]> git.proxmox.com Git - mirror_qemu.git/blob - savevm.c
qemu-file: check exit status when closing a pipe QEMUFile
[mirror_qemu.git] / savevm.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "config-host.h"
26 #include "qemu-common.h"
27 #include "hw/hw.h"
28 #include "hw/qdev.h"
29 #include "net/net.h"
30 #include "monitor/monitor.h"
31 #include "sysemu/sysemu.h"
32 #include "qemu/timer.h"
33 #include "audio/audio.h"
34 #include "migration/migration.h"
35 #include "qemu/sockets.h"
36 #include "qemu/queue.h"
37 #include "sysemu/cpus.h"
38 #include "exec/memory.h"
39 #include "qmp-commands.h"
40 #include "trace.h"
41 #include "qemu/bitops.h"
42
43 #define SELF_ANNOUNCE_ROUNDS 5
44
45 #ifndef ETH_P_RARP
46 #define ETH_P_RARP 0x8035
47 #endif
48 #define ARP_HTYPE_ETH 0x0001
49 #define ARP_PTYPE_IP 0x0800
50 #define ARP_OP_REQUEST_REV 0x3
51
52 static int announce_self_create(uint8_t *buf,
53 uint8_t *mac_addr)
54 {
55 /* Ethernet header. */
56 memset(buf, 0xff, 6); /* destination MAC addr */
57 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
58 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
59
60 /* RARP header. */
61 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
62 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
63 *(buf + 18) = 6; /* hardware addr length (ethernet) */
64 *(buf + 19) = 4; /* protocol addr length (IPv4) */
65 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
66 memcpy(buf + 22, mac_addr, 6); /* source hw addr */
67 memset(buf + 28, 0x00, 4); /* source protocol addr */
68 memcpy(buf + 32, mac_addr, 6); /* target hw addr */
69 memset(buf + 38, 0x00, 4); /* target protocol addr */
70
71 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
72 memset(buf + 42, 0x00, 18);
73
74 return 60; /* len (FCS will be added by hardware) */
75 }
76
77 static void qemu_announce_self_iter(NICState *nic, void *opaque)
78 {
79 uint8_t buf[60];
80 int len;
81
82 len = announce_self_create(buf, nic->conf->macaddr.a);
83
84 qemu_send_packet_raw(qemu_get_queue(nic), buf, len);
85 }
86
87
88 static void qemu_announce_self_once(void *opaque)
89 {
90 static int count = SELF_ANNOUNCE_ROUNDS;
91 QEMUTimer *timer = *(QEMUTimer **)opaque;
92
93 qemu_foreach_nic(qemu_announce_self_iter, NULL);
94
95 if (--count) {
96 /* delay 50ms, 150ms, 250ms, ... */
97 qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) +
98 50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100);
99 } else {
100 qemu_del_timer(timer);
101 qemu_free_timer(timer);
102 }
103 }
104
105 void qemu_announce_self(void)
106 {
107 static QEMUTimer *timer;
108 timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer);
109 qemu_announce_self_once(&timer);
110 }
111
112 /***********************************************************/
113 /* savevm/loadvm support */
114
115 #define IO_BUF_SIZE 32768
116
117 struct QEMUFile {
118 const QEMUFileOps *ops;
119 void *opaque;
120 int is_write;
121
122 int64_t buf_offset; /* start of buffer when writing, end of buffer
123 when reading */
124 int buf_index;
125 int buf_size; /* 0 when writing */
126 uint8_t buf[IO_BUF_SIZE];
127
128 int last_error;
129 };
130
131 typedef struct QEMUFileStdio
132 {
133 FILE *stdio_file;
134 QEMUFile *file;
135 } QEMUFileStdio;
136
137 typedef struct QEMUFileSocket
138 {
139 int fd;
140 QEMUFile *file;
141 } QEMUFileSocket;
142
143 typedef struct {
144 Coroutine *co;
145 int fd;
146 } FDYieldUntilData;
147
148 static void fd_coroutine_enter(void *opaque)
149 {
150 FDYieldUntilData *data = opaque;
151 qemu_set_fd_handler(data->fd, NULL, NULL, NULL);
152 qemu_coroutine_enter(data->co, NULL);
153 }
154
155 /**
156 * Yield until a file descriptor becomes readable
157 *
158 * Note that this function clobbers the handlers for the file descriptor.
159 */
160 static void coroutine_fn yield_until_fd_readable(int fd)
161 {
162 FDYieldUntilData data;
163
164 assert(qemu_in_coroutine());
165 data.co = qemu_coroutine_self();
166 data.fd = fd;
167 qemu_set_fd_handler(fd, fd_coroutine_enter, NULL, &data);
168 qemu_coroutine_yield();
169 }
170
171 static int socket_get_fd(void *opaque)
172 {
173 QEMUFileSocket *s = opaque;
174
175 return s->fd;
176 }
177
178 static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
179 {
180 QEMUFileSocket *s = opaque;
181 ssize_t len;
182
183 for (;;) {
184 len = qemu_recv(s->fd, buf, size, 0);
185 if (len != -1) {
186 break;
187 }
188 if (socket_error() == EAGAIN) {
189 yield_until_fd_readable(s->fd);
190 } else if (socket_error() != EINTR) {
191 break;
192 }
193 }
194
195 if (len == -1) {
196 len = -socket_error();
197 }
198 return len;
199 }
200
201 static int socket_close(void *opaque)
202 {
203 QEMUFileSocket *s = opaque;
204 closesocket(s->fd);
205 g_free(s);
206 return 0;
207 }
208
209 static int stdio_get_fd(void *opaque)
210 {
211 QEMUFileStdio *s = opaque;
212
213 return fileno(s->stdio_file);
214 }
215
216 static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
217 {
218 QEMUFileStdio *s = opaque;
219 return fwrite(buf, 1, size, s->stdio_file);
220 }
221
222 static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
223 {
224 QEMUFileStdio *s = opaque;
225 FILE *fp = s->stdio_file;
226 int bytes;
227
228 for (;;) {
229 clearerr(fp);
230 bytes = fread(buf, 1, size, fp);
231 if (bytes != 0 || !ferror(fp)) {
232 break;
233 }
234 if (errno == EAGAIN) {
235 yield_until_fd_readable(fileno(fp));
236 } else if (errno != EINTR) {
237 break;
238 }
239 }
240 return bytes;
241 }
242
243 static int stdio_pclose(void *opaque)
244 {
245 QEMUFileStdio *s = opaque;
246 int ret;
247 ret = pclose(s->stdio_file);
248 if (ret == -1) {
249 ret = -errno;
250 } else if (!WIFEXITED(ret) || WEXITSTATUS(ret) != 0) {
251 /* close succeeded, but non-zero exit code: */
252 ret = -EIO; /* fake errno value */
253 }
254 g_free(s);
255 return ret;
256 }
257
258 static int stdio_fclose(void *opaque)
259 {
260 QEMUFileStdio *s = opaque;
261 int ret = 0;
262
263 if (s->file->ops->put_buffer) {
264 int fd = fileno(s->stdio_file);
265 struct stat st;
266
267 ret = fstat(fd, &st);
268 if (ret == 0 && S_ISREG(st.st_mode)) {
269 /*
270 * If the file handle is a regular file make sure the
271 * data is flushed to disk before signaling success.
272 */
273 ret = fsync(fd);
274 if (ret != 0) {
275 ret = -errno;
276 return ret;
277 }
278 }
279 }
280 if (fclose(s->stdio_file) == EOF) {
281 ret = -errno;
282 }
283 g_free(s);
284 return ret;
285 }
286
287 static const QEMUFileOps stdio_pipe_read_ops = {
288 .get_fd = stdio_get_fd,
289 .get_buffer = stdio_get_buffer,
290 .close = stdio_pclose
291 };
292
293 static const QEMUFileOps stdio_pipe_write_ops = {
294 .get_fd = stdio_get_fd,
295 .put_buffer = stdio_put_buffer,
296 .close = stdio_pclose
297 };
298
299 QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
300 {
301 FILE *stdio_file;
302 QEMUFileStdio *s;
303
304 stdio_file = popen(command, mode);
305 if (stdio_file == NULL) {
306 return NULL;
307 }
308
309 if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
310 fprintf(stderr, "qemu_popen: Argument validity check failed\n");
311 return NULL;
312 }
313
314 s = g_malloc0(sizeof(QEMUFileStdio));
315
316 s->stdio_file = stdio_file;
317
318 if(mode[0] == 'r') {
319 s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops);
320 } else {
321 s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops);
322 }
323 return s->file;
324 }
325
326 static const QEMUFileOps stdio_file_read_ops = {
327 .get_fd = stdio_get_fd,
328 .get_buffer = stdio_get_buffer,
329 .close = stdio_fclose
330 };
331
332 static const QEMUFileOps stdio_file_write_ops = {
333 .get_fd = stdio_get_fd,
334 .put_buffer = stdio_put_buffer,
335 .close = stdio_fclose
336 };
337
338 QEMUFile *qemu_fdopen(int fd, const char *mode)
339 {
340 QEMUFileStdio *s;
341
342 if (mode == NULL ||
343 (mode[0] != 'r' && mode[0] != 'w') ||
344 mode[1] != 'b' || mode[2] != 0) {
345 fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
346 return NULL;
347 }
348
349 s = g_malloc0(sizeof(QEMUFileStdio));
350 s->stdio_file = fdopen(fd, mode);
351 if (!s->stdio_file)
352 goto fail;
353
354 if(mode[0] == 'r') {
355 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
356 } else {
357 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
358 }
359 return s->file;
360
361 fail:
362 g_free(s);
363 return NULL;
364 }
365
366 static const QEMUFileOps socket_read_ops = {
367 .get_fd = socket_get_fd,
368 .get_buffer = socket_get_buffer,
369 .close = socket_close
370 };
371
372 QEMUFile *qemu_fopen_socket(int fd)
373 {
374 QEMUFileSocket *s = g_malloc0(sizeof(QEMUFileSocket));
375
376 s->fd = fd;
377 s->file = qemu_fopen_ops(s, &socket_read_ops);
378 return s->file;
379 }
380
381 QEMUFile *qemu_fopen(const char *filename, const char *mode)
382 {
383 QEMUFileStdio *s;
384
385 if (mode == NULL ||
386 (mode[0] != 'r' && mode[0] != 'w') ||
387 mode[1] != 'b' || mode[2] != 0) {
388 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
389 return NULL;
390 }
391
392 s = g_malloc0(sizeof(QEMUFileStdio));
393
394 s->stdio_file = fopen(filename, mode);
395 if (!s->stdio_file)
396 goto fail;
397
398 if(mode[0] == 'w') {
399 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
400 } else {
401 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
402 }
403 return s->file;
404 fail:
405 g_free(s);
406 return NULL;
407 }
408
409 static int block_put_buffer(void *opaque, const uint8_t *buf,
410 int64_t pos, int size)
411 {
412 bdrv_save_vmstate(opaque, buf, pos, size);
413 return size;
414 }
415
416 static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
417 {
418 return bdrv_load_vmstate(opaque, buf, pos, size);
419 }
420
421 static int bdrv_fclose(void *opaque)
422 {
423 return bdrv_flush(opaque);
424 }
425
426 static const QEMUFileOps bdrv_read_ops = {
427 .get_buffer = block_get_buffer,
428 .close = bdrv_fclose
429 };
430
431 static const QEMUFileOps bdrv_write_ops = {
432 .put_buffer = block_put_buffer,
433 .close = bdrv_fclose
434 };
435
436 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
437 {
438 if (is_writable)
439 return qemu_fopen_ops(bs, &bdrv_write_ops);
440 return qemu_fopen_ops(bs, &bdrv_read_ops);
441 }
442
443 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
444 {
445 QEMUFile *f;
446
447 f = g_malloc0(sizeof(QEMUFile));
448
449 f->opaque = opaque;
450 f->ops = ops;
451 f->is_write = 0;
452
453 return f;
454 }
455
456 int qemu_file_get_error(QEMUFile *f)
457 {
458 return f->last_error;
459 }
460
461 static void qemu_file_set_error(QEMUFile *f, int ret)
462 {
463 if (f->last_error == 0) {
464 f->last_error = ret;
465 }
466 }
467
468 /** Flushes QEMUFile buffer
469 *
470 */
471 static void qemu_fflush(QEMUFile *f)
472 {
473 int ret = 0;
474
475 if (!f->ops->put_buffer) {
476 return;
477 }
478 if (f->is_write && f->buf_index > 0) {
479 ret = f->ops->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index);
480 if (ret >= 0) {
481 f->buf_offset += f->buf_index;
482 }
483 f->buf_index = 0;
484 }
485 if (ret < 0) {
486 qemu_file_set_error(f, ret);
487 }
488 }
489
490 static void qemu_fill_buffer(QEMUFile *f)
491 {
492 int len;
493 int pending;
494
495 if (!f->ops->get_buffer)
496 return;
497
498 if (f->is_write)
499 abort();
500
501 pending = f->buf_size - f->buf_index;
502 if (pending > 0) {
503 memmove(f->buf, f->buf + f->buf_index, pending);
504 }
505 f->buf_index = 0;
506 f->buf_size = pending;
507
508 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->buf_offset,
509 IO_BUF_SIZE - pending);
510 if (len > 0) {
511 f->buf_size += len;
512 f->buf_offset += len;
513 } else if (len == 0) {
514 qemu_file_set_error(f, -EIO);
515 } else if (len != -EAGAIN)
516 qemu_file_set_error(f, len);
517 }
518
519 int qemu_get_fd(QEMUFile *f)
520 {
521 if (f->ops->get_fd) {
522 return f->ops->get_fd(f->opaque);
523 }
524 return -1;
525 }
526
527 /** Closes the file
528 *
529 * Returns negative error value if any error happened on previous operations or
530 * while closing the file. Returns 0 or positive number on success.
531 *
532 * The meaning of return value on success depends on the specific backend
533 * being used.
534 */
535 int qemu_fclose(QEMUFile *f)
536 {
537 int ret;
538 qemu_fflush(f);
539 ret = qemu_file_get_error(f);
540
541 if (f->ops->close) {
542 int ret2 = f->ops->close(f->opaque);
543 if (ret >= 0) {
544 ret = ret2;
545 }
546 }
547 /* If any error was spotted before closing, we should report it
548 * instead of the close() return value.
549 */
550 if (f->last_error) {
551 ret = f->last_error;
552 }
553 g_free(f);
554 return ret;
555 }
556
557 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
558 {
559 int l;
560
561 if (f->last_error) {
562 return;
563 }
564
565 if (f->is_write == 0 && f->buf_index > 0) {
566 fprintf(stderr,
567 "Attempted to write to buffer while read buffer is not empty\n");
568 abort();
569 }
570
571 while (size > 0) {
572 l = IO_BUF_SIZE - f->buf_index;
573 if (l > size)
574 l = size;
575 memcpy(f->buf + f->buf_index, buf, l);
576 f->is_write = 1;
577 f->buf_index += l;
578 buf += l;
579 size -= l;
580 if (f->buf_index >= IO_BUF_SIZE) {
581 qemu_fflush(f);
582 if (qemu_file_get_error(f)) {
583 break;
584 }
585 }
586 }
587 }
588
589 void qemu_put_byte(QEMUFile *f, int v)
590 {
591 if (f->last_error) {
592 return;
593 }
594
595 if (f->is_write == 0 && f->buf_index > 0) {
596 fprintf(stderr,
597 "Attempted to write to buffer while read buffer is not empty\n");
598 abort();
599 }
600
601 f->buf[f->buf_index++] = v;
602 f->is_write = 1;
603 if (f->buf_index >= IO_BUF_SIZE) {
604 qemu_fflush(f);
605 }
606 }
607
608 static void qemu_file_skip(QEMUFile *f, int size)
609 {
610 if (f->buf_index + size <= f->buf_size) {
611 f->buf_index += size;
612 }
613 }
614
615 static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
616 {
617 int pending;
618 int index;
619
620 if (f->is_write) {
621 abort();
622 }
623
624 index = f->buf_index + offset;
625 pending = f->buf_size - index;
626 if (pending < size) {
627 qemu_fill_buffer(f);
628 index = f->buf_index + offset;
629 pending = f->buf_size - index;
630 }
631
632 if (pending <= 0) {
633 return 0;
634 }
635 if (size > pending) {
636 size = pending;
637 }
638
639 memcpy(buf, f->buf + index, size);
640 return size;
641 }
642
643 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
644 {
645 int pending = size;
646 int done = 0;
647
648 while (pending > 0) {
649 int res;
650
651 res = qemu_peek_buffer(f, buf, pending, 0);
652 if (res == 0) {
653 return done;
654 }
655 qemu_file_skip(f, res);
656 buf += res;
657 pending -= res;
658 done += res;
659 }
660 return done;
661 }
662
663 static int qemu_peek_byte(QEMUFile *f, int offset)
664 {
665 int index = f->buf_index + offset;
666
667 if (f->is_write) {
668 abort();
669 }
670
671 if (index >= f->buf_size) {
672 qemu_fill_buffer(f);
673 index = f->buf_index + offset;
674 if (index >= f->buf_size) {
675 return 0;
676 }
677 }
678 return f->buf[index];
679 }
680
681 int qemu_get_byte(QEMUFile *f)
682 {
683 int result;
684
685 result = qemu_peek_byte(f, 0);
686 qemu_file_skip(f, 1);
687 return result;
688 }
689
690 int64_t qemu_ftell(QEMUFile *f)
691 {
692 /* buf_offset excludes buffer for writing but includes it for reading */
693 if (f->is_write) {
694 return f->buf_offset + f->buf_index;
695 } else {
696 return f->buf_offset - f->buf_size + f->buf_index;
697 }
698 }
699
700 int qemu_file_rate_limit(QEMUFile *f)
701 {
702 if (f->ops->rate_limit)
703 return f->ops->rate_limit(f->opaque);
704
705 return 0;
706 }
707
708 int64_t qemu_file_get_rate_limit(QEMUFile *f)
709 {
710 if (f->ops->get_rate_limit)
711 return f->ops->get_rate_limit(f->opaque);
712
713 return 0;
714 }
715
716 int64_t qemu_file_set_rate_limit(QEMUFile *f, int64_t new_rate)
717 {
718 /* any failed or completed migration keeps its state to allow probing of
719 * migration data, but has no associated file anymore */
720 if (f && f->ops->set_rate_limit)
721 return f->ops->set_rate_limit(f->opaque, new_rate);
722
723 return 0;
724 }
725
726 void qemu_put_be16(QEMUFile *f, unsigned int v)
727 {
728 qemu_put_byte(f, v >> 8);
729 qemu_put_byte(f, v);
730 }
731
732 void qemu_put_be32(QEMUFile *f, unsigned int v)
733 {
734 qemu_put_byte(f, v >> 24);
735 qemu_put_byte(f, v >> 16);
736 qemu_put_byte(f, v >> 8);
737 qemu_put_byte(f, v);
738 }
739
740 void qemu_put_be64(QEMUFile *f, uint64_t v)
741 {
742 qemu_put_be32(f, v >> 32);
743 qemu_put_be32(f, v);
744 }
745
746 unsigned int qemu_get_be16(QEMUFile *f)
747 {
748 unsigned int v;
749 v = qemu_get_byte(f) << 8;
750 v |= qemu_get_byte(f);
751 return v;
752 }
753
754 unsigned int qemu_get_be32(QEMUFile *f)
755 {
756 unsigned int v;
757 v = qemu_get_byte(f) << 24;
758 v |= qemu_get_byte(f) << 16;
759 v |= qemu_get_byte(f) << 8;
760 v |= qemu_get_byte(f);
761 return v;
762 }
763
764 uint64_t qemu_get_be64(QEMUFile *f)
765 {
766 uint64_t v;
767 v = (uint64_t)qemu_get_be32(f) << 32;
768 v |= qemu_get_be32(f);
769 return v;
770 }
771
772
773 /* timer */
774
775 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
776 {
777 uint64_t expire_time;
778
779 expire_time = qemu_timer_expire_time_ns(ts);
780 qemu_put_be64(f, expire_time);
781 }
782
783 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
784 {
785 uint64_t expire_time;
786
787 expire_time = qemu_get_be64(f);
788 if (expire_time != -1) {
789 qemu_mod_timer_ns(ts, expire_time);
790 } else {
791 qemu_del_timer(ts);
792 }
793 }
794
795
796 /* bool */
797
798 static int get_bool(QEMUFile *f, void *pv, size_t size)
799 {
800 bool *v = pv;
801 *v = qemu_get_byte(f);
802 return 0;
803 }
804
805 static void put_bool(QEMUFile *f, void *pv, size_t size)
806 {
807 bool *v = pv;
808 qemu_put_byte(f, *v);
809 }
810
811 const VMStateInfo vmstate_info_bool = {
812 .name = "bool",
813 .get = get_bool,
814 .put = put_bool,
815 };
816
817 /* 8 bit int */
818
819 static int get_int8(QEMUFile *f, void *pv, size_t size)
820 {
821 int8_t *v = pv;
822 qemu_get_s8s(f, v);
823 return 0;
824 }
825
826 static void put_int8(QEMUFile *f, void *pv, size_t size)
827 {
828 int8_t *v = pv;
829 qemu_put_s8s(f, v);
830 }
831
832 const VMStateInfo vmstate_info_int8 = {
833 .name = "int8",
834 .get = get_int8,
835 .put = put_int8,
836 };
837
838 /* 16 bit int */
839
840 static int get_int16(QEMUFile *f, void *pv, size_t size)
841 {
842 int16_t *v = pv;
843 qemu_get_sbe16s(f, v);
844 return 0;
845 }
846
847 static void put_int16(QEMUFile *f, void *pv, size_t size)
848 {
849 int16_t *v = pv;
850 qemu_put_sbe16s(f, v);
851 }
852
853 const VMStateInfo vmstate_info_int16 = {
854 .name = "int16",
855 .get = get_int16,
856 .put = put_int16,
857 };
858
859 /* 32 bit int */
860
861 static int get_int32(QEMUFile *f, void *pv, size_t size)
862 {
863 int32_t *v = pv;
864 qemu_get_sbe32s(f, v);
865 return 0;
866 }
867
868 static void put_int32(QEMUFile *f, void *pv, size_t size)
869 {
870 int32_t *v = pv;
871 qemu_put_sbe32s(f, v);
872 }
873
874 const VMStateInfo vmstate_info_int32 = {
875 .name = "int32",
876 .get = get_int32,
877 .put = put_int32,
878 };
879
880 /* 32 bit int. See that the received value is the same than the one
881 in the field */
882
883 static int get_int32_equal(QEMUFile *f, void *pv, size_t size)
884 {
885 int32_t *v = pv;
886 int32_t v2;
887 qemu_get_sbe32s(f, &v2);
888
889 if (*v == v2)
890 return 0;
891 return -EINVAL;
892 }
893
894 const VMStateInfo vmstate_info_int32_equal = {
895 .name = "int32 equal",
896 .get = get_int32_equal,
897 .put = put_int32,
898 };
899
900 /* 32 bit int. See that the received value is the less or the same
901 than the one in the field */
902
903 static int get_int32_le(QEMUFile *f, void *pv, size_t size)
904 {
905 int32_t *old = pv;
906 int32_t new;
907 qemu_get_sbe32s(f, &new);
908
909 if (*old <= new)
910 return 0;
911 return -EINVAL;
912 }
913
914 const VMStateInfo vmstate_info_int32_le = {
915 .name = "int32 equal",
916 .get = get_int32_le,
917 .put = put_int32,
918 };
919
920 /* 64 bit int */
921
922 static int get_int64(QEMUFile *f, void *pv, size_t size)
923 {
924 int64_t *v = pv;
925 qemu_get_sbe64s(f, v);
926 return 0;
927 }
928
929 static void put_int64(QEMUFile *f, void *pv, size_t size)
930 {
931 int64_t *v = pv;
932 qemu_put_sbe64s(f, v);
933 }
934
935 const VMStateInfo vmstate_info_int64 = {
936 .name = "int64",
937 .get = get_int64,
938 .put = put_int64,
939 };
940
941 /* 8 bit unsigned int */
942
943 static int get_uint8(QEMUFile *f, void *pv, size_t size)
944 {
945 uint8_t *v = pv;
946 qemu_get_8s(f, v);
947 return 0;
948 }
949
950 static void put_uint8(QEMUFile *f, void *pv, size_t size)
951 {
952 uint8_t *v = pv;
953 qemu_put_8s(f, v);
954 }
955
956 const VMStateInfo vmstate_info_uint8 = {
957 .name = "uint8",
958 .get = get_uint8,
959 .put = put_uint8,
960 };
961
962 /* 16 bit unsigned int */
963
964 static int get_uint16(QEMUFile *f, void *pv, size_t size)
965 {
966 uint16_t *v = pv;
967 qemu_get_be16s(f, v);
968 return 0;
969 }
970
971 static void put_uint16(QEMUFile *f, void *pv, size_t size)
972 {
973 uint16_t *v = pv;
974 qemu_put_be16s(f, v);
975 }
976
977 const VMStateInfo vmstate_info_uint16 = {
978 .name = "uint16",
979 .get = get_uint16,
980 .put = put_uint16,
981 };
982
983 /* 32 bit unsigned int */
984
985 static int get_uint32(QEMUFile *f, void *pv, size_t size)
986 {
987 uint32_t *v = pv;
988 qemu_get_be32s(f, v);
989 return 0;
990 }
991
992 static void put_uint32(QEMUFile *f, void *pv, size_t size)
993 {
994 uint32_t *v = pv;
995 qemu_put_be32s(f, v);
996 }
997
998 const VMStateInfo vmstate_info_uint32 = {
999 .name = "uint32",
1000 .get = get_uint32,
1001 .put = put_uint32,
1002 };
1003
1004 /* 32 bit uint. See that the received value is the same than the one
1005 in the field */
1006
1007 static int get_uint32_equal(QEMUFile *f, void *pv, size_t size)
1008 {
1009 uint32_t *v = pv;
1010 uint32_t v2;
1011 qemu_get_be32s(f, &v2);
1012
1013 if (*v == v2) {
1014 return 0;
1015 }
1016 return -EINVAL;
1017 }
1018
1019 const VMStateInfo vmstate_info_uint32_equal = {
1020 .name = "uint32 equal",
1021 .get = get_uint32_equal,
1022 .put = put_uint32,
1023 };
1024
1025 /* 64 bit unsigned int */
1026
1027 static int get_uint64(QEMUFile *f, void *pv, size_t size)
1028 {
1029 uint64_t *v = pv;
1030 qemu_get_be64s(f, v);
1031 return 0;
1032 }
1033
1034 static void put_uint64(QEMUFile *f, void *pv, size_t size)
1035 {
1036 uint64_t *v = pv;
1037 qemu_put_be64s(f, v);
1038 }
1039
1040 const VMStateInfo vmstate_info_uint64 = {
1041 .name = "uint64",
1042 .get = get_uint64,
1043 .put = put_uint64,
1044 };
1045
1046 /* 8 bit int. See that the received value is the same than the one
1047 in the field */
1048
1049 static int get_uint8_equal(QEMUFile *f, void *pv, size_t size)
1050 {
1051 uint8_t *v = pv;
1052 uint8_t v2;
1053 qemu_get_8s(f, &v2);
1054
1055 if (*v == v2)
1056 return 0;
1057 return -EINVAL;
1058 }
1059
1060 const VMStateInfo vmstate_info_uint8_equal = {
1061 .name = "uint8 equal",
1062 .get = get_uint8_equal,
1063 .put = put_uint8,
1064 };
1065
1066 /* 16 bit unsigned int int. See that the received value is the same than the one
1067 in the field */
1068
1069 static int get_uint16_equal(QEMUFile *f, void *pv, size_t size)
1070 {
1071 uint16_t *v = pv;
1072 uint16_t v2;
1073 qemu_get_be16s(f, &v2);
1074
1075 if (*v == v2)
1076 return 0;
1077 return -EINVAL;
1078 }
1079
1080 const VMStateInfo vmstate_info_uint16_equal = {
1081 .name = "uint16 equal",
1082 .get = get_uint16_equal,
1083 .put = put_uint16,
1084 };
1085
1086 /* timers */
1087
1088 static int get_timer(QEMUFile *f, void *pv, size_t size)
1089 {
1090 QEMUTimer *v = pv;
1091 qemu_get_timer(f, v);
1092 return 0;
1093 }
1094
1095 static void put_timer(QEMUFile *f, void *pv, size_t size)
1096 {
1097 QEMUTimer *v = pv;
1098 qemu_put_timer(f, v);
1099 }
1100
1101 const VMStateInfo vmstate_info_timer = {
1102 .name = "timer",
1103 .get = get_timer,
1104 .put = put_timer,
1105 };
1106
1107 /* uint8_t buffers */
1108
1109 static int get_buffer(QEMUFile *f, void *pv, size_t size)
1110 {
1111 uint8_t *v = pv;
1112 qemu_get_buffer(f, v, size);
1113 return 0;
1114 }
1115
1116 static void put_buffer(QEMUFile *f, void *pv, size_t size)
1117 {
1118 uint8_t *v = pv;
1119 qemu_put_buffer(f, v, size);
1120 }
1121
1122 const VMStateInfo vmstate_info_buffer = {
1123 .name = "buffer",
1124 .get = get_buffer,
1125 .put = put_buffer,
1126 };
1127
1128 /* unused buffers: space that was used for some fields that are
1129 not useful anymore */
1130
1131 static int get_unused_buffer(QEMUFile *f, void *pv, size_t size)
1132 {
1133 uint8_t buf[1024];
1134 int block_len;
1135
1136 while (size > 0) {
1137 block_len = MIN(sizeof(buf), size);
1138 size -= block_len;
1139 qemu_get_buffer(f, buf, block_len);
1140 }
1141 return 0;
1142 }
1143
1144 static void put_unused_buffer(QEMUFile *f, void *pv, size_t size)
1145 {
1146 static const uint8_t buf[1024];
1147 int block_len;
1148
1149 while (size > 0) {
1150 block_len = MIN(sizeof(buf), size);
1151 size -= block_len;
1152 qemu_put_buffer(f, buf, block_len);
1153 }
1154 }
1155
1156 const VMStateInfo vmstate_info_unused_buffer = {
1157 .name = "unused_buffer",
1158 .get = get_unused_buffer,
1159 .put = put_unused_buffer,
1160 };
1161
1162 /* bitmaps (as defined by bitmap.h). Note that size here is the size
1163 * of the bitmap in bits. The on-the-wire format of a bitmap is 64
1164 * bit words with the bits in big endian order. The in-memory format
1165 * is an array of 'unsigned long', which may be either 32 or 64 bits.
1166 */
1167 /* This is the number of 64 bit words sent over the wire */
1168 #define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
1169 static int get_bitmap(QEMUFile *f, void *pv, size_t size)
1170 {
1171 unsigned long *bmp = pv;
1172 int i, idx = 0;
1173 for (i = 0; i < BITS_TO_U64S(size); i++) {
1174 uint64_t w = qemu_get_be64(f);
1175 bmp[idx++] = w;
1176 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1177 bmp[idx++] = w >> 32;
1178 }
1179 }
1180 return 0;
1181 }
1182
1183 static void put_bitmap(QEMUFile *f, void *pv, size_t size)
1184 {
1185 unsigned long *bmp = pv;
1186 int i, idx = 0;
1187 for (i = 0; i < BITS_TO_U64S(size); i++) {
1188 uint64_t w = bmp[idx++];
1189 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1190 w |= ((uint64_t)bmp[idx++]) << 32;
1191 }
1192 qemu_put_be64(f, w);
1193 }
1194 }
1195
1196 const VMStateInfo vmstate_info_bitmap = {
1197 .name = "bitmap",
1198 .get = get_bitmap,
1199 .put = put_bitmap,
1200 };
1201
1202 typedef struct CompatEntry {
1203 char idstr[256];
1204 int instance_id;
1205 } CompatEntry;
1206
1207 typedef struct SaveStateEntry {
1208 QTAILQ_ENTRY(SaveStateEntry) entry;
1209 char idstr[256];
1210 int instance_id;
1211 int alias_id;
1212 int version_id;
1213 int section_id;
1214 SaveVMHandlers *ops;
1215 const VMStateDescription *vmsd;
1216 void *opaque;
1217 CompatEntry *compat;
1218 int no_migrate;
1219 int is_ram;
1220 } SaveStateEntry;
1221
1222
1223 static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers =
1224 QTAILQ_HEAD_INITIALIZER(savevm_handlers);
1225 static int global_section_id;
1226
1227 static int calculate_new_instance_id(const char *idstr)
1228 {
1229 SaveStateEntry *se;
1230 int instance_id = 0;
1231
1232 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1233 if (strcmp(idstr, se->idstr) == 0
1234 && instance_id <= se->instance_id) {
1235 instance_id = se->instance_id + 1;
1236 }
1237 }
1238 return instance_id;
1239 }
1240
1241 static int calculate_compat_instance_id(const char *idstr)
1242 {
1243 SaveStateEntry *se;
1244 int instance_id = 0;
1245
1246 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1247 if (!se->compat)
1248 continue;
1249
1250 if (strcmp(idstr, se->compat->idstr) == 0
1251 && instance_id <= se->compat->instance_id) {
1252 instance_id = se->compat->instance_id + 1;
1253 }
1254 }
1255 return instance_id;
1256 }
1257
1258 /* TODO: Individual devices generally have very little idea about the rest
1259 of the system, so instance_id should be removed/replaced.
1260 Meanwhile pass -1 as instance_id if you do not already have a clearly
1261 distinguishing id for all instances of your device class. */
1262 int register_savevm_live(DeviceState *dev,
1263 const char *idstr,
1264 int instance_id,
1265 int version_id,
1266 SaveVMHandlers *ops,
1267 void *opaque)
1268 {
1269 SaveStateEntry *se;
1270
1271 se = g_malloc0(sizeof(SaveStateEntry));
1272 se->version_id = version_id;
1273 se->section_id = global_section_id++;
1274 se->ops = ops;
1275 se->opaque = opaque;
1276 se->vmsd = NULL;
1277 se->no_migrate = 0;
1278 /* if this is a live_savem then set is_ram */
1279 if (ops->save_live_setup != NULL) {
1280 se->is_ram = 1;
1281 }
1282
1283 if (dev) {
1284 char *id = qdev_get_dev_path(dev);
1285 if (id) {
1286 pstrcpy(se->idstr, sizeof(se->idstr), id);
1287 pstrcat(se->idstr, sizeof(se->idstr), "/");
1288 g_free(id);
1289
1290 se->compat = g_malloc0(sizeof(CompatEntry));
1291 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
1292 se->compat->instance_id = instance_id == -1 ?
1293 calculate_compat_instance_id(idstr) : instance_id;
1294 instance_id = -1;
1295 }
1296 }
1297 pstrcat(se->idstr, sizeof(se->idstr), idstr);
1298
1299 if (instance_id == -1) {
1300 se->instance_id = calculate_new_instance_id(se->idstr);
1301 } else {
1302 se->instance_id = instance_id;
1303 }
1304 assert(!se->compat || se->instance_id == 0);
1305 /* add at the end of list */
1306 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1307 return 0;
1308 }
1309
1310 int register_savevm(DeviceState *dev,
1311 const char *idstr,
1312 int instance_id,
1313 int version_id,
1314 SaveStateHandler *save_state,
1315 LoadStateHandler *load_state,
1316 void *opaque)
1317 {
1318 SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers));
1319 ops->save_state = save_state;
1320 ops->load_state = load_state;
1321 return register_savevm_live(dev, idstr, instance_id, version_id,
1322 ops, opaque);
1323 }
1324
1325 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
1326 {
1327 SaveStateEntry *se, *new_se;
1328 char id[256] = "";
1329
1330 if (dev) {
1331 char *path = qdev_get_dev_path(dev);
1332 if (path) {
1333 pstrcpy(id, sizeof(id), path);
1334 pstrcat(id, sizeof(id), "/");
1335 g_free(path);
1336 }
1337 }
1338 pstrcat(id, sizeof(id), idstr);
1339
1340 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1341 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
1342 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1343 if (se->compat) {
1344 g_free(se->compat);
1345 }
1346 g_free(se->ops);
1347 g_free(se);
1348 }
1349 }
1350 }
1351
1352 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
1353 const VMStateDescription *vmsd,
1354 void *opaque, int alias_id,
1355 int required_for_version)
1356 {
1357 SaveStateEntry *se;
1358
1359 /* If this triggers, alias support can be dropped for the vmsd. */
1360 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
1361
1362 se = g_malloc0(sizeof(SaveStateEntry));
1363 se->version_id = vmsd->version_id;
1364 se->section_id = global_section_id++;
1365 se->opaque = opaque;
1366 se->vmsd = vmsd;
1367 se->alias_id = alias_id;
1368 se->no_migrate = vmsd->unmigratable;
1369
1370 if (dev) {
1371 char *id = qdev_get_dev_path(dev);
1372 if (id) {
1373 pstrcpy(se->idstr, sizeof(se->idstr), id);
1374 pstrcat(se->idstr, sizeof(se->idstr), "/");
1375 g_free(id);
1376
1377 se->compat = g_malloc0(sizeof(CompatEntry));
1378 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
1379 se->compat->instance_id = instance_id == -1 ?
1380 calculate_compat_instance_id(vmsd->name) : instance_id;
1381 instance_id = -1;
1382 }
1383 }
1384 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
1385
1386 if (instance_id == -1) {
1387 se->instance_id = calculate_new_instance_id(se->idstr);
1388 } else {
1389 se->instance_id = instance_id;
1390 }
1391 assert(!se->compat || se->instance_id == 0);
1392 /* add at the end of list */
1393 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1394 return 0;
1395 }
1396
1397 int vmstate_register(DeviceState *dev, int instance_id,
1398 const VMStateDescription *vmsd, void *opaque)
1399 {
1400 return vmstate_register_with_alias_id(dev, instance_id, vmsd,
1401 opaque, -1, 0);
1402 }
1403
1404 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
1405 void *opaque)
1406 {
1407 SaveStateEntry *se, *new_se;
1408
1409 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1410 if (se->vmsd == vmsd && se->opaque == opaque) {
1411 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1412 if (se->compat) {
1413 g_free(se->compat);
1414 }
1415 g_free(se);
1416 }
1417 }
1418 }
1419
1420 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1421 void *opaque);
1422 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1423 void *opaque);
1424
1425 int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd,
1426 void *opaque, int version_id)
1427 {
1428 VMStateField *field = vmsd->fields;
1429 int ret;
1430
1431 if (version_id > vmsd->version_id) {
1432 return -EINVAL;
1433 }
1434 if (version_id < vmsd->minimum_version_id_old) {
1435 return -EINVAL;
1436 }
1437 if (version_id < vmsd->minimum_version_id) {
1438 return vmsd->load_state_old(f, opaque, version_id);
1439 }
1440 if (vmsd->pre_load) {
1441 int ret = vmsd->pre_load(opaque);
1442 if (ret)
1443 return ret;
1444 }
1445 while(field->name) {
1446 if ((field->field_exists &&
1447 field->field_exists(opaque, version_id)) ||
1448 (!field->field_exists &&
1449 field->version_id <= version_id)) {
1450 void *base_addr = opaque + field->offset;
1451 int i, n_elems = 1;
1452 int size = field->size;
1453
1454 if (field->flags & VMS_VBUFFER) {
1455 size = *(int32_t *)(opaque+field->size_offset);
1456 if (field->flags & VMS_MULTIPLY) {
1457 size *= field->size;
1458 }
1459 }
1460 if (field->flags & VMS_ARRAY) {
1461 n_elems = field->num;
1462 } else if (field->flags & VMS_VARRAY_INT32) {
1463 n_elems = *(int32_t *)(opaque+field->num_offset);
1464 } else if (field->flags & VMS_VARRAY_UINT32) {
1465 n_elems = *(uint32_t *)(opaque+field->num_offset);
1466 } else if (field->flags & VMS_VARRAY_UINT16) {
1467 n_elems = *(uint16_t *)(opaque+field->num_offset);
1468 } else if (field->flags & VMS_VARRAY_UINT8) {
1469 n_elems = *(uint8_t *)(opaque+field->num_offset);
1470 }
1471 if (field->flags & VMS_POINTER) {
1472 base_addr = *(void **)base_addr + field->start;
1473 }
1474 for (i = 0; i < n_elems; i++) {
1475 void *addr = base_addr + size * i;
1476
1477 if (field->flags & VMS_ARRAY_OF_POINTER) {
1478 addr = *(void **)addr;
1479 }
1480 if (field->flags & VMS_STRUCT) {
1481 ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id);
1482 } else {
1483 ret = field->info->get(f, addr, size);
1484
1485 }
1486 if (ret < 0) {
1487 return ret;
1488 }
1489 }
1490 }
1491 field++;
1492 }
1493 ret = vmstate_subsection_load(f, vmsd, opaque);
1494 if (ret != 0) {
1495 return ret;
1496 }
1497 if (vmsd->post_load) {
1498 return vmsd->post_load(opaque, version_id);
1499 }
1500 return 0;
1501 }
1502
1503 void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd,
1504 void *opaque)
1505 {
1506 VMStateField *field = vmsd->fields;
1507
1508 if (vmsd->pre_save) {
1509 vmsd->pre_save(opaque);
1510 }
1511 while(field->name) {
1512 if (!field->field_exists ||
1513 field->field_exists(opaque, vmsd->version_id)) {
1514 void *base_addr = opaque + field->offset;
1515 int i, n_elems = 1;
1516 int size = field->size;
1517
1518 if (field->flags & VMS_VBUFFER) {
1519 size = *(int32_t *)(opaque+field->size_offset);
1520 if (field->flags & VMS_MULTIPLY) {
1521 size *= field->size;
1522 }
1523 }
1524 if (field->flags & VMS_ARRAY) {
1525 n_elems = field->num;
1526 } else if (field->flags & VMS_VARRAY_INT32) {
1527 n_elems = *(int32_t *)(opaque+field->num_offset);
1528 } else if (field->flags & VMS_VARRAY_UINT32) {
1529 n_elems = *(uint32_t *)(opaque+field->num_offset);
1530 } else if (field->flags & VMS_VARRAY_UINT16) {
1531 n_elems = *(uint16_t *)(opaque+field->num_offset);
1532 } else if (field->flags & VMS_VARRAY_UINT8) {
1533 n_elems = *(uint8_t *)(opaque+field->num_offset);
1534 }
1535 if (field->flags & VMS_POINTER) {
1536 base_addr = *(void **)base_addr + field->start;
1537 }
1538 for (i = 0; i < n_elems; i++) {
1539 void *addr = base_addr + size * i;
1540
1541 if (field->flags & VMS_ARRAY_OF_POINTER) {
1542 addr = *(void **)addr;
1543 }
1544 if (field->flags & VMS_STRUCT) {
1545 vmstate_save_state(f, field->vmsd, addr);
1546 } else {
1547 field->info->put(f, addr, size);
1548 }
1549 }
1550 }
1551 field++;
1552 }
1553 vmstate_subsection_save(f, vmsd, opaque);
1554 }
1555
1556 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id)
1557 {
1558 if (!se->vmsd) { /* Old style */
1559 return se->ops->load_state(f, se->opaque, version_id);
1560 }
1561 return vmstate_load_state(f, se->vmsd, se->opaque, version_id);
1562 }
1563
1564 static void vmstate_save(QEMUFile *f, SaveStateEntry *se)
1565 {
1566 if (!se->vmsd) { /* Old style */
1567 se->ops->save_state(f, se->opaque);
1568 return;
1569 }
1570 vmstate_save_state(f,se->vmsd, se->opaque);
1571 }
1572
1573 #define QEMU_VM_FILE_MAGIC 0x5145564d
1574 #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
1575 #define QEMU_VM_FILE_VERSION 0x00000003
1576
1577 #define QEMU_VM_EOF 0x00
1578 #define QEMU_VM_SECTION_START 0x01
1579 #define QEMU_VM_SECTION_PART 0x02
1580 #define QEMU_VM_SECTION_END 0x03
1581 #define QEMU_VM_SECTION_FULL 0x04
1582 #define QEMU_VM_SUBSECTION 0x05
1583
1584 bool qemu_savevm_state_blocked(Error **errp)
1585 {
1586 SaveStateEntry *se;
1587
1588 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1589 if (se->no_migrate) {
1590 error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr);
1591 return true;
1592 }
1593 }
1594 return false;
1595 }
1596
1597 void qemu_savevm_state_begin(QEMUFile *f,
1598 const MigrationParams *params)
1599 {
1600 SaveStateEntry *se;
1601 int ret;
1602
1603 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1604 if (!se->ops || !se->ops->set_params) {
1605 continue;
1606 }
1607 se->ops->set_params(params, se->opaque);
1608 }
1609
1610 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1611 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1612
1613 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1614 int len;
1615
1616 if (!se->ops || !se->ops->save_live_setup) {
1617 continue;
1618 }
1619 if (se->ops && se->ops->is_active) {
1620 if (!se->ops->is_active(se->opaque)) {
1621 continue;
1622 }
1623 }
1624 /* Section type */
1625 qemu_put_byte(f, QEMU_VM_SECTION_START);
1626 qemu_put_be32(f, se->section_id);
1627
1628 /* ID string */
1629 len = strlen(se->idstr);
1630 qemu_put_byte(f, len);
1631 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1632
1633 qemu_put_be32(f, se->instance_id);
1634 qemu_put_be32(f, se->version_id);
1635
1636 ret = se->ops->save_live_setup(f, se->opaque);
1637 if (ret < 0) {
1638 qemu_file_set_error(f, ret);
1639 break;
1640 }
1641 }
1642 }
1643
1644 /*
1645 * this function has three return values:
1646 * negative: there was one error, and we have -errno.
1647 * 0 : We haven't finished, caller have to go again
1648 * 1 : We have finished, we can go to complete phase
1649 */
1650 int qemu_savevm_state_iterate(QEMUFile *f)
1651 {
1652 SaveStateEntry *se;
1653 int ret = 1;
1654
1655 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1656 if (!se->ops || !se->ops->save_live_iterate) {
1657 continue;
1658 }
1659 if (se->ops && se->ops->is_active) {
1660 if (!se->ops->is_active(se->opaque)) {
1661 continue;
1662 }
1663 }
1664 if (qemu_file_rate_limit(f)) {
1665 return 0;
1666 }
1667 trace_savevm_section_start();
1668 /* Section type */
1669 qemu_put_byte(f, QEMU_VM_SECTION_PART);
1670 qemu_put_be32(f, se->section_id);
1671
1672 ret = se->ops->save_live_iterate(f, se->opaque);
1673 trace_savevm_section_end(se->section_id);
1674
1675 if (ret < 0) {
1676 qemu_file_set_error(f, ret);
1677 }
1678 if (ret <= 0) {
1679 /* Do not proceed to the next vmstate before this one reported
1680 completion of the current stage. This serializes the migration
1681 and reduces the probability that a faster changing state is
1682 synchronized over and over again. */
1683 break;
1684 }
1685 }
1686 return ret;
1687 }
1688
1689 void qemu_savevm_state_complete(QEMUFile *f)
1690 {
1691 SaveStateEntry *se;
1692 int ret;
1693
1694 cpu_synchronize_all_states();
1695
1696 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1697 if (!se->ops || !se->ops->save_live_complete) {
1698 continue;
1699 }
1700 if (se->ops && se->ops->is_active) {
1701 if (!se->ops->is_active(se->opaque)) {
1702 continue;
1703 }
1704 }
1705 trace_savevm_section_start();
1706 /* Section type */
1707 qemu_put_byte(f, QEMU_VM_SECTION_END);
1708 qemu_put_be32(f, se->section_id);
1709
1710 ret = se->ops->save_live_complete(f, se->opaque);
1711 trace_savevm_section_end(se->section_id);
1712 if (ret < 0) {
1713 qemu_file_set_error(f, ret);
1714 return;
1715 }
1716 }
1717
1718 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1719 int len;
1720
1721 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1722 continue;
1723 }
1724 trace_savevm_section_start();
1725 /* Section type */
1726 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1727 qemu_put_be32(f, se->section_id);
1728
1729 /* ID string */
1730 len = strlen(se->idstr);
1731 qemu_put_byte(f, len);
1732 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1733
1734 qemu_put_be32(f, se->instance_id);
1735 qemu_put_be32(f, se->version_id);
1736
1737 vmstate_save(f, se);
1738 trace_savevm_section_end(se->section_id);
1739 }
1740
1741 qemu_put_byte(f, QEMU_VM_EOF);
1742 qemu_fflush(f);
1743 }
1744
1745 uint64_t qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size)
1746 {
1747 SaveStateEntry *se;
1748 uint64_t ret = 0;
1749
1750 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1751 if (!se->ops || !se->ops->save_live_pending) {
1752 continue;
1753 }
1754 if (se->ops && se->ops->is_active) {
1755 if (!se->ops->is_active(se->opaque)) {
1756 continue;
1757 }
1758 }
1759 ret += se->ops->save_live_pending(f, se->opaque, max_size);
1760 }
1761 return ret;
1762 }
1763
1764 void qemu_savevm_state_cancel(void)
1765 {
1766 SaveStateEntry *se;
1767
1768 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1769 if (se->ops && se->ops->cancel) {
1770 se->ops->cancel(se->opaque);
1771 }
1772 }
1773 }
1774
1775 static int qemu_savevm_state(QEMUFile *f)
1776 {
1777 int ret;
1778 MigrationParams params = {
1779 .blk = 0,
1780 .shared = 0
1781 };
1782
1783 if (qemu_savevm_state_blocked(NULL)) {
1784 return -EINVAL;
1785 }
1786
1787 qemu_mutex_unlock_iothread();
1788 qemu_savevm_state_begin(f, &params);
1789 qemu_mutex_lock_iothread();
1790
1791 while (qemu_file_get_error(f) == 0) {
1792 if (qemu_savevm_state_iterate(f) > 0) {
1793 break;
1794 }
1795 }
1796
1797 ret = qemu_file_get_error(f);
1798 if (ret == 0) {
1799 qemu_savevm_state_complete(f);
1800 ret = qemu_file_get_error(f);
1801 }
1802 if (ret != 0) {
1803 qemu_savevm_state_cancel();
1804 }
1805 return ret;
1806 }
1807
1808 static int qemu_save_device_state(QEMUFile *f)
1809 {
1810 SaveStateEntry *se;
1811
1812 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1813 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1814
1815 cpu_synchronize_all_states();
1816
1817 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1818 int len;
1819
1820 if (se->is_ram) {
1821 continue;
1822 }
1823 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1824 continue;
1825 }
1826
1827 /* Section type */
1828 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1829 qemu_put_be32(f, se->section_id);
1830
1831 /* ID string */
1832 len = strlen(se->idstr);
1833 qemu_put_byte(f, len);
1834 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1835
1836 qemu_put_be32(f, se->instance_id);
1837 qemu_put_be32(f, se->version_id);
1838
1839 vmstate_save(f, se);
1840 }
1841
1842 qemu_put_byte(f, QEMU_VM_EOF);
1843
1844 return qemu_file_get_error(f);
1845 }
1846
1847 static SaveStateEntry *find_se(const char *idstr, int instance_id)
1848 {
1849 SaveStateEntry *se;
1850
1851 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1852 if (!strcmp(se->idstr, idstr) &&
1853 (instance_id == se->instance_id ||
1854 instance_id == se->alias_id))
1855 return se;
1856 /* Migrating from an older version? */
1857 if (strstr(se->idstr, idstr) && se->compat) {
1858 if (!strcmp(se->compat->idstr, idstr) &&
1859 (instance_id == se->compat->instance_id ||
1860 instance_id == se->alias_id))
1861 return se;
1862 }
1863 }
1864 return NULL;
1865 }
1866
1867 static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr)
1868 {
1869 while(sub && sub->needed) {
1870 if (strcmp(idstr, sub->vmsd->name) == 0) {
1871 return sub->vmsd;
1872 }
1873 sub++;
1874 }
1875 return NULL;
1876 }
1877
1878 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1879 void *opaque)
1880 {
1881 while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) {
1882 char idstr[256];
1883 int ret;
1884 uint8_t version_id, len, size;
1885 const VMStateDescription *sub_vmsd;
1886
1887 len = qemu_peek_byte(f, 1);
1888 if (len < strlen(vmsd->name) + 1) {
1889 /* subsection name has be be "section_name/a" */
1890 return 0;
1891 }
1892 size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2);
1893 if (size != len) {
1894 return 0;
1895 }
1896 idstr[size] = 0;
1897
1898 if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) {
1899 /* it don't have a valid subsection name */
1900 return 0;
1901 }
1902 sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr);
1903 if (sub_vmsd == NULL) {
1904 return -ENOENT;
1905 }
1906 qemu_file_skip(f, 1); /* subsection */
1907 qemu_file_skip(f, 1); /* len */
1908 qemu_file_skip(f, len); /* idstr */
1909 version_id = qemu_get_be32(f);
1910
1911 ret = vmstate_load_state(f, sub_vmsd, opaque, version_id);
1912 if (ret) {
1913 return ret;
1914 }
1915 }
1916 return 0;
1917 }
1918
1919 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1920 void *opaque)
1921 {
1922 const VMStateSubsection *sub = vmsd->subsections;
1923
1924 while (sub && sub->needed) {
1925 if (sub->needed(opaque)) {
1926 const VMStateDescription *vmsd = sub->vmsd;
1927 uint8_t len;
1928
1929 qemu_put_byte(f, QEMU_VM_SUBSECTION);
1930 len = strlen(vmsd->name);
1931 qemu_put_byte(f, len);
1932 qemu_put_buffer(f, (uint8_t *)vmsd->name, len);
1933 qemu_put_be32(f, vmsd->version_id);
1934 vmstate_save_state(f, vmsd, opaque);
1935 }
1936 sub++;
1937 }
1938 }
1939
1940 typedef struct LoadStateEntry {
1941 QLIST_ENTRY(LoadStateEntry) entry;
1942 SaveStateEntry *se;
1943 int section_id;
1944 int version_id;
1945 } LoadStateEntry;
1946
1947 int qemu_loadvm_state(QEMUFile *f)
1948 {
1949 QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
1950 QLIST_HEAD_INITIALIZER(loadvm_handlers);
1951 LoadStateEntry *le, *new_le;
1952 uint8_t section_type;
1953 unsigned int v;
1954 int ret;
1955
1956 if (qemu_savevm_state_blocked(NULL)) {
1957 return -EINVAL;
1958 }
1959
1960 v = qemu_get_be32(f);
1961 if (v != QEMU_VM_FILE_MAGIC)
1962 return -EINVAL;
1963
1964 v = qemu_get_be32(f);
1965 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
1966 fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n");
1967 return -ENOTSUP;
1968 }
1969 if (v != QEMU_VM_FILE_VERSION)
1970 return -ENOTSUP;
1971
1972 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
1973 uint32_t instance_id, version_id, section_id;
1974 SaveStateEntry *se;
1975 char idstr[257];
1976 int len;
1977
1978 switch (section_type) {
1979 case QEMU_VM_SECTION_START:
1980 case QEMU_VM_SECTION_FULL:
1981 /* Read section start */
1982 section_id = qemu_get_be32(f);
1983 len = qemu_get_byte(f);
1984 qemu_get_buffer(f, (uint8_t *)idstr, len);
1985 idstr[len] = 0;
1986 instance_id = qemu_get_be32(f);
1987 version_id = qemu_get_be32(f);
1988
1989 /* Find savevm section */
1990 se = find_se(idstr, instance_id);
1991 if (se == NULL) {
1992 fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
1993 ret = -EINVAL;
1994 goto out;
1995 }
1996
1997 /* Validate version */
1998 if (version_id > se->version_id) {
1999 fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
2000 version_id, idstr, se->version_id);
2001 ret = -EINVAL;
2002 goto out;
2003 }
2004
2005 /* Add entry */
2006 le = g_malloc0(sizeof(*le));
2007
2008 le->se = se;
2009 le->section_id = section_id;
2010 le->version_id = version_id;
2011 QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
2012
2013 ret = vmstate_load(f, le->se, le->version_id);
2014 if (ret < 0) {
2015 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
2016 instance_id, idstr);
2017 goto out;
2018 }
2019 break;
2020 case QEMU_VM_SECTION_PART:
2021 case QEMU_VM_SECTION_END:
2022 section_id = qemu_get_be32(f);
2023
2024 QLIST_FOREACH(le, &loadvm_handlers, entry) {
2025 if (le->section_id == section_id) {
2026 break;
2027 }
2028 }
2029 if (le == NULL) {
2030 fprintf(stderr, "Unknown savevm section %d\n", section_id);
2031 ret = -EINVAL;
2032 goto out;
2033 }
2034
2035 ret = vmstate_load(f, le->se, le->version_id);
2036 if (ret < 0) {
2037 fprintf(stderr, "qemu: warning: error while loading state section id %d\n",
2038 section_id);
2039 goto out;
2040 }
2041 break;
2042 default:
2043 fprintf(stderr, "Unknown savevm section type %d\n", section_type);
2044 ret = -EINVAL;
2045 goto out;
2046 }
2047 }
2048
2049 cpu_synchronize_all_post_init();
2050
2051 ret = 0;
2052
2053 out:
2054 QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
2055 QLIST_REMOVE(le, entry);
2056 g_free(le);
2057 }
2058
2059 if (ret == 0) {
2060 ret = qemu_file_get_error(f);
2061 }
2062
2063 return ret;
2064 }
2065
2066 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
2067 const char *name)
2068 {
2069 QEMUSnapshotInfo *sn_tab, *sn;
2070 int nb_sns, i, ret;
2071
2072 ret = -ENOENT;
2073 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2074 if (nb_sns < 0)
2075 return ret;
2076 for(i = 0; i < nb_sns; i++) {
2077 sn = &sn_tab[i];
2078 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
2079 *sn_info = *sn;
2080 ret = 0;
2081 break;
2082 }
2083 }
2084 g_free(sn_tab);
2085 return ret;
2086 }
2087
2088 /*
2089 * Deletes snapshots of a given name in all opened images.
2090 */
2091 static int del_existing_snapshots(Monitor *mon, const char *name)
2092 {
2093 BlockDriverState *bs;
2094 QEMUSnapshotInfo sn1, *snapshot = &sn1;
2095 int ret;
2096
2097 bs = NULL;
2098 while ((bs = bdrv_next(bs))) {
2099 if (bdrv_can_snapshot(bs) &&
2100 bdrv_snapshot_find(bs, snapshot, name) >= 0)
2101 {
2102 ret = bdrv_snapshot_delete(bs, name);
2103 if (ret < 0) {
2104 monitor_printf(mon,
2105 "Error while deleting snapshot on '%s'\n",
2106 bdrv_get_device_name(bs));
2107 return -1;
2108 }
2109 }
2110 }
2111
2112 return 0;
2113 }
2114
2115 void do_savevm(Monitor *mon, const QDict *qdict)
2116 {
2117 BlockDriverState *bs, *bs1;
2118 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2119 int ret;
2120 QEMUFile *f;
2121 int saved_vm_running;
2122 uint64_t vm_state_size;
2123 qemu_timeval tv;
2124 struct tm tm;
2125 const char *name = qdict_get_try_str(qdict, "name");
2126
2127 /* Verify if there is a device that doesn't support snapshots and is writable */
2128 bs = NULL;
2129 while ((bs = bdrv_next(bs))) {
2130
2131 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2132 continue;
2133 }
2134
2135 if (!bdrv_can_snapshot(bs)) {
2136 monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n",
2137 bdrv_get_device_name(bs));
2138 return;
2139 }
2140 }
2141
2142 bs = bdrv_snapshots();
2143 if (!bs) {
2144 monitor_printf(mon, "No block device can accept snapshots\n");
2145 return;
2146 }
2147
2148 saved_vm_running = runstate_is_running();
2149 vm_stop(RUN_STATE_SAVE_VM);
2150
2151 memset(sn, 0, sizeof(*sn));
2152
2153 /* fill auxiliary fields */
2154 qemu_gettimeofday(&tv);
2155 sn->date_sec = tv.tv_sec;
2156 sn->date_nsec = tv.tv_usec * 1000;
2157 sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock);
2158
2159 if (name) {
2160 ret = bdrv_snapshot_find(bs, old_sn, name);
2161 if (ret >= 0) {
2162 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2163 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2164 } else {
2165 pstrcpy(sn->name, sizeof(sn->name), name);
2166 }
2167 } else {
2168 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2169 localtime_r((const time_t *)&tv.tv_sec, &tm);
2170 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2171 }
2172
2173 /* Delete old snapshots of the same name */
2174 if (name && del_existing_snapshots(mon, name) < 0) {
2175 goto the_end;
2176 }
2177
2178 /* save the VM state */
2179 f = qemu_fopen_bdrv(bs, 1);
2180 if (!f) {
2181 monitor_printf(mon, "Could not open VM state file\n");
2182 goto the_end;
2183 }
2184 ret = qemu_savevm_state(f);
2185 vm_state_size = qemu_ftell(f);
2186 qemu_fclose(f);
2187 if (ret < 0) {
2188 monitor_printf(mon, "Error %d while writing VM\n", ret);
2189 goto the_end;
2190 }
2191
2192 /* create the snapshots */
2193
2194 bs1 = NULL;
2195 while ((bs1 = bdrv_next(bs1))) {
2196 if (bdrv_can_snapshot(bs1)) {
2197 /* Write VM state size only to the image that contains the state */
2198 sn->vm_state_size = (bs == bs1 ? vm_state_size : 0);
2199 ret = bdrv_snapshot_create(bs1, sn);
2200 if (ret < 0) {
2201 monitor_printf(mon, "Error while creating snapshot on '%s'\n",
2202 bdrv_get_device_name(bs1));
2203 }
2204 }
2205 }
2206
2207 the_end:
2208 if (saved_vm_running)
2209 vm_start();
2210 }
2211
2212 void qmp_xen_save_devices_state(const char *filename, Error **errp)
2213 {
2214 QEMUFile *f;
2215 int saved_vm_running;
2216 int ret;
2217
2218 saved_vm_running = runstate_is_running();
2219 vm_stop(RUN_STATE_SAVE_VM);
2220
2221 f = qemu_fopen(filename, "wb");
2222 if (!f) {
2223 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
2224 goto the_end;
2225 }
2226 ret = qemu_save_device_state(f);
2227 qemu_fclose(f);
2228 if (ret < 0) {
2229 error_set(errp, QERR_IO_ERROR);
2230 }
2231
2232 the_end:
2233 if (saved_vm_running)
2234 vm_start();
2235 }
2236
2237 int load_vmstate(const char *name)
2238 {
2239 BlockDriverState *bs, *bs_vm_state;
2240 QEMUSnapshotInfo sn;
2241 QEMUFile *f;
2242 int ret;
2243
2244 bs_vm_state = bdrv_snapshots();
2245 if (!bs_vm_state) {
2246 error_report("No block device supports snapshots");
2247 return -ENOTSUP;
2248 }
2249
2250 /* Don't even try to load empty VM states */
2251 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2252 if (ret < 0) {
2253 return ret;
2254 } else if (sn.vm_state_size == 0) {
2255 error_report("This is a disk-only snapshot. Revert to it offline "
2256 "using qemu-img.");
2257 return -EINVAL;
2258 }
2259
2260 /* Verify if there is any device that doesn't support snapshots and is
2261 writable and check if the requested snapshot is available too. */
2262 bs = NULL;
2263 while ((bs = bdrv_next(bs))) {
2264
2265 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2266 continue;
2267 }
2268
2269 if (!bdrv_can_snapshot(bs)) {
2270 error_report("Device '%s' is writable but does not support snapshots.",
2271 bdrv_get_device_name(bs));
2272 return -ENOTSUP;
2273 }
2274
2275 ret = bdrv_snapshot_find(bs, &sn, name);
2276 if (ret < 0) {
2277 error_report("Device '%s' does not have the requested snapshot '%s'",
2278 bdrv_get_device_name(bs), name);
2279 return ret;
2280 }
2281 }
2282
2283 /* Flush all IO requests so they don't interfere with the new state. */
2284 bdrv_drain_all();
2285
2286 bs = NULL;
2287 while ((bs = bdrv_next(bs))) {
2288 if (bdrv_can_snapshot(bs)) {
2289 ret = bdrv_snapshot_goto(bs, name);
2290 if (ret < 0) {
2291 error_report("Error %d while activating snapshot '%s' on '%s'",
2292 ret, name, bdrv_get_device_name(bs));
2293 return ret;
2294 }
2295 }
2296 }
2297
2298 /* restore the VM state */
2299 f = qemu_fopen_bdrv(bs_vm_state, 0);
2300 if (!f) {
2301 error_report("Could not open VM state file");
2302 return -EINVAL;
2303 }
2304
2305 qemu_system_reset(VMRESET_SILENT);
2306 ret = qemu_loadvm_state(f);
2307
2308 qemu_fclose(f);
2309 if (ret < 0) {
2310 error_report("Error %d while loading VM state", ret);
2311 return ret;
2312 }
2313
2314 return 0;
2315 }
2316
2317 void do_delvm(Monitor *mon, const QDict *qdict)
2318 {
2319 BlockDriverState *bs, *bs1;
2320 int ret;
2321 const char *name = qdict_get_str(qdict, "name");
2322
2323 bs = bdrv_snapshots();
2324 if (!bs) {
2325 monitor_printf(mon, "No block device supports snapshots\n");
2326 return;
2327 }
2328
2329 bs1 = NULL;
2330 while ((bs1 = bdrv_next(bs1))) {
2331 if (bdrv_can_snapshot(bs1)) {
2332 ret = bdrv_snapshot_delete(bs1, name);
2333 if (ret < 0) {
2334 if (ret == -ENOTSUP)
2335 monitor_printf(mon,
2336 "Snapshots not supported on device '%s'\n",
2337 bdrv_get_device_name(bs1));
2338 else
2339 monitor_printf(mon, "Error %d while deleting snapshot on "
2340 "'%s'\n", ret, bdrv_get_device_name(bs1));
2341 }
2342 }
2343 }
2344 }
2345
2346 void do_info_snapshots(Monitor *mon, const QDict *qdict)
2347 {
2348 BlockDriverState *bs, *bs1;
2349 QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
2350 int nb_sns, i, ret, available;
2351 int total;
2352 int *available_snapshots;
2353 char buf[256];
2354
2355 bs = bdrv_snapshots();
2356 if (!bs) {
2357 monitor_printf(mon, "No available block device supports snapshots\n");
2358 return;
2359 }
2360
2361 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2362 if (nb_sns < 0) {
2363 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
2364 return;
2365 }
2366
2367 if (nb_sns == 0) {
2368 monitor_printf(mon, "There is no snapshot available.\n");
2369 return;
2370 }
2371
2372 available_snapshots = g_malloc0(sizeof(int) * nb_sns);
2373 total = 0;
2374 for (i = 0; i < nb_sns; i++) {
2375 sn = &sn_tab[i];
2376 available = 1;
2377 bs1 = NULL;
2378
2379 while ((bs1 = bdrv_next(bs1))) {
2380 if (bdrv_can_snapshot(bs1) && bs1 != bs) {
2381 ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
2382 if (ret < 0) {
2383 available = 0;
2384 break;
2385 }
2386 }
2387 }
2388
2389 if (available) {
2390 available_snapshots[total] = i;
2391 total++;
2392 }
2393 }
2394
2395 if (total > 0) {
2396 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
2397 for (i = 0; i < total; i++) {
2398 sn = &sn_tab[available_snapshots[i]];
2399 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
2400 }
2401 } else {
2402 monitor_printf(mon, "There is no suitable snapshot available\n");
2403 }
2404
2405 g_free(sn_tab);
2406 g_free(available_snapshots);
2407
2408 }
2409
2410 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2411 {
2412 qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK,
2413 memory_region_name(mr), dev);
2414 }
2415
2416 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2417 {
2418 /* Nothing do to while the implementation is in RAMBlock */
2419 }
2420
2421 void vmstate_register_ram_global(MemoryRegion *mr)
2422 {
2423 vmstate_register_ram(mr, NULL);
2424 }