]> git.proxmox.com Git - mirror_frr.git/blob - ripd/ripd.c
ripd: retrofit the 'route' command to the new northbound model
[mirror_frr.git] / ripd / ripd.c
1 /* RIP version 1 and 2.
2 * Copyright (C) 2005 6WIND <alain.ritoux@6wind.com>
3 * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro <kunihiro@zebra.org>
4 *
5 * This file is part of GNU Zebra.
6 *
7 * GNU Zebra is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 * GNU Zebra is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; see the file COPYING; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <zebra.h>
23
24 #include "vrf.h"
25 #include "if.h"
26 #include "command.h"
27 #include "prefix.h"
28 #include "table.h"
29 #include "thread.h"
30 #include "memory.h"
31 #include "log.h"
32 #include "stream.h"
33 #include "filter.h"
34 #include "sockunion.h"
35 #include "sockopt.h"
36 #include "routemap.h"
37 #include "if_rmap.h"
38 #include "plist.h"
39 #include "distribute.h"
40 #include "md5.h"
41 #include "keychain.h"
42 #include "privs.h"
43 #include "lib_errors.h"
44 #include "northbound_cli.h"
45
46 #include "ripd/ripd.h"
47 #include "ripd/rip_debug.h"
48 #include "ripd/rip_errors.h"
49
50 DEFINE_QOBJ_TYPE(rip)
51
52 /* UDP receive buffer size */
53 #define RIP_UDP_RCV_BUF 41600
54
55 /* RIP Structure. */
56 struct rip *rip = NULL;
57
58 /* RIP neighbor address table. */
59 struct route_table *rip_neighbor_table;
60
61 /* RIP route changes. */
62 long rip_global_route_changes = 0;
63
64 /* RIP queries. */
65 long rip_global_queries = 0;
66
67 /* Prototypes. */
68 static void rip_event(enum rip_event, int);
69 static void rip_output_process(struct connected *, struct sockaddr_in *, int,
70 uint8_t);
71 static int rip_triggered_update(struct thread *);
72 static int rip_update_jitter(unsigned long);
73
74 /* RIP output routes type. */
75 enum { rip_all_route, rip_changed_route };
76
77 /* RIP command strings. */
78 static const struct message rip_msg[] = {{RIP_REQUEST, "REQUEST"},
79 {RIP_RESPONSE, "RESPONSE"},
80 {RIP_TRACEON, "TRACEON"},
81 {RIP_TRACEOFF, "TRACEOFF"},
82 {RIP_POLL, "POLL"},
83 {RIP_POLL_ENTRY, "POLL ENTRY"},
84 {0}};
85
86 /* Utility function to set boradcast option to the socket. */
87 static int sockopt_broadcast(int sock)
88 {
89 int ret;
90 int on = 1;
91
92 ret = setsockopt(sock, SOL_SOCKET, SO_BROADCAST, (char *)&on,
93 sizeof on);
94 if (ret < 0) {
95 zlog_warn("can't set sockopt SO_BROADCAST to socket %d", sock);
96 return -1;
97 }
98 return 0;
99 }
100
101 static int rip_route_rte(struct rip_info *rinfo)
102 {
103 return (rinfo->type == ZEBRA_ROUTE_RIP
104 && rinfo->sub_type == RIP_ROUTE_RTE);
105 }
106
107 static struct rip_info *rip_info_new(void)
108 {
109 return XCALLOC(MTYPE_RIP_INFO, sizeof(struct rip_info));
110 }
111
112 void rip_info_free(struct rip_info *rinfo)
113 {
114 XFREE(MTYPE_RIP_INFO, rinfo);
115 }
116
117 /* RIP route garbage collect timer. */
118 static int rip_garbage_collect(struct thread *t)
119 {
120 struct rip_info *rinfo;
121 struct route_node *rp;
122
123 rinfo = THREAD_ARG(t);
124 rinfo->t_garbage_collect = NULL;
125
126 /* Off timeout timer. */
127 RIP_TIMER_OFF(rinfo->t_timeout);
128
129 /* Get route_node pointer. */
130 rp = rinfo->rp;
131
132 /* Unlock route_node. */
133 listnode_delete(rp->info, rinfo);
134 if (list_isempty((struct list *)rp->info)) {
135 list_delete((struct list **)&rp->info);
136 route_unlock_node(rp);
137 }
138
139 /* Free RIP routing information. */
140 rip_info_free(rinfo);
141
142 return 0;
143 }
144
145 static void rip_timeout_update(struct rip_info *rinfo);
146
147 /* Add new route to the ECMP list.
148 * RETURN: the new entry added in the list, or NULL if it is not the first
149 * entry and ECMP is not allowed.
150 */
151 struct rip_info *rip_ecmp_add(struct rip_info *rinfo_new)
152 {
153 struct route_node *rp = rinfo_new->rp;
154 struct rip_info *rinfo = NULL;
155 struct list *list = NULL;
156
157 if (rp->info == NULL)
158 rp->info = list_new();
159 list = (struct list *)rp->info;
160
161 /* If ECMP is not allowed and some entry already exists in the list,
162 * do nothing. */
163 if (listcount(list) && !rip->ecmp)
164 return NULL;
165
166 rinfo = rip_info_new();
167 memcpy(rinfo, rinfo_new, sizeof(struct rip_info));
168 listnode_add(list, rinfo);
169
170 if (rip_route_rte(rinfo)) {
171 rip_timeout_update(rinfo);
172 rip_zebra_ipv4_add(rp);
173 }
174
175 /* Set the route change flag on the first entry. */
176 rinfo = listgetdata(listhead(list));
177 SET_FLAG(rinfo->flags, RIP_RTF_CHANGED);
178
179 /* Signal the output process to trigger an update (see section 2.5). */
180 rip_event(RIP_TRIGGERED_UPDATE, 0);
181
182 return rinfo;
183 }
184
185 /* Replace the ECMP list with the new route.
186 * RETURN: the new entry added in the list
187 */
188 struct rip_info *rip_ecmp_replace(struct rip_info *rinfo_new)
189 {
190 struct route_node *rp = rinfo_new->rp;
191 struct list *list = (struct list *)rp->info;
192 struct rip_info *rinfo = NULL, *tmp_rinfo = NULL;
193 struct listnode *node = NULL, *nextnode = NULL;
194
195 if (list == NULL || listcount(list) == 0)
196 return rip_ecmp_add(rinfo_new);
197
198 /* Get the first entry */
199 rinfo = listgetdata(listhead(list));
200
201 /* Learnt route replaced by a local one. Delete it from zebra. */
202 if (rip_route_rte(rinfo) && !rip_route_rte(rinfo_new))
203 if (CHECK_FLAG(rinfo->flags, RIP_RTF_FIB))
204 rip_zebra_ipv4_delete(rp);
205
206 /* Re-use the first entry, and delete the others. */
207 for (ALL_LIST_ELEMENTS(list, node, nextnode, tmp_rinfo))
208 if (tmp_rinfo != rinfo) {
209 RIP_TIMER_OFF(tmp_rinfo->t_timeout);
210 RIP_TIMER_OFF(tmp_rinfo->t_garbage_collect);
211 list_delete_node(list, node);
212 rip_info_free(tmp_rinfo);
213 }
214
215 RIP_TIMER_OFF(rinfo->t_timeout);
216 RIP_TIMER_OFF(rinfo->t_garbage_collect);
217 memcpy(rinfo, rinfo_new, sizeof(struct rip_info));
218
219 if (rip_route_rte(rinfo)) {
220 rip_timeout_update(rinfo);
221 /* The ADD message implies an update. */
222 rip_zebra_ipv4_add(rp);
223 }
224
225 /* Set the route change flag. */
226 SET_FLAG(rinfo->flags, RIP_RTF_CHANGED);
227
228 /* Signal the output process to trigger an update (see section 2.5). */
229 rip_event(RIP_TRIGGERED_UPDATE, 0);
230
231 return rinfo;
232 }
233
234 /* Delete one route from the ECMP list.
235 * RETURN:
236 * null - the entry is freed, and other entries exist in the list
237 * the entry - the entry is the last one in the list; its metric is set
238 * to INFINITY, and the garbage collector is started for it
239 */
240 struct rip_info *rip_ecmp_delete(struct rip_info *rinfo)
241 {
242 struct route_node *rp = rinfo->rp;
243 struct list *list = (struct list *)rp->info;
244
245 RIP_TIMER_OFF(rinfo->t_timeout);
246
247 if (listcount(list) > 1) {
248 /* Some other ECMP entries still exist. Just delete this entry.
249 */
250 RIP_TIMER_OFF(rinfo->t_garbage_collect);
251 listnode_delete(list, rinfo);
252 if (rip_route_rte(rinfo)
253 && CHECK_FLAG(rinfo->flags, RIP_RTF_FIB))
254 /* The ADD message implies the update. */
255 rip_zebra_ipv4_add(rp);
256 rip_info_free(rinfo);
257 rinfo = NULL;
258 } else {
259 assert(rinfo == listgetdata(listhead(list)));
260
261 /* This is the only entry left in the list. We must keep it in
262 * the list for garbage collection time, with INFINITY metric.
263 */
264
265 rinfo->metric = RIP_METRIC_INFINITY;
266 RIP_TIMER_ON(rinfo->t_garbage_collect, rip_garbage_collect,
267 rip->garbage_time);
268
269 if (rip_route_rte(rinfo)
270 && CHECK_FLAG(rinfo->flags, RIP_RTF_FIB))
271 rip_zebra_ipv4_delete(rp);
272 }
273
274 /* Set the route change flag on the first entry. */
275 rinfo = listgetdata(listhead(list));
276 SET_FLAG(rinfo->flags, RIP_RTF_CHANGED);
277
278 /* Signal the output process to trigger an update (see section 2.5). */
279 rip_event(RIP_TRIGGERED_UPDATE, 0);
280
281 return rinfo;
282 }
283
284 /* Timeout RIP routes. */
285 static int rip_timeout(struct thread *t)
286 {
287 rip_ecmp_delete((struct rip_info *)THREAD_ARG(t));
288 return 0;
289 }
290
291 static void rip_timeout_update(struct rip_info *rinfo)
292 {
293 if (rinfo->metric != RIP_METRIC_INFINITY) {
294 RIP_TIMER_OFF(rinfo->t_timeout);
295 RIP_TIMER_ON(rinfo->t_timeout, rip_timeout, rip->timeout_time);
296 }
297 }
298
299 static int rip_filter(int rip_distribute, struct prefix_ipv4 *p,
300 struct rip_interface *ri)
301 {
302 struct distribute *dist;
303 struct access_list *alist;
304 struct prefix_list *plist;
305 int distribute = rip_distribute == RIP_FILTER_OUT ? DISTRIBUTE_V4_OUT
306 : DISTRIBUTE_V4_IN;
307 const char *inout = rip_distribute == RIP_FILTER_OUT ? "out" : "in";
308
309 /* Input distribute-list filtering. */
310 if (ri->list[rip_distribute]) {
311 if (access_list_apply(ri->list[rip_distribute],
312 (struct prefix *)p)
313 == FILTER_DENY) {
314 if (IS_RIP_DEBUG_PACKET)
315 zlog_debug("%s/%d filtered by distribute %s",
316 inet_ntoa(p->prefix), p->prefixlen,
317 inout);
318 return -1;
319 }
320 }
321 if (ri->prefix[rip_distribute]) {
322 if (prefix_list_apply(ri->prefix[rip_distribute],
323 (struct prefix *)p)
324 == PREFIX_DENY) {
325 if (IS_RIP_DEBUG_PACKET)
326 zlog_debug("%s/%d filtered by prefix-list %s",
327 inet_ntoa(p->prefix), p->prefixlen,
328 inout);
329 return -1;
330 }
331 }
332
333 /* All interface filter check. */
334 dist = distribute_lookup(NULL);
335 if (dist) {
336 if (dist->list[distribute]) {
337 alist = access_list_lookup(AFI_IP,
338 dist->list[distribute]);
339
340 if (alist) {
341 if (access_list_apply(alist, (struct prefix *)p)
342 == FILTER_DENY) {
343 if (IS_RIP_DEBUG_PACKET)
344 zlog_debug(
345 "%s/%d filtered by distribute %s",
346 inet_ntoa(p->prefix),
347 p->prefixlen, inout);
348 return -1;
349 }
350 }
351 }
352 if (dist->prefix[distribute]) {
353 plist = prefix_list_lookup(AFI_IP,
354 dist->prefix[distribute]);
355
356 if (plist) {
357 if (prefix_list_apply(plist, (struct prefix *)p)
358 == PREFIX_DENY) {
359 if (IS_RIP_DEBUG_PACKET)
360 zlog_debug(
361 "%s/%d filtered by prefix-list %s",
362 inet_ntoa(p->prefix),
363 p->prefixlen, inout);
364 return -1;
365 }
366 }
367 }
368 }
369 return 0;
370 }
371
372 /* Check nexthop address validity. */
373 static int rip_nexthop_check(struct in_addr *addr)
374 {
375 struct vrf *vrf = vrf_lookup_by_id(VRF_DEFAULT);
376 struct interface *ifp;
377 struct listnode *cnode;
378 struct connected *ifc;
379 struct prefix *p;
380
381 /* If nexthop address matches local configured address then it is
382 invalid nexthop. */
383
384 FOR_ALL_INTERFACES (vrf, ifp) {
385 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, ifc)) {
386 p = ifc->address;
387
388 if (p->family == AF_INET
389 && IPV4_ADDR_SAME(&p->u.prefix4, addr))
390 return -1;
391 }
392 }
393 return 0;
394 }
395
396 /* RIP add route to routing table. */
397 static void rip_rte_process(struct rte *rte, struct sockaddr_in *from,
398 struct interface *ifp)
399 {
400 int ret;
401 struct prefix_ipv4 p;
402 struct route_node *rp;
403 struct rip_info *rinfo = NULL, newinfo;
404 struct rip_interface *ri;
405 struct in_addr *nexthop;
406 int same = 0;
407 unsigned char old_dist, new_dist;
408 struct list *list = NULL;
409 struct listnode *node = NULL;
410
411 /* Make prefix structure. */
412 memset(&p, 0, sizeof(struct prefix_ipv4));
413 p.family = AF_INET;
414 p.prefix = rte->prefix;
415 p.prefixlen = ip_masklen(rte->mask);
416
417 /* Make sure mask is applied. */
418 apply_mask_ipv4(&p);
419
420 /* Apply input filters. */
421 ri = ifp->info;
422
423 ret = rip_filter(RIP_FILTER_IN, &p, ri);
424 if (ret < 0)
425 return;
426
427 memset(&newinfo, 0, sizeof(newinfo));
428 newinfo.type = ZEBRA_ROUTE_RIP;
429 newinfo.sub_type = RIP_ROUTE_RTE;
430 newinfo.nh.gate.ipv4 = rte->nexthop;
431 newinfo.from = from->sin_addr;
432 newinfo.nh.ifindex = ifp->ifindex;
433 newinfo.nh.type = NEXTHOP_TYPE_IPV4_IFINDEX;
434 newinfo.metric = rte->metric;
435 newinfo.metric_out = rte->metric; /* XXX */
436 newinfo.tag = ntohs(rte->tag); /* XXX */
437
438 /* Modify entry according to the interface routemap. */
439 if (ri->routemap[RIP_FILTER_IN]) {
440 /* The object should be of the type of rip_info */
441 ret = route_map_apply(ri->routemap[RIP_FILTER_IN],
442 (struct prefix *)&p, RMAP_RIP, &newinfo);
443
444 if (ret == RMAP_DENYMATCH) {
445 if (IS_RIP_DEBUG_PACKET)
446 zlog_debug(
447 "RIP %s/%d is filtered by route-map in",
448 inet_ntoa(p.prefix), p.prefixlen);
449 return;
450 }
451
452 /* Get back the object */
453 rte->nexthop = newinfo.nexthop_out;
454 rte->tag = htons(newinfo.tag_out); /* XXX */
455 rte->metric = newinfo.metric_out; /* XXX: the routemap uses the
456 metric_out field */
457 }
458
459 /* Once the entry has been validated, update the metric by
460 adding the cost of the network on wich the message
461 arrived. If the result is greater than infinity, use infinity
462 (RFC2453 Sec. 3.9.2) */
463 /* Zebra ripd can handle offset-list in. */
464 ret = rip_offset_list_apply_in(&p, ifp, &rte->metric);
465
466 /* If offset-list does not modify the metric use interface's
467 metric. */
468 if (!ret)
469 rte->metric += ifp->metric ? ifp->metric : 1;
470
471 if (rte->metric > RIP_METRIC_INFINITY)
472 rte->metric = RIP_METRIC_INFINITY;
473
474 /* Set nexthop pointer. */
475 if (rte->nexthop.s_addr == 0)
476 nexthop = &from->sin_addr;
477 else
478 nexthop = &rte->nexthop;
479
480 /* Check if nexthop address is myself, then do nothing. */
481 if (rip_nexthop_check(nexthop) < 0) {
482 if (IS_RIP_DEBUG_PACKET)
483 zlog_debug("Nexthop address %s is myself",
484 inet_ntoa(*nexthop));
485 return;
486 }
487
488 /* Get index for the prefix. */
489 rp = route_node_get(rip->table, (struct prefix *)&p);
490
491 newinfo.rp = rp;
492 newinfo.nh.gate.ipv4 = *nexthop;
493 newinfo.nh.type = NEXTHOP_TYPE_IPV4;
494 newinfo.metric = rte->metric;
495 newinfo.tag = ntohs(rte->tag);
496 newinfo.distance = rip_distance_apply(&newinfo);
497
498 new_dist = newinfo.distance ? newinfo.distance
499 : ZEBRA_RIP_DISTANCE_DEFAULT;
500
501 /* Check to see whether there is already RIP route on the table. */
502 if ((list = rp->info) != NULL)
503 for (ALL_LIST_ELEMENTS_RO(list, node, rinfo)) {
504 /* Need to compare with redistributed entry or local
505 * entry */
506 if (!rip_route_rte(rinfo))
507 break;
508
509 if (IPV4_ADDR_SAME(&rinfo->from, &from->sin_addr)
510 && IPV4_ADDR_SAME(&rinfo->nh.gate.ipv4, nexthop))
511 break;
512
513 if (!listnextnode(node)) {
514 /* Not found in the list */
515
516 if (rte->metric > rinfo->metric) {
517 /* New route has a greater metric.
518 * Discard it. */
519 route_unlock_node(rp);
520 return;
521 }
522
523 if (rte->metric < rinfo->metric)
524 /* New route has a smaller metric.
525 * Replace the ECMP list
526 * with the new one in below. */
527 break;
528
529 /* Metrics are same. We compare the distances.
530 */
531 old_dist = rinfo->distance
532 ? rinfo->distance
533 : ZEBRA_RIP_DISTANCE_DEFAULT;
534
535 if (new_dist > old_dist) {
536 /* New route has a greater distance.
537 * Discard it. */
538 route_unlock_node(rp);
539 return;
540 }
541
542 if (new_dist < old_dist)
543 /* New route has a smaller distance.
544 * Replace the ECMP list
545 * with the new one in below. */
546 break;
547
548 /* Metrics and distances are both same. Keep
549 * "rinfo" null and
550 * the new route is added in the ECMP list in
551 * below. */
552 }
553 }
554
555 if (rinfo) {
556 /* Local static route. */
557 if (rinfo->type == ZEBRA_ROUTE_RIP
558 && ((rinfo->sub_type == RIP_ROUTE_STATIC)
559 || (rinfo->sub_type == RIP_ROUTE_DEFAULT))
560 && rinfo->metric != RIP_METRIC_INFINITY) {
561 route_unlock_node(rp);
562 return;
563 }
564
565 /* Redistributed route check. */
566 if (rinfo->type != ZEBRA_ROUTE_RIP
567 && rinfo->metric != RIP_METRIC_INFINITY) {
568 old_dist = rinfo->distance;
569 /* Only routes directly connected to an interface
570 * (nexthop == 0)
571 * may have a valid NULL distance */
572 if (rinfo->nh.gate.ipv4.s_addr != 0)
573 old_dist = old_dist
574 ? old_dist
575 : ZEBRA_RIP_DISTANCE_DEFAULT;
576 /* If imported route does not have STRICT precedence,
577 mark it as a ghost */
578 if (new_dist <= old_dist
579 && rte->metric != RIP_METRIC_INFINITY)
580 rip_ecmp_replace(&newinfo);
581
582 route_unlock_node(rp);
583 return;
584 }
585 }
586
587 if (!rinfo) {
588 if (rp->info)
589 route_unlock_node(rp);
590
591 /* Now, check to see whether there is already an explicit route
592 for the destination prefix. If there is no such route, add
593 this route to the routing table, unless the metric is
594 infinity (there is no point in adding a route which
595 unusable). */
596 if (rte->metric != RIP_METRIC_INFINITY)
597 rip_ecmp_add(&newinfo);
598 } else {
599 /* Route is there but we are not sure the route is RIP or not.
600 */
601
602 /* If there is an existing route, compare the next hop address
603 to the address of the router from which the datagram came.
604 If this datagram is from the same router as the existing
605 route, reinitialize the timeout. */
606 same = (IPV4_ADDR_SAME(&rinfo->from, &from->sin_addr)
607 && (rinfo->nh.ifindex == ifp->ifindex));
608
609 old_dist = rinfo->distance ? rinfo->distance
610 : ZEBRA_RIP_DISTANCE_DEFAULT;
611
612 /* Next, compare the metrics. If the datagram is from the same
613 router as the existing route, and the new metric is different
614 than the old one; or, if the new metric is lower than the old
615 one, or if the tag has been changed; or if there is a route
616 with a lower administrave distance; or an update of the
617 distance on the actual route; do the following actions: */
618 if ((same && rinfo->metric != rte->metric)
619 || (rte->metric < rinfo->metric)
620 || ((same) && (rinfo->metric == rte->metric)
621 && (newinfo.tag != rinfo->tag))
622 || (old_dist > new_dist)
623 || ((old_dist != new_dist) && same)) {
624 if (listcount(list) == 1) {
625 if (newinfo.metric != RIP_METRIC_INFINITY)
626 rip_ecmp_replace(&newinfo);
627 else
628 rip_ecmp_delete(rinfo);
629 } else {
630 if (newinfo.metric < rinfo->metric)
631 rip_ecmp_replace(&newinfo);
632 else if (newinfo.metric > rinfo->metric)
633 rip_ecmp_delete(rinfo);
634 else if (new_dist < old_dist)
635 rip_ecmp_replace(&newinfo);
636 else if (new_dist > old_dist)
637 rip_ecmp_delete(rinfo);
638 else {
639 int update = CHECK_FLAG(rinfo->flags,
640 RIP_RTF_FIB)
641 ? 1
642 : 0;
643
644 assert(newinfo.metric
645 != RIP_METRIC_INFINITY);
646
647 RIP_TIMER_OFF(rinfo->t_timeout);
648 RIP_TIMER_OFF(rinfo->t_garbage_collect);
649 memcpy(rinfo, &newinfo,
650 sizeof(struct rip_info));
651 rip_timeout_update(rinfo);
652
653 if (update)
654 rip_zebra_ipv4_add(rp);
655
656 /* - Set the route change flag on the
657 * first entry. */
658 rinfo = listgetdata(listhead(list));
659 SET_FLAG(rinfo->flags, RIP_RTF_CHANGED);
660 rip_event(RIP_TRIGGERED_UPDATE, 0);
661 }
662 }
663 } else /* same & no change */
664 rip_timeout_update(rinfo);
665
666 /* Unlock tempolary lock of the route. */
667 route_unlock_node(rp);
668 }
669 }
670
671 /* Dump RIP packet */
672 static void rip_packet_dump(struct rip_packet *packet, int size,
673 const char *sndrcv)
674 {
675 caddr_t lim;
676 struct rte *rte;
677 const char *command_str;
678 char pbuf[BUFSIZ], nbuf[BUFSIZ];
679 uint8_t netmask = 0;
680 uint8_t *p;
681
682 /* Set command string. */
683 if (packet->command > 0 && packet->command < RIP_COMMAND_MAX)
684 command_str = lookup_msg(rip_msg, packet->command, NULL);
685 else
686 command_str = "unknown";
687
688 /* Dump packet header. */
689 zlog_debug("%s %s version %d packet size %d", sndrcv, command_str,
690 packet->version, size);
691
692 /* Dump each routing table entry. */
693 rte = packet->rte;
694
695 for (lim = (caddr_t)packet + size; (caddr_t)rte < lim; rte++) {
696 if (packet->version == RIPv2) {
697 netmask = ip_masklen(rte->mask);
698
699 if (rte->family == htons(RIP_FAMILY_AUTH)) {
700 if (rte->tag
701 == htons(RIP_AUTH_SIMPLE_PASSWORD)) {
702 p = (uint8_t *)&rte->prefix;
703
704 zlog_debug(
705 " family 0x%X type %d auth string: %s",
706 ntohs(rte->family),
707 ntohs(rte->tag), p);
708 } else if (rte->tag == htons(RIP_AUTH_MD5)) {
709 struct rip_md5_info *md5;
710
711 md5 = (struct rip_md5_info *)&packet
712 ->rte;
713
714 zlog_debug(
715 " family 0x%X type %d (MD5 authentication)",
716 ntohs(md5->family),
717 ntohs(md5->type));
718 zlog_debug(
719 " RIP-2 packet len %d Key ID %d"
720 " Auth Data len %d",
721 ntohs(md5->packet_len),
722 md5->keyid, md5->auth_len);
723 zlog_debug(" Sequence Number %ld",
724 (unsigned long)ntohl(
725 md5->sequence));
726 } else if (rte->tag == htons(RIP_AUTH_DATA)) {
727 p = (uint8_t *)&rte->prefix;
728
729 zlog_debug(
730 " family 0x%X type %d (MD5 data)",
731 ntohs(rte->family),
732 ntohs(rte->tag));
733 zlog_debug(
734 " MD5: %02X%02X%02X%02X%02X%02X%02X%02X"
735 "%02X%02X%02X%02X%02X%02X%02X%02X",
736 p[0], p[1], p[2], p[3], p[4],
737 p[5], p[6], p[7], p[8], p[9],
738 p[10], p[11], p[12], p[13],
739 p[14], p[15]);
740 } else {
741 zlog_debug(
742 " family 0x%X type %d (Unknown auth type)",
743 ntohs(rte->family),
744 ntohs(rte->tag));
745 }
746 } else
747 zlog_debug(
748 " %s/%d -> %s family %d tag %" ROUTE_TAG_PRI
749 " metric %ld",
750 inet_ntop(AF_INET, &rte->prefix, pbuf,
751 BUFSIZ),
752 netmask,
753 inet_ntop(AF_INET, &rte->nexthop, nbuf,
754 BUFSIZ),
755 ntohs(rte->family),
756 (route_tag_t)ntohs(rte->tag),
757 (unsigned long)ntohl(rte->metric));
758 } else {
759 zlog_debug(
760 " %s family %d tag %" ROUTE_TAG_PRI
761 " metric %ld",
762 inet_ntop(AF_INET, &rte->prefix, pbuf, BUFSIZ),
763 ntohs(rte->family),
764 (route_tag_t)ntohs(rte->tag),
765 (unsigned long)ntohl(rte->metric));
766 }
767 }
768 }
769
770 /* Check if the destination address is valid (unicast; not net 0
771 or 127) (RFC2453 Section 3.9.2 - Page 26). But we don't
772 check net 0 because we accept default route. */
773 static int rip_destination_check(struct in_addr addr)
774 {
775 uint32_t destination;
776
777 /* Convert to host byte order. */
778 destination = ntohl(addr.s_addr);
779
780 if (IPV4_NET127(destination))
781 return 0;
782
783 /* Net 0 may match to the default route. */
784 if (IPV4_NET0(destination) && destination != 0)
785 return 0;
786
787 /* Unicast address must belong to class A, B, C. */
788 if (IN_CLASSA(destination))
789 return 1;
790 if (IN_CLASSB(destination))
791 return 1;
792 if (IN_CLASSC(destination))
793 return 1;
794
795 return 0;
796 }
797
798 /* RIP version 2 authentication. */
799 static int rip_auth_simple_password(struct rte *rte, struct sockaddr_in *from,
800 struct interface *ifp)
801 {
802 struct rip_interface *ri;
803 char *auth_str = (char *)rte + offsetof(struct rte, prefix);
804 int i;
805
806 /* reject passwords with zeros in the middle of the string */
807 for (i = strnlen(auth_str, 16); i < 16; i++) {
808 if (auth_str[i] != '\0')
809 return 0;
810 }
811
812 if (IS_RIP_DEBUG_EVENT)
813 zlog_debug("RIPv2 simple password authentication from %s",
814 inet_ntoa(from->sin_addr));
815
816 ri = ifp->info;
817
818 if (ri->auth_type != RIP_AUTH_SIMPLE_PASSWORD
819 || rte->tag != htons(RIP_AUTH_SIMPLE_PASSWORD))
820 return 0;
821
822 /* Simple password authentication. */
823 if (ri->auth_str) {
824 if (strncmp(auth_str, ri->auth_str, 16) == 0)
825 return 1;
826 }
827 if (ri->key_chain) {
828 struct keychain *keychain;
829 struct key *key;
830
831 keychain = keychain_lookup(ri->key_chain);
832 if (keychain == NULL || keychain->key == NULL)
833 return 0;
834
835 key = key_match_for_accept(keychain, auth_str);
836 if (key)
837 return 1;
838 }
839 return 0;
840 }
841
842 /* RIP version 2 authentication with MD5. */
843 static int rip_auth_md5(struct rip_packet *packet, struct sockaddr_in *from,
844 int length, struct interface *ifp)
845 {
846 struct rip_interface *ri;
847 struct rip_md5_info *md5;
848 struct rip_md5_data *md5data;
849 struct keychain *keychain;
850 struct key *key;
851 MD5_CTX ctx;
852 uint8_t digest[RIP_AUTH_MD5_SIZE];
853 uint16_t packet_len;
854 char auth_str[RIP_AUTH_MD5_SIZE];
855
856 if (IS_RIP_DEBUG_EVENT)
857 zlog_debug("RIPv2 MD5 authentication from %s",
858 inet_ntoa(from->sin_addr));
859
860 ri = ifp->info;
861 md5 = (struct rip_md5_info *)&packet->rte;
862
863 /* Check auth type. */
864 if (ri->auth_type != RIP_AUTH_MD5 || md5->type != htons(RIP_AUTH_MD5))
865 return 0;
866
867 /* If the authentication length is less than 16, then it must be wrong
868 * for
869 * any interpretation of rfc2082. Some implementations also interpret
870 * this as RIP_HEADER_SIZE+ RIP_AUTH_MD5_SIZE, aka
871 * RIP_AUTH_MD5_COMPAT_SIZE.
872 */
873 if (!((md5->auth_len == RIP_AUTH_MD5_SIZE)
874 || (md5->auth_len == RIP_AUTH_MD5_COMPAT_SIZE))) {
875 if (IS_RIP_DEBUG_EVENT)
876 zlog_debug(
877 "RIPv2 MD5 authentication, strange authentication "
878 "length field %d",
879 md5->auth_len);
880 return 0;
881 }
882
883 /* grab and verify check packet length */
884 packet_len = ntohs(md5->packet_len);
885
886 if (packet_len > (length - RIP_HEADER_SIZE - RIP_AUTH_MD5_SIZE)) {
887 if (IS_RIP_DEBUG_EVENT)
888 zlog_debug(
889 "RIPv2 MD5 authentication, packet length field %d "
890 "greater than received length %d!",
891 md5->packet_len, length);
892 return 0;
893 }
894
895 /* retrieve authentication data */
896 md5data = (struct rip_md5_data *)(((uint8_t *)packet) + packet_len);
897
898 memset(auth_str, 0, RIP_AUTH_MD5_SIZE);
899
900 if (ri->key_chain) {
901 keychain = keychain_lookup(ri->key_chain);
902 if (keychain == NULL)
903 return 0;
904
905 key = key_lookup_for_accept(keychain, md5->keyid);
906 if (key == NULL || key->string == NULL)
907 return 0;
908
909 strncpy(auth_str, key->string, RIP_AUTH_MD5_SIZE);
910 } else if (ri->auth_str)
911 strncpy(auth_str, ri->auth_str, RIP_AUTH_MD5_SIZE);
912
913 if (auth_str[0] == 0)
914 return 0;
915
916 /* MD5 digest authentication. */
917 memset(&ctx, 0, sizeof(ctx));
918 MD5Init(&ctx);
919 MD5Update(&ctx, packet, packet_len + RIP_HEADER_SIZE);
920 MD5Update(&ctx, auth_str, RIP_AUTH_MD5_SIZE);
921 MD5Final(digest, &ctx);
922
923 if (memcmp(md5data->digest, digest, RIP_AUTH_MD5_SIZE) == 0)
924 return packet_len;
925 else
926 return 0;
927 }
928
929 /* Pick correct auth string for sends, prepare auth_str buffer for use.
930 * (left justified and padded).
931 *
932 * presumes one of ri or key is valid, and that the auth strings they point
933 * to are nul terminated. If neither are present, auth_str will be fully
934 * zero padded.
935 *
936 */
937 static void rip_auth_prepare_str_send(struct rip_interface *ri, struct key *key,
938 char *auth_str, int len)
939 {
940 assert(ri || key);
941
942 memset(auth_str, 0, len);
943 if (key && key->string)
944 strncpy(auth_str, key->string, len);
945 else if (ri->auth_str)
946 strncpy(auth_str, ri->auth_str, len);
947
948 return;
949 }
950
951 /* Write RIPv2 simple password authentication information
952 *
953 * auth_str is presumed to be 2 bytes and correctly prepared
954 * (left justified and zero padded).
955 */
956 static void rip_auth_simple_write(struct stream *s, char *auth_str, int len)
957 {
958 assert(s && len == RIP_AUTH_SIMPLE_SIZE);
959
960 stream_putw(s, RIP_FAMILY_AUTH);
961 stream_putw(s, RIP_AUTH_SIMPLE_PASSWORD);
962 stream_put(s, auth_str, RIP_AUTH_SIMPLE_SIZE);
963
964 return;
965 }
966
967 /* write RIPv2 MD5 "authentication header"
968 * (uses the auth key data field)
969 *
970 * Digest offset field is set to 0.
971 *
972 * returns: offset of the digest offset field, which must be set when
973 * length to the auth-data MD5 digest is known.
974 */
975 static size_t rip_auth_md5_ah_write(struct stream *s, struct rip_interface *ri,
976 struct key *key)
977 {
978 size_t doff = 0;
979
980 assert(s && ri && ri->auth_type == RIP_AUTH_MD5);
981
982 /* MD5 authentication. */
983 stream_putw(s, RIP_FAMILY_AUTH);
984 stream_putw(s, RIP_AUTH_MD5);
985
986 /* MD5 AH digest offset field.
987 *
988 * Set to placeholder value here, to true value when RIP-2 Packet length
989 * is known. Actual value is set in .....().
990 */
991 doff = stream_get_endp(s);
992 stream_putw(s, 0);
993
994 /* Key ID. */
995 if (key)
996 stream_putc(s, key->index % 256);
997 else
998 stream_putc(s, 1);
999
1000 /* Auth Data Len. Set 16 for MD5 authentication data. Older ripds
1001 * however expect RIP_HEADER_SIZE + RIP_AUTH_MD5_SIZE so we allow for
1002 * this
1003 * to be configurable.
1004 */
1005 stream_putc(s, ri->md5_auth_len);
1006
1007 /* Sequence Number (non-decreasing). */
1008 /* RFC2080: The value used in the sequence number is
1009 arbitrary, but two suggestions are the time of the
1010 message's creation or a simple message counter. */
1011 stream_putl(s, time(NULL));
1012
1013 /* Reserved field must be zero. */
1014 stream_putl(s, 0);
1015 stream_putl(s, 0);
1016
1017 return doff;
1018 }
1019
1020 /* If authentication is in used, write the appropriate header
1021 * returns stream offset to which length must later be written
1022 * or 0 if this is not required
1023 */
1024 static size_t rip_auth_header_write(struct stream *s, struct rip_interface *ri,
1025 struct key *key, char *auth_str, int len)
1026 {
1027 assert(ri->auth_type != RIP_NO_AUTH);
1028
1029 switch (ri->auth_type) {
1030 case RIP_AUTH_SIMPLE_PASSWORD:
1031 rip_auth_prepare_str_send(ri, key, auth_str, len);
1032 rip_auth_simple_write(s, auth_str, len);
1033 return 0;
1034 case RIP_AUTH_MD5:
1035 return rip_auth_md5_ah_write(s, ri, key);
1036 }
1037 assert(1);
1038 return 0;
1039 }
1040
1041 /* Write RIPv2 MD5 authentication data trailer */
1042 static void rip_auth_md5_set(struct stream *s, struct rip_interface *ri,
1043 size_t doff, char *auth_str, int authlen)
1044 {
1045 unsigned long len;
1046 MD5_CTX ctx;
1047 unsigned char digest[RIP_AUTH_MD5_SIZE];
1048
1049 /* Make it sure this interface is configured as MD5
1050 authentication. */
1051 assert((ri->auth_type == RIP_AUTH_MD5)
1052 && (authlen == RIP_AUTH_MD5_SIZE));
1053 assert(doff > 0);
1054
1055 /* Get packet length. */
1056 len = stream_get_endp(s);
1057
1058 /* Check packet length. */
1059 if (len < (RIP_HEADER_SIZE + RIP_RTE_SIZE)) {
1060 flog_err(
1061 EC_RIP_PACKET,
1062 "rip_auth_md5_set(): packet length %ld is less than minimum length.",
1063 len);
1064 return;
1065 }
1066
1067 /* Set the digest offset length in the header */
1068 stream_putw_at(s, doff, len);
1069
1070 /* Set authentication data. */
1071 stream_putw(s, RIP_FAMILY_AUTH);
1072 stream_putw(s, RIP_AUTH_DATA);
1073
1074 /* Generate a digest for the RIP packet. */
1075 memset(&ctx, 0, sizeof(ctx));
1076 MD5Init(&ctx);
1077 MD5Update(&ctx, STREAM_DATA(s), stream_get_endp(s));
1078 MD5Update(&ctx, auth_str, RIP_AUTH_MD5_SIZE);
1079 MD5Final(digest, &ctx);
1080
1081 /* Copy the digest to the packet. */
1082 stream_write(s, digest, RIP_AUTH_MD5_SIZE);
1083 }
1084
1085 /* RIP routing information. */
1086 static void rip_response_process(struct rip_packet *packet, int size,
1087 struct sockaddr_in *from,
1088 struct connected *ifc)
1089 {
1090 caddr_t lim;
1091 struct rte *rte;
1092 struct prefix_ipv4 ifaddr;
1093 struct prefix_ipv4 ifaddrclass;
1094 int subnetted;
1095
1096 memset(&ifaddr, 0, sizeof(ifaddr));
1097 /* We don't know yet. */
1098 subnetted = -1;
1099
1100 /* The Response must be ignored if it is not from the RIP
1101 port. (RFC2453 - Sec. 3.9.2)*/
1102 if (from->sin_port != htons(RIP_PORT_DEFAULT)) {
1103 zlog_info("response doesn't come from RIP port: %d",
1104 from->sin_port);
1105 rip_peer_bad_packet(from);
1106 return;
1107 }
1108
1109 /* The datagram's IPv4 source address should be checked to see
1110 whether the datagram is from a valid neighbor; the source of the
1111 datagram must be on a directly connected network (RFC2453 - Sec.
1112 3.9.2) */
1113 if (if_lookup_address((void *)&from->sin_addr, AF_INET, VRF_DEFAULT)
1114 == NULL) {
1115 zlog_info(
1116 "This datagram doesn't came from a valid neighbor: %s",
1117 inet_ntoa(from->sin_addr));
1118 rip_peer_bad_packet(from);
1119 return;
1120 }
1121
1122 /* It is also worth checking to see whether the response is from one
1123 of the router's own addresses. */
1124
1125 ; /* Alredy done in rip_read () */
1126
1127 /* Update RIP peer. */
1128 rip_peer_update(from, packet->version);
1129
1130 /* Set RTE pointer. */
1131 rte = packet->rte;
1132
1133 for (lim = (caddr_t)packet + size; (caddr_t)rte < lim; rte++) {
1134 /* RIPv2 authentication check. */
1135 /* If the Address Family Identifier of the first (and only the
1136 first) entry in the message is 0xFFFF, then the remainder of
1137 the entry contains the authentication. */
1138 /* If the packet gets here it means authentication enabled */
1139 /* Check is done in rip_read(). So, just skipping it */
1140 if (packet->version == RIPv2 && rte == packet->rte
1141 && rte->family == htons(RIP_FAMILY_AUTH))
1142 continue;
1143
1144 if (rte->family != htons(AF_INET)) {
1145 /* Address family check. RIP only supports AF_INET. */
1146 zlog_info("Unsupported family %d from %s.",
1147 ntohs(rte->family),
1148 inet_ntoa(from->sin_addr));
1149 continue;
1150 }
1151
1152 /* - is the destination address valid (e.g., unicast; not net 0
1153 or 127) */
1154 if (!rip_destination_check(rte->prefix)) {
1155 zlog_info(
1156 "Network is net 0 or net 127 or it is not unicast network");
1157 rip_peer_bad_route(from);
1158 continue;
1159 }
1160
1161 /* Convert metric value to host byte order. */
1162 rte->metric = ntohl(rte->metric);
1163
1164 /* - is the metric valid (i.e., between 1 and 16, inclusive) */
1165 if (!(rte->metric >= 1 && rte->metric <= 16)) {
1166 zlog_info("Route's metric is not in the 1-16 range.");
1167 rip_peer_bad_route(from);
1168 continue;
1169 }
1170
1171 /* RIPv1 does not have nexthop value. */
1172 if (packet->version == RIPv1 && rte->nexthop.s_addr != 0) {
1173 zlog_info("RIPv1 packet with nexthop value %s",
1174 inet_ntoa(rte->nexthop));
1175 rip_peer_bad_route(from);
1176 continue;
1177 }
1178
1179 /* That is, if the provided information is ignored, a possibly
1180 sub-optimal, but absolutely valid, route may be taken. If
1181 the received Next Hop is not directly reachable, it should be
1182 treated as 0.0.0.0. */
1183 if (packet->version == RIPv2 && rte->nexthop.s_addr != 0) {
1184 uint32_t addrval;
1185
1186 /* Multicast address check. */
1187 addrval = ntohl(rte->nexthop.s_addr);
1188 if (IN_CLASSD(addrval)) {
1189 zlog_info(
1190 "Nexthop %s is multicast address, skip this rte",
1191 inet_ntoa(rte->nexthop));
1192 continue;
1193 }
1194
1195 if (!if_lookup_address((void *)&rte->nexthop, AF_INET,
1196 VRF_DEFAULT)) {
1197 struct route_node *rn;
1198 struct rip_info *rinfo;
1199
1200 rn = route_node_match_ipv4(rip->table,
1201 &rte->nexthop);
1202
1203 if (rn) {
1204 rinfo = rn->info;
1205
1206 if (rinfo->type == ZEBRA_ROUTE_RIP
1207 && rinfo->sub_type
1208 == RIP_ROUTE_RTE) {
1209 if (IS_RIP_DEBUG_EVENT)
1210 zlog_debug(
1211 "Next hop %s is on RIP network. Set nexthop to the packet's originator",
1212 inet_ntoa(
1213 rte->nexthop));
1214 rte->nexthop = rinfo->from;
1215 } else {
1216 if (IS_RIP_DEBUG_EVENT)
1217 zlog_debug(
1218 "Next hop %s is not directly reachable. Treat it as 0.0.0.0",
1219 inet_ntoa(
1220 rte->nexthop));
1221 rte->nexthop.s_addr = 0;
1222 }
1223
1224 route_unlock_node(rn);
1225 } else {
1226 if (IS_RIP_DEBUG_EVENT)
1227 zlog_debug(
1228 "Next hop %s is not directly reachable. Treat it as 0.0.0.0",
1229 inet_ntoa(
1230 rte->nexthop));
1231 rte->nexthop.s_addr = 0;
1232 }
1233 }
1234 }
1235
1236 /* For RIPv1, there won't be a valid netmask.
1237
1238 This is a best guess at the masks. If everyone was using old
1239 Ciscos before the 'ip subnet zero' option, it would be almost
1240 right too :-)
1241
1242 Cisco summarize ripv1 advertisements to the classful boundary
1243 (/16 for class B's) except when the RIP packet does to inside
1244 the classful network in question. */
1245
1246 if ((packet->version == RIPv1 && rte->prefix.s_addr != 0)
1247 || (packet->version == RIPv2
1248 && (rte->prefix.s_addr != 0
1249 && rte->mask.s_addr == 0))) {
1250 uint32_t destination;
1251
1252 if (subnetted == -1) {
1253 memcpy(&ifaddr, ifc->address,
1254 sizeof(struct prefix_ipv4));
1255 memcpy(&ifaddrclass, &ifaddr,
1256 sizeof(struct prefix_ipv4));
1257 apply_classful_mask_ipv4(&ifaddrclass);
1258 subnetted = 0;
1259 if (ifaddr.prefixlen > ifaddrclass.prefixlen)
1260 subnetted = 1;
1261 }
1262
1263 destination = ntohl(rte->prefix.s_addr);
1264
1265 if (IN_CLASSA(destination))
1266 masklen2ip(8, &rte->mask);
1267 else if (IN_CLASSB(destination))
1268 masklen2ip(16, &rte->mask);
1269 else if (IN_CLASSC(destination))
1270 masklen2ip(24, &rte->mask);
1271
1272 if (subnetted == 1)
1273 masklen2ip(ifaddrclass.prefixlen,
1274 (struct in_addr *)&destination);
1275 if ((subnetted == 1)
1276 && ((rte->prefix.s_addr & destination)
1277 == ifaddrclass.prefix.s_addr)) {
1278 masklen2ip(ifaddr.prefixlen, &rte->mask);
1279 if ((rte->prefix.s_addr & rte->mask.s_addr)
1280 != rte->prefix.s_addr)
1281 masklen2ip(32, &rte->mask);
1282 if (IS_RIP_DEBUG_EVENT)
1283 zlog_debug("Subnetted route %s",
1284 inet_ntoa(rte->prefix));
1285 } else {
1286 if ((rte->prefix.s_addr & rte->mask.s_addr)
1287 != rte->prefix.s_addr)
1288 continue;
1289 }
1290
1291 if (IS_RIP_DEBUG_EVENT) {
1292 zlog_debug("Resultant route %s",
1293 inet_ntoa(rte->prefix));
1294 zlog_debug("Resultant mask %s",
1295 inet_ntoa(rte->mask));
1296 }
1297 }
1298
1299 /* In case of RIPv2, if prefix in RTE is not netmask applied one
1300 ignore the entry. */
1301 if ((packet->version == RIPv2) && (rte->mask.s_addr != 0)
1302 && ((rte->prefix.s_addr & rte->mask.s_addr)
1303 != rte->prefix.s_addr)) {
1304 zlog_warn(
1305 "RIPv2 address %s is not mask /%d applied one",
1306 inet_ntoa(rte->prefix), ip_masklen(rte->mask));
1307 rip_peer_bad_route(from);
1308 continue;
1309 }
1310
1311 /* Default route's netmask is ignored. */
1312 if (packet->version == RIPv2 && (rte->prefix.s_addr == 0)
1313 && (rte->mask.s_addr != 0)) {
1314 if (IS_RIP_DEBUG_EVENT)
1315 zlog_debug(
1316 "Default route with non-zero netmask. Set zero to netmask");
1317 rte->mask.s_addr = 0;
1318 }
1319
1320 /* Routing table updates. */
1321 rip_rte_process(rte, from, ifc->ifp);
1322 }
1323 }
1324
1325 /* Make socket for RIP protocol. */
1326 int rip_create_socket(void)
1327 {
1328 int ret;
1329 int sock;
1330 struct sockaddr_in addr;
1331
1332 memset(&addr, 0, sizeof(struct sockaddr_in));
1333 addr.sin_family = AF_INET;
1334 addr.sin_addr.s_addr = INADDR_ANY;
1335 #ifdef HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
1336 addr.sin_len = sizeof(struct sockaddr_in);
1337 #endif /* HAVE_STRUCT_SOCKADDR_IN_SIN_LEN */
1338 /* sending port must always be the RIP port */
1339 addr.sin_port = htons(RIP_PORT_DEFAULT);
1340
1341 /* Make datagram socket. */
1342 sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
1343 if (sock < 0) {
1344 flog_err_sys(EC_LIB_SOCKET, "Cannot create UDP socket: %s",
1345 safe_strerror(errno));
1346 exit(1);
1347 }
1348
1349 sockopt_broadcast(sock);
1350 sockopt_reuseaddr(sock);
1351 sockopt_reuseport(sock);
1352 setsockopt_ipv4_multicast_loop(sock, 0);
1353 #ifdef RIP_RECVMSG
1354 setsockopt_pktinfo(sock);
1355 #endif /* RIP_RECVMSG */
1356 #ifdef IPTOS_PREC_INTERNETCONTROL
1357 setsockopt_ipv4_tos(sock, IPTOS_PREC_INTERNETCONTROL);
1358 #endif
1359
1360 frr_elevate_privs(&ripd_privs) {
1361 setsockopt_so_recvbuf(sock, RIP_UDP_RCV_BUF);
1362 if ((ret = bind(sock, (struct sockaddr *)&addr, sizeof(addr)))
1363 < 0) {
1364 zlog_err("%s: Can't bind socket %d to %s port %d: %s",
1365 __func__, sock, inet_ntoa(addr.sin_addr),
1366 (int)ntohs(addr.sin_port),
1367 safe_strerror(errno));
1368
1369 close(sock);
1370 return ret;
1371 }
1372 }
1373
1374 return sock;
1375 }
1376
1377 /* RIP packet send to destination address, on interface denoted by
1378 * by connected argument. NULL to argument denotes destination should be
1379 * should be RIP multicast group
1380 */
1381 static int rip_send_packet(uint8_t *buf, int size, struct sockaddr_in *to,
1382 struct connected *ifc)
1383 {
1384 int ret;
1385 struct sockaddr_in sin;
1386
1387 assert(ifc != NULL);
1388
1389 if (IS_RIP_DEBUG_PACKET) {
1390 #define ADDRESS_SIZE 20
1391 char dst[ADDRESS_SIZE];
1392 dst[ADDRESS_SIZE - 1] = '\0';
1393
1394 if (to) {
1395 strncpy(dst, inet_ntoa(to->sin_addr), ADDRESS_SIZE - 1);
1396 } else {
1397 sin.sin_addr.s_addr = htonl(INADDR_RIP_GROUP);
1398 strncpy(dst, inet_ntoa(sin.sin_addr), ADDRESS_SIZE - 1);
1399 }
1400 #undef ADDRESS_SIZE
1401 zlog_debug("rip_send_packet %s > %s (%s)",
1402 inet_ntoa(ifc->address->u.prefix4), dst,
1403 ifc->ifp->name);
1404 }
1405
1406 if (CHECK_FLAG(ifc->flags, ZEBRA_IFA_SECONDARY)) {
1407 /*
1408 * ZEBRA_IFA_SECONDARY is set on linux when an interface is
1409 * configured
1410 * with multiple addresses on the same subnet: the first address
1411 * on the subnet is configured "primary", and all subsequent
1412 * addresses
1413 * on that subnet are treated as "secondary" addresses.
1414 * In order to avoid routing-table bloat on other rip listeners,
1415 * we do not send out RIP packets with ZEBRA_IFA_SECONDARY
1416 * source addrs.
1417 * XXX Since Linux is the only system for which the
1418 * ZEBRA_IFA_SECONDARY
1419 * flag is set, we would end up sending a packet for a
1420 * "secondary"
1421 * source address on non-linux systems.
1422 */
1423 if (IS_RIP_DEBUG_PACKET)
1424 zlog_debug("duplicate dropped");
1425 return 0;
1426 }
1427
1428 /* Make destination address. */
1429 memset(&sin, 0, sizeof(struct sockaddr_in));
1430 sin.sin_family = AF_INET;
1431 #ifdef HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
1432 sin.sin_len = sizeof(struct sockaddr_in);
1433 #endif /* HAVE_STRUCT_SOCKADDR_IN_SIN_LEN */
1434
1435 /* When destination is specified, use it's port and address. */
1436 if (to) {
1437 sin.sin_port = to->sin_port;
1438 sin.sin_addr = to->sin_addr;
1439 } else {
1440 sin.sin_port = htons(RIP_PORT_DEFAULT);
1441 sin.sin_addr.s_addr = htonl(INADDR_RIP_GROUP);
1442
1443 rip_interface_multicast_set(rip->sock, ifc);
1444 }
1445
1446 ret = sendto(rip->sock, buf, size, 0, (struct sockaddr *)&sin,
1447 sizeof(struct sockaddr_in));
1448
1449 if (IS_RIP_DEBUG_EVENT)
1450 zlog_debug("SEND to %s.%d", inet_ntoa(sin.sin_addr),
1451 ntohs(sin.sin_port));
1452
1453 if (ret < 0)
1454 zlog_warn("can't send packet : %s", safe_strerror(errno));
1455
1456 return ret;
1457 }
1458
1459 /* Add redistributed route to RIP table. */
1460 void rip_redistribute_add(int type, int sub_type, struct prefix_ipv4 *p,
1461 struct nexthop *nh, unsigned int metric,
1462 unsigned char distance, route_tag_t tag)
1463 {
1464 int ret;
1465 struct route_node *rp = NULL;
1466 struct rip_info *rinfo = NULL, newinfo;
1467 struct list *list = NULL;
1468
1469 /* Redistribute route */
1470 ret = rip_destination_check(p->prefix);
1471 if (!ret)
1472 return;
1473
1474 rp = route_node_get(rip->table, (struct prefix *)p);
1475
1476 memset(&newinfo, 0, sizeof(struct rip_info));
1477 newinfo.type = type;
1478 newinfo.sub_type = sub_type;
1479 newinfo.metric = 1;
1480 newinfo.external_metric = metric;
1481 newinfo.distance = distance;
1482 if (tag <= UINT16_MAX) /* RIP only supports 16 bit tags */
1483 newinfo.tag = tag;
1484 newinfo.rp = rp;
1485 newinfo.nh = *nh;
1486
1487 if ((list = rp->info) != NULL && listcount(list) != 0) {
1488 rinfo = listgetdata(listhead(list));
1489
1490 if (rinfo->type == ZEBRA_ROUTE_CONNECT
1491 && rinfo->sub_type == RIP_ROUTE_INTERFACE
1492 && rinfo->metric != RIP_METRIC_INFINITY) {
1493 route_unlock_node(rp);
1494 return;
1495 }
1496
1497 /* Manually configured RIP route check. */
1498 if (rinfo->type == ZEBRA_ROUTE_RIP
1499 && ((rinfo->sub_type == RIP_ROUTE_STATIC)
1500 || (rinfo->sub_type == RIP_ROUTE_DEFAULT))) {
1501 if (type != ZEBRA_ROUTE_RIP
1502 || ((sub_type != RIP_ROUTE_STATIC)
1503 && (sub_type != RIP_ROUTE_DEFAULT))) {
1504 route_unlock_node(rp);
1505 return;
1506 }
1507 }
1508
1509 (void)rip_ecmp_replace(&newinfo);
1510 route_unlock_node(rp);
1511 } else
1512 (void)rip_ecmp_add(&newinfo);
1513
1514 if (IS_RIP_DEBUG_EVENT) {
1515 zlog_debug("Redistribute new prefix %s/%d",
1516 inet_ntoa(p->prefix), p->prefixlen);
1517 }
1518
1519 rip_event(RIP_TRIGGERED_UPDATE, 0);
1520 }
1521
1522 /* Delete redistributed route from RIP table. */
1523 void rip_redistribute_delete(int type, int sub_type, struct prefix_ipv4 *p,
1524 ifindex_t ifindex)
1525 {
1526 int ret;
1527 struct route_node *rp;
1528 struct rip_info *rinfo;
1529
1530 ret = rip_destination_check(p->prefix);
1531 if (!ret)
1532 return;
1533
1534 rp = route_node_lookup(rip->table, (struct prefix *)p);
1535 if (rp) {
1536 struct list *list = rp->info;
1537
1538 if (list != NULL && listcount(list) != 0) {
1539 rinfo = listgetdata(listhead(list));
1540 if (rinfo != NULL && rinfo->type == type
1541 && rinfo->sub_type == sub_type
1542 && rinfo->nh.ifindex == ifindex) {
1543 /* Perform poisoned reverse. */
1544 rinfo->metric = RIP_METRIC_INFINITY;
1545 RIP_TIMER_ON(rinfo->t_garbage_collect,
1546 rip_garbage_collect,
1547 rip->garbage_time);
1548 RIP_TIMER_OFF(rinfo->t_timeout);
1549 rinfo->flags |= RIP_RTF_CHANGED;
1550
1551 if (IS_RIP_DEBUG_EVENT)
1552 zlog_debug(
1553 "Poison %s/%d on the interface %s with an "
1554 "infinity metric [delete]",
1555 inet_ntoa(p->prefix),
1556 p->prefixlen,
1557 ifindex2ifname(ifindex,
1558 VRF_DEFAULT));
1559
1560 rip_event(RIP_TRIGGERED_UPDATE, 0);
1561 }
1562 }
1563 route_unlock_node(rp);
1564 }
1565 }
1566
1567 /* Response to request called from rip_read ().*/
1568 static void rip_request_process(struct rip_packet *packet, int size,
1569 struct sockaddr_in *from, struct connected *ifc)
1570 {
1571 caddr_t lim;
1572 struct rte *rte;
1573 struct prefix_ipv4 p;
1574 struct route_node *rp;
1575 struct rip_info *rinfo;
1576 struct rip_interface *ri;
1577
1578 /* Does not reponse to the requests on the loopback interfaces */
1579 if (if_is_loopback(ifc->ifp))
1580 return;
1581
1582 /* Check RIP process is enabled on this interface. */
1583 ri = ifc->ifp->info;
1584 if (!ri->running)
1585 return;
1586
1587 /* When passive interface is specified, suppress responses */
1588 if (ri->passive)
1589 return;
1590
1591 /* RIP peer update. */
1592 rip_peer_update(from, packet->version);
1593
1594 lim = ((caddr_t)packet) + size;
1595 rte = packet->rte;
1596
1597 /* The Request is processed entry by entry. If there are no
1598 entries, no response is given. */
1599 if (lim == (caddr_t)rte)
1600 return;
1601
1602 /* There is one special case. If there is exactly one entry in the
1603 request, and it has an address family identifier of zero and a
1604 metric of infinity (i.e., 16), then this is a request to send the
1605 entire routing table. */
1606 if (lim == ((caddr_t)(rte + 1)) && ntohs(rte->family) == 0
1607 && ntohl(rte->metric) == RIP_METRIC_INFINITY) {
1608 /* All route with split horizon */
1609 rip_output_process(ifc, from, rip_all_route, packet->version);
1610 } else {
1611 if (ntohs(rte->family) != AF_INET)
1612 return;
1613
1614 /* Examine the list of RTEs in the Request one by one. For each
1615 entry, look up the destination in the router's routing
1616 database and, if there is a route, put that route's metric in
1617 the metric field of the RTE. If there is no explicit route
1618 to the specified destination, put infinity in the metric
1619 field. Once all the entries have been filled in, change the
1620 command from Request to Response and send the datagram back
1621 to the requestor. */
1622 p.family = AF_INET;
1623
1624 for (; ((caddr_t)rte) < lim; rte++) {
1625 p.prefix = rte->prefix;
1626 p.prefixlen = ip_masklen(rte->mask);
1627 apply_mask_ipv4(&p);
1628
1629 rp = route_node_lookup(rip->table, (struct prefix *)&p);
1630 if (rp) {
1631 rinfo = listgetdata(
1632 listhead((struct list *)rp->info));
1633 rte->metric = htonl(rinfo->metric);
1634 route_unlock_node(rp);
1635 } else
1636 rte->metric = htonl(RIP_METRIC_INFINITY);
1637 }
1638 packet->command = RIP_RESPONSE;
1639
1640 (void)rip_send_packet((uint8_t *)packet, size, from, ifc);
1641 }
1642 rip_global_queries++;
1643 }
1644
1645 #if RIP_RECVMSG
1646 /* Set IPv6 packet info to the socket. */
1647 static int setsockopt_pktinfo(int sock)
1648 {
1649 int ret;
1650 int val = 1;
1651
1652 ret = setsockopt(sock, IPPROTO_IP, IP_PKTINFO, &val, sizeof(val));
1653 if (ret < 0)
1654 zlog_warn("Can't setsockopt IP_PKTINFO : %s",
1655 safe_strerror(errno));
1656 return ret;
1657 }
1658
1659 /* Read RIP packet by recvmsg function. */
1660 int rip_recvmsg(int sock, uint8_t *buf, int size, struct sockaddr_in *from,
1661 ifindex_t *ifindex)
1662 {
1663 int ret;
1664 struct msghdr msg;
1665 struct iovec iov;
1666 struct cmsghdr *ptr;
1667 char adata[1024];
1668
1669 memset(&msg, 0, sizeof(msg));
1670 msg.msg_name = (void *)from;
1671 msg.msg_namelen = sizeof(struct sockaddr_in);
1672 msg.msg_iov = &iov;
1673 msg.msg_iovlen = 1;
1674 msg.msg_control = (void *)adata;
1675 msg.msg_controllen = sizeof adata;
1676 iov.iov_base = buf;
1677 iov.iov_len = size;
1678
1679 ret = recvmsg(sock, &msg, 0);
1680 if (ret < 0)
1681 return ret;
1682
1683 for (ptr = ZCMSG_FIRSTHDR(&msg); ptr != NULL;
1684 ptr = CMSG_NXTHDR(&msg, ptr))
1685 if (ptr->cmsg_level == IPPROTO_IP
1686 && ptr->cmsg_type == IP_PKTINFO) {
1687 struct in_pktinfo *pktinfo;
1688 int i;
1689
1690 pktinfo = (struct in_pktinfo *)CMSG_DATA(ptr);
1691 i = pktinfo->ipi_ifindex;
1692 }
1693 return ret;
1694 }
1695
1696 /* RIP packet read function. */
1697 int rip_read_new(struct thread *t)
1698 {
1699 int ret;
1700 int sock;
1701 char buf[RIP_PACKET_MAXSIZ];
1702 struct sockaddr_in from;
1703 ifindex_t ifindex;
1704
1705 /* Fetch socket then register myself. */
1706 sock = THREAD_FD(t);
1707 rip_event(RIP_READ, sock);
1708
1709 /* Read RIP packet. */
1710 ret = rip_recvmsg(sock, buf, RIP_PACKET_MAXSIZ, &from, (int *)&ifindex);
1711 if (ret < 0) {
1712 zlog_warn("Can't read RIP packet: %s", safe_strerror(errno));
1713 return ret;
1714 }
1715
1716 return ret;
1717 }
1718 #endif /* RIP_RECVMSG */
1719
1720 /* First entry point of RIP packet. */
1721 static int rip_read(struct thread *t)
1722 {
1723 int sock;
1724 int ret;
1725 int rtenum;
1726 union rip_buf rip_buf;
1727 struct rip_packet *packet;
1728 struct sockaddr_in from;
1729 int len;
1730 int vrecv;
1731 socklen_t fromlen;
1732 struct interface *ifp = NULL;
1733 struct connected *ifc;
1734 struct rip_interface *ri;
1735 struct prefix p;
1736
1737 /* Fetch socket then register myself. */
1738 sock = THREAD_FD(t);
1739 rip->t_read = NULL;
1740
1741 /* Add myself to tne next event */
1742 rip_event(RIP_READ, sock);
1743
1744 /* RIPd manages only IPv4. */
1745 memset(&from, 0, sizeof(struct sockaddr_in));
1746 fromlen = sizeof(struct sockaddr_in);
1747
1748 len = recvfrom(sock, (char *)&rip_buf.buf, sizeof(rip_buf.buf), 0,
1749 (struct sockaddr *)&from, &fromlen);
1750 if (len < 0) {
1751 zlog_info("recvfrom failed: %s", safe_strerror(errno));
1752 return len;
1753 }
1754
1755 /* Check is this packet comming from myself? */
1756 if (if_check_address(from.sin_addr)) {
1757 if (IS_RIP_DEBUG_PACKET)
1758 zlog_debug("ignore packet comes from myself");
1759 return -1;
1760 }
1761
1762 /* Which interface is this packet comes from. */
1763 ifc = if_lookup_address((void *)&from.sin_addr, AF_INET, VRF_DEFAULT);
1764 if (ifc)
1765 ifp = ifc->ifp;
1766
1767 /* RIP packet received */
1768 if (IS_RIP_DEBUG_EVENT)
1769 zlog_debug("RECV packet from %s port %d on %s",
1770 inet_ntoa(from.sin_addr), ntohs(from.sin_port),
1771 ifp ? ifp->name : "unknown");
1772
1773 /* If this packet come from unknown interface, ignore it. */
1774 if (ifp == NULL) {
1775 zlog_info(
1776 "rip_read: cannot find interface for packet from %s port %d",
1777 inet_ntoa(from.sin_addr), ntohs(from.sin_port));
1778 return -1;
1779 }
1780
1781 p.family = AF_INET;
1782 p.u.prefix4 = from.sin_addr;
1783 p.prefixlen = IPV4_MAX_BITLEN;
1784
1785 ifc = connected_lookup_prefix(ifp, &p);
1786
1787 if (ifc == NULL) {
1788 zlog_info(
1789 "rip_read: cannot find connected address for packet from %s "
1790 "port %d on interface %s",
1791 inet_ntoa(from.sin_addr), ntohs(from.sin_port),
1792 ifp->name);
1793 return -1;
1794 }
1795
1796 /* Packet length check. */
1797 if (len < RIP_PACKET_MINSIZ) {
1798 zlog_warn("packet size %d is smaller than minimum size %d", len,
1799 RIP_PACKET_MINSIZ);
1800 rip_peer_bad_packet(&from);
1801 return len;
1802 }
1803 if (len > RIP_PACKET_MAXSIZ) {
1804 zlog_warn("packet size %d is larger than max size %d", len,
1805 RIP_PACKET_MAXSIZ);
1806 rip_peer_bad_packet(&from);
1807 return len;
1808 }
1809
1810 /* Packet alignment check. */
1811 if ((len - RIP_PACKET_MINSIZ) % 20) {
1812 zlog_warn("packet size %d is wrong for RIP packet alignment",
1813 len);
1814 rip_peer_bad_packet(&from);
1815 return len;
1816 }
1817
1818 /* Set RTE number. */
1819 rtenum = ((len - RIP_PACKET_MINSIZ) / 20);
1820
1821 /* For easy to handle. */
1822 packet = &rip_buf.rip_packet;
1823
1824 /* RIP version check. */
1825 if (packet->version == 0) {
1826 zlog_info("version 0 with command %d received.",
1827 packet->command);
1828 rip_peer_bad_packet(&from);
1829 return -1;
1830 }
1831
1832 /* Dump RIP packet. */
1833 if (IS_RIP_DEBUG_RECV)
1834 rip_packet_dump(packet, len, "RECV");
1835
1836 /* RIP version adjust. This code should rethink now. RFC1058 says
1837 that "Version 1 implementations are to ignore this extra data and
1838 process only the fields specified in this document.". So RIPv3
1839 packet should be treated as RIPv1 ignoring must be zero field. */
1840 if (packet->version > RIPv2)
1841 packet->version = RIPv2;
1842
1843 /* Is RIP running or is this RIP neighbor ?*/
1844 ri = ifp->info;
1845 if (!ri->running && !rip_neighbor_lookup(&from)) {
1846 if (IS_RIP_DEBUG_EVENT)
1847 zlog_debug("RIP is not enabled on interface %s.",
1848 ifp->name);
1849 rip_peer_bad_packet(&from);
1850 return -1;
1851 }
1852
1853 /* RIP Version check. RFC2453, 4.6 and 5.1 */
1854 vrecv = ((ri->ri_receive == RI_RIP_UNSPEC) ? rip->version_recv
1855 : ri->ri_receive);
1856 if (vrecv == RI_RIP_VERSION_NONE
1857 || ((packet->version == RIPv1) && !(vrecv & RIPv1))
1858 || ((packet->version == RIPv2) && !(vrecv & RIPv2))) {
1859 if (IS_RIP_DEBUG_PACKET)
1860 zlog_debug(
1861 " packet's v%d doesn't fit to if version spec",
1862 packet->version);
1863 rip_peer_bad_packet(&from);
1864 return -1;
1865 }
1866
1867 /* RFC2453 5.2 If the router is not configured to authenticate RIP-2
1868 messages, then RIP-1 and unauthenticated RIP-2 messages will be
1869 accepted; authenticated RIP-2 messages shall be discarded. */
1870 if ((ri->auth_type == RIP_NO_AUTH) && rtenum
1871 && (packet->version == RIPv2)
1872 && (packet->rte->family == htons(RIP_FAMILY_AUTH))) {
1873 if (IS_RIP_DEBUG_EVENT)
1874 zlog_debug(
1875 "packet RIPv%d is dropped because authentication disabled",
1876 packet->version);
1877 rip_peer_bad_packet(&from);
1878 return -1;
1879 }
1880
1881 /* RFC:
1882 If the router is configured to authenticate RIP-2 messages, then
1883 RIP-1 messages and RIP-2 messages which pass authentication
1884 testing shall be accepted; unauthenticated and failed
1885 authentication RIP-2 messages shall be discarded. For maximum
1886 security, RIP-1 messages should be ignored when authentication is
1887 in use (see section 4.1); otherwise, the routing information from
1888 authenticated messages will be propagated by RIP-1 routers in an
1889 unauthenticated manner.
1890 */
1891 /* We make an exception for RIPv1 REQUEST packets, to which we'll
1892 * always reply regardless of authentication settings, because:
1893 *
1894 * - if there other authorised routers on-link, the REQUESTor can
1895 * passively obtain the routing updates anyway
1896 * - if there are no other authorised routers on-link, RIP can
1897 * easily be disabled for the link to prevent giving out information
1898 * on state of this routers RIP routing table..
1899 *
1900 * I.e. if RIPv1 has any place anymore these days, it's as a very
1901 * simple way to distribute routing information (e.g. to embedded
1902 * hosts / appliances) and the ability to give out RIPv1
1903 * routing-information freely, while still requiring RIPv2
1904 * authentication for any RESPONSEs might be vaguely useful.
1905 */
1906 if (ri->auth_type != RIP_NO_AUTH && packet->version == RIPv1) {
1907 /* Discard RIPv1 messages other than REQUESTs */
1908 if (packet->command != RIP_REQUEST) {
1909 if (IS_RIP_DEBUG_PACKET)
1910 zlog_debug(
1911 "RIPv1"
1912 " dropped because authentication enabled");
1913 rip_peer_bad_packet(&from);
1914 return -1;
1915 }
1916 } else if (ri->auth_type != RIP_NO_AUTH) {
1917 const char *auth_desc;
1918
1919 if (rtenum == 0) {
1920 /* There definitely is no authentication in the packet.
1921 */
1922 if (IS_RIP_DEBUG_PACKET)
1923 zlog_debug(
1924 "RIPv2 authentication failed: no auth RTE in packet");
1925 rip_peer_bad_packet(&from);
1926 return -1;
1927 }
1928
1929 /* First RTE must be an Authentication Family RTE */
1930 if (packet->rte->family != htons(RIP_FAMILY_AUTH)) {
1931 if (IS_RIP_DEBUG_PACKET)
1932 zlog_debug(
1933 "RIPv2"
1934 " dropped because authentication enabled");
1935 rip_peer_bad_packet(&from);
1936 return -1;
1937 }
1938
1939 /* Check RIPv2 authentication. */
1940 switch (ntohs(packet->rte->tag)) {
1941 case RIP_AUTH_SIMPLE_PASSWORD:
1942 auth_desc = "simple";
1943 ret = rip_auth_simple_password(packet->rte, &from, ifp);
1944 break;
1945
1946 case RIP_AUTH_MD5:
1947 auth_desc = "MD5";
1948 ret = rip_auth_md5(packet, &from, len, ifp);
1949 /* Reset RIP packet length to trim MD5 data. */
1950 len = ret;
1951 break;
1952
1953 default:
1954 ret = 0;
1955 auth_desc = "unknown type";
1956 if (IS_RIP_DEBUG_PACKET)
1957 zlog_debug(
1958 "RIPv2 Unknown authentication type %d",
1959 ntohs(packet->rte->tag));
1960 }
1961
1962 if (ret) {
1963 if (IS_RIP_DEBUG_PACKET)
1964 zlog_debug("RIPv2 %s authentication success",
1965 auth_desc);
1966 } else {
1967 if (IS_RIP_DEBUG_PACKET)
1968 zlog_debug("RIPv2 %s authentication failure",
1969 auth_desc);
1970 rip_peer_bad_packet(&from);
1971 return -1;
1972 }
1973 }
1974
1975 /* Process each command. */
1976 switch (packet->command) {
1977 case RIP_RESPONSE:
1978 rip_response_process(packet, len, &from, ifc);
1979 break;
1980 case RIP_REQUEST:
1981 case RIP_POLL:
1982 rip_request_process(packet, len, &from, ifc);
1983 break;
1984 case RIP_TRACEON:
1985 case RIP_TRACEOFF:
1986 zlog_info(
1987 "Obsolete command %s received, please sent it to routed",
1988 lookup_msg(rip_msg, packet->command, NULL));
1989 rip_peer_bad_packet(&from);
1990 break;
1991 case RIP_POLL_ENTRY:
1992 zlog_info("Obsolete command %s received",
1993 lookup_msg(rip_msg, packet->command, NULL));
1994 rip_peer_bad_packet(&from);
1995 break;
1996 default:
1997 zlog_info("Unknown RIP command %d received", packet->command);
1998 rip_peer_bad_packet(&from);
1999 break;
2000 }
2001
2002 return len;
2003 }
2004
2005 /* Write routing table entry to the stream and return next index of
2006 the routing table entry in the stream. */
2007 static int rip_write_rte(int num, struct stream *s, struct prefix_ipv4 *p,
2008 uint8_t version, struct rip_info *rinfo)
2009 {
2010 struct in_addr mask;
2011
2012 /* Write routing table entry. */
2013 if (version == RIPv1) {
2014 stream_putw(s, AF_INET);
2015 stream_putw(s, 0);
2016 stream_put_ipv4(s, p->prefix.s_addr);
2017 stream_put_ipv4(s, 0);
2018 stream_put_ipv4(s, 0);
2019 stream_putl(s, rinfo->metric_out);
2020 } else {
2021 masklen2ip(p->prefixlen, &mask);
2022
2023 stream_putw(s, AF_INET);
2024 stream_putw(s, rinfo->tag_out);
2025 stream_put_ipv4(s, p->prefix.s_addr);
2026 stream_put_ipv4(s, mask.s_addr);
2027 stream_put_ipv4(s, rinfo->nexthop_out.s_addr);
2028 stream_putl(s, rinfo->metric_out);
2029 }
2030
2031 return ++num;
2032 }
2033
2034 /* Send update to the ifp or spcified neighbor. */
2035 void rip_output_process(struct connected *ifc, struct sockaddr_in *to,
2036 int route_type, uint8_t version)
2037 {
2038 int ret;
2039 struct stream *s;
2040 struct route_node *rp;
2041 struct rip_info *rinfo;
2042 struct rip_interface *ri;
2043 struct prefix_ipv4 *p;
2044 struct prefix_ipv4 classfull;
2045 struct prefix_ipv4 ifaddrclass;
2046 struct key *key = NULL;
2047 /* this might need to made dynamic if RIP ever supported auth methods
2048 with larger key string sizes */
2049 char auth_str[RIP_AUTH_SIMPLE_SIZE];
2050 size_t doff = 0; /* offset of digest offset field */
2051 int num = 0;
2052 int rtemax;
2053 int subnetted = 0;
2054 struct list *list = NULL;
2055 struct listnode *listnode = NULL;
2056
2057 /* Logging output event. */
2058 if (IS_RIP_DEBUG_EVENT) {
2059 if (to)
2060 zlog_debug("update routes to neighbor %s",
2061 inet_ntoa(to->sin_addr));
2062 else
2063 zlog_debug("update routes on interface %s ifindex %d",
2064 ifc->ifp->name, ifc->ifp->ifindex);
2065 }
2066
2067 /* Set output stream. */
2068 s = rip->obuf;
2069
2070 /* Reset stream and RTE counter. */
2071 stream_reset(s);
2072 rtemax = RIP_MAX_RTE;
2073
2074 /* Get RIP interface. */
2075 ri = ifc->ifp->info;
2076
2077 /* If output interface is in simple password authentication mode, we
2078 need space for authentication data. */
2079 if (ri->auth_type == RIP_AUTH_SIMPLE_PASSWORD)
2080 rtemax -= 1;
2081
2082 /* If output interface is in MD5 authentication mode, we need space
2083 for authentication header and data. */
2084 if (ri->auth_type == RIP_AUTH_MD5)
2085 rtemax -= 2;
2086
2087 /* If output interface is in simple password authentication mode
2088 and string or keychain is specified we need space for auth. data */
2089 if (ri->auth_type != RIP_NO_AUTH) {
2090 if (ri->key_chain) {
2091 struct keychain *keychain;
2092
2093 keychain = keychain_lookup(ri->key_chain);
2094 if (keychain)
2095 key = key_lookup_for_send(keychain);
2096 }
2097 /* to be passed to auth functions later */
2098 rip_auth_prepare_str_send(ri, key, auth_str,
2099 RIP_AUTH_SIMPLE_SIZE);
2100 if (strlen(auth_str) == 0)
2101 return;
2102 }
2103
2104 if (version == RIPv1) {
2105 memcpy(&ifaddrclass, ifc->address, sizeof(struct prefix_ipv4));
2106 apply_classful_mask_ipv4(&ifaddrclass);
2107 subnetted = 0;
2108 if (ifc->address->prefixlen > ifaddrclass.prefixlen)
2109 subnetted = 1;
2110 }
2111
2112 for (rp = route_top(rip->table); rp; rp = route_next(rp))
2113 if ((list = rp->info) != NULL && listcount(list) != 0) {
2114 rinfo = listgetdata(listhead(list));
2115 /* For RIPv1, if we are subnetted, output subnets in our
2116 * network */
2117 /* that have the same mask as the output "interface".
2118 * For other */
2119 /* networks, only the classfull version is output. */
2120
2121 if (version == RIPv1) {
2122 p = (struct prefix_ipv4 *)&rp->p;
2123
2124 if (IS_RIP_DEBUG_PACKET)
2125 zlog_debug(
2126 "RIPv1 mask check, %s/%d considered for output",
2127 inet_ntoa(rp->p.u.prefix4),
2128 rp->p.prefixlen);
2129
2130 if (subnetted
2131 && prefix_match(
2132 (struct prefix *)&ifaddrclass,
2133 &rp->p)) {
2134 if ((ifc->address->prefixlen
2135 != rp->p.prefixlen)
2136 && (rp->p.prefixlen != 32))
2137 continue;
2138 } else {
2139 memcpy(&classfull, &rp->p,
2140 sizeof(struct prefix_ipv4));
2141 apply_classful_mask_ipv4(&classfull);
2142 if (rp->p.u.prefix4.s_addr != 0
2143 && classfull.prefixlen
2144 != rp->p.prefixlen)
2145 continue;
2146 }
2147 if (IS_RIP_DEBUG_PACKET)
2148 zlog_debug(
2149 "RIPv1 mask check, %s/%d made it through",
2150 inet_ntoa(rp->p.u.prefix4),
2151 rp->p.prefixlen);
2152 } else
2153 p = (struct prefix_ipv4 *)&rp->p;
2154
2155 /* Apply output filters. */
2156 ret = rip_filter(RIP_FILTER_OUT, p, ri);
2157 if (ret < 0)
2158 continue;
2159
2160 /* Changed route only output. */
2161 if (route_type == rip_changed_route
2162 && (!(rinfo->flags & RIP_RTF_CHANGED)))
2163 continue;
2164
2165 /* Split horizon. */
2166 /* if (split_horizon == rip_split_horizon) */
2167 if (ri->split_horizon == RIP_SPLIT_HORIZON) {
2168 /*
2169 * We perform split horizon for RIP and
2170 * connected route.
2171 * For rip routes, we want to suppress the route
2172 * if we would
2173 * end up sending the route back on the
2174 * interface that we
2175 * learned it from, with a higher metric. For
2176 * connected routes,
2177 * we suppress the route if the prefix is a
2178 * subset of the
2179 * source address that we are going to use for
2180 * the packet
2181 * (in order to handle the case when multiple
2182 * subnets are
2183 * configured on the same interface).
2184 */
2185 int suppress = 0;
2186 struct rip_info *tmp_rinfo = NULL;
2187 struct connected *tmp_ifc = NULL;
2188
2189 for (ALL_LIST_ELEMENTS_RO(list, listnode,
2190 tmp_rinfo))
2191 if (tmp_rinfo->type == ZEBRA_ROUTE_RIP
2192 && tmp_rinfo->nh.ifindex
2193 == ifc->ifp->ifindex) {
2194 suppress = 1;
2195 break;
2196 }
2197
2198 if (!suppress
2199 && rinfo->type == ZEBRA_ROUTE_CONNECT) {
2200 for (ALL_LIST_ELEMENTS_RO(
2201 ifc->ifp->connected,
2202 listnode, tmp_ifc))
2203 if (prefix_match(
2204 (struct prefix *)p,
2205 tmp_ifc->address)) {
2206 suppress = 1;
2207 break;
2208 }
2209 }
2210
2211 if (suppress)
2212 continue;
2213 }
2214
2215 /* Preparation for route-map. */
2216 rinfo->metric_set = 0;
2217 rinfo->nexthop_out.s_addr = 0;
2218 rinfo->metric_out = rinfo->metric;
2219 rinfo->tag_out = rinfo->tag;
2220 rinfo->ifindex_out = ifc->ifp->ifindex;
2221
2222 /* In order to avoid some local loops,
2223 * if the RIP route has a nexthop via this interface,
2224 * keep the nexthop,
2225 * otherwise set it to 0. The nexthop should not be
2226 * propagated
2227 * beyond the local broadcast/multicast area in order
2228 * to avoid an IGP multi-level recursive look-up.
2229 * see (4.4)
2230 */
2231 if (rinfo->nh.ifindex == ifc->ifp->ifindex)
2232 rinfo->nexthop_out = rinfo->nh.gate.ipv4;
2233
2234 /* Interface route-map */
2235 if (ri->routemap[RIP_FILTER_OUT]) {
2236 ret = route_map_apply(
2237 ri->routemap[RIP_FILTER_OUT],
2238 (struct prefix *)p, RMAP_RIP, rinfo);
2239
2240 if (ret == RMAP_DENYMATCH) {
2241 if (IS_RIP_DEBUG_PACKET)
2242 zlog_debug(
2243 "RIP %s/%d is filtered by route-map out",
2244 inet_ntoa(p->prefix),
2245 p->prefixlen);
2246 continue;
2247 }
2248 }
2249
2250 /* Apply redistribute route map - continue, if deny */
2251 if (rip->route_map[rinfo->type].name
2252 && rinfo->sub_type != RIP_ROUTE_INTERFACE) {
2253 ret = route_map_apply(
2254 rip->route_map[rinfo->type].map,
2255 (struct prefix *)p, RMAP_RIP, rinfo);
2256
2257 if (ret == RMAP_DENYMATCH) {
2258 if (IS_RIP_DEBUG_PACKET)
2259 zlog_debug(
2260 "%s/%d is filtered by route-map",
2261 inet_ntoa(p->prefix),
2262 p->prefixlen);
2263 continue;
2264 }
2265 }
2266
2267 /* When route-map does not set metric. */
2268 if (!rinfo->metric_set) {
2269 /* If redistribute metric is set. */
2270 if (rip->route_map[rinfo->type].metric_config
2271 && rinfo->metric != RIP_METRIC_INFINITY) {
2272 rinfo->metric_out =
2273 rip->route_map[rinfo->type]
2274 .metric;
2275 } else {
2276 /* If the route is not connected or
2277 localy generated
2278 one, use default-metric value*/
2279 if (rinfo->type != ZEBRA_ROUTE_RIP
2280 && rinfo->type
2281 != ZEBRA_ROUTE_CONNECT
2282 && rinfo->metric
2283 != RIP_METRIC_INFINITY)
2284 rinfo->metric_out =
2285 rip->default_metric;
2286 }
2287 }
2288
2289 /* Apply offset-list */
2290 if (rinfo->metric != RIP_METRIC_INFINITY)
2291 rip_offset_list_apply_out(p, ifc->ifp,
2292 &rinfo->metric_out);
2293
2294 if (rinfo->metric_out > RIP_METRIC_INFINITY)
2295 rinfo->metric_out = RIP_METRIC_INFINITY;
2296
2297 /* Perform split-horizon with poisoned reverse
2298 * for RIP and connected routes.
2299 **/
2300 if (ri->split_horizon
2301 == RIP_SPLIT_HORIZON_POISONED_REVERSE) {
2302 /*
2303 * We perform split horizon for RIP and
2304 * connected route.
2305 * For rip routes, we want to suppress the route
2306 * if we would
2307 * end up sending the route back on the
2308 * interface that we
2309 * learned it from, with a higher metric. For
2310 * connected routes,
2311 * we suppress the route if the prefix is a
2312 * subset of the
2313 * source address that we are going to use for
2314 * the packet
2315 * (in order to handle the case when multiple
2316 * subnets are
2317 * configured on the same interface).
2318 */
2319 struct rip_info *tmp_rinfo = NULL;
2320 struct connected *tmp_ifc = NULL;
2321
2322 for (ALL_LIST_ELEMENTS_RO(list, listnode,
2323 tmp_rinfo))
2324 if (tmp_rinfo->type == ZEBRA_ROUTE_RIP
2325 && tmp_rinfo->nh.ifindex
2326 == ifc->ifp->ifindex)
2327 rinfo->metric_out =
2328 RIP_METRIC_INFINITY;
2329
2330 if (rinfo->metric_out != RIP_METRIC_INFINITY
2331 && rinfo->type == ZEBRA_ROUTE_CONNECT) {
2332 for (ALL_LIST_ELEMENTS_RO(
2333 ifc->ifp->connected,
2334 listnode, tmp_ifc))
2335 if (prefix_match(
2336 (struct prefix *)p,
2337 tmp_ifc->address)) {
2338 rinfo->metric_out =
2339 RIP_METRIC_INFINITY;
2340 break;
2341 }
2342 }
2343 }
2344
2345 /* Prepare preamble, auth headers, if needs be */
2346 if (num == 0) {
2347 stream_putc(s, RIP_RESPONSE);
2348 stream_putc(s, version);
2349 stream_putw(s, 0);
2350
2351 /* auth header for !v1 && !no_auth */
2352 if ((ri->auth_type != RIP_NO_AUTH)
2353 && (version != RIPv1))
2354 doff = rip_auth_header_write(
2355 s, ri, key, auth_str,
2356 RIP_AUTH_SIMPLE_SIZE);
2357 }
2358
2359 /* Write RTE to the stream. */
2360 num = rip_write_rte(num, s, p, version, rinfo);
2361 if (num == rtemax) {
2362 if (version == RIPv2
2363 && ri->auth_type == RIP_AUTH_MD5)
2364 rip_auth_md5_set(s, ri, doff, auth_str,
2365 RIP_AUTH_SIMPLE_SIZE);
2366
2367 ret = rip_send_packet(STREAM_DATA(s),
2368 stream_get_endp(s), to,
2369 ifc);
2370
2371 if (ret >= 0 && IS_RIP_DEBUG_SEND)
2372 rip_packet_dump((struct rip_packet *)
2373 STREAM_DATA(s),
2374 stream_get_endp(s),
2375 "SEND");
2376 num = 0;
2377 stream_reset(s);
2378 }
2379 }
2380
2381 /* Flush unwritten RTE. */
2382 if (num != 0) {
2383 if (version == RIPv2 && ri->auth_type == RIP_AUTH_MD5)
2384 rip_auth_md5_set(s, ri, doff, auth_str,
2385 RIP_AUTH_SIMPLE_SIZE);
2386
2387 ret = rip_send_packet(STREAM_DATA(s), stream_get_endp(s), to,
2388 ifc);
2389
2390 if (ret >= 0 && IS_RIP_DEBUG_SEND)
2391 rip_packet_dump((struct rip_packet *)STREAM_DATA(s),
2392 stream_get_endp(s), "SEND");
2393 stream_reset(s);
2394 }
2395
2396 /* Statistics updates. */
2397 ri->sent_updates++;
2398 }
2399
2400 /* Send RIP packet to the interface. */
2401 static void rip_update_interface(struct connected *ifc, uint8_t version,
2402 int route_type)
2403 {
2404 struct interface *ifp = ifc->ifp;
2405 struct rip_interface *ri = ifp->info;
2406 struct sockaddr_in to;
2407
2408 /* When RIP version is 2 and multicast enable interface. */
2409 if (version == RIPv2 && !ri->v2_broadcast && if_is_multicast(ifp)) {
2410 if (IS_RIP_DEBUG_EVENT)
2411 zlog_debug("multicast announce on %s ", ifp->name);
2412
2413 rip_output_process(ifc, NULL, route_type, version);
2414 return;
2415 }
2416
2417 /* If we can't send multicast packet, send it with unicast. */
2418 if (if_is_broadcast(ifp) || if_is_pointopoint(ifp)) {
2419 if (ifc->address->family == AF_INET) {
2420 /* Destination address and port setting. */
2421 memset(&to, 0, sizeof(struct sockaddr_in));
2422 if (ifc->destination)
2423 /* use specified broadcast or peer destination
2424 * addr */
2425 to.sin_addr = ifc->destination->u.prefix4;
2426 else if (ifc->address->prefixlen < IPV4_MAX_PREFIXLEN)
2427 /* calculate the appropriate broadcast address
2428 */
2429 to.sin_addr.s_addr = ipv4_broadcast_addr(
2430 ifc->address->u.prefix4.s_addr,
2431 ifc->address->prefixlen);
2432 else
2433 /* do not know where to send the packet */
2434 return;
2435 to.sin_port = htons(RIP_PORT_DEFAULT);
2436
2437 if (IS_RIP_DEBUG_EVENT)
2438 zlog_debug("%s announce to %s on %s",
2439 CONNECTED_PEER(ifc) ? "unicast"
2440 : "broadcast",
2441 inet_ntoa(to.sin_addr), ifp->name);
2442
2443 rip_output_process(ifc, &to, route_type, version);
2444 }
2445 }
2446 }
2447
2448 /* Update send to all interface and neighbor. */
2449 static void rip_update_process(int route_type)
2450 {
2451 struct vrf *vrf = vrf_lookup_by_id(VRF_DEFAULT);
2452 struct listnode *ifnode, *ifnnode;
2453 struct connected *connected;
2454 struct interface *ifp;
2455 struct rip_interface *ri;
2456 struct route_node *rp;
2457 struct sockaddr_in to;
2458 struct prefix *p;
2459
2460 /* Send RIP update to each interface. */
2461 FOR_ALL_INTERFACES (vrf, ifp) {
2462 if (if_is_loopback(ifp))
2463 continue;
2464
2465 if (!if_is_operative(ifp))
2466 continue;
2467
2468 /* Fetch RIP interface information. */
2469 ri = ifp->info;
2470
2471 /* When passive interface is specified, suppress announce to the
2472 interface. */
2473 if (ri->passive)
2474 continue;
2475
2476 if (ri->running) {
2477 /*
2478 * If there is no version configuration in the
2479 * interface,
2480 * use rip's version setting.
2481 */
2482 int vsend = ((ri->ri_send == RI_RIP_UNSPEC)
2483 ? rip->version_send
2484 : ri->ri_send);
2485
2486 if (IS_RIP_DEBUG_EVENT)
2487 zlog_debug("SEND UPDATE to %s ifindex %d",
2488 ifp->name, ifp->ifindex);
2489
2490 /* send update on each connected network */
2491 for (ALL_LIST_ELEMENTS(ifp->connected, ifnode, ifnnode,
2492 connected)) {
2493 if (connected->address->family == AF_INET) {
2494 if (vsend & RIPv1)
2495 rip_update_interface(
2496 connected, RIPv1,
2497 route_type);
2498 if ((vsend & RIPv2)
2499 && if_is_multicast(ifp))
2500 rip_update_interface(
2501 connected, RIPv2,
2502 route_type);
2503 }
2504 }
2505 }
2506 }
2507
2508 /* RIP send updates to each neighbor. */
2509 for (rp = route_top(rip->neighbor); rp; rp = route_next(rp))
2510 if (rp->info != NULL) {
2511 p = &rp->p;
2512
2513 connected = if_lookup_address(&p->u.prefix4, AF_INET,
2514 VRF_DEFAULT);
2515 if (!connected) {
2516 zlog_warn(
2517 "Neighbor %s doesn't have connected interface!",
2518 inet_ntoa(p->u.prefix4));
2519 continue;
2520 }
2521
2522 /* Set destination address and port */
2523 memset(&to, 0, sizeof(struct sockaddr_in));
2524 to.sin_addr = p->u.prefix4;
2525 to.sin_port = htons(RIP_PORT_DEFAULT);
2526
2527 /* RIP version is rip's configuration. */
2528 rip_output_process(connected, &to, route_type,
2529 rip->version_send);
2530 }
2531 }
2532
2533 /* RIP's periodical timer. */
2534 static int rip_update(struct thread *t)
2535 {
2536 /* Clear timer pointer. */
2537 rip->t_update = NULL;
2538
2539 if (IS_RIP_DEBUG_EVENT)
2540 zlog_debug("update timer fire!");
2541
2542 /* Process update output. */
2543 rip_update_process(rip_all_route);
2544
2545 /* Triggered updates may be suppressed if a regular update is due by
2546 the time the triggered update would be sent. */
2547 RIP_TIMER_OFF(rip->t_triggered_interval);
2548 rip->trigger = 0;
2549
2550 /* Register myself. */
2551 rip_event(RIP_UPDATE_EVENT, 0);
2552
2553 return 0;
2554 }
2555
2556 /* Walk down the RIP routing table then clear changed flag. */
2557 static void rip_clear_changed_flag(void)
2558 {
2559 struct route_node *rp;
2560 struct rip_info *rinfo = NULL;
2561 struct list *list = NULL;
2562 struct listnode *listnode = NULL;
2563
2564 for (rp = route_top(rip->table); rp; rp = route_next(rp))
2565 if ((list = rp->info) != NULL)
2566 for (ALL_LIST_ELEMENTS_RO(list, listnode, rinfo)) {
2567 UNSET_FLAG(rinfo->flags, RIP_RTF_CHANGED);
2568 /* This flag can be set only on the first entry.
2569 */
2570 break;
2571 }
2572 }
2573
2574 /* Triggered update interval timer. */
2575 static int rip_triggered_interval(struct thread *t)
2576 {
2577 int rip_triggered_update(struct thread *);
2578
2579 rip->t_triggered_interval = NULL;
2580
2581 if (rip->trigger) {
2582 rip->trigger = 0;
2583 rip_triggered_update(t);
2584 }
2585 return 0;
2586 }
2587
2588 /* Execute triggered update. */
2589 static int rip_triggered_update(struct thread *t)
2590 {
2591 int interval;
2592
2593 /* Clear thred pointer. */
2594 rip->t_triggered_update = NULL;
2595
2596 /* Cancel interval timer. */
2597 RIP_TIMER_OFF(rip->t_triggered_interval);
2598 rip->trigger = 0;
2599
2600 /* Logging triggered update. */
2601 if (IS_RIP_DEBUG_EVENT)
2602 zlog_debug("triggered update!");
2603
2604 /* Split Horizon processing is done when generating triggered
2605 updates as well as normal updates (see section 2.6). */
2606 rip_update_process(rip_changed_route);
2607
2608 /* Once all of the triggered updates have been generated, the route
2609 change flags should be cleared. */
2610 rip_clear_changed_flag();
2611
2612 /* After a triggered update is sent, a timer should be set for a
2613 random interval between 1 and 5 seconds. If other changes that
2614 would trigger updates occur before the timer expires, a single
2615 update is triggered when the timer expires. */
2616 interval = (random() % 5) + 1;
2617
2618 rip->t_triggered_interval = NULL;
2619 thread_add_timer(master, rip_triggered_interval, NULL, interval,
2620 &rip->t_triggered_interval);
2621
2622 return 0;
2623 }
2624
2625 /* Withdraw redistributed route. */
2626 void rip_redistribute_withdraw(int type)
2627 {
2628 struct route_node *rp;
2629 struct rip_info *rinfo = NULL;
2630 struct list *list = NULL;
2631
2632 if (!rip)
2633 return;
2634
2635 for (rp = route_top(rip->table); rp; rp = route_next(rp))
2636 if ((list = rp->info) != NULL) {
2637 rinfo = listgetdata(listhead(list));
2638 if (rinfo->type == type
2639 && rinfo->sub_type != RIP_ROUTE_INTERFACE) {
2640 /* Perform poisoned reverse. */
2641 rinfo->metric = RIP_METRIC_INFINITY;
2642 RIP_TIMER_ON(rinfo->t_garbage_collect,
2643 rip_garbage_collect,
2644 rip->garbage_time);
2645 RIP_TIMER_OFF(rinfo->t_timeout);
2646 rinfo->flags |= RIP_RTF_CHANGED;
2647
2648 if (IS_RIP_DEBUG_EVENT) {
2649 struct prefix_ipv4 *p =
2650 (struct prefix_ipv4 *)&rp->p;
2651
2652 zlog_debug(
2653 "Poisone %s/%d on the interface %s with an infinity metric [withdraw]",
2654 inet_ntoa(p->prefix),
2655 p->prefixlen,
2656 ifindex2ifname(
2657 rinfo->nh.ifindex,
2658 VRF_DEFAULT));
2659 }
2660
2661 rip_event(RIP_TRIGGERED_UPDATE, 0);
2662 }
2663 }
2664 }
2665
2666 /* Create new RIP instance and set it to global variable. */
2667 int rip_create(int socket)
2668 {
2669 rip = XCALLOC(MTYPE_RIP, sizeof(struct rip));
2670
2671 /* Set initial value. */
2672 rip->ecmp = yang_get_default_bool("%s/allow-ecmp", RIP_INSTANCE);
2673 rip->default_metric =
2674 yang_get_default_uint8("%s/default-metric", RIP_INSTANCE);
2675 rip->distance =
2676 yang_get_default_uint8("%s/distance/default", RIP_INSTANCE);
2677 rip->passive_default =
2678 yang_get_default_bool("%s/passive-default", RIP_INSTANCE);
2679 rip->garbage_time = yang_get_default_uint32("%s/timers/flush-interval",
2680 RIP_INSTANCE);
2681 rip->timeout_time = yang_get_default_uint32(
2682 "%s/timers/holddown-interval", RIP_INSTANCE);
2683 rip->update_time = yang_get_default_uint32("%s/timers/update-interval",
2684 RIP_INSTANCE);
2685 rip->version_send =
2686 yang_get_default_enum("%s/version/send", RIP_INSTANCE);
2687 rip->version_recv =
2688 yang_get_default_enum("%s/version/receive", RIP_INSTANCE);
2689
2690 /* Initialize RIP routig table. */
2691 rip->table = route_table_init();
2692 rip->neighbor = route_table_init();
2693
2694 /* Make output stream. */
2695 rip->obuf = stream_new(1500);
2696
2697 /* Set socket. */
2698 rip->sock = socket;
2699
2700 /* Create read and timer thread. */
2701 rip_event(RIP_READ, rip->sock);
2702 rip_event(RIP_UPDATE_EVENT, 1);
2703
2704 QOBJ_REG(rip, rip);
2705
2706 return 0;
2707 }
2708
2709 /* Sned RIP request to the destination. */
2710 int rip_request_send(struct sockaddr_in *to, struct interface *ifp,
2711 uint8_t version, struct connected *connected)
2712 {
2713 struct rte *rte;
2714 struct rip_packet rip_packet;
2715 struct listnode *node, *nnode;
2716
2717 memset(&rip_packet, 0, sizeof(rip_packet));
2718
2719 rip_packet.command = RIP_REQUEST;
2720 rip_packet.version = version;
2721 rte = rip_packet.rte;
2722 rte->metric = htonl(RIP_METRIC_INFINITY);
2723
2724 if (connected) {
2725 /*
2726 * connected is only sent for ripv1 case, or when
2727 * interface does not support multicast. Caller loops
2728 * over each connected address for this case.
2729 */
2730 if (rip_send_packet((uint8_t *)&rip_packet, sizeof(rip_packet),
2731 to, connected)
2732 != sizeof(rip_packet))
2733 return -1;
2734 else
2735 return sizeof(rip_packet);
2736 }
2737
2738 /* send request on each connected network */
2739 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, connected)) {
2740 struct prefix_ipv4 *p;
2741
2742 p = (struct prefix_ipv4 *)connected->address;
2743
2744 if (p->family != AF_INET)
2745 continue;
2746
2747 if (rip_send_packet((uint8_t *)&rip_packet, sizeof(rip_packet),
2748 to, connected)
2749 != sizeof(rip_packet))
2750 return -1;
2751 }
2752 return sizeof(rip_packet);
2753 }
2754
2755 static int rip_update_jitter(unsigned long time)
2756 {
2757 #define JITTER_BOUND 4
2758 /* We want to get the jitter to +/- 1/JITTER_BOUND the interval.
2759 Given that, we cannot let time be less than JITTER_BOUND seconds.
2760 The RIPv2 RFC says jitter should be small compared to
2761 update_time. We consider 1/JITTER_BOUND to be small.
2762 */
2763
2764 int jitter_input = time;
2765 int jitter;
2766
2767 if (jitter_input < JITTER_BOUND)
2768 jitter_input = JITTER_BOUND;
2769
2770 jitter = (((random() % ((jitter_input * 2) + 1)) - jitter_input));
2771
2772 return jitter / JITTER_BOUND;
2773 }
2774
2775 void rip_event(enum rip_event event, int sock)
2776 {
2777 int jitter = 0;
2778
2779 switch (event) {
2780 case RIP_READ:
2781 rip->t_read = NULL;
2782 thread_add_read(master, rip_read, NULL, sock, &rip->t_read);
2783 break;
2784 case RIP_UPDATE_EVENT:
2785 RIP_TIMER_OFF(rip->t_update);
2786 jitter = rip_update_jitter(rip->update_time);
2787 thread_add_timer(master, rip_update, NULL,
2788 sock ? 2 : rip->update_time + jitter,
2789 &rip->t_update);
2790 break;
2791 case RIP_TRIGGERED_UPDATE:
2792 if (rip->t_triggered_interval)
2793 rip->trigger = 1;
2794 else
2795 thread_add_event(master, rip_triggered_update, NULL, 0,
2796 &rip->t_triggered_update);
2797 break;
2798 default:
2799 break;
2800 }
2801 }
2802
2803 DEFUN (rip_version,
2804 rip_version_cmd,
2805 "version (1-2)",
2806 "Set routing protocol version\n"
2807 "version\n")
2808 {
2809 int idx_number = 1;
2810 int version;
2811
2812 version = atoi(argv[idx_number]->arg);
2813 if (version != RIPv1 && version != RIPv2) {
2814 vty_out(vty, "invalid rip version %d\n", version);
2815 return CMD_WARNING_CONFIG_FAILED;
2816 }
2817 rip->version_send = version;
2818 rip->version_recv = version;
2819
2820 return CMD_SUCCESS;
2821 }
2822
2823 DEFUN (no_rip_version,
2824 no_rip_version_cmd,
2825 "no version [(1-2)]",
2826 NO_STR
2827 "Set routing protocol version\n"
2828 "Version\n")
2829 {
2830 /* Set RIP version to the default. */
2831 rip->version_send = RI_RIP_VERSION_2;
2832 rip->version_recv = RI_RIP_VERSION_1_AND_2;
2833
2834 return CMD_SUCCESS;
2835 }
2836
2837 #if 0
2838 static void
2839 rip_update_default_metric (void)
2840 {
2841 struct route_node *np;
2842 struct rip_info *rinfo = NULL;
2843 struct list *list = NULL;
2844 struct listnode *listnode = NULL;
2845
2846 for (np = route_top (rip->table); np; np = route_next (np))
2847 if ((list = np->info) != NULL)
2848 for (ALL_LIST_ELEMENTS_RO (list, listnode, rinfo))
2849 if (rinfo->type != ZEBRA_ROUTE_RIP && rinfo->type != ZEBRA_ROUTE_CONNECT)
2850 rinfo->metric = rip->default_metric;
2851 }
2852 #endif
2853
2854 DEFUN (rip_timers,
2855 rip_timers_cmd,
2856 "timers basic (5-2147483647) (5-2147483647) (5-2147483647)",
2857 "Adjust routing timers\n"
2858 "Basic routing protocol update timers\n"
2859 "Routing table update timer value in second. Default is 30.\n"
2860 "Routing information timeout timer. Default is 180.\n"
2861 "Garbage collection timer. Default is 120.\n")
2862 {
2863 int idx_number = 2;
2864 int idx_number_2 = 3;
2865 int idx_number_3 = 4;
2866 unsigned long update;
2867 unsigned long timeout;
2868 unsigned long garbage;
2869 char *endptr = NULL;
2870 unsigned long RIP_TIMER_MAX = 2147483647;
2871 unsigned long RIP_TIMER_MIN = 5;
2872
2873 update = strtoul(argv[idx_number]->arg, &endptr, 10);
2874 if (update > RIP_TIMER_MAX || update < RIP_TIMER_MIN
2875 || *endptr != '\0') {
2876 vty_out(vty, "update timer value error\n");
2877 return CMD_WARNING_CONFIG_FAILED;
2878 }
2879
2880 timeout = strtoul(argv[idx_number_2]->arg, &endptr, 10);
2881 if (timeout > RIP_TIMER_MAX || timeout < RIP_TIMER_MIN
2882 || *endptr != '\0') {
2883 vty_out(vty, "timeout timer value error\n");
2884 return CMD_WARNING_CONFIG_FAILED;
2885 }
2886
2887 garbage = strtoul(argv[idx_number_3]->arg, &endptr, 10);
2888 if (garbage > RIP_TIMER_MAX || garbage < RIP_TIMER_MIN
2889 || *endptr != '\0') {
2890 vty_out(vty, "garbage timer value error\n");
2891 return CMD_WARNING_CONFIG_FAILED;
2892 }
2893
2894 /* Set each timer value. */
2895 rip->update_time = update;
2896 rip->timeout_time = timeout;
2897 rip->garbage_time = garbage;
2898
2899 /* Reset update timer thread. */
2900 rip_event(RIP_UPDATE_EVENT, 0);
2901
2902 return CMD_SUCCESS;
2903 }
2904
2905 DEFUN (no_rip_timers,
2906 no_rip_timers_cmd,
2907 "no timers basic [(0-65535) (0-65535) (0-65535)]",
2908 NO_STR
2909 "Adjust routing timers\n"
2910 "Basic routing protocol update timers\n"
2911 "Routing table update timer value in second. Default is 30.\n"
2912 "Routing information timeout timer. Default is 180.\n"
2913 "Garbage collection timer. Default is 120.\n")
2914 {
2915 /* Set each timer value to the default. */
2916 rip->update_time = RIP_UPDATE_TIMER_DEFAULT;
2917 rip->timeout_time = RIP_TIMEOUT_TIMER_DEFAULT;
2918 rip->garbage_time = RIP_GARBAGE_TIMER_DEFAULT;
2919
2920 /* Reset update timer thread. */
2921 rip_event(RIP_UPDATE_EVENT, 0);
2922
2923 return CMD_SUCCESS;
2924 }
2925
2926
2927 struct route_table *rip_distance_table;
2928
2929 struct rip_distance *rip_distance_new(void)
2930 {
2931 return XCALLOC(MTYPE_RIP_DISTANCE, sizeof(struct rip_distance));
2932 }
2933
2934 void rip_distance_free(struct rip_distance *rdistance)
2935 {
2936 XFREE(MTYPE_RIP_DISTANCE, rdistance);
2937 }
2938
2939 static void rip_distance_reset(void)
2940 {
2941 struct route_node *rn;
2942 struct rip_distance *rdistance;
2943
2944 for (rn = route_top(rip_distance_table); rn; rn = route_next(rn))
2945 if ((rdistance = rn->info) != NULL) {
2946 if (rdistance->access_list)
2947 free(rdistance->access_list);
2948 rip_distance_free(rdistance);
2949 rn->info = NULL;
2950 route_unlock_node(rn);
2951 }
2952 }
2953
2954 /* Apply RIP information to distance method. */
2955 uint8_t rip_distance_apply(struct rip_info *rinfo)
2956 {
2957 struct route_node *rn;
2958 struct prefix_ipv4 p;
2959 struct rip_distance *rdistance;
2960 struct access_list *alist;
2961
2962 if (!rip)
2963 return 0;
2964
2965 memset(&p, 0, sizeof(struct prefix_ipv4));
2966 p.family = AF_INET;
2967 p.prefix = rinfo->from;
2968 p.prefixlen = IPV4_MAX_BITLEN;
2969
2970 /* Check source address. */
2971 rn = route_node_match(rip_distance_table, (struct prefix *)&p);
2972 if (rn) {
2973 rdistance = rn->info;
2974 route_unlock_node(rn);
2975
2976 if (rdistance->access_list) {
2977 alist = access_list_lookup(AFI_IP,
2978 rdistance->access_list);
2979 if (alist == NULL)
2980 return 0;
2981 if (access_list_apply(alist, &rinfo->rp->p)
2982 == FILTER_DENY)
2983 return 0;
2984
2985 return rdistance->distance;
2986 } else
2987 return rdistance->distance;
2988 }
2989
2990 if (rip->distance)
2991 return rip->distance;
2992
2993 return 0;
2994 }
2995
2996 static void rip_distance_show(struct vty *vty)
2997 {
2998 struct route_node *rn;
2999 struct rip_distance *rdistance;
3000 int header = 1;
3001 char buf[BUFSIZ];
3002
3003 vty_out(vty, " Distance: (default is %u)\n",
3004 rip->distance ? rip->distance : ZEBRA_RIP_DISTANCE_DEFAULT);
3005
3006 for (rn = route_top(rip_distance_table); rn; rn = route_next(rn))
3007 if ((rdistance = rn->info) != NULL) {
3008 if (header) {
3009 vty_out(vty,
3010 " Address Distance List\n");
3011 header = 0;
3012 }
3013 sprintf(buf, "%s/%d", inet_ntoa(rn->p.u.prefix4),
3014 rn->p.prefixlen);
3015 vty_out(vty, " %-20s %4d %s\n", buf,
3016 rdistance->distance,
3017 rdistance->access_list ? rdistance->access_list
3018 : "");
3019 }
3020 }
3021
3022 /* Update ECMP routes to zebra when ECMP is disabled. */
3023 void rip_ecmp_disable(void)
3024 {
3025 struct route_node *rp;
3026 struct rip_info *rinfo, *tmp_rinfo;
3027 struct list *list;
3028 struct listnode *node, *nextnode;
3029
3030 if (!rip)
3031 return;
3032
3033 for (rp = route_top(rip->table); rp; rp = route_next(rp))
3034 if ((list = rp->info) != NULL && listcount(list) > 1) {
3035 rinfo = listgetdata(listhead(list));
3036 if (!rip_route_rte(rinfo))
3037 continue;
3038
3039 /* Drop all other entries, except the first one. */
3040 for (ALL_LIST_ELEMENTS(list, node, nextnode, tmp_rinfo))
3041 if (tmp_rinfo != rinfo) {
3042 RIP_TIMER_OFF(tmp_rinfo->t_timeout);
3043 RIP_TIMER_OFF(
3044 tmp_rinfo->t_garbage_collect);
3045 list_delete_node(list, node);
3046 rip_info_free(tmp_rinfo);
3047 }
3048
3049 /* Update zebra. */
3050 rip_zebra_ipv4_add(rp);
3051
3052 /* Set the route change flag. */
3053 SET_FLAG(rinfo->flags, RIP_RTF_CHANGED);
3054
3055 /* Signal the output process to trigger an update. */
3056 rip_event(RIP_TRIGGERED_UPDATE, 0);
3057 }
3058 }
3059
3060 /* Print out routes update time. */
3061 static void rip_vty_out_uptime(struct vty *vty, struct rip_info *rinfo)
3062 {
3063 time_t clock;
3064 struct tm *tm;
3065 #define TIME_BUF 25
3066 char timebuf[TIME_BUF];
3067 struct thread *thread;
3068
3069 if ((thread = rinfo->t_timeout) != NULL) {
3070 clock = thread_timer_remain_second(thread);
3071 tm = gmtime(&clock);
3072 strftime(timebuf, TIME_BUF, "%M:%S", tm);
3073 vty_out(vty, "%5s", timebuf);
3074 } else if ((thread = rinfo->t_garbage_collect) != NULL) {
3075 clock = thread_timer_remain_second(thread);
3076 tm = gmtime(&clock);
3077 strftime(timebuf, TIME_BUF, "%M:%S", tm);
3078 vty_out(vty, "%5s", timebuf);
3079 }
3080 }
3081
3082 static const char *rip_route_type_print(int sub_type)
3083 {
3084 switch (sub_type) {
3085 case RIP_ROUTE_RTE:
3086 return "n";
3087 case RIP_ROUTE_STATIC:
3088 return "s";
3089 case RIP_ROUTE_DEFAULT:
3090 return "d";
3091 case RIP_ROUTE_REDISTRIBUTE:
3092 return "r";
3093 case RIP_ROUTE_INTERFACE:
3094 return "i";
3095 default:
3096 return "?";
3097 }
3098 }
3099
3100 DEFUN (show_ip_rip,
3101 show_ip_rip_cmd,
3102 "show ip rip",
3103 SHOW_STR
3104 IP_STR
3105 "Show RIP routes\n")
3106 {
3107 struct route_node *np;
3108 struct rip_info *rinfo = NULL;
3109 struct list *list = NULL;
3110 struct listnode *listnode = NULL;
3111
3112 if (!rip)
3113 return CMD_SUCCESS;
3114
3115 vty_out(vty,
3116 "Codes: R - RIP, C - connected, S - Static, O - OSPF, B - BGP\n"
3117 "Sub-codes:\n"
3118 " (n) - normal, (s) - static, (d) - default, (r) - redistribute,\n"
3119 " (i) - interface\n\n"
3120 " Network Next Hop Metric From Tag Time\n");
3121
3122 for (np = route_top(rip->table); np; np = route_next(np))
3123 if ((list = np->info) != NULL)
3124 for (ALL_LIST_ELEMENTS_RO(list, listnode, rinfo)) {
3125 int len;
3126
3127 len = vty_out(
3128 vty, "%c(%s) %s/%d",
3129 /* np->lock, For debugging. */
3130 zebra_route_char(rinfo->type),
3131 rip_route_type_print(rinfo->sub_type),
3132 inet_ntoa(np->p.u.prefix4),
3133 np->p.prefixlen);
3134
3135 len = 24 - len;
3136
3137 if (len > 0)
3138 vty_out(vty, "%*s", len, " ");
3139
3140 switch (rinfo->nh.type) {
3141 case NEXTHOP_TYPE_IPV4:
3142 case NEXTHOP_TYPE_IPV4_IFINDEX:
3143 vty_out(vty, "%-20s %2d ",
3144 inet_ntoa(rinfo->nh.gate.ipv4),
3145 rinfo->metric);
3146 break;
3147 case NEXTHOP_TYPE_IFINDEX:
3148 vty_out(vty,
3149 "0.0.0.0 %2d ",
3150 rinfo->metric);
3151 break;
3152 case NEXTHOP_TYPE_BLACKHOLE:
3153 vty_out(vty,
3154 "blackhole %2d ",
3155 rinfo->metric);
3156 break;
3157 case NEXTHOP_TYPE_IPV6:
3158 case NEXTHOP_TYPE_IPV6_IFINDEX:
3159 vty_out(vty,
3160 "V6 Address Hidden %2d ",
3161 rinfo->metric);
3162 break;
3163 }
3164
3165 /* Route which exist in kernel routing table. */
3166 if ((rinfo->type == ZEBRA_ROUTE_RIP)
3167 && (rinfo->sub_type == RIP_ROUTE_RTE)) {
3168 vty_out(vty, "%-15s ",
3169 inet_ntoa(rinfo->from));
3170 vty_out(vty, "%3" ROUTE_TAG_PRI " ",
3171 (route_tag_t)rinfo->tag);
3172 rip_vty_out_uptime(vty, rinfo);
3173 } else if (rinfo->metric
3174 == RIP_METRIC_INFINITY) {
3175 vty_out(vty, "self ");
3176 vty_out(vty, "%3" ROUTE_TAG_PRI " ",
3177 (route_tag_t)rinfo->tag);
3178 rip_vty_out_uptime(vty, rinfo);
3179 } else {
3180 if (rinfo->external_metric) {
3181 len = vty_out(
3182 vty, "self (%s:%d)",
3183 zebra_route_string(
3184 rinfo->type),
3185 rinfo->external_metric);
3186 len = 16 - len;
3187 if (len > 0)
3188 vty_out(vty, "%*s", len,
3189 " ");
3190 } else
3191 vty_out(vty,
3192 "self ");
3193 vty_out(vty, "%3" ROUTE_TAG_PRI,
3194 (route_tag_t)rinfo->tag);
3195 }
3196
3197 vty_out(vty, "\n");
3198 }
3199 return CMD_SUCCESS;
3200 }
3201
3202 /* Vincent: formerly, it was show_ip_protocols_rip: "show ip protocols" */
3203 DEFUN (show_ip_rip_status,
3204 show_ip_rip_status_cmd,
3205 "show ip rip status",
3206 SHOW_STR
3207 IP_STR
3208 "Show RIP routes\n"
3209 "IP routing protocol process parameters and statistics\n")
3210 {
3211 struct vrf *vrf = vrf_lookup_by_id(VRF_DEFAULT);
3212 struct interface *ifp;
3213 struct rip_interface *ri;
3214 extern const struct message ri_version_msg[];
3215 const char *send_version;
3216 const char *receive_version;
3217
3218 if (!rip)
3219 return CMD_SUCCESS;
3220
3221 vty_out(vty, "Routing Protocol is \"rip\"\n");
3222 vty_out(vty, " Sending updates every %ld seconds with +/-50%%,",
3223 rip->update_time);
3224 vty_out(vty, " next due in %lu seconds\n",
3225 thread_timer_remain_second(rip->t_update));
3226 vty_out(vty, " Timeout after %ld seconds,", rip->timeout_time);
3227 vty_out(vty, " garbage collect after %ld seconds\n", rip->garbage_time);
3228
3229 /* Filtering status show. */
3230 config_show_distribute(vty);
3231
3232 /* Default metric information. */
3233 vty_out(vty, " Default redistribution metric is %u\n",
3234 rip->default_metric);
3235
3236 /* Redistribute information. */
3237 vty_out(vty, " Redistributing:");
3238 rip_show_redistribute_config(vty);
3239 vty_out(vty, "\n");
3240
3241 vty_out(vty, " Default version control: send version %s,",
3242 lookup_msg(ri_version_msg, rip->version_send, NULL));
3243 if (rip->version_recv == RI_RIP_VERSION_1_AND_2)
3244 vty_out(vty, " receive any version \n");
3245 else
3246 vty_out(vty, " receive version %s \n",
3247 lookup_msg(ri_version_msg, rip->version_recv, NULL));
3248
3249 vty_out(vty, " Interface Send Recv Key-chain\n");
3250
3251 FOR_ALL_INTERFACES (vrf, ifp) {
3252 ri = ifp->info;
3253
3254 if (!ri->running)
3255 continue;
3256
3257 if (ri->enable_network || ri->enable_interface) {
3258 if (ri->ri_send == RI_RIP_UNSPEC)
3259 send_version =
3260 lookup_msg(ri_version_msg,
3261 rip->version_send, NULL);
3262 else
3263 send_version = lookup_msg(ri_version_msg,
3264 ri->ri_send, NULL);
3265
3266 if (ri->ri_receive == RI_RIP_UNSPEC)
3267 receive_version =
3268 lookup_msg(ri_version_msg,
3269 rip->version_recv, NULL);
3270 else
3271 receive_version = lookup_msg(
3272 ri_version_msg, ri->ri_receive, NULL);
3273
3274 vty_out(vty, " %-17s%-3s %-3s %s\n", ifp->name,
3275 send_version, receive_version,
3276 ri->key_chain ? ri->key_chain : "");
3277 }
3278 }
3279
3280 vty_out(vty, " Routing for Networks:\n");
3281 rip_show_network_config(vty);
3282
3283 {
3284 int found_passive = 0;
3285 FOR_ALL_INTERFACES (vrf, ifp) {
3286 ri = ifp->info;
3287
3288 if ((ri->enable_network || ri->enable_interface)
3289 && ri->passive) {
3290 if (!found_passive) {
3291 vty_out(vty,
3292 " Passive Interface(s):\n");
3293 found_passive = 1;
3294 }
3295 vty_out(vty, " %s\n", ifp->name);
3296 }
3297 }
3298 }
3299
3300 vty_out(vty, " Routing Information Sources:\n");
3301 vty_out(vty,
3302 " Gateway BadPackets BadRoutes Distance Last Update\n");
3303 rip_peer_display(vty);
3304
3305 rip_distance_show(vty);
3306
3307 return CMD_SUCCESS;
3308 }
3309
3310 /* RIP configuration write function. */
3311 static int config_write_rip(struct vty *vty)
3312 {
3313 int write = 0;
3314 struct lyd_node *dnode;
3315
3316 dnode = yang_dnode_get(running_config->dnode,
3317 "/frr-ripd:ripd/instance");
3318 if (dnode) {
3319 write++;
3320
3321 nb_cli_show_dnode_cmds(vty, dnode, false);
3322
3323 /* RIP version statement. Default is RIP version 2. */
3324 if (rip->version_send != RI_RIP_VERSION_2
3325 || rip->version_recv != RI_RIP_VERSION_1_AND_2)
3326 vty_out(vty, " version %d\n", rip->version_send);
3327
3328 /* RIP timer configuration. */
3329 if (rip->update_time != RIP_UPDATE_TIMER_DEFAULT
3330 || rip->timeout_time != RIP_TIMEOUT_TIMER_DEFAULT
3331 || rip->garbage_time != RIP_GARBAGE_TIMER_DEFAULT)
3332 vty_out(vty, " timers basic %lu %lu %lu\n",
3333 rip->update_time, rip->timeout_time,
3334 rip->garbage_time);
3335
3336 /* Distribute configuration. */
3337 write += config_write_distribute(vty);
3338
3339 /* Interface routemap configuration */
3340 write += config_write_if_rmap(vty);
3341 }
3342 return write;
3343 }
3344
3345 /* RIP node structure. */
3346 static struct cmd_node rip_node = {RIP_NODE, "%s(config-router)# ", 1};
3347
3348 /* Distribute-list update functions. */
3349 static void rip_distribute_update(struct distribute *dist)
3350 {
3351 struct interface *ifp;
3352 struct rip_interface *ri;
3353 struct access_list *alist;
3354 struct prefix_list *plist;
3355
3356 if (!dist->ifname)
3357 return;
3358
3359 ifp = if_lookup_by_name(dist->ifname, VRF_DEFAULT);
3360 if (ifp == NULL)
3361 return;
3362
3363 ri = ifp->info;
3364
3365 if (dist->list[DISTRIBUTE_V4_IN]) {
3366 alist = access_list_lookup(AFI_IP,
3367 dist->list[DISTRIBUTE_V4_IN]);
3368 if (alist)
3369 ri->list[RIP_FILTER_IN] = alist;
3370 else
3371 ri->list[RIP_FILTER_IN] = NULL;
3372 } else
3373 ri->list[RIP_FILTER_IN] = NULL;
3374
3375 if (dist->list[DISTRIBUTE_V4_OUT]) {
3376 alist = access_list_lookup(AFI_IP,
3377 dist->list[DISTRIBUTE_V4_OUT]);
3378 if (alist)
3379 ri->list[RIP_FILTER_OUT] = alist;
3380 else
3381 ri->list[RIP_FILTER_OUT] = NULL;
3382 } else
3383 ri->list[RIP_FILTER_OUT] = NULL;
3384
3385 if (dist->prefix[DISTRIBUTE_V4_IN]) {
3386 plist = prefix_list_lookup(AFI_IP,
3387 dist->prefix[DISTRIBUTE_V4_IN]);
3388 if (plist)
3389 ri->prefix[RIP_FILTER_IN] = plist;
3390 else
3391 ri->prefix[RIP_FILTER_IN] = NULL;
3392 } else
3393 ri->prefix[RIP_FILTER_IN] = NULL;
3394
3395 if (dist->prefix[DISTRIBUTE_V4_OUT]) {
3396 plist = prefix_list_lookup(AFI_IP,
3397 dist->prefix[DISTRIBUTE_V4_OUT]);
3398 if (plist)
3399 ri->prefix[RIP_FILTER_OUT] = plist;
3400 else
3401 ri->prefix[RIP_FILTER_OUT] = NULL;
3402 } else
3403 ri->prefix[RIP_FILTER_OUT] = NULL;
3404 }
3405
3406 void rip_distribute_update_interface(struct interface *ifp)
3407 {
3408 struct distribute *dist;
3409
3410 dist = distribute_lookup(ifp->name);
3411 if (dist)
3412 rip_distribute_update(dist);
3413 }
3414
3415 /* Update all interface's distribute list. */
3416 /* ARGSUSED */
3417 static void rip_distribute_update_all(struct prefix_list *notused)
3418 {
3419 struct vrf *vrf = vrf_lookup_by_id(VRF_DEFAULT);
3420 struct interface *ifp;
3421
3422 FOR_ALL_INTERFACES (vrf, ifp)
3423 rip_distribute_update_interface(ifp);
3424 }
3425 /* ARGSUSED */
3426 static void rip_distribute_update_all_wrapper(struct access_list *notused)
3427 {
3428 rip_distribute_update_all(NULL);
3429 }
3430
3431 /* Delete all added rip route. */
3432 void rip_clean(void)
3433 {
3434 int i;
3435 struct route_node *rp;
3436 struct rip_info *rinfo = NULL;
3437 struct list *list = NULL;
3438 struct listnode *listnode = NULL;
3439
3440 if (rip) {
3441 QOBJ_UNREG(rip);
3442
3443 /* Clear RIP routes */
3444 for (rp = route_top(rip->table); rp; rp = route_next(rp))
3445 if ((list = rp->info) != NULL) {
3446 rinfo = listgetdata(listhead(list));
3447 if (rip_route_rte(rinfo))
3448 rip_zebra_ipv4_delete(rp);
3449
3450 for (ALL_LIST_ELEMENTS_RO(list, listnode,
3451 rinfo)) {
3452 RIP_TIMER_OFF(rinfo->t_timeout);
3453 RIP_TIMER_OFF(rinfo->t_garbage_collect);
3454 rip_info_free(rinfo);
3455 }
3456 list_delete(&list);
3457 rp->info = NULL;
3458 route_unlock_node(rp);
3459 }
3460
3461 /* Cancel RIP related timers. */
3462 RIP_TIMER_OFF(rip->t_update);
3463 RIP_TIMER_OFF(rip->t_triggered_update);
3464 RIP_TIMER_OFF(rip->t_triggered_interval);
3465
3466 /* Cancel read thread. */
3467 THREAD_READ_OFF(rip->t_read);
3468
3469 /* Close RIP socket. */
3470 if (rip->sock >= 0) {
3471 close(rip->sock);
3472 rip->sock = -1;
3473 }
3474
3475 stream_free(rip->obuf);
3476
3477 /* RIP neighbor configuration. */
3478 for (rp = route_top(rip->neighbor); rp; rp = route_next(rp))
3479 if (rp->info) {
3480 rp->info = NULL;
3481 route_unlock_node(rp);
3482 }
3483
3484 for (i = 0; i < ZEBRA_ROUTE_MAX; i++)
3485 if (rip->route_map[i].name)
3486 free(rip->route_map[i].name);
3487
3488 XFREE(MTYPE_ROUTE_TABLE, rip->table);
3489 XFREE(MTYPE_ROUTE_TABLE, rip->neighbor);
3490
3491 XFREE(MTYPE_RIP, rip);
3492 rip = NULL;
3493 }
3494
3495 rip_clean_network();
3496 rip_passive_nondefault_clean();
3497 rip_offset_clean();
3498 rip_interfaces_clean();
3499 rip_distance_reset();
3500 rip_redistribute_clean();
3501 }
3502
3503 /* Reset all values to the default settings. */
3504 void rip_reset(void)
3505 {
3506 /* Reset global counters. */
3507 rip_global_route_changes = 0;
3508 rip_global_queries = 0;
3509
3510 /* Call ripd related reset functions. */
3511 rip_debug_reset();
3512 rip_route_map_reset();
3513
3514 /* Call library reset functions. */
3515 vty_reset();
3516 access_list_reset();
3517 prefix_list_reset();
3518
3519 distribute_list_reset();
3520
3521 rip_interfaces_reset();
3522 rip_distance_reset();
3523
3524 rip_zclient_reset();
3525 }
3526
3527 static void rip_if_rmap_update(struct if_rmap *if_rmap)
3528 {
3529 struct interface *ifp;
3530 struct rip_interface *ri;
3531 struct route_map *rmap;
3532
3533 ifp = if_lookup_by_name(if_rmap->ifname, VRF_DEFAULT);
3534 if (ifp == NULL)
3535 return;
3536
3537 ri = ifp->info;
3538
3539 if (if_rmap->routemap[IF_RMAP_IN]) {
3540 rmap = route_map_lookup_by_name(if_rmap->routemap[IF_RMAP_IN]);
3541 if (rmap)
3542 ri->routemap[IF_RMAP_IN] = rmap;
3543 else
3544 ri->routemap[IF_RMAP_IN] = NULL;
3545 } else
3546 ri->routemap[RIP_FILTER_IN] = NULL;
3547
3548 if (if_rmap->routemap[IF_RMAP_OUT]) {
3549 rmap = route_map_lookup_by_name(if_rmap->routemap[IF_RMAP_OUT]);
3550 if (rmap)
3551 ri->routemap[IF_RMAP_OUT] = rmap;
3552 else
3553 ri->routemap[IF_RMAP_OUT] = NULL;
3554 } else
3555 ri->routemap[RIP_FILTER_OUT] = NULL;
3556 }
3557
3558 void rip_if_rmap_update_interface(struct interface *ifp)
3559 {
3560 struct if_rmap *if_rmap;
3561
3562 if_rmap = if_rmap_lookup(ifp->name);
3563 if (if_rmap)
3564 rip_if_rmap_update(if_rmap);
3565 }
3566
3567 static void rip_routemap_update_redistribute(void)
3568 {
3569 int i;
3570
3571 if (rip) {
3572 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
3573 if (rip->route_map[i].name)
3574 rip->route_map[i].map =
3575 route_map_lookup_by_name(
3576 rip->route_map[i].name);
3577 }
3578 }
3579 }
3580
3581 /* ARGSUSED */
3582 static void rip_routemap_update(const char *notused)
3583 {
3584 struct vrf *vrf = vrf_lookup_by_id(VRF_DEFAULT);
3585 struct interface *ifp;
3586
3587 FOR_ALL_INTERFACES (vrf, ifp)
3588 rip_if_rmap_update_interface(ifp);
3589
3590 rip_routemap_update_redistribute();
3591 }
3592
3593 /* Allocate new rip structure and set default value. */
3594 void rip_init(void)
3595 {
3596 /* Install top nodes. */
3597 install_node(&rip_node, config_write_rip);
3598
3599 /* Install rip commands. */
3600 install_element(VIEW_NODE, &show_ip_rip_cmd);
3601 install_element(VIEW_NODE, &show_ip_rip_status_cmd);
3602
3603 install_default(RIP_NODE);
3604 install_element(RIP_NODE, &rip_version_cmd);
3605 install_element(RIP_NODE, &no_rip_version_cmd);
3606 install_element(RIP_NODE, &rip_timers_cmd);
3607 install_element(RIP_NODE, &no_rip_timers_cmd);
3608
3609 /* Debug related init. */
3610 rip_debug_init();
3611
3612 /* Access list install. */
3613 access_list_init();
3614 access_list_add_hook(rip_distribute_update_all_wrapper);
3615 access_list_delete_hook(rip_distribute_update_all_wrapper);
3616
3617 /* Prefix list initialize.*/
3618 prefix_list_init();
3619 prefix_list_add_hook(rip_distribute_update_all);
3620 prefix_list_delete_hook(rip_distribute_update_all);
3621
3622 /* Distribute list install. */
3623 distribute_list_init(RIP_NODE);
3624 distribute_list_add_hook(rip_distribute_update);
3625 distribute_list_delete_hook(rip_distribute_update);
3626
3627 /* Route-map */
3628 rip_route_map_init();
3629 rip_offset_init();
3630
3631 route_map_add_hook(rip_routemap_update);
3632 route_map_delete_hook(rip_routemap_update);
3633
3634 if_rmap_init(RIP_NODE);
3635 if_rmap_hook_add(rip_if_rmap_update);
3636 if_rmap_hook_delete(rip_if_rmap_update);
3637
3638 /* Distance control. */
3639 rip_distance_table = route_table_init();
3640 }