]> git.proxmox.com Git - qemu.git/blob - savevm.c
a2f6bc040224f78427b17331ec24f2c776437969
[qemu.git] / savevm.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "config-host.h"
26 #include "qemu-common.h"
27 #include "hw/hw.h"
28 #include "hw/qdev.h"
29 #include "net/net.h"
30 #include "monitor/monitor.h"
31 #include "sysemu/sysemu.h"
32 #include "qemu/timer.h"
33 #include "audio/audio.h"
34 #include "migration/migration.h"
35 #include "qemu/sockets.h"
36 #include "qemu/queue.h"
37 #include "sysemu/cpus.h"
38 #include "exec/memory.h"
39 #include "qmp-commands.h"
40 #include "trace.h"
41 #include "qemu/bitops.h"
42 #include "qemu/iov.h"
43
44 #define SELF_ANNOUNCE_ROUNDS 5
45
46 #ifndef ETH_P_RARP
47 #define ETH_P_RARP 0x8035
48 #endif
49 #define ARP_HTYPE_ETH 0x0001
50 #define ARP_PTYPE_IP 0x0800
51 #define ARP_OP_REQUEST_REV 0x3
52
53 static int announce_self_create(uint8_t *buf,
54 uint8_t *mac_addr)
55 {
56 /* Ethernet header. */
57 memset(buf, 0xff, 6); /* destination MAC addr */
58 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
59 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
60
61 /* RARP header. */
62 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
63 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
64 *(buf + 18) = 6; /* hardware addr length (ethernet) */
65 *(buf + 19) = 4; /* protocol addr length (IPv4) */
66 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
67 memcpy(buf + 22, mac_addr, 6); /* source hw addr */
68 memset(buf + 28, 0x00, 4); /* source protocol addr */
69 memcpy(buf + 32, mac_addr, 6); /* target hw addr */
70 memset(buf + 38, 0x00, 4); /* target protocol addr */
71
72 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
73 memset(buf + 42, 0x00, 18);
74
75 return 60; /* len (FCS will be added by hardware) */
76 }
77
78 static void qemu_announce_self_iter(NICState *nic, void *opaque)
79 {
80 uint8_t buf[60];
81 int len;
82
83 len = announce_self_create(buf, nic->conf->macaddr.a);
84
85 qemu_send_packet_raw(qemu_get_queue(nic), buf, len);
86 }
87
88
89 static void qemu_announce_self_once(void *opaque)
90 {
91 static int count = SELF_ANNOUNCE_ROUNDS;
92 QEMUTimer *timer = *(QEMUTimer **)opaque;
93
94 qemu_foreach_nic(qemu_announce_self_iter, NULL);
95
96 if (--count) {
97 /* delay 50ms, 150ms, 250ms, ... */
98 qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) +
99 50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100);
100 } else {
101 qemu_del_timer(timer);
102 qemu_free_timer(timer);
103 }
104 }
105
106 void qemu_announce_self(void)
107 {
108 static QEMUTimer *timer;
109 timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer);
110 qemu_announce_self_once(&timer);
111 }
112
113 /***********************************************************/
114 /* savevm/loadvm support */
115
116 #define IO_BUF_SIZE 32768
117 #define MAX_IOV_SIZE MIN(IOV_MAX, 64)
118
119 struct QEMUFile {
120 const QEMUFileOps *ops;
121 void *opaque;
122
123 int64_t bytes_xfer;
124 int64_t xfer_limit;
125
126 int64_t pos; /* start of buffer when writing, end of buffer
127 when reading */
128 int buf_index;
129 int buf_size; /* 0 when writing */
130 uint8_t buf[IO_BUF_SIZE];
131
132 struct iovec iov[MAX_IOV_SIZE];
133 unsigned int iovcnt;
134
135 int last_error;
136 };
137
138 typedef struct QEMUFileStdio
139 {
140 FILE *stdio_file;
141 QEMUFile *file;
142 } QEMUFileStdio;
143
144 typedef struct QEMUFileSocket
145 {
146 int fd;
147 QEMUFile *file;
148 } QEMUFileSocket;
149
150 typedef struct {
151 Coroutine *co;
152 int fd;
153 } FDYieldUntilData;
154
155 static void fd_coroutine_enter(void *opaque)
156 {
157 FDYieldUntilData *data = opaque;
158 qemu_set_fd_handler(data->fd, NULL, NULL, NULL);
159 qemu_coroutine_enter(data->co, NULL);
160 }
161
162 /**
163 * Yield until a file descriptor becomes readable
164 *
165 * Note that this function clobbers the handlers for the file descriptor.
166 */
167 static void coroutine_fn yield_until_fd_readable(int fd)
168 {
169 FDYieldUntilData data;
170
171 assert(qemu_in_coroutine());
172 data.co = qemu_coroutine_self();
173 data.fd = fd;
174 qemu_set_fd_handler(fd, fd_coroutine_enter, NULL, &data);
175 qemu_coroutine_yield();
176 }
177
178 static ssize_t socket_writev_buffer(void *opaque, struct iovec *iov, int iovcnt)
179 {
180 QEMUFileSocket *s = opaque;
181 ssize_t len;
182 ssize_t size = iov_size(iov, iovcnt);
183
184 len = iov_send(s->fd, iov, iovcnt, 0, size);
185 if (len < size) {
186 len = -socket_error();
187 }
188 return len;
189 }
190
191 static int socket_get_fd(void *opaque)
192 {
193 QEMUFileSocket *s = opaque;
194
195 return s->fd;
196 }
197
198 static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
199 {
200 QEMUFileSocket *s = opaque;
201 ssize_t len;
202
203 for (;;) {
204 len = qemu_recv(s->fd, buf, size, 0);
205 if (len != -1) {
206 break;
207 }
208 if (socket_error() == EAGAIN) {
209 yield_until_fd_readable(s->fd);
210 } else if (socket_error() != EINTR) {
211 break;
212 }
213 }
214
215 if (len == -1) {
216 len = -socket_error();
217 }
218 return len;
219 }
220
221 static int socket_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
222 {
223 QEMUFileSocket *s = opaque;
224 ssize_t len;
225
226 len = qemu_send_full(s->fd, buf, size, 0);
227 if (len < size) {
228 len = -socket_error();
229 }
230 return len;
231 }
232
233 static int socket_close(void *opaque)
234 {
235 QEMUFileSocket *s = opaque;
236 closesocket(s->fd);
237 g_free(s);
238 return 0;
239 }
240
241 static int stdio_get_fd(void *opaque)
242 {
243 QEMUFileStdio *s = opaque;
244
245 return fileno(s->stdio_file);
246 }
247
248 static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
249 {
250 QEMUFileStdio *s = opaque;
251 return fwrite(buf, 1, size, s->stdio_file);
252 }
253
254 static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
255 {
256 QEMUFileStdio *s = opaque;
257 FILE *fp = s->stdio_file;
258 int bytes;
259
260 for (;;) {
261 clearerr(fp);
262 bytes = fread(buf, 1, size, fp);
263 if (bytes != 0 || !ferror(fp)) {
264 break;
265 }
266 if (errno == EAGAIN) {
267 yield_until_fd_readable(fileno(fp));
268 } else if (errno != EINTR) {
269 break;
270 }
271 }
272 return bytes;
273 }
274
275 static int stdio_pclose(void *opaque)
276 {
277 QEMUFileStdio *s = opaque;
278 int ret;
279 ret = pclose(s->stdio_file);
280 if (ret == -1) {
281 ret = -errno;
282 } else if (!WIFEXITED(ret) || WEXITSTATUS(ret) != 0) {
283 /* close succeeded, but non-zero exit code: */
284 ret = -EIO; /* fake errno value */
285 }
286 g_free(s);
287 return ret;
288 }
289
290 static int stdio_fclose(void *opaque)
291 {
292 QEMUFileStdio *s = opaque;
293 int ret = 0;
294
295 if (s->file->ops->put_buffer || s->file->ops->writev_buffer) {
296 int fd = fileno(s->stdio_file);
297 struct stat st;
298
299 ret = fstat(fd, &st);
300 if (ret == 0 && S_ISREG(st.st_mode)) {
301 /*
302 * If the file handle is a regular file make sure the
303 * data is flushed to disk before signaling success.
304 */
305 ret = fsync(fd);
306 if (ret != 0) {
307 ret = -errno;
308 return ret;
309 }
310 }
311 }
312 if (fclose(s->stdio_file) == EOF) {
313 ret = -errno;
314 }
315 g_free(s);
316 return ret;
317 }
318
319 static const QEMUFileOps stdio_pipe_read_ops = {
320 .get_fd = stdio_get_fd,
321 .get_buffer = stdio_get_buffer,
322 .close = stdio_pclose
323 };
324
325 static const QEMUFileOps stdio_pipe_write_ops = {
326 .get_fd = stdio_get_fd,
327 .put_buffer = stdio_put_buffer,
328 .close = stdio_pclose
329 };
330
331 QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
332 {
333 FILE *stdio_file;
334 QEMUFileStdio *s;
335
336 stdio_file = popen(command, mode);
337 if (stdio_file == NULL) {
338 return NULL;
339 }
340
341 if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
342 fprintf(stderr, "qemu_popen: Argument validity check failed\n");
343 return NULL;
344 }
345
346 s = g_malloc0(sizeof(QEMUFileStdio));
347
348 s->stdio_file = stdio_file;
349
350 if(mode[0] == 'r') {
351 s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops);
352 } else {
353 s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops);
354 }
355 return s->file;
356 }
357
358 static const QEMUFileOps stdio_file_read_ops = {
359 .get_fd = stdio_get_fd,
360 .get_buffer = stdio_get_buffer,
361 .close = stdio_fclose
362 };
363
364 static const QEMUFileOps stdio_file_write_ops = {
365 .get_fd = stdio_get_fd,
366 .put_buffer = stdio_put_buffer,
367 .close = stdio_fclose
368 };
369
370 QEMUFile *qemu_fdopen(int fd, const char *mode)
371 {
372 QEMUFileStdio *s;
373
374 if (mode == NULL ||
375 (mode[0] != 'r' && mode[0] != 'w') ||
376 mode[1] != 'b' || mode[2] != 0) {
377 fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
378 return NULL;
379 }
380
381 s = g_malloc0(sizeof(QEMUFileStdio));
382 s->stdio_file = fdopen(fd, mode);
383 if (!s->stdio_file)
384 goto fail;
385
386 if(mode[0] == 'r') {
387 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
388 } else {
389 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
390 }
391 return s->file;
392
393 fail:
394 g_free(s);
395 return NULL;
396 }
397
398 static const QEMUFileOps socket_read_ops = {
399 .get_fd = socket_get_fd,
400 .get_buffer = socket_get_buffer,
401 .close = socket_close
402 };
403
404 static const QEMUFileOps socket_write_ops = {
405 .get_fd = socket_get_fd,
406 .put_buffer = socket_put_buffer,
407 .writev_buffer = socket_writev_buffer,
408 .close = socket_close
409 };
410
411 QEMUFile *qemu_fopen_socket(int fd, const char *mode)
412 {
413 QEMUFileSocket *s = g_malloc0(sizeof(QEMUFileSocket));
414
415 if (mode == NULL ||
416 (mode[0] != 'r' && mode[0] != 'w') ||
417 mode[1] != 'b' || mode[2] != 0) {
418 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
419 return NULL;
420 }
421
422 s->fd = fd;
423 if (mode[0] == 'w') {
424 qemu_set_block(s->fd);
425 s->file = qemu_fopen_ops(s, &socket_write_ops);
426 } else {
427 s->file = qemu_fopen_ops(s, &socket_read_ops);
428 }
429 return s->file;
430 }
431
432 QEMUFile *qemu_fopen(const char *filename, const char *mode)
433 {
434 QEMUFileStdio *s;
435
436 if (mode == NULL ||
437 (mode[0] != 'r' && mode[0] != 'w') ||
438 mode[1] != 'b' || mode[2] != 0) {
439 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
440 return NULL;
441 }
442
443 s = g_malloc0(sizeof(QEMUFileStdio));
444
445 s->stdio_file = fopen(filename, mode);
446 if (!s->stdio_file)
447 goto fail;
448
449 if(mode[0] == 'w') {
450 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
451 } else {
452 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
453 }
454 return s->file;
455 fail:
456 g_free(s);
457 return NULL;
458 }
459
460 static int block_put_buffer(void *opaque, const uint8_t *buf,
461 int64_t pos, int size)
462 {
463 bdrv_save_vmstate(opaque, buf, pos, size);
464 return size;
465 }
466
467 static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
468 {
469 return bdrv_load_vmstate(opaque, buf, pos, size);
470 }
471
472 static int bdrv_fclose(void *opaque)
473 {
474 return bdrv_flush(opaque);
475 }
476
477 static const QEMUFileOps bdrv_read_ops = {
478 .get_buffer = block_get_buffer,
479 .close = bdrv_fclose
480 };
481
482 static const QEMUFileOps bdrv_write_ops = {
483 .put_buffer = block_put_buffer,
484 .close = bdrv_fclose
485 };
486
487 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
488 {
489 if (is_writable)
490 return qemu_fopen_ops(bs, &bdrv_write_ops);
491 return qemu_fopen_ops(bs, &bdrv_read_ops);
492 }
493
494 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
495 {
496 QEMUFile *f;
497
498 f = g_malloc0(sizeof(QEMUFile));
499
500 f->opaque = opaque;
501 f->ops = ops;
502 return f;
503 }
504
505 int qemu_file_get_error(QEMUFile *f)
506 {
507 return f->last_error;
508 }
509
510 static void qemu_file_set_error(QEMUFile *f, int ret)
511 {
512 if (f->last_error == 0) {
513 f->last_error = ret;
514 }
515 }
516
517 static inline bool qemu_file_is_writable(QEMUFile *f)
518 {
519 return f->ops->writev_buffer || f->ops->put_buffer;
520 }
521
522 /**
523 * Flushes QEMUFile buffer
524 *
525 * If there is writev_buffer QEMUFileOps it uses it otherwise uses
526 * put_buffer ops.
527 */
528 static void qemu_fflush(QEMUFile *f)
529 {
530 ssize_t ret = 0;
531
532 if (!qemu_file_is_writable(f)) {
533 return;
534 }
535
536 if (f->ops->writev_buffer) {
537 if (f->iovcnt > 0) {
538 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt);
539 }
540 } else {
541 if (f->buf_index > 0) {
542 ret = f->ops->put_buffer(f->opaque, f->buf, f->pos, f->buf_index);
543 }
544 }
545 if (ret >= 0) {
546 f->pos += ret;
547 }
548 f->buf_index = 0;
549 f->iovcnt = 0;
550 if (ret < 0) {
551 qemu_file_set_error(f, ret);
552 }
553 }
554
555 static void qemu_fill_buffer(QEMUFile *f)
556 {
557 int len;
558 int pending;
559
560 assert(!qemu_file_is_writable(f));
561
562 pending = f->buf_size - f->buf_index;
563 if (pending > 0) {
564 memmove(f->buf, f->buf + f->buf_index, pending);
565 }
566 f->buf_index = 0;
567 f->buf_size = pending;
568
569 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
570 IO_BUF_SIZE - pending);
571 if (len > 0) {
572 f->buf_size += len;
573 f->pos += len;
574 } else if (len == 0) {
575 qemu_file_set_error(f, -EIO);
576 } else if (len != -EAGAIN)
577 qemu_file_set_error(f, len);
578 }
579
580 int qemu_get_fd(QEMUFile *f)
581 {
582 if (f->ops->get_fd) {
583 return f->ops->get_fd(f->opaque);
584 }
585 return -1;
586 }
587
588 /** Closes the file
589 *
590 * Returns negative error value if any error happened on previous operations or
591 * while closing the file. Returns 0 or positive number on success.
592 *
593 * The meaning of return value on success depends on the specific backend
594 * being used.
595 */
596 int qemu_fclose(QEMUFile *f)
597 {
598 int ret;
599 qemu_fflush(f);
600 ret = qemu_file_get_error(f);
601
602 if (f->ops->close) {
603 int ret2 = f->ops->close(f->opaque);
604 if (ret >= 0) {
605 ret = ret2;
606 }
607 }
608 /* If any error was spotted before closing, we should report it
609 * instead of the close() return value.
610 */
611 if (f->last_error) {
612 ret = f->last_error;
613 }
614 g_free(f);
615 return ret;
616 }
617
618 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, int size)
619 {
620 /* check for adjacent buffer and coalesce them */
621 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
622 f->iov[f->iovcnt - 1].iov_len) {
623 f->iov[f->iovcnt - 1].iov_len += size;
624 } else {
625 f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
626 f->iov[f->iovcnt++].iov_len = size;
627 }
628
629 if (f->buf_index >= IO_BUF_SIZE || f->iovcnt >= MAX_IOV_SIZE) {
630 qemu_fflush(f);
631 }
632 }
633
634 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, int size)
635 {
636 if (!f->ops->writev_buffer) {
637 qemu_put_buffer(f, buf, size);
638 return;
639 }
640
641 if (f->last_error) {
642 return;
643 }
644
645 f->bytes_xfer += size;
646 add_to_iovec(f, buf, size);
647 }
648
649 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
650 {
651 int l;
652
653 if (f->last_error) {
654 return;
655 }
656
657 while (size > 0) {
658 l = IO_BUF_SIZE - f->buf_index;
659 if (l > size)
660 l = size;
661 memcpy(f->buf + f->buf_index, buf, l);
662 f->bytes_xfer += size;
663 if (f->ops->writev_buffer) {
664 add_to_iovec(f, f->buf + f->buf_index, l);
665 f->buf_index += l;
666 } else {
667 f->buf_index += l;
668 if (f->buf_index == IO_BUF_SIZE) {
669 qemu_fflush(f);
670 }
671 }
672 if (qemu_file_get_error(f)) {
673 break;
674 }
675 buf += l;
676 size -= l;
677 }
678 }
679
680 void qemu_put_byte(QEMUFile *f, int v)
681 {
682 if (f->last_error) {
683 return;
684 }
685
686 f->buf[f->buf_index] = v;
687 f->bytes_xfer++;
688 if (f->ops->writev_buffer) {
689 add_to_iovec(f, f->buf + f->buf_index, 1);
690 f->buf_index++;
691 } else {
692 f->buf_index++;
693 if (f->buf_index == IO_BUF_SIZE) {
694 qemu_fflush(f);
695 }
696 }
697 }
698
699 static void qemu_file_skip(QEMUFile *f, int size)
700 {
701 if (f->buf_index + size <= f->buf_size) {
702 f->buf_index += size;
703 }
704 }
705
706 static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
707 {
708 int pending;
709 int index;
710
711 assert(!qemu_file_is_writable(f));
712
713 index = f->buf_index + offset;
714 pending = f->buf_size - index;
715 if (pending < size) {
716 qemu_fill_buffer(f);
717 index = f->buf_index + offset;
718 pending = f->buf_size - index;
719 }
720
721 if (pending <= 0) {
722 return 0;
723 }
724 if (size > pending) {
725 size = pending;
726 }
727
728 memcpy(buf, f->buf + index, size);
729 return size;
730 }
731
732 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
733 {
734 int pending = size;
735 int done = 0;
736
737 while (pending > 0) {
738 int res;
739
740 res = qemu_peek_buffer(f, buf, pending, 0);
741 if (res == 0) {
742 return done;
743 }
744 qemu_file_skip(f, res);
745 buf += res;
746 pending -= res;
747 done += res;
748 }
749 return done;
750 }
751
752 static int qemu_peek_byte(QEMUFile *f, int offset)
753 {
754 int index = f->buf_index + offset;
755
756 assert(!qemu_file_is_writable(f));
757
758 if (index >= f->buf_size) {
759 qemu_fill_buffer(f);
760 index = f->buf_index + offset;
761 if (index >= f->buf_size) {
762 return 0;
763 }
764 }
765 return f->buf[index];
766 }
767
768 int qemu_get_byte(QEMUFile *f)
769 {
770 int result;
771
772 result = qemu_peek_byte(f, 0);
773 qemu_file_skip(f, 1);
774 return result;
775 }
776
777 int64_t qemu_ftell(QEMUFile *f)
778 {
779 qemu_fflush(f);
780 return f->pos;
781 }
782
783 int qemu_file_rate_limit(QEMUFile *f)
784 {
785 if (qemu_file_get_error(f)) {
786 return 1;
787 }
788 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
789 return 1;
790 }
791 return 0;
792 }
793
794 int64_t qemu_file_get_rate_limit(QEMUFile *f)
795 {
796 return f->xfer_limit;
797 }
798
799 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
800 {
801 f->xfer_limit = limit;
802 }
803
804 void qemu_file_reset_rate_limit(QEMUFile *f)
805 {
806 f->bytes_xfer = 0;
807 }
808
809 void qemu_put_be16(QEMUFile *f, unsigned int v)
810 {
811 qemu_put_byte(f, v >> 8);
812 qemu_put_byte(f, v);
813 }
814
815 void qemu_put_be32(QEMUFile *f, unsigned int v)
816 {
817 qemu_put_byte(f, v >> 24);
818 qemu_put_byte(f, v >> 16);
819 qemu_put_byte(f, v >> 8);
820 qemu_put_byte(f, v);
821 }
822
823 void qemu_put_be64(QEMUFile *f, uint64_t v)
824 {
825 qemu_put_be32(f, v >> 32);
826 qemu_put_be32(f, v);
827 }
828
829 unsigned int qemu_get_be16(QEMUFile *f)
830 {
831 unsigned int v;
832 v = qemu_get_byte(f) << 8;
833 v |= qemu_get_byte(f);
834 return v;
835 }
836
837 unsigned int qemu_get_be32(QEMUFile *f)
838 {
839 unsigned int v;
840 v = qemu_get_byte(f) << 24;
841 v |= qemu_get_byte(f) << 16;
842 v |= qemu_get_byte(f) << 8;
843 v |= qemu_get_byte(f);
844 return v;
845 }
846
847 uint64_t qemu_get_be64(QEMUFile *f)
848 {
849 uint64_t v;
850 v = (uint64_t)qemu_get_be32(f) << 32;
851 v |= qemu_get_be32(f);
852 return v;
853 }
854
855
856 /* timer */
857
858 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
859 {
860 uint64_t expire_time;
861
862 expire_time = qemu_timer_expire_time_ns(ts);
863 qemu_put_be64(f, expire_time);
864 }
865
866 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
867 {
868 uint64_t expire_time;
869
870 expire_time = qemu_get_be64(f);
871 if (expire_time != -1) {
872 qemu_mod_timer_ns(ts, expire_time);
873 } else {
874 qemu_del_timer(ts);
875 }
876 }
877
878
879 /* bool */
880
881 static int get_bool(QEMUFile *f, void *pv, size_t size)
882 {
883 bool *v = pv;
884 *v = qemu_get_byte(f);
885 return 0;
886 }
887
888 static void put_bool(QEMUFile *f, void *pv, size_t size)
889 {
890 bool *v = pv;
891 qemu_put_byte(f, *v);
892 }
893
894 const VMStateInfo vmstate_info_bool = {
895 .name = "bool",
896 .get = get_bool,
897 .put = put_bool,
898 };
899
900 /* 8 bit int */
901
902 static int get_int8(QEMUFile *f, void *pv, size_t size)
903 {
904 int8_t *v = pv;
905 qemu_get_s8s(f, v);
906 return 0;
907 }
908
909 static void put_int8(QEMUFile *f, void *pv, size_t size)
910 {
911 int8_t *v = pv;
912 qemu_put_s8s(f, v);
913 }
914
915 const VMStateInfo vmstate_info_int8 = {
916 .name = "int8",
917 .get = get_int8,
918 .put = put_int8,
919 };
920
921 /* 16 bit int */
922
923 static int get_int16(QEMUFile *f, void *pv, size_t size)
924 {
925 int16_t *v = pv;
926 qemu_get_sbe16s(f, v);
927 return 0;
928 }
929
930 static void put_int16(QEMUFile *f, void *pv, size_t size)
931 {
932 int16_t *v = pv;
933 qemu_put_sbe16s(f, v);
934 }
935
936 const VMStateInfo vmstate_info_int16 = {
937 .name = "int16",
938 .get = get_int16,
939 .put = put_int16,
940 };
941
942 /* 32 bit int */
943
944 static int get_int32(QEMUFile *f, void *pv, size_t size)
945 {
946 int32_t *v = pv;
947 qemu_get_sbe32s(f, v);
948 return 0;
949 }
950
951 static void put_int32(QEMUFile *f, void *pv, size_t size)
952 {
953 int32_t *v = pv;
954 qemu_put_sbe32s(f, v);
955 }
956
957 const VMStateInfo vmstate_info_int32 = {
958 .name = "int32",
959 .get = get_int32,
960 .put = put_int32,
961 };
962
963 /* 32 bit int. See that the received value is the same than the one
964 in the field */
965
966 static int get_int32_equal(QEMUFile *f, void *pv, size_t size)
967 {
968 int32_t *v = pv;
969 int32_t v2;
970 qemu_get_sbe32s(f, &v2);
971
972 if (*v == v2)
973 return 0;
974 return -EINVAL;
975 }
976
977 const VMStateInfo vmstate_info_int32_equal = {
978 .name = "int32 equal",
979 .get = get_int32_equal,
980 .put = put_int32,
981 };
982
983 /* 32 bit int. See that the received value is the less or the same
984 than the one in the field */
985
986 static int get_int32_le(QEMUFile *f, void *pv, size_t size)
987 {
988 int32_t *old = pv;
989 int32_t new;
990 qemu_get_sbe32s(f, &new);
991
992 if (*old <= new)
993 return 0;
994 return -EINVAL;
995 }
996
997 const VMStateInfo vmstate_info_int32_le = {
998 .name = "int32 equal",
999 .get = get_int32_le,
1000 .put = put_int32,
1001 };
1002
1003 /* 64 bit int */
1004
1005 static int get_int64(QEMUFile *f, void *pv, size_t size)
1006 {
1007 int64_t *v = pv;
1008 qemu_get_sbe64s(f, v);
1009 return 0;
1010 }
1011
1012 static void put_int64(QEMUFile *f, void *pv, size_t size)
1013 {
1014 int64_t *v = pv;
1015 qemu_put_sbe64s(f, v);
1016 }
1017
1018 const VMStateInfo vmstate_info_int64 = {
1019 .name = "int64",
1020 .get = get_int64,
1021 .put = put_int64,
1022 };
1023
1024 /* 8 bit unsigned int */
1025
1026 static int get_uint8(QEMUFile *f, void *pv, size_t size)
1027 {
1028 uint8_t *v = pv;
1029 qemu_get_8s(f, v);
1030 return 0;
1031 }
1032
1033 static void put_uint8(QEMUFile *f, void *pv, size_t size)
1034 {
1035 uint8_t *v = pv;
1036 qemu_put_8s(f, v);
1037 }
1038
1039 const VMStateInfo vmstate_info_uint8 = {
1040 .name = "uint8",
1041 .get = get_uint8,
1042 .put = put_uint8,
1043 };
1044
1045 /* 16 bit unsigned int */
1046
1047 static int get_uint16(QEMUFile *f, void *pv, size_t size)
1048 {
1049 uint16_t *v = pv;
1050 qemu_get_be16s(f, v);
1051 return 0;
1052 }
1053
1054 static void put_uint16(QEMUFile *f, void *pv, size_t size)
1055 {
1056 uint16_t *v = pv;
1057 qemu_put_be16s(f, v);
1058 }
1059
1060 const VMStateInfo vmstate_info_uint16 = {
1061 .name = "uint16",
1062 .get = get_uint16,
1063 .put = put_uint16,
1064 };
1065
1066 /* 32 bit unsigned int */
1067
1068 static int get_uint32(QEMUFile *f, void *pv, size_t size)
1069 {
1070 uint32_t *v = pv;
1071 qemu_get_be32s(f, v);
1072 return 0;
1073 }
1074
1075 static void put_uint32(QEMUFile *f, void *pv, size_t size)
1076 {
1077 uint32_t *v = pv;
1078 qemu_put_be32s(f, v);
1079 }
1080
1081 const VMStateInfo vmstate_info_uint32 = {
1082 .name = "uint32",
1083 .get = get_uint32,
1084 .put = put_uint32,
1085 };
1086
1087 /* 32 bit uint. See that the received value is the same than the one
1088 in the field */
1089
1090 static int get_uint32_equal(QEMUFile *f, void *pv, size_t size)
1091 {
1092 uint32_t *v = pv;
1093 uint32_t v2;
1094 qemu_get_be32s(f, &v2);
1095
1096 if (*v == v2) {
1097 return 0;
1098 }
1099 return -EINVAL;
1100 }
1101
1102 const VMStateInfo vmstate_info_uint32_equal = {
1103 .name = "uint32 equal",
1104 .get = get_uint32_equal,
1105 .put = put_uint32,
1106 };
1107
1108 /* 64 bit unsigned int */
1109
1110 static int get_uint64(QEMUFile *f, void *pv, size_t size)
1111 {
1112 uint64_t *v = pv;
1113 qemu_get_be64s(f, v);
1114 return 0;
1115 }
1116
1117 static void put_uint64(QEMUFile *f, void *pv, size_t size)
1118 {
1119 uint64_t *v = pv;
1120 qemu_put_be64s(f, v);
1121 }
1122
1123 const VMStateInfo vmstate_info_uint64 = {
1124 .name = "uint64",
1125 .get = get_uint64,
1126 .put = put_uint64,
1127 };
1128
1129 /* 64 bit unsigned int. See that the received value is the same than the one
1130 in the field */
1131
1132 static int get_uint64_equal(QEMUFile *f, void *pv, size_t size)
1133 {
1134 uint64_t *v = pv;
1135 uint64_t v2;
1136 qemu_get_be64s(f, &v2);
1137
1138 if (*v == v2) {
1139 return 0;
1140 }
1141 return -EINVAL;
1142 }
1143
1144 const VMStateInfo vmstate_info_uint64_equal = {
1145 .name = "int64 equal",
1146 .get = get_uint64_equal,
1147 .put = put_uint64,
1148 };
1149
1150 /* 8 bit int. See that the received value is the same than the one
1151 in the field */
1152
1153 static int get_uint8_equal(QEMUFile *f, void *pv, size_t size)
1154 {
1155 uint8_t *v = pv;
1156 uint8_t v2;
1157 qemu_get_8s(f, &v2);
1158
1159 if (*v == v2)
1160 return 0;
1161 return -EINVAL;
1162 }
1163
1164 const VMStateInfo vmstate_info_uint8_equal = {
1165 .name = "uint8 equal",
1166 .get = get_uint8_equal,
1167 .put = put_uint8,
1168 };
1169
1170 /* 16 bit unsigned int int. See that the received value is the same than the one
1171 in the field */
1172
1173 static int get_uint16_equal(QEMUFile *f, void *pv, size_t size)
1174 {
1175 uint16_t *v = pv;
1176 uint16_t v2;
1177 qemu_get_be16s(f, &v2);
1178
1179 if (*v == v2)
1180 return 0;
1181 return -EINVAL;
1182 }
1183
1184 const VMStateInfo vmstate_info_uint16_equal = {
1185 .name = "uint16 equal",
1186 .get = get_uint16_equal,
1187 .put = put_uint16,
1188 };
1189
1190 /* floating point */
1191
1192 static int get_float64(QEMUFile *f, void *pv, size_t size)
1193 {
1194 float64 *v = pv;
1195
1196 *v = make_float64(qemu_get_be64(f));
1197 return 0;
1198 }
1199
1200 static void put_float64(QEMUFile *f, void *pv, size_t size)
1201 {
1202 uint64_t *v = pv;
1203
1204 qemu_put_be64(f, float64_val(*v));
1205 }
1206
1207 const VMStateInfo vmstate_info_float64 = {
1208 .name = "float64",
1209 .get = get_float64,
1210 .put = put_float64,
1211 };
1212
1213 /* timers */
1214
1215 static int get_timer(QEMUFile *f, void *pv, size_t size)
1216 {
1217 QEMUTimer *v = pv;
1218 qemu_get_timer(f, v);
1219 return 0;
1220 }
1221
1222 static void put_timer(QEMUFile *f, void *pv, size_t size)
1223 {
1224 QEMUTimer *v = pv;
1225 qemu_put_timer(f, v);
1226 }
1227
1228 const VMStateInfo vmstate_info_timer = {
1229 .name = "timer",
1230 .get = get_timer,
1231 .put = put_timer,
1232 };
1233
1234 /* uint8_t buffers */
1235
1236 static int get_buffer(QEMUFile *f, void *pv, size_t size)
1237 {
1238 uint8_t *v = pv;
1239 qemu_get_buffer(f, v, size);
1240 return 0;
1241 }
1242
1243 static void put_buffer(QEMUFile *f, void *pv, size_t size)
1244 {
1245 uint8_t *v = pv;
1246 qemu_put_buffer(f, v, size);
1247 }
1248
1249 const VMStateInfo vmstate_info_buffer = {
1250 .name = "buffer",
1251 .get = get_buffer,
1252 .put = put_buffer,
1253 };
1254
1255 /* unused buffers: space that was used for some fields that are
1256 not useful anymore */
1257
1258 static int get_unused_buffer(QEMUFile *f, void *pv, size_t size)
1259 {
1260 uint8_t buf[1024];
1261 int block_len;
1262
1263 while (size > 0) {
1264 block_len = MIN(sizeof(buf), size);
1265 size -= block_len;
1266 qemu_get_buffer(f, buf, block_len);
1267 }
1268 return 0;
1269 }
1270
1271 static void put_unused_buffer(QEMUFile *f, void *pv, size_t size)
1272 {
1273 static const uint8_t buf[1024];
1274 int block_len;
1275
1276 while (size > 0) {
1277 block_len = MIN(sizeof(buf), size);
1278 size -= block_len;
1279 qemu_put_buffer(f, buf, block_len);
1280 }
1281 }
1282
1283 const VMStateInfo vmstate_info_unused_buffer = {
1284 .name = "unused_buffer",
1285 .get = get_unused_buffer,
1286 .put = put_unused_buffer,
1287 };
1288
1289 /* bitmaps (as defined by bitmap.h). Note that size here is the size
1290 * of the bitmap in bits. The on-the-wire format of a bitmap is 64
1291 * bit words with the bits in big endian order. The in-memory format
1292 * is an array of 'unsigned long', which may be either 32 or 64 bits.
1293 */
1294 /* This is the number of 64 bit words sent over the wire */
1295 #define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
1296 static int get_bitmap(QEMUFile *f, void *pv, size_t size)
1297 {
1298 unsigned long *bmp = pv;
1299 int i, idx = 0;
1300 for (i = 0; i < BITS_TO_U64S(size); i++) {
1301 uint64_t w = qemu_get_be64(f);
1302 bmp[idx++] = w;
1303 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1304 bmp[idx++] = w >> 32;
1305 }
1306 }
1307 return 0;
1308 }
1309
1310 static void put_bitmap(QEMUFile *f, void *pv, size_t size)
1311 {
1312 unsigned long *bmp = pv;
1313 int i, idx = 0;
1314 for (i = 0; i < BITS_TO_U64S(size); i++) {
1315 uint64_t w = bmp[idx++];
1316 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1317 w |= ((uint64_t)bmp[idx++]) << 32;
1318 }
1319 qemu_put_be64(f, w);
1320 }
1321 }
1322
1323 const VMStateInfo vmstate_info_bitmap = {
1324 .name = "bitmap",
1325 .get = get_bitmap,
1326 .put = put_bitmap,
1327 };
1328
1329 typedef struct CompatEntry {
1330 char idstr[256];
1331 int instance_id;
1332 } CompatEntry;
1333
1334 typedef struct SaveStateEntry {
1335 QTAILQ_ENTRY(SaveStateEntry) entry;
1336 char idstr[256];
1337 int instance_id;
1338 int alias_id;
1339 int version_id;
1340 int section_id;
1341 SaveVMHandlers *ops;
1342 const VMStateDescription *vmsd;
1343 void *opaque;
1344 CompatEntry *compat;
1345 int no_migrate;
1346 int is_ram;
1347 } SaveStateEntry;
1348
1349
1350 static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers =
1351 QTAILQ_HEAD_INITIALIZER(savevm_handlers);
1352 static int global_section_id;
1353
1354 static int calculate_new_instance_id(const char *idstr)
1355 {
1356 SaveStateEntry *se;
1357 int instance_id = 0;
1358
1359 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1360 if (strcmp(idstr, se->idstr) == 0
1361 && instance_id <= se->instance_id) {
1362 instance_id = se->instance_id + 1;
1363 }
1364 }
1365 return instance_id;
1366 }
1367
1368 static int calculate_compat_instance_id(const char *idstr)
1369 {
1370 SaveStateEntry *se;
1371 int instance_id = 0;
1372
1373 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1374 if (!se->compat)
1375 continue;
1376
1377 if (strcmp(idstr, se->compat->idstr) == 0
1378 && instance_id <= se->compat->instance_id) {
1379 instance_id = se->compat->instance_id + 1;
1380 }
1381 }
1382 return instance_id;
1383 }
1384
1385 /* TODO: Individual devices generally have very little idea about the rest
1386 of the system, so instance_id should be removed/replaced.
1387 Meanwhile pass -1 as instance_id if you do not already have a clearly
1388 distinguishing id for all instances of your device class. */
1389 int register_savevm_live(DeviceState *dev,
1390 const char *idstr,
1391 int instance_id,
1392 int version_id,
1393 SaveVMHandlers *ops,
1394 void *opaque)
1395 {
1396 SaveStateEntry *se;
1397
1398 se = g_malloc0(sizeof(SaveStateEntry));
1399 se->version_id = version_id;
1400 se->section_id = global_section_id++;
1401 se->ops = ops;
1402 se->opaque = opaque;
1403 se->vmsd = NULL;
1404 se->no_migrate = 0;
1405 /* if this is a live_savem then set is_ram */
1406 if (ops->save_live_setup != NULL) {
1407 se->is_ram = 1;
1408 }
1409
1410 if (dev) {
1411 char *id = qdev_get_dev_path(dev);
1412 if (id) {
1413 pstrcpy(se->idstr, sizeof(se->idstr), id);
1414 pstrcat(se->idstr, sizeof(se->idstr), "/");
1415 g_free(id);
1416
1417 se->compat = g_malloc0(sizeof(CompatEntry));
1418 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
1419 se->compat->instance_id = instance_id == -1 ?
1420 calculate_compat_instance_id(idstr) : instance_id;
1421 instance_id = -1;
1422 }
1423 }
1424 pstrcat(se->idstr, sizeof(se->idstr), idstr);
1425
1426 if (instance_id == -1) {
1427 se->instance_id = calculate_new_instance_id(se->idstr);
1428 } else {
1429 se->instance_id = instance_id;
1430 }
1431 assert(!se->compat || se->instance_id == 0);
1432 /* add at the end of list */
1433 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1434 return 0;
1435 }
1436
1437 int register_savevm(DeviceState *dev,
1438 const char *idstr,
1439 int instance_id,
1440 int version_id,
1441 SaveStateHandler *save_state,
1442 LoadStateHandler *load_state,
1443 void *opaque)
1444 {
1445 SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers));
1446 ops->save_state = save_state;
1447 ops->load_state = load_state;
1448 return register_savevm_live(dev, idstr, instance_id, version_id,
1449 ops, opaque);
1450 }
1451
1452 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
1453 {
1454 SaveStateEntry *se, *new_se;
1455 char id[256] = "";
1456
1457 if (dev) {
1458 char *path = qdev_get_dev_path(dev);
1459 if (path) {
1460 pstrcpy(id, sizeof(id), path);
1461 pstrcat(id, sizeof(id), "/");
1462 g_free(path);
1463 }
1464 }
1465 pstrcat(id, sizeof(id), idstr);
1466
1467 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1468 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
1469 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1470 if (se->compat) {
1471 g_free(se->compat);
1472 }
1473 g_free(se->ops);
1474 g_free(se);
1475 }
1476 }
1477 }
1478
1479 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
1480 const VMStateDescription *vmsd,
1481 void *opaque, int alias_id,
1482 int required_for_version)
1483 {
1484 SaveStateEntry *se;
1485
1486 /* If this triggers, alias support can be dropped for the vmsd. */
1487 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
1488
1489 se = g_malloc0(sizeof(SaveStateEntry));
1490 se->version_id = vmsd->version_id;
1491 se->section_id = global_section_id++;
1492 se->opaque = opaque;
1493 se->vmsd = vmsd;
1494 se->alias_id = alias_id;
1495 se->no_migrate = vmsd->unmigratable;
1496
1497 if (dev) {
1498 char *id = qdev_get_dev_path(dev);
1499 if (id) {
1500 pstrcpy(se->idstr, sizeof(se->idstr), id);
1501 pstrcat(se->idstr, sizeof(se->idstr), "/");
1502 g_free(id);
1503
1504 se->compat = g_malloc0(sizeof(CompatEntry));
1505 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
1506 se->compat->instance_id = instance_id == -1 ?
1507 calculate_compat_instance_id(vmsd->name) : instance_id;
1508 instance_id = -1;
1509 }
1510 }
1511 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
1512
1513 if (instance_id == -1) {
1514 se->instance_id = calculate_new_instance_id(se->idstr);
1515 } else {
1516 se->instance_id = instance_id;
1517 }
1518 assert(!se->compat || se->instance_id == 0);
1519 /* add at the end of list */
1520 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1521 return 0;
1522 }
1523
1524 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
1525 void *opaque)
1526 {
1527 SaveStateEntry *se, *new_se;
1528
1529 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1530 if (se->vmsd == vmsd && se->opaque == opaque) {
1531 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1532 if (se->compat) {
1533 g_free(se->compat);
1534 }
1535 g_free(se);
1536 }
1537 }
1538 }
1539
1540 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1541 void *opaque);
1542 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1543 void *opaque);
1544
1545 int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd,
1546 void *opaque, int version_id)
1547 {
1548 VMStateField *field = vmsd->fields;
1549 int ret;
1550
1551 if (version_id > vmsd->version_id) {
1552 return -EINVAL;
1553 }
1554 if (version_id < vmsd->minimum_version_id_old) {
1555 return -EINVAL;
1556 }
1557 if (version_id < vmsd->minimum_version_id) {
1558 return vmsd->load_state_old(f, opaque, version_id);
1559 }
1560 if (vmsd->pre_load) {
1561 int ret = vmsd->pre_load(opaque);
1562 if (ret)
1563 return ret;
1564 }
1565 while(field->name) {
1566 if ((field->field_exists &&
1567 field->field_exists(opaque, version_id)) ||
1568 (!field->field_exists &&
1569 field->version_id <= version_id)) {
1570 void *base_addr = opaque + field->offset;
1571 int i, n_elems = 1;
1572 int size = field->size;
1573
1574 if (field->flags & VMS_VBUFFER) {
1575 size = *(int32_t *)(opaque+field->size_offset);
1576 if (field->flags & VMS_MULTIPLY) {
1577 size *= field->size;
1578 }
1579 }
1580 if (field->flags & VMS_ARRAY) {
1581 n_elems = field->num;
1582 } else if (field->flags & VMS_VARRAY_INT32) {
1583 n_elems = *(int32_t *)(opaque+field->num_offset);
1584 } else if (field->flags & VMS_VARRAY_UINT32) {
1585 n_elems = *(uint32_t *)(opaque+field->num_offset);
1586 } else if (field->flags & VMS_VARRAY_UINT16) {
1587 n_elems = *(uint16_t *)(opaque+field->num_offset);
1588 } else if (field->flags & VMS_VARRAY_UINT8) {
1589 n_elems = *(uint8_t *)(opaque+field->num_offset);
1590 }
1591 if (field->flags & VMS_POINTER) {
1592 base_addr = *(void **)base_addr + field->start;
1593 }
1594 for (i = 0; i < n_elems; i++) {
1595 void *addr = base_addr + size * i;
1596
1597 if (field->flags & VMS_ARRAY_OF_POINTER) {
1598 addr = *(void **)addr;
1599 }
1600 if (field->flags & VMS_STRUCT) {
1601 ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id);
1602 } else {
1603 ret = field->info->get(f, addr, size);
1604
1605 }
1606 if (ret < 0) {
1607 return ret;
1608 }
1609 }
1610 }
1611 field++;
1612 }
1613 ret = vmstate_subsection_load(f, vmsd, opaque);
1614 if (ret != 0) {
1615 return ret;
1616 }
1617 if (vmsd->post_load) {
1618 return vmsd->post_load(opaque, version_id);
1619 }
1620 return 0;
1621 }
1622
1623 void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd,
1624 void *opaque)
1625 {
1626 VMStateField *field = vmsd->fields;
1627
1628 if (vmsd->pre_save) {
1629 vmsd->pre_save(opaque);
1630 }
1631 while(field->name) {
1632 if (!field->field_exists ||
1633 field->field_exists(opaque, vmsd->version_id)) {
1634 void *base_addr = opaque + field->offset;
1635 int i, n_elems = 1;
1636 int size = field->size;
1637
1638 if (field->flags & VMS_VBUFFER) {
1639 size = *(int32_t *)(opaque+field->size_offset);
1640 if (field->flags & VMS_MULTIPLY) {
1641 size *= field->size;
1642 }
1643 }
1644 if (field->flags & VMS_ARRAY) {
1645 n_elems = field->num;
1646 } else if (field->flags & VMS_VARRAY_INT32) {
1647 n_elems = *(int32_t *)(opaque+field->num_offset);
1648 } else if (field->flags & VMS_VARRAY_UINT32) {
1649 n_elems = *(uint32_t *)(opaque+field->num_offset);
1650 } else if (field->flags & VMS_VARRAY_UINT16) {
1651 n_elems = *(uint16_t *)(opaque+field->num_offset);
1652 } else if (field->flags & VMS_VARRAY_UINT8) {
1653 n_elems = *(uint8_t *)(opaque+field->num_offset);
1654 }
1655 if (field->flags & VMS_POINTER) {
1656 base_addr = *(void **)base_addr + field->start;
1657 }
1658 for (i = 0; i < n_elems; i++) {
1659 void *addr = base_addr + size * i;
1660
1661 if (field->flags & VMS_ARRAY_OF_POINTER) {
1662 addr = *(void **)addr;
1663 }
1664 if (field->flags & VMS_STRUCT) {
1665 vmstate_save_state(f, field->vmsd, addr);
1666 } else {
1667 field->info->put(f, addr, size);
1668 }
1669 }
1670 }
1671 field++;
1672 }
1673 vmstate_subsection_save(f, vmsd, opaque);
1674 }
1675
1676 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id)
1677 {
1678 if (!se->vmsd) { /* Old style */
1679 return se->ops->load_state(f, se->opaque, version_id);
1680 }
1681 return vmstate_load_state(f, se->vmsd, se->opaque, version_id);
1682 }
1683
1684 static void vmstate_save(QEMUFile *f, SaveStateEntry *se)
1685 {
1686 if (!se->vmsd) { /* Old style */
1687 se->ops->save_state(f, se->opaque);
1688 return;
1689 }
1690 vmstate_save_state(f,se->vmsd, se->opaque);
1691 }
1692
1693 #define QEMU_VM_FILE_MAGIC 0x5145564d
1694 #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
1695 #define QEMU_VM_FILE_VERSION 0x00000003
1696
1697 #define QEMU_VM_EOF 0x00
1698 #define QEMU_VM_SECTION_START 0x01
1699 #define QEMU_VM_SECTION_PART 0x02
1700 #define QEMU_VM_SECTION_END 0x03
1701 #define QEMU_VM_SECTION_FULL 0x04
1702 #define QEMU_VM_SUBSECTION 0x05
1703
1704 bool qemu_savevm_state_blocked(Error **errp)
1705 {
1706 SaveStateEntry *se;
1707
1708 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1709 if (se->no_migrate) {
1710 error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr);
1711 return true;
1712 }
1713 }
1714 return false;
1715 }
1716
1717 void qemu_savevm_state_begin(QEMUFile *f,
1718 const MigrationParams *params)
1719 {
1720 SaveStateEntry *se;
1721 int ret;
1722
1723 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1724 if (!se->ops || !se->ops->set_params) {
1725 continue;
1726 }
1727 se->ops->set_params(params, se->opaque);
1728 }
1729
1730 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1731 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1732
1733 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1734 int len;
1735
1736 if (!se->ops || !se->ops->save_live_setup) {
1737 continue;
1738 }
1739 if (se->ops && se->ops->is_active) {
1740 if (!se->ops->is_active(se->opaque)) {
1741 continue;
1742 }
1743 }
1744 /* Section type */
1745 qemu_put_byte(f, QEMU_VM_SECTION_START);
1746 qemu_put_be32(f, se->section_id);
1747
1748 /* ID string */
1749 len = strlen(se->idstr);
1750 qemu_put_byte(f, len);
1751 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1752
1753 qemu_put_be32(f, se->instance_id);
1754 qemu_put_be32(f, se->version_id);
1755
1756 ret = se->ops->save_live_setup(f, se->opaque);
1757 if (ret < 0) {
1758 qemu_file_set_error(f, ret);
1759 break;
1760 }
1761 }
1762 }
1763
1764 /*
1765 * this function has three return values:
1766 * negative: there was one error, and we have -errno.
1767 * 0 : We haven't finished, caller have to go again
1768 * 1 : We have finished, we can go to complete phase
1769 */
1770 int qemu_savevm_state_iterate(QEMUFile *f)
1771 {
1772 SaveStateEntry *se;
1773 int ret = 1;
1774
1775 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1776 if (!se->ops || !se->ops->save_live_iterate) {
1777 continue;
1778 }
1779 if (se->ops && se->ops->is_active) {
1780 if (!se->ops->is_active(se->opaque)) {
1781 continue;
1782 }
1783 }
1784 if (qemu_file_rate_limit(f)) {
1785 return 0;
1786 }
1787 trace_savevm_section_start();
1788 /* Section type */
1789 qemu_put_byte(f, QEMU_VM_SECTION_PART);
1790 qemu_put_be32(f, se->section_id);
1791
1792 ret = se->ops->save_live_iterate(f, se->opaque);
1793 trace_savevm_section_end(se->section_id);
1794
1795 if (ret < 0) {
1796 qemu_file_set_error(f, ret);
1797 }
1798 if (ret <= 0) {
1799 /* Do not proceed to the next vmstate before this one reported
1800 completion of the current stage. This serializes the migration
1801 and reduces the probability that a faster changing state is
1802 synchronized over and over again. */
1803 break;
1804 }
1805 }
1806 return ret;
1807 }
1808
1809 void qemu_savevm_state_complete(QEMUFile *f)
1810 {
1811 SaveStateEntry *se;
1812 int ret;
1813
1814 cpu_synchronize_all_states();
1815
1816 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1817 if (!se->ops || !se->ops->save_live_complete) {
1818 continue;
1819 }
1820 if (se->ops && se->ops->is_active) {
1821 if (!se->ops->is_active(se->opaque)) {
1822 continue;
1823 }
1824 }
1825 trace_savevm_section_start();
1826 /* Section type */
1827 qemu_put_byte(f, QEMU_VM_SECTION_END);
1828 qemu_put_be32(f, se->section_id);
1829
1830 ret = se->ops->save_live_complete(f, se->opaque);
1831 trace_savevm_section_end(se->section_id);
1832 if (ret < 0) {
1833 qemu_file_set_error(f, ret);
1834 return;
1835 }
1836 }
1837
1838 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1839 int len;
1840
1841 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1842 continue;
1843 }
1844 trace_savevm_section_start();
1845 /* Section type */
1846 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1847 qemu_put_be32(f, se->section_id);
1848
1849 /* ID string */
1850 len = strlen(se->idstr);
1851 qemu_put_byte(f, len);
1852 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1853
1854 qemu_put_be32(f, se->instance_id);
1855 qemu_put_be32(f, se->version_id);
1856
1857 vmstate_save(f, se);
1858 trace_savevm_section_end(se->section_id);
1859 }
1860
1861 qemu_put_byte(f, QEMU_VM_EOF);
1862 qemu_fflush(f);
1863 }
1864
1865 uint64_t qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size)
1866 {
1867 SaveStateEntry *se;
1868 uint64_t ret = 0;
1869
1870 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1871 if (!se->ops || !se->ops->save_live_pending) {
1872 continue;
1873 }
1874 if (se->ops && se->ops->is_active) {
1875 if (!se->ops->is_active(se->opaque)) {
1876 continue;
1877 }
1878 }
1879 ret += se->ops->save_live_pending(f, se->opaque, max_size);
1880 }
1881 return ret;
1882 }
1883
1884 void qemu_savevm_state_cancel(void)
1885 {
1886 SaveStateEntry *se;
1887
1888 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1889 if (se->ops && se->ops->cancel) {
1890 se->ops->cancel(se->opaque);
1891 }
1892 }
1893 }
1894
1895 static int qemu_savevm_state(QEMUFile *f)
1896 {
1897 int ret;
1898 MigrationParams params = {
1899 .blk = 0,
1900 .shared = 0
1901 };
1902
1903 if (qemu_savevm_state_blocked(NULL)) {
1904 return -EINVAL;
1905 }
1906
1907 qemu_mutex_unlock_iothread();
1908 qemu_savevm_state_begin(f, &params);
1909 qemu_mutex_lock_iothread();
1910
1911 while (qemu_file_get_error(f) == 0) {
1912 if (qemu_savevm_state_iterate(f) > 0) {
1913 break;
1914 }
1915 }
1916
1917 ret = qemu_file_get_error(f);
1918 if (ret == 0) {
1919 qemu_savevm_state_complete(f);
1920 ret = qemu_file_get_error(f);
1921 }
1922 if (ret != 0) {
1923 qemu_savevm_state_cancel();
1924 }
1925 return ret;
1926 }
1927
1928 static int qemu_save_device_state(QEMUFile *f)
1929 {
1930 SaveStateEntry *se;
1931
1932 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1933 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1934
1935 cpu_synchronize_all_states();
1936
1937 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1938 int len;
1939
1940 if (se->is_ram) {
1941 continue;
1942 }
1943 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1944 continue;
1945 }
1946
1947 /* Section type */
1948 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1949 qemu_put_be32(f, se->section_id);
1950
1951 /* ID string */
1952 len = strlen(se->idstr);
1953 qemu_put_byte(f, len);
1954 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1955
1956 qemu_put_be32(f, se->instance_id);
1957 qemu_put_be32(f, se->version_id);
1958
1959 vmstate_save(f, se);
1960 }
1961
1962 qemu_put_byte(f, QEMU_VM_EOF);
1963
1964 return qemu_file_get_error(f);
1965 }
1966
1967 static SaveStateEntry *find_se(const char *idstr, int instance_id)
1968 {
1969 SaveStateEntry *se;
1970
1971 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1972 if (!strcmp(se->idstr, idstr) &&
1973 (instance_id == se->instance_id ||
1974 instance_id == se->alias_id))
1975 return se;
1976 /* Migrating from an older version? */
1977 if (strstr(se->idstr, idstr) && se->compat) {
1978 if (!strcmp(se->compat->idstr, idstr) &&
1979 (instance_id == se->compat->instance_id ||
1980 instance_id == se->alias_id))
1981 return se;
1982 }
1983 }
1984 return NULL;
1985 }
1986
1987 static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr)
1988 {
1989 while(sub && sub->needed) {
1990 if (strcmp(idstr, sub->vmsd->name) == 0) {
1991 return sub->vmsd;
1992 }
1993 sub++;
1994 }
1995 return NULL;
1996 }
1997
1998 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1999 void *opaque)
2000 {
2001 while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) {
2002 char idstr[256];
2003 int ret;
2004 uint8_t version_id, len, size;
2005 const VMStateDescription *sub_vmsd;
2006
2007 len = qemu_peek_byte(f, 1);
2008 if (len < strlen(vmsd->name) + 1) {
2009 /* subsection name has be be "section_name/a" */
2010 return 0;
2011 }
2012 size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2);
2013 if (size != len) {
2014 return 0;
2015 }
2016 idstr[size] = 0;
2017
2018 if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) {
2019 /* it don't have a valid subsection name */
2020 return 0;
2021 }
2022 sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr);
2023 if (sub_vmsd == NULL) {
2024 return -ENOENT;
2025 }
2026 qemu_file_skip(f, 1); /* subsection */
2027 qemu_file_skip(f, 1); /* len */
2028 qemu_file_skip(f, len); /* idstr */
2029 version_id = qemu_get_be32(f);
2030
2031 ret = vmstate_load_state(f, sub_vmsd, opaque, version_id);
2032 if (ret) {
2033 return ret;
2034 }
2035 }
2036 return 0;
2037 }
2038
2039 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
2040 void *opaque)
2041 {
2042 const VMStateSubsection *sub = vmsd->subsections;
2043
2044 while (sub && sub->needed) {
2045 if (sub->needed(opaque)) {
2046 const VMStateDescription *vmsd = sub->vmsd;
2047 uint8_t len;
2048
2049 qemu_put_byte(f, QEMU_VM_SUBSECTION);
2050 len = strlen(vmsd->name);
2051 qemu_put_byte(f, len);
2052 qemu_put_buffer(f, (uint8_t *)vmsd->name, len);
2053 qemu_put_be32(f, vmsd->version_id);
2054 vmstate_save_state(f, vmsd, opaque);
2055 }
2056 sub++;
2057 }
2058 }
2059
2060 typedef struct LoadStateEntry {
2061 QLIST_ENTRY(LoadStateEntry) entry;
2062 SaveStateEntry *se;
2063 int section_id;
2064 int version_id;
2065 } LoadStateEntry;
2066
2067 int qemu_loadvm_state(QEMUFile *f)
2068 {
2069 QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
2070 QLIST_HEAD_INITIALIZER(loadvm_handlers);
2071 LoadStateEntry *le, *new_le;
2072 uint8_t section_type;
2073 unsigned int v;
2074 int ret;
2075
2076 if (qemu_savevm_state_blocked(NULL)) {
2077 return -EINVAL;
2078 }
2079
2080 v = qemu_get_be32(f);
2081 if (v != QEMU_VM_FILE_MAGIC)
2082 return -EINVAL;
2083
2084 v = qemu_get_be32(f);
2085 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
2086 fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n");
2087 return -ENOTSUP;
2088 }
2089 if (v != QEMU_VM_FILE_VERSION)
2090 return -ENOTSUP;
2091
2092 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
2093 uint32_t instance_id, version_id, section_id;
2094 SaveStateEntry *se;
2095 char idstr[257];
2096 int len;
2097
2098 switch (section_type) {
2099 case QEMU_VM_SECTION_START:
2100 case QEMU_VM_SECTION_FULL:
2101 /* Read section start */
2102 section_id = qemu_get_be32(f);
2103 len = qemu_get_byte(f);
2104 qemu_get_buffer(f, (uint8_t *)idstr, len);
2105 idstr[len] = 0;
2106 instance_id = qemu_get_be32(f);
2107 version_id = qemu_get_be32(f);
2108
2109 /* Find savevm section */
2110 se = find_se(idstr, instance_id);
2111 if (se == NULL) {
2112 fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
2113 ret = -EINVAL;
2114 goto out;
2115 }
2116
2117 /* Validate version */
2118 if (version_id > se->version_id) {
2119 fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
2120 version_id, idstr, se->version_id);
2121 ret = -EINVAL;
2122 goto out;
2123 }
2124
2125 /* Add entry */
2126 le = g_malloc0(sizeof(*le));
2127
2128 le->se = se;
2129 le->section_id = section_id;
2130 le->version_id = version_id;
2131 QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
2132
2133 ret = vmstate_load(f, le->se, le->version_id);
2134 if (ret < 0) {
2135 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
2136 instance_id, idstr);
2137 goto out;
2138 }
2139 break;
2140 case QEMU_VM_SECTION_PART:
2141 case QEMU_VM_SECTION_END:
2142 section_id = qemu_get_be32(f);
2143
2144 QLIST_FOREACH(le, &loadvm_handlers, entry) {
2145 if (le->section_id == section_id) {
2146 break;
2147 }
2148 }
2149 if (le == NULL) {
2150 fprintf(stderr, "Unknown savevm section %d\n", section_id);
2151 ret = -EINVAL;
2152 goto out;
2153 }
2154
2155 ret = vmstate_load(f, le->se, le->version_id);
2156 if (ret < 0) {
2157 fprintf(stderr, "qemu: warning: error while loading state section id %d\n",
2158 section_id);
2159 goto out;
2160 }
2161 break;
2162 default:
2163 fprintf(stderr, "Unknown savevm section type %d\n", section_type);
2164 ret = -EINVAL;
2165 goto out;
2166 }
2167 }
2168
2169 cpu_synchronize_all_post_init();
2170
2171 ret = 0;
2172
2173 out:
2174 QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
2175 QLIST_REMOVE(le, entry);
2176 g_free(le);
2177 }
2178
2179 if (ret == 0) {
2180 ret = qemu_file_get_error(f);
2181 }
2182
2183 return ret;
2184 }
2185
2186 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
2187 const char *name)
2188 {
2189 QEMUSnapshotInfo *sn_tab, *sn;
2190 int nb_sns, i, ret;
2191
2192 ret = -ENOENT;
2193 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2194 if (nb_sns < 0)
2195 return ret;
2196 for(i = 0; i < nb_sns; i++) {
2197 sn = &sn_tab[i];
2198 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
2199 *sn_info = *sn;
2200 ret = 0;
2201 break;
2202 }
2203 }
2204 g_free(sn_tab);
2205 return ret;
2206 }
2207
2208 /*
2209 * Deletes snapshots of a given name in all opened images.
2210 */
2211 static int del_existing_snapshots(Monitor *mon, const char *name)
2212 {
2213 BlockDriverState *bs;
2214 QEMUSnapshotInfo sn1, *snapshot = &sn1;
2215 int ret;
2216
2217 bs = NULL;
2218 while ((bs = bdrv_next(bs))) {
2219 if (bdrv_can_snapshot(bs) &&
2220 bdrv_snapshot_find(bs, snapshot, name) >= 0)
2221 {
2222 ret = bdrv_snapshot_delete(bs, name);
2223 if (ret < 0) {
2224 monitor_printf(mon,
2225 "Error while deleting snapshot on '%s'\n",
2226 bdrv_get_device_name(bs));
2227 return -1;
2228 }
2229 }
2230 }
2231
2232 return 0;
2233 }
2234
2235 void do_savevm(Monitor *mon, const QDict *qdict)
2236 {
2237 BlockDriverState *bs, *bs1;
2238 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2239 int ret;
2240 QEMUFile *f;
2241 int saved_vm_running;
2242 uint64_t vm_state_size;
2243 qemu_timeval tv;
2244 struct tm tm;
2245 const char *name = qdict_get_try_str(qdict, "name");
2246
2247 /* Verify if there is a device that doesn't support snapshots and is writable */
2248 bs = NULL;
2249 while ((bs = bdrv_next(bs))) {
2250
2251 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2252 continue;
2253 }
2254
2255 if (!bdrv_can_snapshot(bs)) {
2256 monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n",
2257 bdrv_get_device_name(bs));
2258 return;
2259 }
2260 }
2261
2262 bs = bdrv_snapshots();
2263 if (!bs) {
2264 monitor_printf(mon, "No block device can accept snapshots\n");
2265 return;
2266 }
2267
2268 saved_vm_running = runstate_is_running();
2269 vm_stop(RUN_STATE_SAVE_VM);
2270
2271 memset(sn, 0, sizeof(*sn));
2272
2273 /* fill auxiliary fields */
2274 qemu_gettimeofday(&tv);
2275 sn->date_sec = tv.tv_sec;
2276 sn->date_nsec = tv.tv_usec * 1000;
2277 sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock);
2278
2279 if (name) {
2280 ret = bdrv_snapshot_find(bs, old_sn, name);
2281 if (ret >= 0) {
2282 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2283 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2284 } else {
2285 pstrcpy(sn->name, sizeof(sn->name), name);
2286 }
2287 } else {
2288 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2289 localtime_r((const time_t *)&tv.tv_sec, &tm);
2290 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2291 }
2292
2293 /* Delete old snapshots of the same name */
2294 if (name && del_existing_snapshots(mon, name) < 0) {
2295 goto the_end;
2296 }
2297
2298 /* save the VM state */
2299 f = qemu_fopen_bdrv(bs, 1);
2300 if (!f) {
2301 monitor_printf(mon, "Could not open VM state file\n");
2302 goto the_end;
2303 }
2304 ret = qemu_savevm_state(f);
2305 vm_state_size = qemu_ftell(f);
2306 qemu_fclose(f);
2307 if (ret < 0) {
2308 monitor_printf(mon, "Error %d while writing VM\n", ret);
2309 goto the_end;
2310 }
2311
2312 /* create the snapshots */
2313
2314 bs1 = NULL;
2315 while ((bs1 = bdrv_next(bs1))) {
2316 if (bdrv_can_snapshot(bs1)) {
2317 /* Write VM state size only to the image that contains the state */
2318 sn->vm_state_size = (bs == bs1 ? vm_state_size : 0);
2319 ret = bdrv_snapshot_create(bs1, sn);
2320 if (ret < 0) {
2321 monitor_printf(mon, "Error while creating snapshot on '%s'\n",
2322 bdrv_get_device_name(bs1));
2323 }
2324 }
2325 }
2326
2327 the_end:
2328 if (saved_vm_running)
2329 vm_start();
2330 }
2331
2332 void qmp_xen_save_devices_state(const char *filename, Error **errp)
2333 {
2334 QEMUFile *f;
2335 int saved_vm_running;
2336 int ret;
2337
2338 saved_vm_running = runstate_is_running();
2339 vm_stop(RUN_STATE_SAVE_VM);
2340
2341 f = qemu_fopen(filename, "wb");
2342 if (!f) {
2343 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
2344 goto the_end;
2345 }
2346 ret = qemu_save_device_state(f);
2347 qemu_fclose(f);
2348 if (ret < 0) {
2349 error_set(errp, QERR_IO_ERROR);
2350 }
2351
2352 the_end:
2353 if (saved_vm_running)
2354 vm_start();
2355 }
2356
2357 int load_vmstate(const char *name)
2358 {
2359 BlockDriverState *bs, *bs_vm_state;
2360 QEMUSnapshotInfo sn;
2361 QEMUFile *f;
2362 int ret;
2363
2364 bs_vm_state = bdrv_snapshots();
2365 if (!bs_vm_state) {
2366 error_report("No block device supports snapshots");
2367 return -ENOTSUP;
2368 }
2369
2370 /* Don't even try to load empty VM states */
2371 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2372 if (ret < 0) {
2373 return ret;
2374 } else if (sn.vm_state_size == 0) {
2375 error_report("This is a disk-only snapshot. Revert to it offline "
2376 "using qemu-img.");
2377 return -EINVAL;
2378 }
2379
2380 /* Verify if there is any device that doesn't support snapshots and is
2381 writable and check if the requested snapshot is available too. */
2382 bs = NULL;
2383 while ((bs = bdrv_next(bs))) {
2384
2385 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2386 continue;
2387 }
2388
2389 if (!bdrv_can_snapshot(bs)) {
2390 error_report("Device '%s' is writable but does not support snapshots.",
2391 bdrv_get_device_name(bs));
2392 return -ENOTSUP;
2393 }
2394
2395 ret = bdrv_snapshot_find(bs, &sn, name);
2396 if (ret < 0) {
2397 error_report("Device '%s' does not have the requested snapshot '%s'",
2398 bdrv_get_device_name(bs), name);
2399 return ret;
2400 }
2401 }
2402
2403 /* Flush all IO requests so they don't interfere with the new state. */
2404 bdrv_drain_all();
2405
2406 bs = NULL;
2407 while ((bs = bdrv_next(bs))) {
2408 if (bdrv_can_snapshot(bs)) {
2409 ret = bdrv_snapshot_goto(bs, name);
2410 if (ret < 0) {
2411 error_report("Error %d while activating snapshot '%s' on '%s'",
2412 ret, name, bdrv_get_device_name(bs));
2413 return ret;
2414 }
2415 }
2416 }
2417
2418 /* restore the VM state */
2419 f = qemu_fopen_bdrv(bs_vm_state, 0);
2420 if (!f) {
2421 error_report("Could not open VM state file");
2422 return -EINVAL;
2423 }
2424
2425 qemu_system_reset(VMRESET_SILENT);
2426 ret = qemu_loadvm_state(f);
2427
2428 qemu_fclose(f);
2429 if (ret < 0) {
2430 error_report("Error %d while loading VM state", ret);
2431 return ret;
2432 }
2433
2434 return 0;
2435 }
2436
2437 void do_delvm(Monitor *mon, const QDict *qdict)
2438 {
2439 BlockDriverState *bs, *bs1;
2440 int ret;
2441 const char *name = qdict_get_str(qdict, "name");
2442
2443 bs = bdrv_snapshots();
2444 if (!bs) {
2445 monitor_printf(mon, "No block device supports snapshots\n");
2446 return;
2447 }
2448
2449 bs1 = NULL;
2450 while ((bs1 = bdrv_next(bs1))) {
2451 if (bdrv_can_snapshot(bs1)) {
2452 ret = bdrv_snapshot_delete(bs1, name);
2453 if (ret < 0) {
2454 if (ret == -ENOTSUP)
2455 monitor_printf(mon,
2456 "Snapshots not supported on device '%s'\n",
2457 bdrv_get_device_name(bs1));
2458 else
2459 monitor_printf(mon, "Error %d while deleting snapshot on "
2460 "'%s'\n", ret, bdrv_get_device_name(bs1));
2461 }
2462 }
2463 }
2464 }
2465
2466 void do_info_snapshots(Monitor *mon, const QDict *qdict)
2467 {
2468 BlockDriverState *bs, *bs1;
2469 QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
2470 int nb_sns, i, ret, available;
2471 int total;
2472 int *available_snapshots;
2473 char buf[256];
2474
2475 bs = bdrv_snapshots();
2476 if (!bs) {
2477 monitor_printf(mon, "No available block device supports snapshots\n");
2478 return;
2479 }
2480
2481 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2482 if (nb_sns < 0) {
2483 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
2484 return;
2485 }
2486
2487 if (nb_sns == 0) {
2488 monitor_printf(mon, "There is no snapshot available.\n");
2489 return;
2490 }
2491
2492 available_snapshots = g_malloc0(sizeof(int) * nb_sns);
2493 total = 0;
2494 for (i = 0; i < nb_sns; i++) {
2495 sn = &sn_tab[i];
2496 available = 1;
2497 bs1 = NULL;
2498
2499 while ((bs1 = bdrv_next(bs1))) {
2500 if (bdrv_can_snapshot(bs1) && bs1 != bs) {
2501 ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
2502 if (ret < 0) {
2503 available = 0;
2504 break;
2505 }
2506 }
2507 }
2508
2509 if (available) {
2510 available_snapshots[total] = i;
2511 total++;
2512 }
2513 }
2514
2515 if (total > 0) {
2516 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
2517 for (i = 0; i < total; i++) {
2518 sn = &sn_tab[available_snapshots[i]];
2519 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
2520 }
2521 } else {
2522 monitor_printf(mon, "There is no suitable snapshot available\n");
2523 }
2524
2525 g_free(sn_tab);
2526 g_free(available_snapshots);
2527
2528 }
2529
2530 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2531 {
2532 qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK,
2533 memory_region_name(mr), dev);
2534 }
2535
2536 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2537 {
2538 /* Nothing do to while the implementation is in RAMBlock */
2539 }
2540
2541 void vmstate_register_ram_global(MemoryRegion *mr)
2542 {
2543 vmstate_register_ram(mr, NULL);
2544 }