting address (json-int)
457 - "size": the memory size, in bytes (json-int)
458 - "filename": file path (json-string)
459
460 Example:
461
462 -> { "execute": "pmemsave",
463 "arguments": { "val": 10,
464 "size": 100,
465 "filename": "/tmp/physical-mem-dump" } }
466 <- { "return": {} }
467
468 EQMP
469
470 {
471 .name = "inject-nmi",
472 .args_type = "",
473 .mhandler.cmd_new = qmp_marshal_input_inject_nmi,
474 },
475
476 SQMP
477 inject-nmi
478 ----------
479
480 Inject an NMI on guest's CPUs.
481
482 Arguments: None.
483
484 Example:
485
486 -> { "execute": "inject-nmi" }
487 <- { "return": {} }
488
489 Note: inject-nmi fails when the guest doesn't support injecting.
490 Currently, only x86 (NMI) and s390x (RESTART) guests do.
491
492 EQMP
493
494 {
495 .name = "ringbuf-write",
496 .args_type = "device:s,data:s,format:s?",
497 .mhandler.cmd_new = qmp_marshal_input_ringbuf_write,
498 },
499
500 SQMP
501 ringbuf-write
502 -------------
503
504 Write to a ring buffer character device.
505
506 Arguments:
507
508 - "device": ring buffer character device name (json-string)
509 - "data": data to write (json-string)
510 - "format": data format (json-string, optional)
511 - Possible values: "utf8" (default), "base64"
512 Bug: invalid base64 is currently not rejected.
513 Whitespace *is* invalid.
514
515 Example:
516
517 -> { "execute": "ringbuf-write",
518 "arguments": { "device": "foo",
519 "data": "abcdefgh",
520 "format": "utf8" } }
521 <- { "return": {} }
522
523 EQMP
524
525 {
526 .name = "ringbuf-read",
527 .args_type = "device:s,size:i,format:s?",
528 .mhandler.cmd_new = qmp_marshal_input_ringbuf_read,
529 },
530
531 SQMP
532 ringbuf-read
533 -------------
534
535 Read from a ring buffer character device.
536
537 Arguments:
538
539 - "device": ring buffer character device name (json-string)
540 - "size": how many bytes to read at most (json-int)
541 - Number of data bytes, not number of characters in encoded data
542 - "format": data format (json-string, optional)
543 - Possible values: "utf8" (default), "base64"
544 - Naturally, format "utf8" works only when the ring buffer
545 contains valid UTF-8 text. Invalid UTF-8 sequences get
546 replaced. Bug: replacement doesn't work. Bug: can screw
547 up on encountering NUL characters, after the ring buffer
548 lost data, and when reading stops because the size limit
549 is reached.
550
551 Example:
552
553 -> { "execute": "ringbuf-read",
554 "arguments": { "device": "foo",
555 "size": 1000,
556 "format": "utf8" } }
557 <- {"return": "abcdefgh"}
558
559 EQMP
560
561 {
562 .name = "xen-save-devices-state",
563 .args_type = "filename:F",
564 .mhandler.cmd_new = qmp_marshal_input_xen_save_devices_state,
565 },
566
567 SQMP
568 xen-save-devices-state
569 -------
570
571 Save the state of all devices to file. The RAM and the block devices
572 of the VM are not saved by this command.
573
574 Arguments:
575
576 - "filename": the file to save the state of the devices to as binary
577 data. See xen-save-devices-state.txt for a description of the binary
578 format.
579
580 Example:
581
582 -> { "execute": "xen-save-devices-state",
583 "arguments": { "filename": "/tmp/save" } }
584 <- { "return": {} }
585
586 EQMP
587
588 {
589 .name = "xen-set-global-dirty-log",
590 .args_type = "enable:b",
591 .mhandler.cmd_new = qmp_marshal_input_xen_set_global_dirty_log,
592 },
593
594 SQMP
595 xen-set-global-dirty-log
596 -------
597
598 Enable or disable the global dirty log mode.
599
600 Arguments:
601
602 - "enable": Enable it or disable it.
603
604 Example:
605
606 -> { "execute": "xen-set-global-dirty-log",
607 "arguments": { "enable": true } }
608 <- { "return": {} }
609
610 EQMP
611
612 {
613 .name = "migrate",
614 .args_type = "detach:-d,blk:-b,inc:-i,uri:s",
615 .mhandler.cmd_new = qmp_marshal_input_migrate,
616 },
617
618 SQMP
619 migrate
620 -------
621
622 Migrate to URI.
623
624 Arguments:
625
626 - "blk": block migration, full disk copy (json-bool, optional)
627 - "inc": incremental disk copy (json-bool, optional)
628 - "uri": Destination URI (json-string)
629
630 Example:
631
632 -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
633 <- { "return": {} }
634
635 Notes:
636
637 (1) The 'query-migrate' command should be used to check migration's progress
638 and final result (this information is provided by the 'status' member)
639 (2) All boolean arguments default to false
640 (3) The user Monitor's "detach" argument is invalid in QMP and should not
641 be used
642
643 EQMP
644
645 {
646 .name = "migrate_cancel",
647 .args_type = "",
648 .mhandler.cmd_new = qmp_marshal_input_migrate_cancel,
649 },
650
651 SQMP
652 migrate_cancel
653 --------------
654
655 Cancel the current migration.
656
657 Arguments: None.
658
659 Example:
660
661 -> { "execute": "migrate_cancel" }
662 <- { "return": {} }
663
664 EQMP
665 {
666 .name = "migrate-set-cache-size",
667 .args_type = "value:o",
668 .mhandler.cmd_new = qmp_marshal_input_migrate_set_cache_size,
669 },
670
671 SQMP
672 migrate-set-cache-size
673 ----------------------
674
675 Set cache size to be used by XBZRLE migration, the cache size will be rounded
676 down to the nearest power of 2
677
678 Arguments:
679
680 - "value": cache size in bytes (json-int)
681
682 Example:
683
684 -> { "execute": "migrate-set-cache-size", "arguments": { "value": 536870912 } }
685 <- { "return": {} }
686
687 EQMP
688 {
689 .name = "query-migrate-cache-size",
690 .args_type = "",
691 .mhandler.cmd_new = qmp_marshal_input_query_migrate_cache_size,
692 },
693
694 SQMP
695 query-migrate-cache-size
696 ------------------------
697
698 Show cache size to be used by XBZRLE migration
699
700 returns a json-object with the following information:
701 - "size" : json-int
702
703 Example:
704
705 -> { "execute": "query-migrate-cache-size" }
706 <- { "return": 67108864 }
707
708 EQMP
709
710 {
711 .name = "migrate_set_speed",
712 .args_type = "value:o",
713 .mhandler.cmd_new = qmp_marshal_input_migrate_set_speed,
714 },
715
716 SQMP
717 migrate_set_speed
718 -----------------
719
720 Set maximum speed for migrations.
721
722 Arguments:
723
724 - "value": maximum speed, in bytes per second (json-int)
725
726 Example:
727
728 -> { "execute": "migrate_set_speed", "arguments": { "value": 1024 } }
729 <- { "return": {} }
730
731 EQMP
732
733 {
734 .name = "migrate_set_downtime",
735 .args_type = "value:T",
736 .mhandler.cmd_new = qmp_marshal_input_migrate_set_downtime,
737 },
738
739 SQMP
740 migrate_set_downtime
741 --------------------
742
743 Set maximum tolerated downtime (in seconds) for migrations.
744
745 Arguments:
746
747 - "value": maximum downtime (json-number)
748
749 Example:
750
751 -> { "execute": "migrate_set_downtime", "arguments": { "value": 0.1 } }
752 <- { "return": {} }
753
754 EQMP
755
756 {
757 .name = "client_migrate_info",
758 .args_type = "protocol:s,hostname:s,port:i?,tls-port:i?,cert-subject:s?",
759 .params = "protocol hostname port tls-port cert-subject",
760 .help = "send migration info to spice/vnc client",
761 .user_print = monitor_user_noop,
762 .mhandler.cmd_async = client_migrate_info,
763 .flags = MONITOR_CMD_ASYNC,
764 },
765
766 SQMP
767 client_migrate_info
768 ------------------
769
770 Set the spice/vnc connection info for the migration target. The spice/vnc
771 server will ask the spice/vnc client to automatically reconnect using the
772 new parameters (if specified) once the vm migration finished successfully.
773
774 Arguments:
775
776 - "protocol": protocol: "spice" or "vnc" (json-string)
777 - "hostname": migration target hostname (json-string)
778 - "port": spice/vnc tcp port for plaintext channels (json-int, optional)
779 - "tls-port": spice tcp port for tls-secured channels (json-int, optional)
780 - "cert-subject": server certificate subject (json-string, optional)
781
782 Example:
783
784 -> { "execute": "client_migrate_info",
785 "arguments": { "protocol": "spice",
786 "hostname": "virt42.lab.kraxel.org",
787 "port": 1234 } }
788 <- { "return": {} }
789
790 EQMP
791
792 {
793 .name = "dump-guest-memory",
794 .args_type = "paging:b,protocol:s,begin:i?,end:i?,format:s?",
795 .params = "-p protocol [begin] [length] [format]",
796 .help = "dump guest memory to file",
797 .user_print = monitor_user_noop,
798 .mhandler.cmd_new = qmp_marshal_input_dump_guest_memory,
799 },
800
801 SQMP
802 dump
803
804
805 Dump guest memory to file. The file can be processed with crash or gdb.
806
807 Arguments:
808
809 - "paging": do paging to get guest's memory mapping (json-bool)
810 - "protocol": destination file(started with "file:") or destination file
811 descriptor (started with "fd:") (json-string)
812 - "begin": the starting physical address. It's optional, and should be specified
813 with length together (json-int)
814 - "length": the memory size, in bytes. It's optional, and should be specified
815 with begin together (json-int)
816 - "format": the format of guest memory dump. It's optional, and can be
817 elf|kdump-zlib|kdump-lzo|kdump-snappy, but non-elf formats will
818 conflict with paging and filter, ie. begin and length (json-string)
819
820 Example:
821
822 -> { "execute": "dump-guest-memory", "arguments": { "protocol": "fd:dump" } }
823 <- { "return": {} }
824
825 Notes:
826
827 (1) All boolean arguments default to false
828
829 EQMP
830
831 {
832 .name = "query-dump-guest-memory-capability",
833 .args_type = "",
834 .mhandler.cmd_new = qmp_marshal_input_query_dump_guest_memory_capability,
835 },
836
837 SQMP
838 query-dump-guest-memory-capability
839 ----------
840
841 Show available formats for 'dump-guest-memory'
842
843 Example:
844
845 -> { "execute": "query-dump-guest-memory-capability" }
846 <- { "return": { "formats":
847 ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
848
849 EQMP
850
851 {
852 .name = "netdev_add",
853 .args_type = "netdev:O",
854 .mhandler.cmd_new = qmp_netdev_add,
855 },
856
857 SQMP
858 netdev_add
859 ----------
860
861 Add host network device.
862
863 Arguments:
864
865 - "type": the device type, "tap", "user", ... (json-string)
866 - "id": the device's ID, must be unique (json-string)
867 - device options
868
869 Example:
870
871 -> { "execute": "netdev_add", "arguments": { "type": "user", "id": "netdev1" } }
872 <- { "return": {} }
873
874 Note: The supported device options are the same ones supported by the '-netdev'
875 command-line argument, which are listed in the '-help' output or QEMU's
876 manual
877
878 EQMP
879
880 {
881 .name = "netdev_del",
882 .args_type = "id:s",
883 .mhandler.cmd_new = qmp_marshal_input_netdev_del,
884 },
885
886 SQMP
887 netdev_del
888 ----------
889
890 Remove host network device.
891
892 Arguments:
893
894 - "id": the device's ID, must be unique (json-string)
895
896 Example:
897
898 -> { "execute": "netdev_del", "arguments": { "id": "netdev1" } }
899 <- { "return": {} }
900
901
902 EQMP
903
904 {
905 .name = "object-add",
906 .args_type = "qom-type:s,id:s,props:q?",
907 .mhandler.cmd_new = qmp_object_add,
908 },
909
910 SQMP
911 object-add
912 ----------
913
914 Create QOM object.
915
916 Arguments:
917
918 - "qom-type": the object's QOM type, i.e. the class name (json-string)
919 - "id": the object's ID, must be unique (json-string)
920 - "props": a dictionary of object property values (optional, json-dict)
921
922 Example:
923
924 -> { "execute": "object-add", "arguments": { "qom-type": "rng-random", "id": "rng1",
925 "props": { "filename": "/dev/hwrng" } } }
926 <- { "return": {} }
927
928 EQMP
929
930 {
931 .name = "object-del",
932 .args_type = "id:s",
933 .mhandler.cmd_new = qmp_marshal_input_object_del,
934 },
935
936 SQMP
937 object-del
938 ----------
939
940 Remove QOM object.
941
942 Arguments:
943
944 - "id": the object's ID (json-string)
945
946 Example:
947
948 -> { "execute": "object-del", "arguments": { "id": "rng1" } }
949 <- { "return": {} }
950
951
952 EQMP
953
954
955 {
956 .name = "block_resize",
957 .args_type = "device:s?,node-name:s?,size:o",
958 .mhandler.cmd_new = qmp_marshal_input_block_resize,
959 },
960
961 SQMP
962 block_resize
963 ------------
964
965 Resize a block image while a guest is running.
966
967 Arguments:
968
969 - "device": the device's ID, must be unique (json-string)
970 - "node-name": the node name in the block driver state graph (json-string)
971 - "size": new size
972
973 Example:
974
975 -> { "execute": "block_resize", "arguments": { "device": "scratch", "size": 1073741824 } }
976 <- { "return": {} }
977
978 EQMP
979
980 {
981 .name = "block-stream",
982 .args_type = "device:B,base:s?,speed:o?,on-error:s?",
983 .mhandler.cmd_new = qmp_marshal_input_block_stream,
984 },
985
986 {
987 .name = "block-commit",
988 .args_type = "device:B,base:s?,top:s,speed:o?",
989 .mhandler.cmd_new = qmp_marshal_input_block_commit,
990 },
991
992 SQMP
993 block-commit
994 ------------
995
996 Live commit of data from overlay image nodes into backing nodes - i.e., writes
997 data between 'top' and 'base' into 'base'.
998
999 Arguments:
1000
1001 - "device": The device's ID, must be unique (json-string)
1002 - "base": The file name of the backing image to write data into.
1003 If not specified, this is the deepest backing image
1004 (json-string, optional)
1005 - "top": The file name of the backing image within the image chain,
1006 which contains the topmost data to be committed down.
1007
1008 If top == base, that is an error.
1009 If top == active, the job will not be completed by itself,
1010 user needs to complete the job with the block-job-complete
1011 command after getting the ready event. (Since 2.0)
1012
1013 If the base image is smaller than top, then the base image
1014 will be resized to be the same size as top. If top is
1015 smaller than the base image, the base will not be
1016 truncated. If you want the base image size to match the
1017 size of the smaller top, you can safely truncate it
1018 yourself once the commit operation successfully completes.
1019 (json-string)
1020 - "speed": the maximum speed, in bytes per second (json-int, optional)
1021
1022
1023 Example:
1024
1025 -> { "execute": "block-commit", "arguments": { "device": "virtio0",
1026 "top": "/tmp/snap1.qcow2" } }
1027 <- { "return": {} }
1028
1029 EQMP
1030
1031 {
1032 .name = "drive-backup",
1033 .args_type = "sync:s,device:B,target:s,speed:i?,mode:s?,format:s?,"
1034 "on-source-error:s?,on-target-error:s?",
1035 .mhandler.cmd_new = qmp_marshal_input_drive_backup,
1036 },
1037
1038 SQMP
1039 drive-backup
1040 ------------
1041
1042 Start a point-in-time copy of a block device to a new destination. The
1043 status of ongoing drive-backup operations can be checked with
1044 query-block-jobs where the BlockJobInfo.type field has the value 'backup'.
1045 The operation can be stopped before it has completed using the
1046 block-job-cancel command.
1047
1048 Arguments:
1049
1050 - "device": the name of the device which should be copied.
1051 (json-string)
1052 - "target": the target of the new image. If the file exists, or if it is a
1053 device, the existing file/device will be used as the new
1054 destination. If it does not exist, a new file will be created.
1055 (json-string)
1056 - "format": the format of the new destination, default is to probe if 'mode' is
1057 'existing', else the format of the source
1058 (json-string, optional)
1059 - "sync": what parts of the disk image should be copied to the destination;
1060 possibilities include "full" for all the disk, "top" for only the sectors
1061 allocated in the topmost image, or "none" to only replicate new I/O
1062 (MirrorSyncMode).
1063 - "mode": whether and how QEMU should create a new image
1064 (NewImageMode, optional, default 'absolute-paths')
1065 - "speed": the maximum speed, in bytes per second (json-int, optional)
1066 - "on-source-error": the action to take on an error on the source, default
1067 'report'. 'stop' and 'enospc' can only be used
1068 if the block device supports io-status.
1069 (BlockdevOnError, optional)
1070 - "on-target-error": the action to take on an error on the target, default
1071 'report' (no limitations, since this applies to
1072 a different block device than device).
1073 (BlockdevOnError, optional)
1074
1075 Example:
1076 -> { "execute": "drive-backup", "arguments": { "device": "drive0",
1077 "sync": "full",
1078 "target": "backup.img" } }
1079 <- { "return": {} }
1080 EQMP
1081
1082 {
1083 .name = "block-job-set-speed",
1084 .args_type = "device:B,speed:o",
1085 .mhandler.cmd_new = qmp_marshal_input_block_job_set_speed,
1086 },
1087
1088 {
1089 .name = "block-job-cancel",
1090 .args_type = "device:B,force:b?",
1091 .mhandler.cmd_new = qmp_marshal_input_block_job_cancel,
1092 },
1093 {
1094 .name = "block-job-pause",
1095 .args_type = "device:B",
1096 .mhandler.cmd_new = qmp_marshal_input_block_job_pause,
1097 },
1098 {
1099 .name = "block-job-resume",
1100 .args_type = "device:B",
1101 .mhandler.cmd_new = qmp_marshal_input_block_job_resume,
1102 },
1103 {
1104 .name = "block-job-complete",
1105 .args_type = "device:B",
1106 .mhandler.cmd_new = qmp_marshal_input_block_job_complete,
1107 },
1108 {
1109 .name = "transaction",
1110 .args_type = "actions:q",
1111 .mhandler.cmd_new = qmp_marshal_input_transaction,
1112 },
1113
1114 SQMP
1115 transaction
1116 -----------
1117
1118 Atomically operate on one or more block devices. The only supported operations
1119 for now are drive-backup, internal and external snapshotting. A list of
1120 dictionaries is accepted, that contains the actions to be performed.
1121 If there is any failure performing any of the operations, all operations
1122 for the group are abandoned.
1123
1124 For external snapshots, the dictionary contains the device, the file to use for
1125 the new snapshot, and the format. The default format, if not specified, is
1126 qcow2.
1127
1128 Each new snapshot defaults to being created by QEMU (wiping any
1129 contents if the file already exists), but it is also possible to reuse
1130 an externally-created file. In the latter case, you should ensure that
1131 the new image file has the same contents as the current one; QEMU cannot
1132 perform any meaningful check. Typically this is achieved by using the
1133 current image file as the backing file for the new image.
1134
1135 On failure, the original disks pre-snapshot attempt will be used.
1136
1137 For internal snapshots, the dictionary contains the device and the snapshot's
1138 name. If an internal snapshot matching name already exists, the request will
1139 be rejected. Only some image formats support it, for example, qcow2, rbd,
1140 and sheepdog.
1141
1142 On failure, qemu will try delete the newly created internal snapshot in the
1143 transaction. When an I/O error occurs during deletion, the user needs to fix
1144 it later with qemu-img or other command.
1145
1146 Arguments:
1147
1148 actions array:
1149 - "type": the operation to perform. The only supported
1150 value is "blockdev-snapshot-sync". (json-string)
1151 - "data": a dictionary. The contents depend on the value
1152 of "type". When "type" is "blockdev-snapshot-sync":
1153 - "device": device name to snapshot (json-string)
1154 - "node-name": graph node name to snapshot (json-string)
1155 - "snapshot-file": name of new image file (json-string)
1156 - "snapshot-node-name": graph node name of the new snapshot (json-string)
1157 - "format": format of new image (json-string, optional)
1158 - "mode": whether and how QEMU should create the snapshot file
1159 (NewImageMode, optional, default "absolute-paths")
1160 When "type" is "blockdev-snapshot-internal-sync":
1161 - "device": device name to snapshot (json-string)
1162 - "name": name of the new snapshot (json-string)
1163
1164 Example:
1165
1166 -> { "execute": "transaction",
1167 "arguments": { "actions": [
1168 { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd0",
1169 "snapshot-file": "/some/place/my-image",
1170 "format": "qcow2" } },
1171 { "type": "blockdev-snapshot-sync", "data" : { "node-name": "myfile",
1172 "snapshot-file": "/some/place/my-image2",
1173 "snapshot-node-name": "node3432",
1174 "mode": "existing",
1175 "format": "qcow2" } },
1176 { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd1",
1177 "snapshot-file": "/some/place/my-image2",
1178 "mode": "existing",
1179 "format": "qcow2" } },
1180 { "type": "blockdev-snapshot-internal-sync", "data" : {
1181 "device": "ide-hd2",
1182 "name": "snapshot0" } } ] } }
1183 <- { "return": {} }
1184
1185 EQMP
1186
1187 {
1188 .name = "blockdev-snapshot-sync",
1189 .args_type = "device:s?,node-name:s?,snapshot-file:s,snapshot-node-name:s?,format:s?,mode:s?",
1190 .mhandler.cmd_new = qmp_marshal_input_blockdev_snapshot_sync,
1191 },
1192
1193 SQMP
1194 blockdev-snapshot-sync
1195 ----------------------
1196
1197 Synchronous snapshot of a block device. snapshot-file specifies the
1198 target of the new image. If the file exists, or if it is a device, the
1199 snapshot will be created in the existing file/device. If does not
1200 exist, a new file will be created. format specifies the format of the
1201 snapshot image, default is qcow2.
1202
1203 Arguments:
1204
1205 - "device": device name to snapshot (json-string)
1206 - "node-name": graph node name to snapshot (json-string)
1207 - "snapshot-file": name of new image file (json-string)
1208 - "snapshot-node-name": graph node name of the new snapshot (json-string)
1209 - "mode": whether and how QEMU should create the snapshot file
1210 (NewImageMode, optional, default "absolute-paths")
1211 - "format": format of new image (json-string, optional)
1212
1213 Example:
1214
1215 -> { "execute": "blockdev-snapshot-sync", "arguments": { "device": "ide-hd0",
1216 "snapshot-file":
1217 "/some/place/my-image",
1218 "format": "qcow2" } }
1219 <- { "return": {} }
1220
1221 EQMP
1222
1223 {
1224 .name = "blockdev-snapshot-internal-sync",
1225 .args_type = "device:B,name:s",
1226 .mhandler.cmd_new = qmp_marshal_input_blockdev_snapshot_internal_sync,
1227 },
1228
1229 SQMP
1230 blockdev-snapshot-internal-sync
1231 -------------------------------
1232
1233 Synchronously take an internal snapshot of a block device when the format of
1234 image used supports it. If the name is an empty string, or a snapshot with
1235 name already exists, the operation will fail.
1236
1237 Arguments:
1238
1239 - "device": device name to snapshot (json-string)
1240 - "name": name of the new snapshot (json-string)
1241
1242 Example:
1243
1244 -> { "execute": "blockdev-snapshot-internal-sync",
1245 "arguments": { "device": "ide-hd0",
1246 "name": "snapshot0" }
1247 }
1248 <- { "return": {} }
1249
1250 EQMP
1251
1252 {
1253 .name = "blockdev-snapshot-delete-internal-sync",
1254 .args_type = "device:B,id:s?,name:s?",
1255 .mhandler.cmd_new =
1256 qmp_marshal_input_blockdev_snapshot_delete_internal_sync,
1257 },
1258
1259 SQMP
1260 blockdev-snapshot-delete-internal-sync
1261 --------------------------------------
1262
1263 Synchronously delete an internal snapshot of a block device when the format of
1264 image used supports it. The snapshot is identified by name or id or both. One
1265 of name or id is required. If the snapshot is not found, the operation will
1266 fail.
1267
1268 Arguments:
1269
1270 - "device": device name (json-string)
1271 - "id": ID of the snapshot (json-string, optional)
1272 - "name": name of the snapshot (json-string, optional)
1273
1274 Example:
1275
1276 -> { "execute": "blockdev-snapshot-delete-internal-sync",
1277 "arguments": { "device": "ide-hd0",
1278 "name": "snapshot0" }
1279 }
1280 <- { "return": {
1281 "id": "1",
1282 "name": "snapshot0",
1283 "vm-state-size": 0,
1284 "date-sec": 1000012,
1285 "date-nsec": 10,
1286 "vm-clock-sec": 100,
1287 "vm-clock-nsec": 20
1288 }
1289 }
1290
1291 EQMP
1292
1293 {
1294 .name = "drive-mirror",
1295 .args_type = "sync:s,device:B,target:s,speed:i?,mode:s?,format:s?,"
1296 "on-source-error:s?,on-target-error:s?,"
1297 "granularity:i?,buf-size:i?",
1298 .mhandler.cmd_new = qmp_marshal_input_drive_mirror,
1299 },
1300
1301 SQMP
1302 drive-mirror
1303 ------------
1304
1305 Start mirroring a block device's writes to a new destination. target
1306 specifies the target of the new image. If the file exists, or if it is
1307 a device, it will be used as the new destination for writes. If it does not
1308 exist, a new file will be created. format specifies the format of the
1309 mirror image, default is to probe if mode='existing', else the format
1310 of the source.
1311
1312 Arguments:
1313
1314 - "device": device name to operate on (json-string)
1315 - "target": name of new image file (json-string)
1316 - "format": format of new image (json-string, optional)
1317 - "mode": how an image file should be created into the target
1318 file/device (NewImageMode, optional, default 'absolute-paths')
1319 - "speed": maximum speed of the streaming job, in bytes per second
1320 (json-int)
1321 - "granularity": granularity of the dirty bitmap, in bytes (json-int, optional)
1322 - "buf_size": maximum amount of data in flight from source to target, in bytes
1323 (json-int, default 10M)
1324 - "sync": what parts of the disk image should be copied to the destination;
1325 possibilities include "full" for all the disk, "top" for only the sectors
1326 allocated in the topmost image, or "none" to only replicate new I/O
1327 (MirrorSyncMode).
1328 - "on-source-error": the action to take on an error on the source
1329 (BlockdevOnError, default 'report')
1330 - "on-target-error": the action to take on an error on the target
1331 (BlockdevOnError, default 'report')
1332
1333 The default value of the granularity is the image cluster size clamped
1334 between 4096 and 65536, if the image format defines one. If the format
1335 does not define a cluster size, the default value of the granularity
1336 is 65536.
1337
1338
1339 Example:
1340
1341 -> { "execute": "drive-mirror", "arguments": { "device": "ide-hd0",
1342 "target": "/some/place/my-image",
1343 "sync": "full",
1344 "format": "qcow2" } }
1345 <- { "return": {} }
1346
1347 EQMP
1348
1349 {
1350 .name = "balloon",
1351 .args_type = "value:M",
1352 .mhandler.cmd_new = qmp_marshal_input_balloon,
1353 },
1354
1355 SQMP
1356 balloon
1357 -------
1358
1359 Request VM to change its memory allocation (in bytes).
1360
1361 Arguments:
1362
1363 - "value": New memory allocation (json-int)
1364
1365 Example:
1366
1367 -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1368 <- { "return": {} }
1369
1370 EQMP
1371
1372 {
1373 .name = "set_link",
1374 .args_type = "name:s,up:b",
1375 .mhandler.cmd_new = qmp_marshal_input_set_link,
1376 },
1377
1378 SQMP
1379 set_link
1380 --------
1381
1382 Change the link status of a network adapter.
1383
1384 Arguments:
1385
1386 - "name": network device name (json-string)
1387 - "up": status is up (json-bool)
1388
1389 Example:
1390
1391 -> { "execute": "set_link", "arguments": { "name": "e1000.0", "up": false } }
1392 <- { "return": {} }
1393
1394 EQMP
1395
1396 {
1397 .name = "getfd",
1398 .args_type = "fdname:s",
1399 .params = "getfd name",
1400 .help = "receive a file descriptor via SCM rights and assign it a name",
1401 .mhandler.cmd_new = qmp_marshal_input_getfd,
1402 },
1403
1404 SQMP
1405 getfd
1406 -----
1407
1408 Receive a file descriptor via SCM rights and assign it a name.
1409
1410 Arguments:
1411
1412 - "fdname": file descriptor name (json-string)
1413
1414 Example:
1415
1416 -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1417 <- { "return": {} }
1418
1419 Notes:
1420
1421 (1) If the name specified by the "fdname" argument already exists,
1422 the file descriptor assigned to it will be closed and replaced
1423 by the received file descriptor.
1424 (2) The 'closefd' command can be used to explicitly close the file
1425 descriptor when it is no longer needed.
1426
1427 EQMP
1428
1429 {
1430 .name = "closefd",
1431 .args_type = "fdname:s",
1432 .params = "closefd name",
1433 .help = "close a file descriptor previously passed via SCM rights",
1434 .mhandler.cmd_new = qmp_marshal_input_closefd,
1435 },
1436
1437 SQMP
1438 closefd
1439 -------
1440
1441 Close a file descriptor previously passed via SCM rights.
1442
1443 Arguments:
1444
1445 - "fdname": file descriptor name (json-string)
1446
1447 Example:
1448
1449 -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1450 <- { "return": {} }
1451
1452 EQMP
1453
1454 {
1455 .name = "add-fd",
1456 .args_type = "fdset-id:i?,opaque:s?",
1457 .params = "add-fd fdset-id opaque",
1458 .help = "Add a file descriptor, that was passed via SCM rights, to an fd set",
1459 .mhandler.cmd_new = qmp_marshal_input_add_fd,
1460 },
1461
1462 SQMP
1463 add-fd
1464 -------
1465
1466 Add a file descriptor, that was passed via SCM rights, to an fd set.
1467
1468 Arguments:
1469
1470 - "fdset-id": The ID of the fd set to add the file descriptor to.
1471 (json-int, optional)
1472 - "opaque": A free-form string that can be used to describe the fd.
1473 (json-string, optional)
1474
1475 Return a json-object with the following information:
1476
1477 - "fdset-id": The ID of the fd set that the fd was added to. (json-int)
1478 - "fd": The file descriptor that was received via SCM rights and added to the
1479 fd set. (json-int)
1480
1481 Example:
1482
1483 -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
1484 <- { "return": { "fdset-id": 1, "fd": 3 } }
1485
1486 Notes:
1487
1488 (1) The list of fd sets is shared by all monitor connections.
1489 (2) If "fdset-id" is not specified, a new fd set will be created.
1490
1491 EQMP
1492
1493 {
1494 .name = "remove-fd",
1495 .args_type = "fdset-id:i,fd:i?",
1496 .params = "remove-fd fdset-id fd",
1497 .help = "Remove a file descriptor from an fd set",
1498 .mhandler.cmd_new = qmp_marshal_input_remove_fd,
1499 },
1500
1501 SQMP
1502 remove-fd
1503 ---------
1504
1505 Remove a file descriptor from an fd set.
1506
1507 Arguments:
1508
1509 - "fdset-id": The ID of the fd set that the file descriptor belongs to.
1510 (json-int)
1511 - "fd": The file descriptor that is to be removed. (json-int, optional)
1512
1513 Example:
1514
1515 -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
1516 <- { "return": {} }
1517
1518 Notes:
1519
1520 (1) The list of fd sets is shared by all monitor connections.
1521 (2) If "fd" is not specified, all file descriptors in "fdset-id" will be
1522 removed.
1523
1524 EQMP
1525
1526 {
1527 .name = "query-fdsets",
1528 .args_type = "",
1529 .help = "Return information describing all fd sets",
1530 .mhandler.cmd_new = qmp_marshal_input_query_fdsets,
1531 },
1532
1533 SQMP
1534 query-fdsets
1535 -------------
1536
1537 Return information describing all fd sets.
1538
1539 Arguments: None
1540
1541 Example:
1542
1543 -> { "execute": "query-fdsets" }
1544 <- { "return": [
1545 {
1546 "fds": [
1547 {
1548 "fd": 30,
1549 "opaque": "rdonly:/path/to/file"
1550 },
1551 {
1552 "fd": 24,
1553 "opaque": "rdwr:/path/to/file"
1554 }
1555 ],
1556 "fdset-id": 1
1557 },
1558 {
1559 "fds": [
1560 {
1561 "fd": 28
1562 },
1563 {
1564 "fd": 29
1565 }
1566 ],
1567 "fdset-id": 0
1568 }
1569 ]
1570 }
1571
1572 Note: The list of fd sets is shared by all monitor connections.
1573
1574 EQMP
1575
1576 {
1577 .name = "block_passwd",
1578 .args_type = "device:s?,node-name:s?,password:s",
1579 .mhandler.cmd_new = qmp_marshal_input_block_passwd,
1580 },
1581
1582 SQMP
1583 block_passwd
1584 ------------
1585
1586 Set the password of encrypted block devices.
1587
1588 Arguments:
1589
1590 - "device": device name (json-string)
1591 - "node-name": name in the block driver state graph (json-string)
1592 - "password": password (json-string)
1593
1594 Example:
1595
1596 -> { "execute": "block_passwd", "arguments": { "device": "ide0-hd0",
1597 "password": "12345" } }
1598 <- { "return": {} }
1599
1600 EQMP
1601
1602 {
1603 .name = "block_set_io_throttle",
1604 .args_type = "device:B,bps:l,bps_rd:l,bps_wr:l,iops:l,iops_rd:l,iops_wr:l,bps_max:l?,bps_rd_max:l?,bps_wr_max:l?,iops_max:l?,iops_rd_max:l?,iops_wr_max:l?,iops_size:l?",
1605 .mhandler.cmd_new = qmp_marshal_input_block_set_io_throttle,
1606 },
1607
1608 SQMP
1609 block_set_io_throttle
1610 ------------
1611
1612 Change I/O throttle limits for a block drive.
1613
1614 Arguments:
1615
1616 - "device": device name (json-string)
1617 - "bps": total throughput limit in bytes per second (json-int)
1618 - "bps_rd": read throughput limit in bytes per second (json-int)
1619 - "bps_wr": write throughput limit in bytes per second (json-int)
1620 - "iops": total I/O operations per second (json-int)
1621 - "iops_rd": read I/O operations per second (json-int)
1622 - "iops_wr": write I/O operations per second (json-int)
1623 - "bps_max": total max in bytes (json-int)
1624 - "bps_rd_max": read max in bytes (json-int)
1625 - "bps_wr_max": write max in bytes (json-int)
1626 - "iops_max": total I/O operations max (json-int)
1627 - "iops_rd_max": read I/O operations max (json-int)
1628 - "iops_wr_max": write I/O operations max (json-int)
1629 - "iops_size": I/O size in bytes when limiting (json-int)
1630
1631 Example:
1632
1633 -> { "execute": "block_set_io_throttle", "arguments": { "device": "virtio0",
1634 "bps": 1000000,
1635 "bps_rd": 0,
1636 "bps_wr": 0,
1637 "iops": 0,
1638 "iops_rd": 0,
1639 "iops_wr": 0,
1640 "bps_max": 8000000,
1641 "bps_rd_max": 0,
1642 "bps_wr_max": 0,
1643 "iops_max": 0,
1644 "iops_rd_max": 0,
1645 "iops_wr_max": 0,
1646 "iops_size": 0 } }
1647 <- { "return": {} }
1648
1649 EQMP
1650
1651 {
1652 .name = "set_password",
1653 .args_type = "protocol:s,password:s,connected:s?",
1654 .mhandler.cmd_new = qmp_marshal_input_set_password,
1655 },
1656
1657 SQMP
1658 set_password
1659 ------------
1660
1661 Set the password for vnc/spice protocols.
1662
1663 Arguments:
1664
1665 - "protocol": protocol name (json-string)
1666 - "password": password (json-string)
1667 - "connected": [ keep | disconnect | fail ] (josn-string, optional)
1668
1669 Example:
1670
1671 -> { "execute": "set_password", "arguments": { "protocol": "vnc",
1672 "password": "secret" } }
1673 <- { "return": {} }
1674
1675 EQMP
1676
1677 {
1678 .name = "expire_password",
1679 .args_type = "protocol:s,time:s",
1680 .mhandler.cmd_new = qmp_marshal_input_expire_password,
1681 },
1682
1683 SQMP
1684 expire_password
1685 ---------------
1686
1687 Set the password expire time for vnc/spice protocols.
1688
1689 Arguments:
1690
1691 - "protocol": protocol name (json-string)
1692 - "time": [ now | never | +secs | secs ] (json-string)
1693
1694 Example:
1695
1696 -> { "execute": "expire_password", "arguments": { "protocol": "vnc",
1697 "time": "+60" } }
1698 <- { "return": {} }
1699
1700 EQMP
1701
1702 {
1703 .name = "add_client",
1704 .args_type = "protocol:s,fdname:s,skipauth:b?,tls:b?",
1705 .mhandler.cmd_new = qmp_marshal_input_add_client,
1706 },
1707
1708 SQMP
1709 add_client
1710 ----------
1711
1712 Add a graphics client
1713
1714 Arguments:
1715
1716 - "protocol": protocol name (json-string)
1717 - "fdname": file descriptor name (json-string)
1718 - "skipauth": whether to skip authentication (json-bool, optional)
1719 - "tls": whether to perform TLS (json-bool, optional)
1720
1721 Example:
1722
1723 -> { "execute": "add_client", "arguments": { "protocol": "vnc",
1724 "fdname": "myclient" } }
1725 <- { "return": {} }
1726
1727 EQMP
1728 {
1729 .name = "qmp_capabilities",
1730 .args_type = "",
1731 .params = "",
1732 .help = "enable QMP capabilities",
1733 .user_print = monitor_user_noop,
1734 .mhandler.cmd_new = do_qmp_capabilities,
1735 },
1736
1737 SQMP
1738 qmp_capabilities
1739 ----------------
1740
1741 Enable QMP capabilities.
1742
1743 Arguments: None.
1744
1745 Example:
1746
1747 -> { "execute": "qmp_capabilities" }
1748 <- { "return": {} }
1749
1750 Note: This command must be issued before issuing any other command.
1751
1752 EQMP
1753
1754 {
1755 .name = "human-monitor-command",
1756 .args_type = "command-line:s,cpu-index:i?",
1757 .mhandler.cmd_new = qmp_marshal_input_human_monitor_command,
1758 },
1759
1760 SQMP
1761 human-monitor-command
1762 ---------------------
1763
1764 Execute a Human Monitor command.
1765
1766 Arguments:
1767
1768 - command-line: the command name and its arguments, just like the
1769 Human Monitor's shell (json-string)
1770 - cpu-index: select the CPU number to be used by commands which access CPU
1771 data, like 'info registers'. The Monitor selects CPU 0 if this
1772 argument is not provided (json-int, optional)
1773
1774 Example:
1775
1776 -> { "execute": "human-monitor-command", "arguments": { "command-line": "info kvm" } }
1777 <- { "return": "kvm support: enabled\r\n" }
1778
1779 Notes:
1780
1781 (1) The Human Monitor is NOT an stable interface, this means that command
1782 names, arguments and responses can change or be removed at ANY time.
1783 Applications that rely on long term stability guarantees should NOT
1784 use this command
1785
1786 (2) Limitations:
1787
1788 o This command is stateless, this means that commands that depend
1789 on state information (such as getfd) might not work
1790
1791 o Commands that prompt the user for data (eg. 'cont' when the block
1792 device is encrypted) don't currently work
1793
1794 3. Query Commands
1795 =================
1796
1797 HXCOMM Each query command below is inside a SQMP/EQMP section, do NOT change
1798 HXCOMM this! We will possibly move query commands definitions inside those
1799 HXCOMM sections, just like regular commands.
1800
1801 EQMP
1802
1803 SQMP
1804 query-version
1805 -------------
1806
1807 Show QEMU version.
1808
1809 Return a json-object with the following information:
1810
1811 - "qemu": A json-object containing three integer values:
1812 - "major": QEMU's major version (json-int)
1813 - "minor": QEMU's minor version (json-int)
1814 - "micro": QEMU's micro version (json-int)
1815 - "package": package's version (json-string)
1816
1817 Example:
1818
1819 -> { "execute": "query-version" }
1820 <- {
1821 "return":{
1822 "qemu":{
1823 "major":0,
1824 "minor":11,
1825 "micro":5
1826 },
1827 "package":""
1828 }
1829 }
1830
1831 EQMP
1832
1833 {
1834 .name = "query-version",
1835 .args_type = "",
1836 .mhandler.cmd_new = qmp_marshal_input_query_version,
1837 },
1838
1839 SQMP
1840 query-commands
1841 --------------
1842
1843 List QMP available commands.
1844
1845 Each command is represented by a json-object, the returned value is a json-array
1846 of all commands.
1847
1848 Each json-object contain:
1849
1850 - "name": command's name (json-string)
1851
1852 Example:
1853
1854 -> { "execute": "query-commands" }
1855 <- {
1856 "return":[
1857 {
1858 "name":"query-balloon"
1859 },
1860 {
1861 "name":"system_powerdown"
1862 }
1863 ]
1864 }
1865
1866 Note: This example has been shortened as the real response is too long.
1867
1868 EQMP
1869
1870 {
1871 .name = "query-commands",
1872 .args_type = "",
1873 .mhandler.cmd_new = qmp_marshal_input_query_commands,
1874 },
1875
1876 SQMP
1877 query-events
1878 --------------
1879
1880 List QMP available events.
1881
1882 Each event is represented by a json-object, the returned value is a json-array
1883 of all events.
1884
1885 Each json-object contains:
1886
1887 - "name": event's name (json-string)
1888
1889 Example:
1890
1891 -> { "execute": "query-events" }
1892 <- {
1893 "return":[
1894 {
1895 "name":"SHUTDOWN"
1896 },
1897 {
1898 "name":"RESET"
1899 }
1900 ]
1901 }
1902
1903 Note: This example has been shortened as the real response is too long.
1904
1905 EQMP
1906
1907 {
1908 .name = "query-events",
1909 .args_type = "",
1910 .mhandler.cmd_new = qmp_marshal_input_query_events,
1911 },
1912
1913 SQMP
1914 query-chardev
1915 -------------
1916
1917 Each device is represented by a json-object. The returned value is a json-array
1918 of all devices.
1919
1920 Each json-object contain the following:
1921
1922 - "label": device's label (json-string)
1923 - "filename": device's file (json-string)
1924
1925 Example:
1926
1927 -> { "execute": "query-chardev" }
1928 <- {
1929 "return":[
1930 {
1931 "label":"monitor",
1932 "filename":"stdio"
1933 },
1934 {
1935 "label":"serial0",
1936 "filename":"vc"
1937 }
1938 ]
1939 }
1940
1941 EQMP
1942
1943 {
1944 .name = "query-chardev",
1945 .args_type = "",
1946 .mhandler.cmd_new = qmp_marshal_input_query_chardev,
1947 },
1948
1949 SQMP
1950 query-chardev-backends
1951 -------------
1952
1953 List available character device backends.
1954
1955 Each backend is represented by a json-object, the returned value is a json-array
1956 of all backends.
1957
1958 Each json-object contains:
1959
1960 - "name": backend name (json-string)
1961
1962 Example:
1963
1964 -> { "execute": "query-chardev-backends" }
1965 <- {
1966 "return":[
1967 {
1968 "name":"udp"
1969 },
1970 {
1971 "name":"tcp"
1972 },
1973 {
1974 "name":"unix"
1975 },
1976 {
1977 "name":"spiceport"
1978 }
1979 ]
1980 }
1981
1982 EQMP
1983
1984 {
1985 .name = "query-chardev-backends",
1986 .args_type = "",
1987 .mhandler.cmd_new = qmp_marshal_input_query_chardev_backends,
1988 },
1989
1990 SQMP
1991 query-block
1992 -----------
1993
1994 Show the block devices.
1995
1996 Each block device information is stored in a json-object and the returned value
1997 is a json-array of all devices.
1998
1999 Each json-object contain the following:
2000
2001 - "device": device name (json-string)
2002 - "type": device type (json-string)
2003 - deprecated, retained for backward compatibility
2004 - Possible values: "unknown"
2005 - "removable": true if the device is removable, false otherwise (json-bool)
2006 - "locked": true if the device is locked, false otherwise (json-bool)
2007 - "tray_open": only present if removable, true if the device has a tray,
2008 and it is open (json-bool)
2009 - "inserted": only present if the device is inserted, it is a json-object
2010 containing the following:
2011 - "file": device file name (json-string)
2012 - "ro": true if read-only, false otherwise (json-bool)
2013 - "drv": driver format name (json-string)
2014 - Possible values: "blkdebug", "bochs", "cloop", "cow", "dmg",
2015 "file", "file", "ftp", "ftps", "host_cdrom",
2016 "host_device", "host_floppy", "http", "https",
2017 "nbd", "parallels", "qcow", "qcow2", "raw",
2018 "tftp", "vdi", "vmdk", "vpc", "vvfat"
2019 - "backing_file": backing file name (json-string, optional)
2020 - "backing_file_depth": number of files in the backing file chain (json-int)
2021 - "encrypted": true if encrypted, false otherwise (json-bool)
2022 - "bps": limit total bytes per second (json-int)
2023 - "bps_rd": limit read bytes per second (json-int)
2024 - "bps_wr": limit write bytes per second (json-int)
2025 - "iops": limit total I/O operations per second (json-int)
2026 - "iops_rd": limit read operations per second (json-int)
2027 - "iops_wr": limit write operations per second (json-int)
2028 - "bps_max": total max in bytes (json-int)
2029 - "bps_rd_max": read max in bytes (json-int)
2030 - "bps_wr_max": write max in bytes (json-int)
2031 - "iops_max": total I/O operations max (json-int)
2032 - "iops_rd_max": read I/O operations max (json-int)
2033 - "iops_wr_max": write I/O operations max (json-int)
2034 - "iops_size": I/O size when limiting by iops (json-int)
2035 - "detect_zeroes": detect and optimize zero writing (json-string)
2036 - Possible values: "off", "on", "unmap"
2037 - "image": the detail of the image, it is a json-object containing
2038 the following:
2039 - "filename": image file name (json-string)
2040 - "format": image format (json-string)
2041 - "virtual-size": image capacity in bytes (json-int)
2042 - "dirty-flag": true if image is not cleanly closed, not present
2043 means clean (json-bool, optional)
2044 - "actual-size": actual size on disk in bytes of the image, not
2045 present when image does not support thin
2046 provision (json-int, optional)
2047 - "cluster-size": size of a cluster in bytes, not present if image
2048 format does not support it (json-int, optional)
2049 - "encrypted": true if the image is encrypted, not present means
2050 false or the image format does not support
2051 encryption (json-bool, optional)
2052 - "backing_file": backing file name, not present means no backing
2053 file is used or the image format does not
2054 support backing file chain
2055 (json-string, optional)
2056 - "full-backing-filename": full path of the backing file, not
2057 present if it equals backing_file or no
2058 backing file is used
2059 (json-string, optional)
2060 - "backing-filename-format": the format of the backing file, not
2061 present means unknown or no backing
2062 file (json-string, optional)
2063 - "snapshots": the internal snapshot info, it is an optional list
2064 of json-object containing the following:
2065 - "id": unique snapshot id (json-string)
2066 - "name": snapshot name (json-string)
2067 - "vm-state-size": size of the VM state in bytes (json-int)
2068 - "date-sec": UTC date of the snapshot in seconds (json-int)
2069 - "date-nsec": fractional part in nanoseconds to be used with
2070 date-sec (json-int)
2071 - "vm-clock-sec": VM clock relative to boot in seconds
2072 (json-int)
2073 - "vm-clock-nsec": fractional part in nanoseconds to be used
2074 with vm-clock-sec (json-int)
2075 - "backing-image": the detail of the backing image, it is an
2076 optional json-object only present when a
2077 backing image present for this image
2078
2079 - "io-status": I/O operation status, only present if the device supports it
2080 and the VM is configured to stop on errors. It's always reset
2081 to "ok" when the "cont" command is issued (json_string, optional)
2082 - Possible values: "ok", "failed", "nospace"
2083
2084 Example:
2085
2086 -> { "execute": "query-block" }
2087 <- {
2088 "return":[
2089 {
2090 "io-status": "ok",
2091 "device":"ide0-hd0",
2092 "locked":false,
2093 "removable":false,
2094 "inserted":{
2095 "ro":false,
2096 "drv":"qcow2",
2097 "encrypted":false,
2098 "file":"disks/test.qcow2",
2099 "backing_file_depth":1,
2100 "bps":1000000,
2101 "bps_rd":0,
2102 "bps_wr":0,
2103 "iops":1000000,
2104 "iops_rd":0,
2105 "iops_wr":0,
2106 "bps_max": 8000000,
2107 "bps_rd_max": 0,
2108 "bps_wr_max": 0,
2109 "iops_max": 0,
2110 "iops_rd_max": 0,
2111 "iops_wr_max": 0,
2112 "iops_size": 0,
2113 "detect_zeroes": "on",
2114 "image":{
2115 "filename":"disks/test.qcow2",
2116 "format":"qcow2",
2117 "virtual-size":2048000,
2118 "backing_file":"base.qcow2",
2119 "full-backing-filename":"disks/base.qcow2",
2120 "backing-filename-format:"qcow2",
2121 "snapshots":[
2122 {
2123 "id": "1",
2124 "name": "snapshot1",
2125 "vm-state-size": 0,
2126 "date-sec": 10000200,
2127 "date-nsec": 12,
2128 "vm-clock-sec": 206,
2129 "vm-clock-nsec": 30
2130 }
2131 ],
2132 "backing-image":{
2133 "filename":"disks/base.qcow2",
2134 "format":"qcow2",
2135 "virtual-size":2048000
2136 }
2137 }
2138 },
2139 "type":"unknown"
2140 },
2141 {
2142 "io-status": "ok",
2143 "device":"ide1-cd0",
2144 "locked":false,
2145 "removable":true,
2146 "type":"unknown"
2147 },
2148 {
2149 "device":"floppy0",
2150 "locked":false,
2151 "removable":true,
2152 "type":"unknown"
2153 },
2154 {
2155 "device":"sd0",
2156 "locked":false,
2157 "removable":true,
2158 "type":"unknown"
2159 }
2160 ]
2161 }
2162
2163 EQMP
2164
2165 {
2166 .name = "query-block",
2167 .args_type = "",
2168 .mhandler.cmd_new = qmp_marshal_input_query_block,
2169 },
2170
2171 SQMP
2172 query-blockstats
2173 ----------------
2174
2175 Show block device statistics.
2176
2177 Each device statistic information is stored in a json-object and the returned
2178 value is a json-array of all devices.
2179
2180 Each json-object contain the following:
2181
2182 - "device": device name (json-string)
2183 - "stats": A json-object with the statistics information, it contains:
2184 - "rd_bytes": bytes read (json-int)
2185 - "wr_bytes": bytes written (json-int)
2186 - "rd_operations": read operations (json-int)
2187 - "wr_operations": write operations (json-int)
2188 - "flush_operations": cache flush operations (json-int)
2189 - "wr_total_time_ns": total time spend on writes in nano-seconds (json-int)
2190 - "rd_total_time_ns": total time spend on reads in nano-seconds (json-int)
2191 - "flush_total_time_ns": total time spend on cache flushes in nano-seconds (json-int)
2192 - "wr_highest_offset": Highest offset of a sector written since the
2193 BlockDriverState has been opened (json-int)
2194 - "parent": Contains recursively the statistics of the underlying
2195 protocol (e.g. the host file for a qcow2 image). If there is
2196 no underlying protocol, this field is omitted
2197 (json-object, optional)
2198
2199 Example:
2200
2201 -> { "execute": "query-blockstats" }
2202 <- {
2203 "return":[
2204 {
2205 "device":"ide0-hd0",
2206 "parent":{
2207 "stats":{
2208 "wr_highest_offset":3686448128,
2209 "wr_bytes":9786368,
2210 "wr_operations":751,
2211 "rd_bytes":122567168,
2212 "rd_operations":36772
2213 "wr_total_times_ns":313253456
2214 "rd_total_times_ns":3465673657
2215 "flush_total_times_ns":49653
2216 "flush_operations":61,
2217 }
2218 },
2219 "stats":{
2220 "wr_highest_offset":2821110784,
2221 "wr_bytes":9786368,
2222 "wr_operations":692,
2223 "rd_bytes":122739200,
2224 "rd_operations":36604
2225 "flush_operations":51,
2226 "wr_total_times_ns":313253456
2227 "rd_total_times_ns":3465673657
2228 "flush_total_times_ns":49653
2229 }
2230 },
2231 {
2232 "device":"ide1-cd0",
2233 "stats":{
2234 "wr_highest_offset":0,
2235 "wr_bytes":0,
2236 "wr_operations":0,
2237 "rd_bytes":0,
2238 "rd_operations":0
2239 "flush_operations":0,
2240 "wr_total_times_ns":0
2241 "rd_total_times_ns":0
2242 "flush_total_times_ns":0
2243 }
2244 },
2245 {
2246 "device":"floppy0",
2247 "stats":{
2248 "wr_highest_offset":0,
2249 "wr_bytes":0,
2250 "wr_operations":0,
2251 "rd_bytes":0,
2252 "rd_operations":0
2253 "flush_operations":0,
2254 "wr_total_times_ns":0
2255 "rd_total_times_ns":0
2256 "flush_total_times_ns":0
2257 }
2258 },
2259 {
2260 "device":"sd0",
2261 "stats":{
2262 "wr_highest_offset":0,
2263 "wr_bytes":0,
2264 "wr_operations":0,
2265 "rd_bytes":0,
2266 "rd_operations":0
2267 "flush_operations":0,
2268 "wr_total_times_ns":0
2269 "rd_total_times_ns":0
2270 "flush_total_times_ns":0
2271 }
2272 }
2273 ]
2274 }
2275
2276 EQMP
2277
2278 {
2279 .name = "query-blockstats",
2280 .args_type = "",
2281 .mhandler.cmd_new = qmp_marshal_input_query_blockstats,
2282 },
2283
2284 SQMP
2285 query-cpus
2286 ----------
2287
2288 Show CPU information.
2289
2290 Return a json-array. Each CPU is represented by a json-object, which contains:
2291
2292 - "CPU": CPU index (json-int)
2293 - "current": true if this is the current CPU, false otherwise (json-bool)
2294 - "halted": true if the cpu is halted, false otherwise (json-bool)
2295 - Current program counter. The key's name depends on the architecture:
2296 "pc": i386/x86_64 (json-int)
2297 "nip": PPC (json-int)
2298 "pc" and "npc": sparc (json-int)
2299 "PC": mips (json-int)
2300 - "thread_id": ID of the underlying host thread (json-int)
2301
2302 Example:
2303
2304 -> { "execute": "query-cpus" }
2305 <- {
2306 "return":[
2307 {
2308 "CPU":0,
2309 "current":true,
2310 "halted":false,
2311 "pc":3227107138
2312 "thread_id":3134
2313 },
2314 {
2315 "CPU":1,
2316 "current":false,
2317 "halted":true,
2318 "pc":7108165
2319 "thread_id":3135
2320 }
2321 ]
2322 }
2323
2324 EQMP
2325
2326 {
2327 .name = "query-cpus",
2328 .args_type = "",
2329 .mhandler.cmd_new = qmp_marshal_input_query_cpus,
2330 },
2331
2332 SQMP
2333 query-iothreads
2334 ---------------
2335
2336 Returns a list of information about each iothread.
2337
2338 Note this list excludes the QEMU main loop thread, which is not declared
2339 using the -object iothread command-line option. It is always the main thread
2340 of the process.
2341
2342 Return a json-array. Each iothread is represented by a json-object, which contains:
2343
2344 - "id": name of iothread (json-str)
2345 - "thread-id": ID of the underlying host thread (json-int)
2346
2347 Example:
2348
2349 -> { "execute": "query-iothreads" }
2350 <- {
2351 "return":[
2352 {
2353 "id":"iothread0",
2354 "thread-id":3134
2355 },
2356 {
2357 "id":"iothread1",
2358 "thread-id":3135
2359 }
2360 ]
2361 }
2362
2363 EQMP
2364
2365 {
2366 .name = "query-iothreads",
2367 .args_type = "",
2368 .mhandler.cmd_new = qmp_marshal_input_query_iothreads,
2369 },
2370
2371 SQMP
2372 query-pci
2373 ---------
2374
2375 PCI buses and devices information.
2376
2377 The returned value is a json-array of all buses. Each bus is represented by
2378 a json-object, which has a key with a json-array of all PCI devices attached
2379 to it. Each device is represented by a json-object.
2380
2381 The bus json-object contains the following:
2382
2383 - "bus": bus number (json-int)
2384 - "devices": a json-array of json-objects, each json-object represents a
2385 PCI device
2386
2387 The PCI device json-object contains the following:
2388
2389 - "bus": identical to the parent's bus number (json-int)
2390 - "slot": slot number (json-int)
2391 - "function": function number (json-int)
2392 - "class_info": a json-object containing:
2393 - "desc": device class description (json-string, optional)
2394 - "class": device class number (json-int)
2395 - "id": a json-object containing:
2396 - "device": device ID (json-int)
2397 - "vendor": vendor ID (json-int)
2398 - "irq": device's IRQ if assigned (json-int, optional)
2399 - "qdev_id": qdev id string (json-string)
2400 - "pci_bridge": It's a json-object, only present if this device is a
2401 PCI bridge, contains:
2402 - "bus": bus number (json-int)
2403 - "secondary": secondary bus number (json-int)
2404 - "subordinate": subordinate bus number (json-int)
2405 - "io_range": I/O memory range information, a json-object with the
2406 following members:
2407 - "base": base address, in bytes (json-int)
2408 - "limit": limit address, in bytes (json-int)
2409 - "memory_range": memory range information, a json-object with the
2410 following members:
2411 - "base": base address, in bytes (json-int)
2412 - "limit": limit address, in bytes (json-int)
2413 - "prefetchable_range": Prefetchable memory range information, a
2414 json-object with the following members:
2415 - "base": base address, in bytes (json-int)
2416 - "limit": limit address, in bytes (json-int)
2417 - "devices": a json-array of PCI devices if there's any attached, each
2418 each element is represented by a json-object, which contains
2419 the same members of the 'PCI device json-object' described
2420 above (optional)
2421 - "regions": a json-array of json-objects, each json-object represents a
2422 memory region of this device
2423
2424 The memory range json-object contains the following:
2425
2426 - "base": base memory address (json-int)
2427 - "limit": limit value (json-int)
2428
2429 The region json-object can be an I/O region or a memory region, an I/O region
2430 json-object contains the following:
2431
2432 - "type": "io" (json-string, fixed)
2433 - "bar": BAR number (json-int)
2434 - "address": memory address (json-int)
2435 - "size": memory size (json-int)
2436
2437 A memory region json-object contains the following:
2438
2439 - "type": "memory" (json-string, fixed)
2440 - "bar": BAR number (json-int)
2441 - "address": memory address (json-int)
2442 - "size": memory size (json-int)
2443 - "mem_type_64": true or false (json-bool)
2444 - "prefetch": true or false (json-bool)
2445
2446 Example:
2447
2448 -> { "execute": "query-pci" }
2449 <- {
2450 "return":[
2451 {
2452 "bus":0,
2453 "devices":[
2454 {
2455 "bus":0,
2456 "qdev_id":"",
2457 "slot":0,
2458 "class_info":{
2459 "class":1536,
2460 "desc":"Host bridge"
2461 },
2462 "id":{
2463 "device":32902,
2464 "vendor":4663
2465 },
2466 "function":0,
2467 "regions":[
2468
2469 ]
2470 },
2471 {
2472 "bus":0,
2473 "qdev_id":"",
2474 "slot":1,
2475 "class_info":{
2476 "class":1537,
2477 "desc":"ISA bridge"
2478 },
2479 "id":{
2480 "device":32902,
2481 "vendor":28672
2482 },
2483 "function":0,
2484 "regions":[
2485
2486 ]
2487 },
2488 {
2489 "bus":0,
2490 "qdev_id":"",
2491 "slot":1,
2492 "class_info":{
2493 "class":257,
2494 "desc":"IDE controller"
2495 },
2496 "id":{
2497 "device":32902,
2498 "vendor":28688
2499 },
2500 "function":1,
2501 "regions":[
2502 {
2503 "bar":4,
2504 "size":16,
2505 "address":49152,
2506 "type":"io"
2507 }
2508 ]
2509 },
2510 {
2511 "bus":0,
2512 "qdev_id":"",
2513 "slot":2,
2514 "class_info":{
2515 "class":768,
2516 "desc":"VGA controller"
2517 },
2518 "id":{
2519 "device":4115,
2520 "vendor":184
2521 },
2522 "function":0,
2523 "regions":[
2524 {
2525 "prefetch":true,
2526 "mem_type_64":false,
2527 "bar":0,
2528 "size":33554432,
2529 "address":4026531840,
2530 "type":"memory"
2531 },
2532 {
2533 "prefetch":false,
2534 "mem_type_64":false,
2535 "bar":1,
2536 "size":4096,
2537 "address":4060086272,
2538 "type":"memory"
2539 },
2540 {
2541 "prefetch":false,
2542 "mem_type_64":false,
2543 "bar":6,
2544 "size":65536,
2545 "address":-1,
2546 "type":"memory"
2547 }
2548 ]
2549 },
2550 {
2551 "bus":0,
2552 "qdev_id":"",
2553 "irq":11,
2554 "slot":4,
2555 "class_info":{
2556 "class":1280,
2557 "desc":"RAM controller"
2558 },
2559 "id":{
2560 "device":6900,
2561 "vendor":4098
2562 },
2563 "function":0,
2564 "regions":[
2565 {
2566 "bar":0,
2567 "size":32,
2568 "address":49280,
2569 "type":"io"
2570 }
2571 ]
2572 }
2573 ]
2574 }
2575 ]
2576 }
2577
2578 Note: This example has been shortened as the real response is too long.
2579
2580 EQMP
2581
2582 {
2583 .name = "query-pci",
2584 .args_type = "",
2585 .mhandler.cmd_new = qmp_marshal_input_query_pci,
2586 },
2587
2588 SQMP
2589 query-kvm
2590 ---------
2591
2592 Show KVM information.
2593
2594 Return a json-object with the following information:
2595
2596 - "enabled": true if KVM support is enabled, false otherwise (json-bool)
2597 - "present": true if QEMU has KVM support, false otherwise (json-bool)
2598
2599 Example:
2600
2601 -> { "execute": "query-kvm" }
2602 <- { "return": { "enabled": true, "present": true } }
2603
2604 EQMP
2605
2606 {
2607 .name = "query-kvm",
2608 .args_type = "",
2609 .mhandler.cmd_new = qmp_marshal_input_query_kvm,
2610 },
2611
2612 SQMP
2613 query-status
2614 ------------
2615
2616 Return a json-object with the following information:
2617
2618 - "running": true if the VM is running, or false if it is paused (json-bool)
2619 - "singlestep": true if the VM is in single step mode,
2620 false otherwise (json-bool)
2621 - "status": one of the following values (json-string)
2622 "debug" - QEMU is running on a debugger
2623 "inmigrate" - guest is paused waiting for an incoming migration
2624 "internal-error" - An internal error that prevents further guest
2625 execution has occurred
2626 "io-error" - the last IOP has failed and the device is configured
2627 to pause on I/O errors
2628 "paused" - guest has been paused via the 'stop' command
2629 "postmigrate" - guest is paused following a successful 'migrate'
2630 "prelaunch" - QEMU was started with -S and guest has not started
2631 "finish-migrate" - guest is paused to finish the migration process
2632 "restore-vm" - guest is paused to restore VM state
2633 "running" - guest is actively running
2634 "save-vm" - guest is paused to save the VM state
2635 "shutdown" - guest is shut down (and -no-shutdown is in use)
2636 "watchdog" - the watchdog action is configured to pause and
2637 has been triggered
2638
2639 Example:
2640
2641 -> { "execute": "query-status" }
2642 <- { "return": { "running": true, "singlestep": false, "status": "running" } }
2643
2644 EQMP
2645
2646 {
2647 .name = "query-status",
2648 .args_type = "",
2649 .mhandler.cmd_new = qmp_marshal_input_query_status,
2650 },
2651
2652 SQMP
2653 query-mice
2654 ----------
2655
2656 Show VM mice information.
2657
2658 Each mouse is represented by a json-object, the returned value is a json-array
2659 of all mice.
2660
2661 The mouse json-object contains the following:
2662
2663 - "name": mouse's name (json-string)
2664 - "index": mouse's index (json-int)
2665 - "current": true if this mouse is receiving events, false otherwise (json-bool)
2666 - "absolute": true if the mouse generates absolute input events (json-bool)
2667
2668 Example:
2669
2670 -> { "execute": "query-mice" }
2671 <- {
2672 "return":[
2673 {
2674 "name":"QEMU Microsoft Mouse",
2675 "index":0,
2676 "current":false,
2677 "absolute":false
2678 },
2679 {
2680 "name":"QEMU PS/2 Mouse",
2681 "index":1,
2682 "current":true,
2683 "absolute":true
2684 }
2685 ]
2686 }
2687
2688 EQMP
2689
2690 {
2691 .name = "query-mice",
2692 .args_type = "",
2693 .mhandler.cmd_new = qmp_marshal_input_query_mice,
2694 },
2695
2696 SQMP
2697 query-vnc
2698 ---------
2699
2700 Show VNC server information.
2701
2702 Return a json-object with server information. Connected clients are returned
2703 as a json-array of json-objects.
2704
2705 The main json-object contains the following:
2706
2707 - "enabled": true or false (json-bool)
2708 - "host": server's IP address (json-string)
2709 - "family": address family (json-string)
2710 - Possible values: "ipv4", "ipv6", "unix", "unknown"
2711 - "service": server's port number (json-string)
2712 - "auth": authentication method (json-string)
2713 - Possible values: "invalid", "none", "ra2", "ra2ne", "sasl", "tight",
2714 "tls", "ultra", "unknown", "vencrypt", "vencrypt",
2715 "vencrypt+plain", "vencrypt+tls+none",
2716 "vencrypt+tls+plain", "vencrypt+tls+sasl",
2717 "vencrypt+tls+vnc", "vencrypt+x509+none",
2718 "vencrypt+x509+plain", "vencrypt+x509+sasl",
2719 "vencrypt+x509+vnc", "vnc"
2720 - "clients": a json-array of all connected clients
2721
2722 Clients are described by a json-object, each one contain the following:
2723
2724 - "host": client's IP address (json-string)
2725 - "family": address family (json-string)
2726 - Possible values: "ipv4", "ipv6", "unix", "unknown"
2727 - "service": client's port number (json-string)
2728 - "x509_dname": TLS dname (json-string, optional)
2729 - "sasl_username": SASL username (json-string, optional)
2730
2731 Example:
2732
2733 -> { "execute": "query-vnc" }
2734 <- {
2735 "return":{
2736 "enabled":true,
2737 "host":"0.0.0.0",
2738 "service":"50402",
2739 "auth":"vnc",
2740 "family":"ipv4",
2741 "clients":[
2742 {
2743 "host":"127.0.0.1",
2744 "service":"50401",
2745 "family":"ipv4"
2746 }
2747 ]
2748 }
2749 }
2750
2751 EQMP
2752
2753 {
2754 .name = "query-vnc",
2755 .args_type = "",
2756 .mhandler.cmd_new = qmp_marshal_input_query_vnc,
2757 },
2758
2759 SQMP
2760 query-spice
2761 -----------
2762
2763 Show SPICE server information.
2764
2765 Return a json-object with server information. Connected clients are returned
2766 as a json-array of json-objects.
2767
2768 The main json-object contains the following:
2769
2770 - "enabled": true or false (json-bool)
2771 - "host": server's IP address (json-string)
2772 - "port": server's port number (json-int, optional)
2773 - "tls-port": server's port number (json-int, optional)
2774 - "auth": authentication method (json-string)
2775 - Possible values: "none", "spice"
2776 - "channels": a json-array of all active channels clients
2777
2778 Channels are described by a json-object, each one contain the following:
2779
2780 - "host": client's IP address (json-string)
2781 - "family": address family (json-string)
2782 - Possible values: "ipv4", "ipv6", "unix", "unknown"
2783 - "port": client's port number (json-string)
2784 - "connection-id": spice connection id. All channels with the same id
2785 belong to the same spice session (json-int)
2786 - "channel-type": channel type. "1" is the main control channel, filter for
2787 this one if you want track spice sessions only (json-int)
2788 - "channel-id": channel id. Usually "0", might be different needed when
2789 multiple channels of the same type exist, such as multiple
2790 display channels in a multihead setup (json-int)
2791 - "tls": whevener the channel is encrypted (json-bool)
2792
2793 Example:
2794
2795 -> { "execute": "query-spice" }
2796 <- {
2797 "return": {
2798 "enabled": true,
2799 "auth": "spice",
2800 "port": 5920,
2801 "tls-port": 5921,
2802 "host": "0.0.0.0",
2803 "channels": [
2804 {
2805 "port": "54924",
2806 "family": "ipv4",
2807 "channel-type": 1,
2808 "connection-id": 1804289383,
2809 "host": "127.0.0.1",
2810 "channel-id": 0,
2811 "tls": true
2812 },
2813 {
2814 "port": "36710",
2815 "family": "ipv4",
2816 "channel-type": 4,
2817 "connection-id": 1804289383,
2818 "host": "127.0.0.1",
2819 "channel-id": 0,
2820 "tls": false
2821 },
2822 [ ... more channels follow ... ]
2823 ]
2824 }
2825 }
2826
2827 EQMP
2828
2829 #if defined(CONFIG_SPICE)
2830 {
2831 .name = "query-spice",
2832 .args_type = "",
2833 .mhandler.cmd_new = qmp_marshal_input_query_spice,
2834 },
2835 #endif
2836
2837 SQMP
2838 query-name
2839 ----------
2840
2841 Show VM name.
2842
2843 Return a json-object with the following information:
2844
2845 - "name": VM's name (json-string, optional)
2846
2847 Example:
2848
2849 -> { "execute": "query-name" }
2850 <- { "return": { "name": "qemu-name" } }
2851
2852 EQMP
2853
2854 {
2855 .name = "query-name",
2856 .args_type = "",
2857 .mhandler.cmd_new = qmp_marshal_input_query_name,
2858 },
2859
2860 SQMP
2861 query-uuid
2862 ----------
2863
2864 Show VM UUID.
2865
2866 Return a json-object with the following information:
2867
2868 - "UUID": Universally Unique Identifier (json-string)
2869
2870 Example:
2871
2872 -> { "execute": "query-uuid" }
2873 <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
2874
2875 EQMP
2876
2877 {
2878 .name = "query-uuid",
2879 .args_type = "",
2880 .mhandler.cmd_new = qmp_marshal_input_query_uuid,
2881 },
2882
2883 SQMP
2884 query-command-line-options
2885 --------------------------
2886
2887 Show command line option schema.
2888
2889 Return a json-array of command line option schema for all options (or for
2890 the given option), returning an error if the given option doesn't exist.
2891
2892 Each array entry contains the following:
2893
2894 - "option": option name (json-string)
2895 - "parameters": a json-array describes all parameters of the option:
2896 - "name": parameter name (json-string)
2897 - "type": parameter type (one of 'string', 'boolean', 'number',
2898 or 'size')
2899 - "help": human readable description of the parameter
2900 (json-string, optional)
2901 - "default": default value string for the parameter
2902 (json-string, optional)
2903
2904 Example:
2905
2906 -> { "execute": "query-command-line-options", "arguments": { "option": "option-rom" } }
2907 <- { "return": [
2908 {
2909 "parameters": [
2910 {
2911 "name": "romfile",
2912 "type": "string"
2913 },
2914 {
2915 "name": "bootindex",
2916 "type": "number"
2917 }
2918 ],
2919 "option": "option-rom"
2920 }
2921 ]
2922 }
2923
2924 EQMP
2925
2926 {
2927 .name = "query-command-line-options",
2928 .args_type = "option:s?",
2929 .mhandler.cmd_new = qmp_marshal_input_query_command_line_options,
2930 },
2931
2932 SQMP
2933 query-migrate
2934 -------------
2935
2936 Migration status.
2937
2938 Return a json-object. If migration is active there will be another json-object
2939 with RAM migration status and if block migration is active another one with
2940 block migration status.
2941
2942 The main json-object contains the following:
2943
2944 - "status": migration status (json-string)
2945 - Possible values: "setup", "active", "completed", "failed", "cancelled"
2946 - "total-time": total amount of ms since migration started. If
2947 migration has ended, it returns the total migration
2948 time (json-int)
2949 - "setup-time" amount of setup time in milliseconds _before_ the
2950 iterations begin but _after_ the QMP command is issued.
2951 This is designed to provide an accounting of any activities
2952 (such as RDMA pinning) which may be expensive, but do not
2953 actually occur during the iterative migration rounds
2954 themselves. (json-int)
2955 - "downtime": only present when migration has finished correctly
2956 total amount in ms for downtime that happened (json-int)
2957 - "expected-downtime": only present while migration is active
2958 total amount in ms for downtime that was calculated on
2959 the last bitmap round (json-int)
2960 - "ram": only present if "status" is "active", it is a json-object with the
2961 following RAM information:
2962 - "transferred": amount transferred in bytes (json-int)
2963 - "remaining": amount remaining to transfer in bytes (json-int)
2964 - "total": total amount of memory in bytes (json-int)
2965 - "duplicate": number of pages filled entirely with the same
2966 byte (json-int)
2967 These are sent over the wire much more efficiently.
2968 - "skipped": number of skipped zero pages (json-int)
2969 - "normal" : number of whole pages transferred. I.e. they
2970 were not sent as duplicate or xbzrle pages (json-int)
2971 - "normal-bytes" : number of bytes transferred in whole
2972 pages. This is just normal pages times size of one page,
2973 but this way upper levels don't need to care about page
2974 size (json-int)
2975 - "dirty-sync-count": times that dirty ram was synchronized (json-int)
2976 - "disk": only present if "status" is "active" and it is a block migration,
2977 it is a json-object with the following disk information:
2978 - "transferred": amount transferred in bytes (json-int)
2979 - "remaining": amount remaining to transfer in bytes json-int)
2980 - "total": total disk size in bytes (json-int)
2981 - "xbzrle-cache": only present if XBZRLE is active.
2982 It is a json-object with the following XBZRLE information:
2983 - "cache-size": XBZRLE cache size in bytes
2984 - "bytes": number of bytes transferred for XBZRLE compressed pages
2985 - "pages": number of XBZRLE compressed pages
2986 - "cache-miss": number of XBRZRLE page cache misses
2987 - "cache-miss-rate": rate of XBRZRLE page cache misses
2988 - "overflow": number of times XBZRLE overflows. This means
2989 that the XBZRLE encoding was bigger than just sent the
2990 whole page, and then we sent the whole page instead (as as
2991 normal page).
2992
2993 Examples:
2994
2995 1. Before the first migration
2996
2997 -> { "execute": "query-migrate" }
2998 <- { "return": {} }
2999
3000 2. Migration is done and has succeeded
3001
3002 -> { "execute": "query-migrate" }
3003 <- { "return": {
3004 "status": "completed",
3005 "ram":{
3006 "transferred":123,
3007 "remaining":123,
3008 "total":246,
3009 "total-time":12345,
3010 "setup-time":12345,
3011 "downtime":12345,
3012 "duplicate":123,
3013 "normal":123,
3014 "normal-bytes":123456,
3015 "dirty-sync-count":15
3016 }
3017 }
3018 }
3019
3020 3. Migration is done and has failed
3021
3022 -> { "execute": "query-migrate" }
3023 <- { "return": { "status": "failed" } }
3024
3025 4. Migration is being performed and is not a block migration:
3026
3027 -> { "execute": "query-migrate" }
3028 <- {
3029 "return":{
3030 "status":"active",
3031 "ram":{
3032 "transferred":123,
3033 "remaining":123,
3034 "total":246,
3035 "total-time":12345,
3036 "setup-time":12345,
3037 "expected-downtime":12345,
3038 "duplicate":123,
3039 "normal":123,
3040 "normal-bytes":123456,
3041 "dirty-sync-count":15
3042 }
3043 }
3044 }
3045
3046 5. Migration is being performed and is a block migration:
3047
3048 -> { "execute": "query-migrate" }
3049 <- {
3050 "return":{
3051 "status":"active",
3052 "ram":{
3053 "total":1057024,
3054 "remaining":1053304,
3055 "transferred":3720,
3056 "total-time":12345,
3057 "setup-time":12345,
3058 "expected-downtime":12345,
3059 "duplicate":123,
3060 "normal":123,
3061 "normal-bytes":123456,
3062 "dirty-sync-count":15
3063 },
3064 "disk":{
3065 "total":20971520,
3066 "remaining":20880384,
3067 "transferred":91136
3068 }
3069 }
3070 }
3071
3072 6. Migration is being performed and XBZRLE is active:
3073
3074 -> { "execute": "query-migrate" }
3075 <- {
3076 "return":{
3077 "status":"active",
3078 "capabilities" : [ { "capability": "xbzrle", "state" : true } ],
3079 "ram":{
3080 "total":1057024,
3081 "remaining":1053304,
3082 "transferred":3720,
3083 "total-time":12345,
3084 "setup-time":12345,
3085 "expected-downtime":12345,
3086 "duplicate":10,
3087 "normal":3333,
3088 "normal-bytes":3412992,
3089 "dirty-sync-count":15
3090 },
3091 "xbzrle-cache":{
3092 "cache-size":67108864,
3093 "bytes":20971520,
3094 "pages":2444343,
3095 "cache-miss":2244,
3096 "cache-miss-rate":0.123,
3097 "overflow":34434
3098 }
3099 }
3100 }
3101
3102 EQMP
3103
3104 {
3105 .name = "query-migrate",
3106 .args_type = "",
3107 .mhandler.cmd_new = qmp_marshal_input_query_migrate,
3108 },
3109
3110 SQMP
3111 migrate-set-capabilities
3112 ------------------------
3113
3114 Enable/Disable migration capabilities
3115
3116 - "xbzrle": XBZRLE support
3117
3118 Arguments:
3119
3120 Example:
3121
3122 -> { "execute": "migrate-set-capabilities" , "arguments":
3123 { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
3124
3125 EQMP
3126
3127 {
3128 .name = "migrate-set-capabilities",
3129 .args_type = "capabilities:O",
3130 .params = "capability:s,state:b",
3131 .mhandler.cmd_new = qmp_marshal_input_migrate_set_capabilities,
3132 },
3133 SQMP
3134 query-migrate-capabilities
3135 --------------------------
3136
3137 Query current migration capabilities
3138
3139 - "capabilities": migration capabilities state
3140 - "xbzrle" : XBZRLE state (json-bool)
3141
3142 Arguments:
3143
3144 Example:
3145
3146 -> { "execute": "query-migrate-capabilities" }
3147 <- { "return": [ { "state": false, "capability": "xbzrle" } ] }
3148
3149 EQMP
3150
3151 {
3152 .name = "query-migrate-capabilities",
3153 .args_type = "",
3154 .mhandler.cmd_new = qmp_marshal_input_query_migrate_capabilities,
3155 },
3156
3157 SQMP
3158 query-balloon
3159 -------------
3160
3161 Show balloon information.
3162
3163 Make an asynchronous request for balloon info. When the request completes a
3164 json-object will be returned containing the following data:
3165
3166 - "actual": current balloon value in bytes (json-int)
3167
3168 Example:
3169
3170 -> { "execute": "query-balloon" }
3171 <- {
3172 "return":{
3173 "actual":1073741824,
3174 }
3175 }
3176
3177 EQMP
3178
3179 {
3180 .name = "query-balloon",
3181 .args_type = "",
3182 .mhandler.cmd_new = qmp_marshal_input_query_balloon,
3183 },
3184
3185 {
3186 .name = "query-block-jobs",
3187 .args_type = "",
3188 .mhandler.cmd_new = qmp_marshal_input_query_block_jobs,
3189 },
3190
3191 {
3192 .name = "qom-list",
3193 .args_type = "path:s",
3194 .mhandler.cmd_new = qmp_marshal_input_qom_list,
3195 },
3196
3197 {
3198 .name = "qom-set",
3199 .args_type = "path:s,property:s,value:q",
3200 .mhandler.cmd_new = qmp_qom_set,
3201 },
3202
3203 {
3204 .name = "qom-get",
3205 .args_type = "path:s,property:s",
3206 .mhandler.cmd_new = qmp_qom_get,
3207 },
3208
3209 {
3210 .name = "nbd-server-start",
3211 .args_type = "addr:q",
3212 .mhandler.cmd_new = qmp_marshal_input_nbd_server_start,
3213 },
3214 {
3215 .name = "nbd-server-add",
3216 .args_type = "device:B,writable:b?",
3217 .mhandler.cmd_new = qmp_marshal_input_nbd_server_add,
3218 },
3219 {
3220 .name = "nbd-server-stop",
3221 .args_type = "",
3222 .mhandler.cmd_new = qmp_marshal_input_nbd_server_stop,
3223 },
3224
3225 {
3226 .name = "change-vnc-password",
3227 .args_type = "password:s",
3228 .mhandler.cmd_new = qmp_marshal_input_change_vnc_password,
3229 },
3230 {
3231 .name = "qom-list-types",
3232 .args_type = "implements:s?,abstract:b?",
3233 .mhandler.cmd_new = qmp_marshal_input_qom_list_types,
3234 },
3235
3236 {
3237 .name = "device-list-properties",
3238 .args_type = "typename:s",
3239 .mhandler.cmd_new = qmp_marshal_input_device_list_properties,
3240 },
3241
3242 {
3243 .name = "query-machines",
3244 .args_type = "",
3245 .mhandler.cmd_new = qmp_marshal_input_query_machines,
3246 },
3247
3248 {
3249 .name = "query-cpu-definitions",
3250 .args_type = "",
3251 .mhandler.cmd_new = qmp_marshal_input_query_cpu_definitions,
3252 },
3253
3254 {
3255 .name = "query-target",
3256 .args_type = "",
3257 .mhandler.cmd_new = qmp_marshal_input_query_target,
3258 },
3259
3260 {
3261 .name = "query-tpm",
3262 .args_type = "",
3263 .mhandler.cmd_new = qmp_marshal_input_query_tpm,
3264 },
3265
3266 SQMP
3267 query-tpm
3268 ---------
3269
3270 Return information about the TPM device.
3271
3272 Arguments: None
3273
3274 Example:
3275
3276 -> { "execute": "query-tpm" }
3277 <- { "return":
3278 [
3279 { "model": "tpm-tis",
3280 "options":
3281 { "type": "passthrough",
3282 "data":
3283 { "cancel-path": "/sys/class/misc/tpm0/device/cancel",
3284 "path": "/dev/tpm0"
3285 }
3286 },
3287 "id": "tpm0"
3288 }
3289 ]
3290 }
3291
3292 EQMP
3293
3294 {
3295 .name = "query-tpm-models",
3296 .args_type = "",
3297 .mhandler.cmd_new = qmp_marshal_input_query_tpm_models,
3298 },
3299
3300 SQMP
3301 query-tpm-models
3302 ----------------
3303
3304 Return a list of supported TPM models.
3305
3306 Arguments: None
3307
3308 Example:
3309
3310 -> { "execute": "query-tpm-models" }
3311 <- { "return": [ "tpm-tis" ] }
3312
3313 EQMP
3314
3315 {
3316 .name = "query-tpm-types",
3317 .args_type = "",
3318 .mhandler.cmd_new = qmp_marshal_input_query_tpm_types,
3319 },
3320
3321 SQMP
3322 query-tpm-types
3323 ---------------
3324
3325 Return a list of supported TPM types.
3326
3327 Arguments: None
3328
3329 Example:
3330
3331 -> { "execute": "query-tpm-types" }
3332 <- { "return": [ "passthrough" ] }
3333
3334 EQMP
3335
3336 {
3337 .name = "chardev-add",
3338 .args_type = "id:s,backend:q",
3339 .mhandler.cmd_new = qmp_marshal_input_chardev_add,
3340 },
3341
3342 SQMP
3343 chardev-add
3344 ----------------
3345
3346 Add a chardev.
3347
3348 Arguments:
3349
3350 - "id": the chardev's ID, must be unique (json-string)
3351 - "backend": chardev backend type + parameters
3352
3353 Examples:
3354
3355 -> { "execute" : "chardev-add",
3356 "arguments" : { "id" : "foo",
3357 "backend" : { "type" : "null", "data" : {} } } }
3358 <- { "return": {} }
3359
3360 -> { "execute" : "chardev-add",
3361 "arguments" : { "id" : "bar",
3362 "backend" : { "type" : "file",
3363 "data" : { "out" : "/tmp/bar.log" } } } }
3364 <- { "return": {} }
3365
3366 -> { "execute" : "chardev-add",
3367 "arguments" : { "id" : "baz",
3368 "backend" : { "type" : "pty", "data" : {} } } }
3369 <- { "return": { "pty" : "/dev/pty/42" } }
3370
3371 EQMP
3372
3373 {
3374 .name = "chardev-remove",
3375 .args_type = "id:s",
3376 .mhandler.cmd_new = qmp_marshal_input_chardev_remove,
3377 },
3378
3379
3380 SQMP
3381 chardev-remove
3382 --------------
3383
3384 Remove a chardev.
3385
3386 Arguments:
3387
3388 - "id": the chardev's ID, must exist and not be in use (json-string)
3389
3390 Example:
3391
3392 -> { "execute": "chardev-remove", "arguments": { "id" : "foo" } }
3393 <- { "return": {} }
3394
3395 EQMP
3396 {
3397 .name = "query-rx-filter",
3398 .args_type = "name:s?",
3399 .mhandler.cmd_new = qmp_marshal_input_query_rx_filter,
3400 },
3401
3402 SQMP
3403 query-rx-filter
3404 ---------------
3405
3406 Show rx-filter information.
3407
3408 Returns a json-array of rx-filter information for all NICs (or for the
3409 given NIC), returning an error if the given NIC doesn't exist, or
3410 given NIC doesn't support rx-filter querying, or given net client
3411 isn't a NIC.
3412
3413 The query will clear the event notification flag of each NIC, then qemu
3414 will start to emit event to QMP monitor.
3415
3416 Each array entry contains the following:
3417
3418 - "name": net client name (json-string)
3419 - "promiscuous": promiscuous mode is enabled (json-bool)
3420 - "multicast": multicast receive state (one of 'normal', 'none', 'all')
3421 - "unicast": unicast receive state (one of 'normal', 'none', 'all')
3422 - "vlan": vlan receive state (one of 'normal', 'none', 'all') (Since 2.0)
3423 - "broadcast-allowed": allow to receive broadcast (json-bool)
3424 - "multicast-overflow": multicast table is overflowed (json-bool)
3425 - "unicast-overflow": unicast table is overflowed (json-bool)
3426 - "main-mac": main macaddr string (json-string)
3427 - "vlan-table": a json-array of active vlan id
3428 - "unicast-table": a json-array of unicast macaddr string
3429 - "multicast-table": a json-array of multicast macaddr string
3430
3431 Example:
3432
3433 -> { "execute": "query-rx-filter", "arguments": { "name": "vnet0" } }
3434 <- { "return": [
3435 {
3436 "promiscuous": true,
3437 "name": "vnet0",
3438 "main-mac": "52:54:00:12:34:56",
3439 "unicast": "normal",
3440 "vlan": "normal",
3441 "vlan-table": [
3442 4,
3443 0
3444 ],
3445 "unicast-table": [
3446 ],
3447 "multicast": "normal",
3448 "multicast-overflow": false,
3449 "unicast-overflow": false,
3450 "multicast-table": [
3451 "01:00:5e:00:00:01",
3452 "33:33:00:00:00:01",
3453 "33:33:ff:12:34:56"
3454 ],
3455 "broadcast-allowed": false
3456 }
3457 ]
3458 }
3459
3460 EQMP
3461
3462 {
3463 .name = "blockdev-add",
3464 .args_type = "options:q",
3465 .mhandler.cmd_new = qmp_marshal_input_blockdev_add,
3466 },
3467
3468 SQMP
3469 blockdev-add
3470 ------------
3471
3472 Add a block device.
3473
3474 Arguments:
3475
3476 - "options": block driver options
3477
3478 Example (1):
3479
3480 -> { "execute": "blockdev-add",
3481 "arguments": { "options" : { "driver": "qcow2",
3482 "file": { "driver": "file",
3483 "filename": "test.qcow2" } } } }
3484 <- { "return": {} }
3485
3486 Example (2):
3487
3488 -> { "execute": "blockdev-add",
3489 "arguments": {
3490 "options": {
3491 "driver": "qcow2",
3492 "id": "my_disk",
3493 "discard": "unmap",
3494 "cache": {
3495 "direct": true,
3496 "writeback": true
3497 },
3498 "file": {
3499 "driver": "file",
3500 "filename": "/tmp/test.qcow2"
3501 },
3502 "backing": {
3503 "driver": "raw",
3504 "file": {
3505 "driver": "file",
3506 "filename": "/dev/fdset/4"
3507 }
3508 }
3509 }
3510 }
3511 }
3512
3513 <- { "return": {} }
3514
3515 EQMP
3516
3517 {
3518 .name = "query-named-block-nodes",
3519 .args_type = "",
3520 .mhandler.cmd_new = qmp_marshal_input_query_named_block_nodes,
3521 },
3522
3523 SQMP
3524 @query-named-block-nodes
3525 ------------------------
3526
3527 Return a list of BlockDeviceInfo for all the named block driver nodes
3528
3529 Example:
3530
3531 -> { "execute": "query-named-block-nodes" }
3532 <- { "return": [ { "ro":false,
3533 "drv":"qcow2",
3534 "encrypted":false,
3535 "file":"disks/test.qcow2",
3536 "node-name": "my-node",
3537 "backing_file_depth":1,
3538 "bps":1000000,
3539 "bps_rd":0,
3540 "bps_wr":0,
3541 "iops":1000000,
3542 "iops_rd":0,
3543 "iops_wr":0,
3544 "bps_max": 8000000,
3545 "bps_rd_max": 0,
3546 "bps_wr_max": 0,
3547 "iops_max": 0,
3548 "iops_rd_max": 0,
3549 "iops_wr_max": 0,
3550 "iops_size": 0,
3551 "image":{
3552 "filename":"disks/test.qcow2",
3553 "format":"qcow2",
3554 "virtual-size":2048000,
3555 "backing_file":"base.qcow2",
3556 "full-backing-filename":"disks/base.qcow2",
3557 "backing-filename-format:"qcow2",
3558 "snapshots":[
3559 {
3560 "id": "1",
3561 "name": "snapshot1",
3562 "vm-state-size": 0,
3563 "date-sec": 10000200,
3564 "date-nsec": 12,
3565 "vm-clock-sec": 206,
3566 "vm-clock-nsec": 30
3567 }
3568 ],
3569 "backing-image":{
3570 "filename":"disks/base.qcow2",
3571 "format":"qcow2",
3572 "virtual-size":2048000
3573 }
3574 } } ] }
3575
3576 EQMP