]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - security/commoncap.c
CRED: Prettify commoncap.c
[mirror_ubuntu-artful-kernel.git] / security / commoncap.c
1 /* Common capabilities, needed by capability.o and root_plug.o
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30
31 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
32 {
33 NETLINK_CB(skb).eff_cap = current_cap();
34 return 0;
35 }
36
37 int cap_netlink_recv(struct sk_buff *skb, int cap)
38 {
39 if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
40 return -EPERM;
41 return 0;
42 }
43 EXPORT_SYMBOL(cap_netlink_recv);
44
45 /**
46 * cap_capable - Determine whether a task has a particular effective capability
47 * @tsk: The task to query
48 * @cap: The capability to check for
49 * @audit: Whether to write an audit message or not
50 *
51 * Determine whether the nominated task has the specified capability amongst
52 * its effective set, returning 0 if it does, -ve if it does not.
53 *
54 * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
55 * function. That is, it has the reverse semantics: cap_capable() returns 0
56 * when a task has a capability, but the kernel's capable() returns 1 for this
57 * case.
58 */
59 int cap_capable(struct task_struct *tsk, int cap, int audit)
60 {
61 __u32 cap_raised;
62
63 /* Derived from include/linux/sched.h:capable. */
64 rcu_read_lock();
65 cap_raised = cap_raised(__task_cred(tsk)->cap_effective, cap);
66 rcu_read_unlock();
67 return cap_raised ? 0 : -EPERM;
68 }
69
70 /**
71 * cap_settime - Determine whether the current process may set the system clock
72 * @ts: The time to set
73 * @tz: The timezone to set
74 *
75 * Determine whether the current process may set the system clock and timezone
76 * information, returning 0 if permission granted, -ve if denied.
77 */
78 int cap_settime(struct timespec *ts, struct timezone *tz)
79 {
80 if (!capable(CAP_SYS_TIME))
81 return -EPERM;
82 return 0;
83 }
84
85 /**
86 * cap_ptrace_may_access - Determine whether the current process may access
87 * another
88 * @child: The process to be accessed
89 * @mode: The mode of attachment.
90 *
91 * Determine whether a process may access another, returning 0 if permission
92 * granted, -ve if denied.
93 */
94 int cap_ptrace_may_access(struct task_struct *child, unsigned int mode)
95 {
96 int ret = 0;
97
98 rcu_read_lock();
99 if (!cap_issubset(__task_cred(child)->cap_permitted,
100 current_cred()->cap_permitted) &&
101 !capable(CAP_SYS_PTRACE))
102 ret = -EPERM;
103 rcu_read_unlock();
104 return ret;
105 }
106
107 /**
108 * cap_ptrace_traceme - Determine whether another process may trace the current
109 * @parent: The task proposed to be the tracer
110 *
111 * Determine whether the nominated task is permitted to trace the current
112 * process, returning 0 if permission is granted, -ve if denied.
113 */
114 int cap_ptrace_traceme(struct task_struct *parent)
115 {
116 int ret = 0;
117
118 rcu_read_lock();
119 if (!cap_issubset(current_cred()->cap_permitted,
120 __task_cred(parent)->cap_permitted) &&
121 !has_capability(parent, CAP_SYS_PTRACE))
122 ret = -EPERM;
123 rcu_read_unlock();
124 return ret;
125 }
126
127 /**
128 * cap_capget - Retrieve a task's capability sets
129 * @target: The task from which to retrieve the capability sets
130 * @effective: The place to record the effective set
131 * @inheritable: The place to record the inheritable set
132 * @permitted: The place to record the permitted set
133 *
134 * This function retrieves the capabilities of the nominated task and returns
135 * them to the caller.
136 */
137 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
138 kernel_cap_t *inheritable, kernel_cap_t *permitted)
139 {
140 const struct cred *cred;
141
142 /* Derived from kernel/capability.c:sys_capget. */
143 rcu_read_lock();
144 cred = __task_cred(target);
145 *effective = cred->cap_effective;
146 *inheritable = cred->cap_inheritable;
147 *permitted = cred->cap_permitted;
148 rcu_read_unlock();
149 return 0;
150 }
151
152 /*
153 * Determine whether the inheritable capabilities are limited to the old
154 * permitted set. Returns 1 if they are limited, 0 if they are not.
155 */
156 static inline int cap_inh_is_capped(void)
157 {
158 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
159
160 /* they are so limited unless the current task has the CAP_SETPCAP
161 * capability
162 */
163 if (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
164 return 0;
165 #endif
166 return 1;
167 }
168
169 /**
170 * cap_capset - Validate and apply proposed changes to current's capabilities
171 * @new: The proposed new credentials; alterations should be made here
172 * @old: The current task's current credentials
173 * @effective: A pointer to the proposed new effective capabilities set
174 * @inheritable: A pointer to the proposed new inheritable capabilities set
175 * @permitted: A pointer to the proposed new permitted capabilities set
176 *
177 * This function validates and applies a proposed mass change to the current
178 * process's capability sets. The changes are made to the proposed new
179 * credentials, and assuming no error, will be committed by the caller of LSM.
180 */
181 int cap_capset(struct cred *new,
182 const struct cred *old,
183 const kernel_cap_t *effective,
184 const kernel_cap_t *inheritable,
185 const kernel_cap_t *permitted)
186 {
187 if (cap_inh_is_capped() &&
188 !cap_issubset(*inheritable,
189 cap_combine(old->cap_inheritable,
190 old->cap_permitted)))
191 /* incapable of using this inheritable set */
192 return -EPERM;
193
194 if (!cap_issubset(*inheritable,
195 cap_combine(old->cap_inheritable,
196 old->cap_bset)))
197 /* no new pI capabilities outside bounding set */
198 return -EPERM;
199
200 /* verify restrictions on target's new Permitted set */
201 if (!cap_issubset(*permitted, old->cap_permitted))
202 return -EPERM;
203
204 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
205 if (!cap_issubset(*effective, *permitted))
206 return -EPERM;
207
208 new->cap_effective = *effective;
209 new->cap_inheritable = *inheritable;
210 new->cap_permitted = *permitted;
211 return 0;
212 }
213
214 /*
215 * Clear proposed capability sets for execve().
216 */
217 static inline void bprm_clear_caps(struct linux_binprm *bprm)
218 {
219 cap_clear(bprm->cred->cap_permitted);
220 bprm->cap_effective = false;
221 }
222
223 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
224
225 /**
226 * cap_inode_need_killpriv - Determine if inode change affects privileges
227 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
228 *
229 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
230 * affects the security markings on that inode, and if it is, should
231 * inode_killpriv() be invoked or the change rejected?
232 *
233 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
234 * -ve to deny the change.
235 */
236 int cap_inode_need_killpriv(struct dentry *dentry)
237 {
238 struct inode *inode = dentry->d_inode;
239 int error;
240
241 if (!inode->i_op || !inode->i_op->getxattr)
242 return 0;
243
244 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
245 if (error <= 0)
246 return 0;
247 return 1;
248 }
249
250 /**
251 * cap_inode_killpriv - Erase the security markings on an inode
252 * @dentry: The inode/dentry to alter
253 *
254 * Erase the privilege-enhancing security markings on an inode.
255 *
256 * Returns 0 if successful, -ve on error.
257 */
258 int cap_inode_killpriv(struct dentry *dentry)
259 {
260 struct inode *inode = dentry->d_inode;
261
262 if (!inode->i_op || !inode->i_op->removexattr)
263 return 0;
264
265 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
266 }
267
268 /*
269 * Calculate the new process capability sets from the capability sets attached
270 * to a file.
271 */
272 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
273 struct linux_binprm *bprm,
274 bool *effective)
275 {
276 struct cred *new = bprm->cred;
277 unsigned i;
278 int ret = 0;
279
280 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
281 *effective = true;
282
283 CAP_FOR_EACH_U32(i) {
284 __u32 permitted = caps->permitted.cap[i];
285 __u32 inheritable = caps->inheritable.cap[i];
286
287 /*
288 * pP' = (X & fP) | (pI & fI)
289 */
290 new->cap_permitted.cap[i] =
291 (new->cap_bset.cap[i] & permitted) |
292 (new->cap_inheritable.cap[i] & inheritable);
293
294 if (permitted & ~new->cap_permitted.cap[i])
295 /* insufficient to execute correctly */
296 ret = -EPERM;
297 }
298
299 /*
300 * For legacy apps, with no internal support for recognizing they
301 * do not have enough capabilities, we return an error if they are
302 * missing some "forced" (aka file-permitted) capabilities.
303 */
304 return *effective ? ret : 0;
305 }
306
307 /*
308 * Extract the on-exec-apply capability sets for an executable file.
309 */
310 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
311 {
312 struct inode *inode = dentry->d_inode;
313 __u32 magic_etc;
314 unsigned tocopy, i;
315 int size;
316 struct vfs_cap_data caps;
317
318 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
319
320 if (!inode || !inode->i_op || !inode->i_op->getxattr)
321 return -ENODATA;
322
323 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
324 XATTR_CAPS_SZ);
325 if (size == -ENODATA || size == -EOPNOTSUPP)
326 /* no data, that's ok */
327 return -ENODATA;
328 if (size < 0)
329 return size;
330
331 if (size < sizeof(magic_etc))
332 return -EINVAL;
333
334 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
335
336 switch (magic_etc & VFS_CAP_REVISION_MASK) {
337 case VFS_CAP_REVISION_1:
338 if (size != XATTR_CAPS_SZ_1)
339 return -EINVAL;
340 tocopy = VFS_CAP_U32_1;
341 break;
342 case VFS_CAP_REVISION_2:
343 if (size != XATTR_CAPS_SZ_2)
344 return -EINVAL;
345 tocopy = VFS_CAP_U32_2;
346 break;
347 default:
348 return -EINVAL;
349 }
350
351 CAP_FOR_EACH_U32(i) {
352 if (i >= tocopy)
353 break;
354 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
355 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
356 }
357
358 return 0;
359 }
360
361 /*
362 * Attempt to get the on-exec apply capability sets for an executable file from
363 * its xattrs and, if present, apply them to the proposed credentials being
364 * constructed by execve().
365 */
366 static int get_file_caps(struct linux_binprm *bprm, bool *effective)
367 {
368 struct dentry *dentry;
369 int rc = 0;
370 struct cpu_vfs_cap_data vcaps;
371
372 bprm_clear_caps(bprm);
373
374 if (!file_caps_enabled)
375 return 0;
376
377 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
378 return 0;
379
380 dentry = dget(bprm->file->f_dentry);
381
382 rc = get_vfs_caps_from_disk(dentry, &vcaps);
383 if (rc < 0) {
384 if (rc == -EINVAL)
385 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
386 __func__, rc, bprm->filename);
387 else if (rc == -ENODATA)
388 rc = 0;
389 goto out;
390 }
391
392 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
393 if (rc == -EINVAL)
394 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
395 __func__, rc, bprm->filename);
396
397 out:
398 dput(dentry);
399 if (rc)
400 bprm_clear_caps(bprm);
401
402 return rc;
403 }
404
405 #else
406 int cap_inode_need_killpriv(struct dentry *dentry)
407 {
408 return 0;
409 }
410
411 int cap_inode_killpriv(struct dentry *dentry)
412 {
413 return 0;
414 }
415
416 static inline int get_file_caps(struct linux_binprm *bprm, bool *effective)
417 {
418 bprm_clear_caps(bprm);
419 return 0;
420 }
421 #endif
422
423 /*
424 * Determine whether a exec'ing process's new permitted capabilities should be
425 * limited to just what it already has.
426 *
427 * This prevents processes that are being ptraced from gaining access to
428 * CAP_SETPCAP, unless the process they're tracing already has it, and the
429 * binary they're executing has filecaps that elevate it.
430 *
431 * Returns 1 if they should be limited, 0 if they are not.
432 */
433 static inline int cap_limit_ptraced_target(void)
434 {
435 #ifndef CONFIG_SECURITY_FILE_CAPABILITIES
436 if (capable(CAP_SETPCAP))
437 return 0;
438 #endif
439 return 1;
440 }
441
442 /**
443 * cap_bprm_set_creds - Set up the proposed credentials for execve().
444 * @bprm: The execution parameters, including the proposed creds
445 *
446 * Set up the proposed credentials for a new execution context being
447 * constructed by execve(). The proposed creds in @bprm->cred is altered,
448 * which won't take effect immediately. Returns 0 if successful, -ve on error.
449 */
450 int cap_bprm_set_creds(struct linux_binprm *bprm)
451 {
452 const struct cred *old = current_cred();
453 struct cred *new = bprm->cred;
454 bool effective;
455 int ret;
456
457 effective = false;
458 ret = get_file_caps(bprm, &effective);
459 if (ret < 0)
460 return ret;
461
462 if (!issecure(SECURE_NOROOT)) {
463 /*
464 * To support inheritance of root-permissions and suid-root
465 * executables under compatibility mode, we override the
466 * capability sets for the file.
467 *
468 * If only the real uid is 0, we do not set the effective bit.
469 */
470 if (new->euid == 0 || new->uid == 0) {
471 /* pP' = (cap_bset & ~0) | (pI & ~0) */
472 new->cap_permitted = cap_combine(old->cap_bset,
473 old->cap_inheritable);
474 }
475 if (new->euid == 0)
476 effective = true;
477 }
478
479 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
480 * credentials unless they have the appropriate permit
481 */
482 if ((new->euid != old->uid ||
483 new->egid != old->gid ||
484 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
485 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
486 /* downgrade; they get no more than they had, and maybe less */
487 if (!capable(CAP_SETUID)) {
488 new->euid = new->uid;
489 new->egid = new->gid;
490 }
491 if (cap_limit_ptraced_target())
492 new->cap_permitted = cap_intersect(new->cap_permitted,
493 old->cap_permitted);
494 }
495
496 new->suid = new->fsuid = new->euid;
497 new->sgid = new->fsgid = new->egid;
498
499 /* For init, we want to retain the capabilities set in the initial
500 * task. Thus we skip the usual capability rules
501 */
502 if (!is_global_init(current)) {
503 if (effective)
504 new->cap_effective = new->cap_permitted;
505 else
506 cap_clear(new->cap_effective);
507 }
508 bprm->cap_effective = effective;
509
510 /*
511 * Audit candidate if current->cap_effective is set
512 *
513 * We do not bother to audit if 3 things are true:
514 * 1) cap_effective has all caps
515 * 2) we are root
516 * 3) root is supposed to have all caps (SECURE_NOROOT)
517 * Since this is just a normal root execing a process.
518 *
519 * Number 1 above might fail if you don't have a full bset, but I think
520 * that is interesting information to audit.
521 */
522 if (!cap_isclear(new->cap_effective)) {
523 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
524 new->euid != 0 || new->uid != 0 ||
525 issecure(SECURE_NOROOT)) {
526 ret = audit_log_bprm_fcaps(bprm, new, old);
527 if (ret < 0)
528 return ret;
529 }
530 }
531
532 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
533 return 0;
534 }
535
536 /**
537 * cap_bprm_secureexec - Determine whether a secure execution is required
538 * @bprm: The execution parameters
539 *
540 * Determine whether a secure execution is required, return 1 if it is, and 0
541 * if it is not.
542 *
543 * The credentials have been committed by this point, and so are no longer
544 * available through @bprm->cred.
545 */
546 int cap_bprm_secureexec(struct linux_binprm *bprm)
547 {
548 const struct cred *cred = current_cred();
549
550 if (cred->uid != 0) {
551 if (bprm->cap_effective)
552 return 1;
553 if (!cap_isclear(cred->cap_permitted))
554 return 1;
555 }
556
557 return (cred->euid != cred->uid ||
558 cred->egid != cred->gid);
559 }
560
561 /**
562 * cap_inode_setxattr - Determine whether an xattr may be altered
563 * @dentry: The inode/dentry being altered
564 * @name: The name of the xattr to be changed
565 * @value: The value that the xattr will be changed to
566 * @size: The size of value
567 * @flags: The replacement flag
568 *
569 * Determine whether an xattr may be altered or set on an inode, returning 0 if
570 * permission is granted, -ve if denied.
571 *
572 * This is used to make sure security xattrs don't get updated or set by those
573 * who aren't privileged to do so.
574 */
575 int cap_inode_setxattr(struct dentry *dentry, const char *name,
576 const void *value, size_t size, int flags)
577 {
578 if (!strcmp(name, XATTR_NAME_CAPS)) {
579 if (!capable(CAP_SETFCAP))
580 return -EPERM;
581 return 0;
582 }
583
584 if (!strncmp(name, XATTR_SECURITY_PREFIX,
585 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
586 !capable(CAP_SYS_ADMIN))
587 return -EPERM;
588 return 0;
589 }
590
591 /**
592 * cap_inode_removexattr - Determine whether an xattr may be removed
593 * @dentry: The inode/dentry being altered
594 * @name: The name of the xattr to be changed
595 *
596 * Determine whether an xattr may be removed from an inode, returning 0 if
597 * permission is granted, -ve if denied.
598 *
599 * This is used to make sure security xattrs don't get removed by those who
600 * aren't privileged to remove them.
601 */
602 int cap_inode_removexattr(struct dentry *dentry, const char *name)
603 {
604 if (!strcmp(name, XATTR_NAME_CAPS)) {
605 if (!capable(CAP_SETFCAP))
606 return -EPERM;
607 return 0;
608 }
609
610 if (!strncmp(name, XATTR_SECURITY_PREFIX,
611 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
612 !capable(CAP_SYS_ADMIN))
613 return -EPERM;
614 return 0;
615 }
616
617 /*
618 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
619 * a process after a call to setuid, setreuid, or setresuid.
620 *
621 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
622 * {r,e,s}uid != 0, the permitted and effective capabilities are
623 * cleared.
624 *
625 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
626 * capabilities of the process are cleared.
627 *
628 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
629 * capabilities are set to the permitted capabilities.
630 *
631 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
632 * never happen.
633 *
634 * -astor
635 *
636 * cevans - New behaviour, Oct '99
637 * A process may, via prctl(), elect to keep its capabilities when it
638 * calls setuid() and switches away from uid==0. Both permitted and
639 * effective sets will be retained.
640 * Without this change, it was impossible for a daemon to drop only some
641 * of its privilege. The call to setuid(!=0) would drop all privileges!
642 * Keeping uid 0 is not an option because uid 0 owns too many vital
643 * files..
644 * Thanks to Olaf Kirch and Peter Benie for spotting this.
645 */
646 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
647 {
648 if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
649 (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
650 !issecure(SECURE_KEEP_CAPS)) {
651 cap_clear(new->cap_permitted);
652 cap_clear(new->cap_effective);
653 }
654 if (old->euid == 0 && new->euid != 0)
655 cap_clear(new->cap_effective);
656 if (old->euid != 0 && new->euid == 0)
657 new->cap_effective = new->cap_permitted;
658 }
659
660 /**
661 * cap_task_fix_setuid - Fix up the results of setuid() call
662 * @new: The proposed credentials
663 * @old: The current task's current credentials
664 * @flags: Indications of what has changed
665 *
666 * Fix up the results of setuid() call before the credential changes are
667 * actually applied, returning 0 to grant the changes, -ve to deny them.
668 */
669 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
670 {
671 switch (flags) {
672 case LSM_SETID_RE:
673 case LSM_SETID_ID:
674 case LSM_SETID_RES:
675 /* juggle the capabilities to follow [RES]UID changes unless
676 * otherwise suppressed */
677 if (!issecure(SECURE_NO_SETUID_FIXUP))
678 cap_emulate_setxuid(new, old);
679 break;
680
681 case LSM_SETID_FS:
682 /* juggle the capabilties to follow FSUID changes, unless
683 * otherwise suppressed
684 *
685 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
686 * if not, we might be a bit too harsh here.
687 */
688 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
689 if (old->fsuid == 0 && new->fsuid != 0)
690 new->cap_effective =
691 cap_drop_fs_set(new->cap_effective);
692
693 if (old->fsuid != 0 && new->fsuid == 0)
694 new->cap_effective =
695 cap_raise_fs_set(new->cap_effective,
696 new->cap_permitted);
697 }
698 break;
699
700 default:
701 return -EINVAL;
702 }
703
704 return 0;
705 }
706
707 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
708 /*
709 * Rationale: code calling task_setscheduler, task_setioprio, and
710 * task_setnice, assumes that
711 * . if capable(cap_sys_nice), then those actions should be allowed
712 * . if not capable(cap_sys_nice), but acting on your own processes,
713 * then those actions should be allowed
714 * This is insufficient now since you can call code without suid, but
715 * yet with increased caps.
716 * So we check for increased caps on the target process.
717 */
718 static int cap_safe_nice(struct task_struct *p)
719 {
720 int is_subset;
721
722 rcu_read_lock();
723 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
724 current_cred()->cap_permitted);
725 rcu_read_unlock();
726
727 if (!is_subset && !capable(CAP_SYS_NICE))
728 return -EPERM;
729 return 0;
730 }
731
732 /**
733 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
734 * @p: The task to affect
735 * @policy: The policy to effect
736 * @lp: The parameters to the scheduling policy
737 *
738 * Detemine if the requested scheduler policy change is permitted for the
739 * specified task, returning 0 if permission is granted, -ve if denied.
740 */
741 int cap_task_setscheduler(struct task_struct *p, int policy,
742 struct sched_param *lp)
743 {
744 return cap_safe_nice(p);
745 }
746
747 /**
748 * cap_task_ioprio - Detemine if I/O priority change is permitted
749 * @p: The task to affect
750 * @ioprio: The I/O priority to set
751 *
752 * Detemine if the requested I/O priority change is permitted for the specified
753 * task, returning 0 if permission is granted, -ve if denied.
754 */
755 int cap_task_setioprio(struct task_struct *p, int ioprio)
756 {
757 return cap_safe_nice(p);
758 }
759
760 /**
761 * cap_task_ioprio - Detemine if task priority change is permitted
762 * @p: The task to affect
763 * @nice: The nice value to set
764 *
765 * Detemine if the requested task priority change is permitted for the
766 * specified task, returning 0 if permission is granted, -ve if denied.
767 */
768 int cap_task_setnice(struct task_struct *p, int nice)
769 {
770 return cap_safe_nice(p);
771 }
772
773 /*
774 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
775 * the current task's bounding set. Returns 0 on success, -ve on error.
776 */
777 static long cap_prctl_drop(struct cred *new, unsigned long cap)
778 {
779 if (!capable(CAP_SETPCAP))
780 return -EPERM;
781 if (!cap_valid(cap))
782 return -EINVAL;
783
784 cap_lower(new->cap_bset, cap);
785 return 0;
786 }
787
788 #else
789 int cap_task_setscheduler (struct task_struct *p, int policy,
790 struct sched_param *lp)
791 {
792 return 0;
793 }
794 int cap_task_setioprio (struct task_struct *p, int ioprio)
795 {
796 return 0;
797 }
798 int cap_task_setnice (struct task_struct *p, int nice)
799 {
800 return 0;
801 }
802 #endif
803
804 /**
805 * cap_task_prctl - Implement process control functions for this security module
806 * @option: The process control function requested
807 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
808 *
809 * Allow process control functions (sys_prctl()) to alter capabilities; may
810 * also deny access to other functions not otherwise implemented here.
811 *
812 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
813 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
814 * modules will consider performing the function.
815 */
816 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
817 unsigned long arg4, unsigned long arg5)
818 {
819 struct cred *new;
820 long error = 0;
821
822 new = prepare_creds();
823 if (!new)
824 return -ENOMEM;
825
826 switch (option) {
827 case PR_CAPBSET_READ:
828 error = -EINVAL;
829 if (!cap_valid(arg2))
830 goto error;
831 error = !!cap_raised(new->cap_bset, arg2);
832 goto no_change;
833
834 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
835 case PR_CAPBSET_DROP:
836 error = cap_prctl_drop(new, arg2);
837 if (error < 0)
838 goto error;
839 goto changed;
840
841 /*
842 * The next four prctl's remain to assist with transitioning a
843 * system from legacy UID=0 based privilege (when filesystem
844 * capabilities are not in use) to a system using filesystem
845 * capabilities only - as the POSIX.1e draft intended.
846 *
847 * Note:
848 *
849 * PR_SET_SECUREBITS =
850 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
851 * | issecure_mask(SECURE_NOROOT)
852 * | issecure_mask(SECURE_NOROOT_LOCKED)
853 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
854 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
855 *
856 * will ensure that the current process and all of its
857 * children will be locked into a pure
858 * capability-based-privilege environment.
859 */
860 case PR_SET_SECUREBITS:
861 error = -EPERM;
862 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
863 & (new->securebits ^ arg2)) /*[1]*/
864 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
865 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
866 || (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0) /*[4]*/
867 /*
868 * [1] no changing of bits that are locked
869 * [2] no unlocking of locks
870 * [3] no setting of unsupported bits
871 * [4] doing anything requires privilege (go read about
872 * the "sendmail capabilities bug")
873 */
874 )
875 /* cannot change a locked bit */
876 goto error;
877 new->securebits = arg2;
878 goto changed;
879
880 case PR_GET_SECUREBITS:
881 error = new->securebits;
882 goto no_change;
883
884 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
885
886 case PR_GET_KEEPCAPS:
887 if (issecure(SECURE_KEEP_CAPS))
888 error = 1;
889 goto no_change;
890
891 case PR_SET_KEEPCAPS:
892 error = -EINVAL;
893 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
894 goto error;
895 error = -EPERM;
896 if (issecure(SECURE_KEEP_CAPS_LOCKED))
897 goto error;
898 if (arg2)
899 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
900 else
901 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
902 goto changed;
903
904 default:
905 /* No functionality available - continue with default */
906 error = -ENOSYS;
907 goto error;
908 }
909
910 /* Functionality provided */
911 changed:
912 return commit_creds(new);
913
914 no_change:
915 error = 0;
916 error:
917 abort_creds(new);
918 return error;
919 }
920
921 /**
922 * cap_syslog - Determine whether syslog function is permitted
923 * @type: Function requested
924 *
925 * Determine whether the current process is permitted to use a particular
926 * syslog function, returning 0 if permission is granted, -ve if not.
927 */
928 int cap_syslog(int type)
929 {
930 if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
931 return -EPERM;
932 return 0;
933 }
934
935 /**
936 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
937 * @mm: The VM space in which the new mapping is to be made
938 * @pages: The size of the mapping
939 *
940 * Determine whether the allocation of a new virtual mapping by the current
941 * task is permitted, returning 0 if permission is granted, -ve if not.
942 */
943 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
944 {
945 int cap_sys_admin = 0;
946
947 if (cap_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT) == 0)
948 cap_sys_admin = 1;
949 return __vm_enough_memory(mm, pages, cap_sys_admin);
950 }