]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - samples/bpf/sockex3_kern.c
Merge branch 'rework/printk_safe-removal' into for-linus
[mirror_ubuntu-jammy-kernel.git] / samples / bpf / sockex3_kern.c
1 /* Copyright (c) 2015 PLUMgrid, http://plumgrid.com
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of version 2 of the GNU General Public
5 * License as published by the Free Software Foundation.
6 */
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/in.h>
9 #include <uapi/linux/if.h>
10 #include <uapi/linux/if_ether.h>
11 #include <uapi/linux/ip.h>
12 #include <uapi/linux/ipv6.h>
13 #include <uapi/linux/if_tunnel.h>
14 #include <uapi/linux/mpls.h>
15 #include <bpf/bpf_helpers.h>
16 #include "bpf_legacy.h"
17 #define IP_MF 0x2000
18 #define IP_OFFSET 0x1FFF
19
20 #define PROG(F) SEC("socket/"__stringify(F)) int bpf_func_##F
21
22 struct {
23 __uint(type, BPF_MAP_TYPE_PROG_ARRAY);
24 __uint(key_size, sizeof(u32));
25 __uint(value_size, sizeof(u32));
26 __uint(max_entries, 8);
27 } jmp_table SEC(".maps");
28
29 #define PARSE_VLAN 1
30 #define PARSE_MPLS 2
31 #define PARSE_IP 3
32 #define PARSE_IPV6 4
33
34 /* Protocol dispatch routine. It tail-calls next BPF program depending
35 * on eth proto. Note, we could have used ...
36 *
37 * bpf_tail_call(skb, &jmp_table, proto);
38 *
39 * ... but it would need large prog_array and cannot be optimised given
40 * the map key is not static.
41 */
42 static inline void parse_eth_proto(struct __sk_buff *skb, u32 proto)
43 {
44 switch (proto) {
45 case ETH_P_8021Q:
46 case ETH_P_8021AD:
47 bpf_tail_call(skb, &jmp_table, PARSE_VLAN);
48 break;
49 case ETH_P_MPLS_UC:
50 case ETH_P_MPLS_MC:
51 bpf_tail_call(skb, &jmp_table, PARSE_MPLS);
52 break;
53 case ETH_P_IP:
54 bpf_tail_call(skb, &jmp_table, PARSE_IP);
55 break;
56 case ETH_P_IPV6:
57 bpf_tail_call(skb, &jmp_table, PARSE_IPV6);
58 break;
59 }
60 }
61
62 struct vlan_hdr {
63 __be16 h_vlan_TCI;
64 __be16 h_vlan_encapsulated_proto;
65 };
66
67 struct flow_key_record {
68 __be32 src;
69 __be32 dst;
70 union {
71 __be32 ports;
72 __be16 port16[2];
73 };
74 __u32 ip_proto;
75 };
76
77 static inline int ip_is_fragment(struct __sk_buff *ctx, __u64 nhoff)
78 {
79 return load_half(ctx, nhoff + offsetof(struct iphdr, frag_off))
80 & (IP_MF | IP_OFFSET);
81 }
82
83 static inline __u32 ipv6_addr_hash(struct __sk_buff *ctx, __u64 off)
84 {
85 __u64 w0 = load_word(ctx, off);
86 __u64 w1 = load_word(ctx, off + 4);
87 __u64 w2 = load_word(ctx, off + 8);
88 __u64 w3 = load_word(ctx, off + 12);
89
90 return (__u32)(w0 ^ w1 ^ w2 ^ w3);
91 }
92
93 struct globals {
94 struct flow_key_record flow;
95 };
96
97 struct {
98 __uint(type, BPF_MAP_TYPE_ARRAY);
99 __type(key, __u32);
100 __type(value, struct globals);
101 __uint(max_entries, 32);
102 } percpu_map SEC(".maps");
103
104 /* user poor man's per_cpu until native support is ready */
105 static struct globals *this_cpu_globals(void)
106 {
107 u32 key = bpf_get_smp_processor_id();
108
109 return bpf_map_lookup_elem(&percpu_map, &key);
110 }
111
112 /* some simple stats for user space consumption */
113 struct pair {
114 __u64 packets;
115 __u64 bytes;
116 };
117
118 struct {
119 __uint(type, BPF_MAP_TYPE_HASH);
120 __type(key, struct flow_key_record);
121 __type(value, struct pair);
122 __uint(max_entries, 1024);
123 } hash_map SEC(".maps");
124
125 static void update_stats(struct __sk_buff *skb, struct globals *g)
126 {
127 struct flow_key_record key = g->flow;
128 struct pair *value;
129
130 value = bpf_map_lookup_elem(&hash_map, &key);
131 if (value) {
132 __sync_fetch_and_add(&value->packets, 1);
133 __sync_fetch_and_add(&value->bytes, skb->len);
134 } else {
135 struct pair val = {1, skb->len};
136
137 bpf_map_update_elem(&hash_map, &key, &val, BPF_ANY);
138 }
139 }
140
141 static __always_inline void parse_ip_proto(struct __sk_buff *skb,
142 struct globals *g, __u32 ip_proto)
143 {
144 __u32 nhoff = skb->cb[0];
145 int poff;
146
147 switch (ip_proto) {
148 case IPPROTO_GRE: {
149 struct gre_hdr {
150 __be16 flags;
151 __be16 proto;
152 };
153
154 __u32 gre_flags = load_half(skb,
155 nhoff + offsetof(struct gre_hdr, flags));
156 __u32 gre_proto = load_half(skb,
157 nhoff + offsetof(struct gre_hdr, proto));
158
159 if (gre_flags & (GRE_VERSION|GRE_ROUTING))
160 break;
161
162 nhoff += 4;
163 if (gre_flags & GRE_CSUM)
164 nhoff += 4;
165 if (gre_flags & GRE_KEY)
166 nhoff += 4;
167 if (gre_flags & GRE_SEQ)
168 nhoff += 4;
169
170 skb->cb[0] = nhoff;
171 parse_eth_proto(skb, gre_proto);
172 break;
173 }
174 case IPPROTO_IPIP:
175 parse_eth_proto(skb, ETH_P_IP);
176 break;
177 case IPPROTO_IPV6:
178 parse_eth_proto(skb, ETH_P_IPV6);
179 break;
180 case IPPROTO_TCP:
181 case IPPROTO_UDP:
182 g->flow.ports = load_word(skb, nhoff);
183 case IPPROTO_ICMP:
184 g->flow.ip_proto = ip_proto;
185 update_stats(skb, g);
186 break;
187 default:
188 break;
189 }
190 }
191
192 PROG(PARSE_IP)(struct __sk_buff *skb)
193 {
194 struct globals *g = this_cpu_globals();
195 __u32 nhoff, verlen, ip_proto;
196
197 if (!g)
198 return 0;
199
200 nhoff = skb->cb[0];
201
202 if (unlikely(ip_is_fragment(skb, nhoff)))
203 return 0;
204
205 ip_proto = load_byte(skb, nhoff + offsetof(struct iphdr, protocol));
206
207 if (ip_proto != IPPROTO_GRE) {
208 g->flow.src = load_word(skb, nhoff + offsetof(struct iphdr, saddr));
209 g->flow.dst = load_word(skb, nhoff + offsetof(struct iphdr, daddr));
210 }
211
212 verlen = load_byte(skb, nhoff + 0/*offsetof(struct iphdr, ihl)*/);
213 nhoff += (verlen & 0xF) << 2;
214
215 skb->cb[0] = nhoff;
216 parse_ip_proto(skb, g, ip_proto);
217 return 0;
218 }
219
220 PROG(PARSE_IPV6)(struct __sk_buff *skb)
221 {
222 struct globals *g = this_cpu_globals();
223 __u32 nhoff, ip_proto;
224
225 if (!g)
226 return 0;
227
228 nhoff = skb->cb[0];
229
230 ip_proto = load_byte(skb,
231 nhoff + offsetof(struct ipv6hdr, nexthdr));
232 g->flow.src = ipv6_addr_hash(skb,
233 nhoff + offsetof(struct ipv6hdr, saddr));
234 g->flow.dst = ipv6_addr_hash(skb,
235 nhoff + offsetof(struct ipv6hdr, daddr));
236 nhoff += sizeof(struct ipv6hdr);
237
238 skb->cb[0] = nhoff;
239 parse_ip_proto(skb, g, ip_proto);
240 return 0;
241 }
242
243 PROG(PARSE_VLAN)(struct __sk_buff *skb)
244 {
245 __u32 nhoff, proto;
246
247 nhoff = skb->cb[0];
248
249 proto = load_half(skb, nhoff + offsetof(struct vlan_hdr,
250 h_vlan_encapsulated_proto));
251 nhoff += sizeof(struct vlan_hdr);
252 skb->cb[0] = nhoff;
253
254 parse_eth_proto(skb, proto);
255
256 return 0;
257 }
258
259 PROG(PARSE_MPLS)(struct __sk_buff *skb)
260 {
261 __u32 nhoff, label;
262
263 nhoff = skb->cb[0];
264
265 label = load_word(skb, nhoff);
266 nhoff += sizeof(struct mpls_label);
267 skb->cb[0] = nhoff;
268
269 if (label & MPLS_LS_S_MASK) {
270 __u8 verlen = load_byte(skb, nhoff);
271 if ((verlen & 0xF0) == 4)
272 parse_eth_proto(skb, ETH_P_IP);
273 else
274 parse_eth_proto(skb, ETH_P_IPV6);
275 } else {
276 parse_eth_proto(skb, ETH_P_MPLS_UC);
277 }
278
279 return 0;
280 }
281
282 SEC("socket/0")
283 int main_prog(struct __sk_buff *skb)
284 {
285 __u32 nhoff = ETH_HLEN;
286 __u32 proto = load_half(skb, 12);
287
288 skb->cb[0] = nhoff;
289 parse_eth_proto(skb, proto);
290 return 0;
291 }
292
293 char _license[] SEC("license") = "GPL";