]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - security/commoncap.c
CRED: Neuter sys_capset()
[mirror_ubuntu-artful-kernel.git] / security / commoncap.c
1 /* Common capabilities, needed by capability.o and root_plug.o
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30
31 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
32 {
33 NETLINK_CB(skb).eff_cap = current->cap_effective;
34 return 0;
35 }
36
37 int cap_netlink_recv(struct sk_buff *skb, int cap)
38 {
39 if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
40 return -EPERM;
41 return 0;
42 }
43
44 EXPORT_SYMBOL(cap_netlink_recv);
45
46 /*
47 * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
48 * function. That is, it has the reverse semantics: cap_capable()
49 * returns 0 when a task has a capability, but the kernel's capable()
50 * returns 1 for this case.
51 */
52 int cap_capable(struct task_struct *tsk, int cap, int audit)
53 {
54 /* Derived from include/linux/sched.h:capable. */
55 if (cap_raised(tsk->cap_effective, cap))
56 return 0;
57 return -EPERM;
58 }
59
60 int cap_settime(struct timespec *ts, struct timezone *tz)
61 {
62 if (!capable(CAP_SYS_TIME))
63 return -EPERM;
64 return 0;
65 }
66
67 int cap_ptrace_may_access(struct task_struct *child, unsigned int mode)
68 {
69 /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
70 if (cap_issubset(child->cap_permitted, current->cap_permitted))
71 return 0;
72 if (capable(CAP_SYS_PTRACE))
73 return 0;
74 return -EPERM;
75 }
76
77 int cap_ptrace_traceme(struct task_struct *parent)
78 {
79 /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
80 if (cap_issubset(current->cap_permitted, parent->cap_permitted))
81 return 0;
82 if (has_capability(parent, CAP_SYS_PTRACE))
83 return 0;
84 return -EPERM;
85 }
86
87 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
88 kernel_cap_t *inheritable, kernel_cap_t *permitted)
89 {
90 /* Derived from kernel/capability.c:sys_capget. */
91 *effective = target->cap_effective;
92 *inheritable = target->cap_inheritable;
93 *permitted = target->cap_permitted;
94 return 0;
95 }
96
97 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
98
99 static inline int cap_inh_is_capped(void)
100 {
101 /*
102 * Return 1 if changes to the inheritable set are limited
103 * to the old permitted set. That is, if the current task
104 * does *not* possess the CAP_SETPCAP capability.
105 */
106 return (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0);
107 }
108
109 static inline int cap_limit_ptraced_target(void) { return 1; }
110
111 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
112
113 static inline int cap_inh_is_capped(void) { return 1; }
114 static inline int cap_limit_ptraced_target(void)
115 {
116 return !capable(CAP_SETPCAP);
117 }
118
119 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
120
121 int cap_capset_check (kernel_cap_t *effective,
122 kernel_cap_t *inheritable, kernel_cap_t *permitted)
123 {
124 if (cap_inh_is_capped()
125 && !cap_issubset(*inheritable,
126 cap_combine(current->cap_inheritable,
127 current->cap_permitted))) {
128 /* incapable of using this inheritable set */
129 return -EPERM;
130 }
131 if (!cap_issubset(*inheritable,
132 cap_combine(current->cap_inheritable,
133 current->cap_bset))) {
134 /* no new pI capabilities outside bounding set */
135 return -EPERM;
136 }
137
138 /* verify restrictions on target's new Permitted set */
139 if (!cap_issubset (*permitted,
140 cap_combine (current->cap_permitted,
141 current->cap_permitted))) {
142 return -EPERM;
143 }
144
145 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
146 if (!cap_issubset (*effective, *permitted)) {
147 return -EPERM;
148 }
149
150 return 0;
151 }
152
153 void cap_capset_set (kernel_cap_t *effective,
154 kernel_cap_t *inheritable, kernel_cap_t *permitted)
155 {
156 current->cap_effective = *effective;
157 current->cap_inheritable = *inheritable;
158 current->cap_permitted = *permitted;
159 }
160
161 static inline void bprm_clear_caps(struct linux_binprm *bprm)
162 {
163 cap_clear(bprm->cap_post_exec_permitted);
164 bprm->cap_effective = false;
165 }
166
167 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
168
169 int cap_inode_need_killpriv(struct dentry *dentry)
170 {
171 struct inode *inode = dentry->d_inode;
172 int error;
173
174 if (!inode->i_op || !inode->i_op->getxattr)
175 return 0;
176
177 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
178 if (error <= 0)
179 return 0;
180 return 1;
181 }
182
183 int cap_inode_killpriv(struct dentry *dentry)
184 {
185 struct inode *inode = dentry->d_inode;
186
187 if (!inode->i_op || !inode->i_op->removexattr)
188 return 0;
189
190 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
191 }
192
193 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
194 struct linux_binprm *bprm)
195 {
196 unsigned i;
197 int ret = 0;
198
199 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
200 bprm->cap_effective = true;
201 else
202 bprm->cap_effective = false;
203
204 CAP_FOR_EACH_U32(i) {
205 __u32 permitted = caps->permitted.cap[i];
206 __u32 inheritable = caps->inheritable.cap[i];
207
208 /*
209 * pP' = (X & fP) | (pI & fI)
210 */
211 bprm->cap_post_exec_permitted.cap[i] =
212 (current->cap_bset.cap[i] & permitted) |
213 (current->cap_inheritable.cap[i] & inheritable);
214
215 if (permitted & ~bprm->cap_post_exec_permitted.cap[i]) {
216 /*
217 * insufficient to execute correctly
218 */
219 ret = -EPERM;
220 }
221 }
222
223 /*
224 * For legacy apps, with no internal support for recognizing they
225 * do not have enough capabilities, we return an error if they are
226 * missing some "forced" (aka file-permitted) capabilities.
227 */
228 return bprm->cap_effective ? ret : 0;
229 }
230
231 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
232 {
233 struct inode *inode = dentry->d_inode;
234 __u32 magic_etc;
235 unsigned tocopy, i;
236 int size;
237 struct vfs_cap_data caps;
238
239 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
240
241 if (!inode || !inode->i_op || !inode->i_op->getxattr)
242 return -ENODATA;
243
244 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
245 XATTR_CAPS_SZ);
246 if (size == -ENODATA || size == -EOPNOTSUPP) {
247 /* no data, that's ok */
248 return -ENODATA;
249 }
250 if (size < 0)
251 return size;
252
253 if (size < sizeof(magic_etc))
254 return -EINVAL;
255
256 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
257
258 switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
259 case VFS_CAP_REVISION_1:
260 if (size != XATTR_CAPS_SZ_1)
261 return -EINVAL;
262 tocopy = VFS_CAP_U32_1;
263 break;
264 case VFS_CAP_REVISION_2:
265 if (size != XATTR_CAPS_SZ_2)
266 return -EINVAL;
267 tocopy = VFS_CAP_U32_2;
268 break;
269 default:
270 return -EINVAL;
271 }
272
273 CAP_FOR_EACH_U32(i) {
274 if (i >= tocopy)
275 break;
276 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
277 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
278 }
279 return 0;
280 }
281
282 /* Locate any VFS capabilities: */
283 static int get_file_caps(struct linux_binprm *bprm)
284 {
285 struct dentry *dentry;
286 int rc = 0;
287 struct cpu_vfs_cap_data vcaps;
288
289 bprm_clear_caps(bprm);
290
291 if (!file_caps_enabled)
292 return 0;
293
294 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
295 return 0;
296
297 dentry = dget(bprm->file->f_dentry);
298
299 rc = get_vfs_caps_from_disk(dentry, &vcaps);
300 if (rc < 0) {
301 if (rc == -EINVAL)
302 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
303 __func__, rc, bprm->filename);
304 else if (rc == -ENODATA)
305 rc = 0;
306 goto out;
307 }
308
309 rc = bprm_caps_from_vfs_caps(&vcaps, bprm);
310
311 out:
312 dput(dentry);
313 if (rc)
314 bprm_clear_caps(bprm);
315
316 return rc;
317 }
318
319 #else
320 int cap_inode_need_killpriv(struct dentry *dentry)
321 {
322 return 0;
323 }
324
325 int cap_inode_killpriv(struct dentry *dentry)
326 {
327 return 0;
328 }
329
330 static inline int get_file_caps(struct linux_binprm *bprm)
331 {
332 bprm_clear_caps(bprm);
333 return 0;
334 }
335 #endif
336
337 int cap_bprm_set_security (struct linux_binprm *bprm)
338 {
339 int ret;
340
341 ret = get_file_caps(bprm);
342
343 if (!issecure(SECURE_NOROOT)) {
344 /*
345 * To support inheritance of root-permissions and suid-root
346 * executables under compatibility mode, we override the
347 * capability sets for the file.
348 *
349 * If only the real uid is 0, we do not set the effective
350 * bit.
351 */
352 if (bprm->e_uid == 0 || current_uid() == 0) {
353 /* pP' = (cap_bset & ~0) | (pI & ~0) */
354 bprm->cap_post_exec_permitted = cap_combine(
355 current->cap_bset, current->cap_inheritable
356 );
357 bprm->cap_effective = (bprm->e_uid == 0);
358 ret = 0;
359 }
360 }
361
362 return ret;
363 }
364
365 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
366 {
367 kernel_cap_t pP = current->cap_permitted;
368 kernel_cap_t pE = current->cap_effective;
369 uid_t uid;
370 gid_t gid;
371
372 current_uid_gid(&uid, &gid);
373
374 if (bprm->e_uid != uid || bprm->e_gid != gid ||
375 !cap_issubset(bprm->cap_post_exec_permitted,
376 current->cap_permitted)) {
377 set_dumpable(current->mm, suid_dumpable);
378 current->pdeath_signal = 0;
379
380 if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
381 if (!capable(CAP_SETUID)) {
382 bprm->e_uid = uid;
383 bprm->e_gid = gid;
384 }
385 if (cap_limit_ptraced_target()) {
386 bprm->cap_post_exec_permitted = cap_intersect(
387 bprm->cap_post_exec_permitted,
388 current->cap_permitted);
389 }
390 }
391 }
392
393 current->suid = current->euid = current->fsuid = bprm->e_uid;
394 current->sgid = current->egid = current->fsgid = bprm->e_gid;
395
396 /* For init, we want to retain the capabilities set
397 * in the init_task struct. Thus we skip the usual
398 * capability rules */
399 if (!is_global_init(current)) {
400 current->cap_permitted = bprm->cap_post_exec_permitted;
401 if (bprm->cap_effective)
402 current->cap_effective = bprm->cap_post_exec_permitted;
403 else
404 cap_clear(current->cap_effective);
405 }
406
407 /*
408 * Audit candidate if current->cap_effective is set
409 *
410 * We do not bother to audit if 3 things are true:
411 * 1) cap_effective has all caps
412 * 2) we are root
413 * 3) root is supposed to have all caps (SECURE_NOROOT)
414 * Since this is just a normal root execing a process.
415 *
416 * Number 1 above might fail if you don't have a full bset, but I think
417 * that is interesting information to audit.
418 */
419 if (!cap_isclear(current->cap_effective)) {
420 if (!cap_issubset(CAP_FULL_SET, current->cap_effective) ||
421 (bprm->e_uid != 0) || (current->uid != 0) ||
422 issecure(SECURE_NOROOT))
423 audit_log_bprm_fcaps(bprm, &pP, &pE);
424 }
425
426 current->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
427 }
428
429 int cap_bprm_secureexec (struct linux_binprm *bprm)
430 {
431 if (current_uid() != 0) {
432 if (bprm->cap_effective)
433 return 1;
434 if (!cap_isclear(bprm->cap_post_exec_permitted))
435 return 1;
436 }
437
438 return (current_euid() != current_uid() ||
439 current_egid() != current_gid());
440 }
441
442 int cap_inode_setxattr(struct dentry *dentry, const char *name,
443 const void *value, size_t size, int flags)
444 {
445 if (!strcmp(name, XATTR_NAME_CAPS)) {
446 if (!capable(CAP_SETFCAP))
447 return -EPERM;
448 return 0;
449 } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
450 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
451 !capable(CAP_SYS_ADMIN))
452 return -EPERM;
453 return 0;
454 }
455
456 int cap_inode_removexattr(struct dentry *dentry, const char *name)
457 {
458 if (!strcmp(name, XATTR_NAME_CAPS)) {
459 if (!capable(CAP_SETFCAP))
460 return -EPERM;
461 return 0;
462 } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
463 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
464 !capable(CAP_SYS_ADMIN))
465 return -EPERM;
466 return 0;
467 }
468
469 /* moved from kernel/sys.c. */
470 /*
471 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
472 * a process after a call to setuid, setreuid, or setresuid.
473 *
474 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
475 * {r,e,s}uid != 0, the permitted and effective capabilities are
476 * cleared.
477 *
478 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
479 * capabilities of the process are cleared.
480 *
481 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
482 * capabilities are set to the permitted capabilities.
483 *
484 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
485 * never happen.
486 *
487 * -astor
488 *
489 * cevans - New behaviour, Oct '99
490 * A process may, via prctl(), elect to keep its capabilities when it
491 * calls setuid() and switches away from uid==0. Both permitted and
492 * effective sets will be retained.
493 * Without this change, it was impossible for a daemon to drop only some
494 * of its privilege. The call to setuid(!=0) would drop all privileges!
495 * Keeping uid 0 is not an option because uid 0 owns too many vital
496 * files..
497 * Thanks to Olaf Kirch and Peter Benie for spotting this.
498 */
499 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
500 int old_suid)
501 {
502 uid_t euid = current_euid();
503
504 if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
505 (current_uid() != 0 && euid != 0 && current_suid() != 0) &&
506 !issecure(SECURE_KEEP_CAPS)) {
507 cap_clear (current->cap_permitted);
508 cap_clear (current->cap_effective);
509 }
510 if (old_euid == 0 && euid != 0) {
511 cap_clear (current->cap_effective);
512 }
513 if (old_euid != 0 && euid == 0) {
514 current->cap_effective = current->cap_permitted;
515 }
516 }
517
518 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
519 int flags)
520 {
521 switch (flags) {
522 case LSM_SETID_RE:
523 case LSM_SETID_ID:
524 case LSM_SETID_RES:
525 /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
526 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
527 cap_emulate_setxuid (old_ruid, old_euid, old_suid);
528 }
529 break;
530 case LSM_SETID_FS:
531 {
532 uid_t old_fsuid = old_ruid;
533
534 /* Copied from kernel/sys.c:setfsuid. */
535
536 /*
537 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
538 * if not, we might be a bit too harsh here.
539 */
540
541 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
542 if (old_fsuid == 0 && current_fsuid() != 0) {
543 current->cap_effective =
544 cap_drop_fs_set(
545 current->cap_effective);
546 }
547 if (old_fsuid != 0 && current_fsuid() == 0) {
548 current->cap_effective =
549 cap_raise_fs_set(
550 current->cap_effective,
551 current->cap_permitted);
552 }
553 }
554 break;
555 }
556 default:
557 return -EINVAL;
558 }
559
560 return 0;
561 }
562
563 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
564 /*
565 * Rationale: code calling task_setscheduler, task_setioprio, and
566 * task_setnice, assumes that
567 * . if capable(cap_sys_nice), then those actions should be allowed
568 * . if not capable(cap_sys_nice), but acting on your own processes,
569 * then those actions should be allowed
570 * This is insufficient now since you can call code without suid, but
571 * yet with increased caps.
572 * So we check for increased caps on the target process.
573 */
574 static int cap_safe_nice(struct task_struct *p)
575 {
576 if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
577 !capable(CAP_SYS_NICE))
578 return -EPERM;
579 return 0;
580 }
581
582 int cap_task_setscheduler (struct task_struct *p, int policy,
583 struct sched_param *lp)
584 {
585 return cap_safe_nice(p);
586 }
587
588 int cap_task_setioprio (struct task_struct *p, int ioprio)
589 {
590 return cap_safe_nice(p);
591 }
592
593 int cap_task_setnice (struct task_struct *p, int nice)
594 {
595 return cap_safe_nice(p);
596 }
597
598 /*
599 * called from kernel/sys.c for prctl(PR_CABSET_DROP)
600 * done without task_capability_lock() because it introduces
601 * no new races - i.e. only another task doing capget() on
602 * this task could get inconsistent info. There can be no
603 * racing writer bc a task can only change its own caps.
604 */
605 static long cap_prctl_drop(unsigned long cap)
606 {
607 if (!capable(CAP_SETPCAP))
608 return -EPERM;
609 if (!cap_valid(cap))
610 return -EINVAL;
611 cap_lower(current->cap_bset, cap);
612 return 0;
613 }
614
615 #else
616 int cap_task_setscheduler (struct task_struct *p, int policy,
617 struct sched_param *lp)
618 {
619 return 0;
620 }
621 int cap_task_setioprio (struct task_struct *p, int ioprio)
622 {
623 return 0;
624 }
625 int cap_task_setnice (struct task_struct *p, int nice)
626 {
627 return 0;
628 }
629 #endif
630
631 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
632 unsigned long arg4, unsigned long arg5, long *rc_p)
633 {
634 long error = 0;
635
636 switch (option) {
637 case PR_CAPBSET_READ:
638 if (!cap_valid(arg2))
639 error = -EINVAL;
640 else
641 error = !!cap_raised(current->cap_bset, arg2);
642 break;
643 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
644 case PR_CAPBSET_DROP:
645 error = cap_prctl_drop(arg2);
646 break;
647
648 /*
649 * The next four prctl's remain to assist with transitioning a
650 * system from legacy UID=0 based privilege (when filesystem
651 * capabilities are not in use) to a system using filesystem
652 * capabilities only - as the POSIX.1e draft intended.
653 *
654 * Note:
655 *
656 * PR_SET_SECUREBITS =
657 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
658 * | issecure_mask(SECURE_NOROOT)
659 * | issecure_mask(SECURE_NOROOT_LOCKED)
660 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
661 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
662 *
663 * will ensure that the current process and all of its
664 * children will be locked into a pure
665 * capability-based-privilege environment.
666 */
667 case PR_SET_SECUREBITS:
668 if ((((current->securebits & SECURE_ALL_LOCKS) >> 1)
669 & (current->securebits ^ arg2)) /*[1]*/
670 || ((current->securebits & SECURE_ALL_LOCKS
671 & ~arg2)) /*[2]*/
672 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
673 || (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0)) { /*[4]*/
674 /*
675 * [1] no changing of bits that are locked
676 * [2] no unlocking of locks
677 * [3] no setting of unsupported bits
678 * [4] doing anything requires privilege (go read about
679 * the "sendmail capabilities bug")
680 */
681 error = -EPERM; /* cannot change a locked bit */
682 } else {
683 current->securebits = arg2;
684 }
685 break;
686 case PR_GET_SECUREBITS:
687 error = current->securebits;
688 break;
689
690 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
691
692 case PR_GET_KEEPCAPS:
693 if (issecure(SECURE_KEEP_CAPS))
694 error = 1;
695 break;
696 case PR_SET_KEEPCAPS:
697 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
698 error = -EINVAL;
699 else if (issecure(SECURE_KEEP_CAPS_LOCKED))
700 error = -EPERM;
701 else if (arg2)
702 current->securebits |= issecure_mask(SECURE_KEEP_CAPS);
703 else
704 current->securebits &=
705 ~issecure_mask(SECURE_KEEP_CAPS);
706 break;
707
708 default:
709 /* No functionality available - continue with default */
710 return 0;
711 }
712
713 /* Functionality provided */
714 *rc_p = error;
715 return 1;
716 }
717
718 void cap_task_reparent_to_init (struct task_struct *p)
719 {
720 cap_set_init_eff(p->cap_effective);
721 cap_clear(p->cap_inheritable);
722 cap_set_full(p->cap_permitted);
723 p->securebits = SECUREBITS_DEFAULT;
724 return;
725 }
726
727 int cap_syslog (int type)
728 {
729 if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
730 return -EPERM;
731 return 0;
732 }
733
734 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
735 {
736 int cap_sys_admin = 0;
737
738 if (cap_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT) == 0)
739 cap_sys_admin = 1;
740 return __vm_enough_memory(mm, pages, cap_sys_admin);
741 }
742