]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/commoncap.c
capabilities: remove the task from capable LSM hook entirely
[mirror_ubuntu-bionic-kernel.git] / security / commoncap.c
1 /* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31
32 /*
33 * If a non-root user executes a setuid-root binary in
34 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
35 * However if fE is also set, then the intent is for only
36 * the file capabilities to be applied, and the setuid-root
37 * bit is left on either to change the uid (plausible) or
38 * to get full privilege on a kernel without file capabilities
39 * support. So in that case we do not raise capabilities.
40 *
41 * Warn if that happens, once per boot.
42 */
43 static void warn_setuid_and_fcaps_mixed(const char *fname)
44 {
45 static int warned;
46 if (!warned) {
47 printk(KERN_INFO "warning: `%s' has both setuid-root and"
48 " effective capabilities. Therefore not raising all"
49 " capabilities.\n", fname);
50 warned = 1;
51 }
52 }
53
54 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
55 {
56 return 0;
57 }
58
59 int cap_netlink_recv(struct sk_buff *skb, int cap)
60 {
61 if (!cap_raised(current_cap(), cap))
62 return -EPERM;
63 return 0;
64 }
65 EXPORT_SYMBOL(cap_netlink_recv);
66
67 /**
68 * cap_capable - Determine whether a task has a particular effective capability
69 * @cred: The credentials to use
70 * @ns: The user namespace in which we need the capability
71 * @cap: The capability to check for
72 * @audit: Whether to write an audit message or not
73 *
74 * Determine whether the nominated task has the specified capability amongst
75 * its effective set, returning 0 if it does, -ve if it does not.
76 *
77 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
78 * and has_capability() functions. That is, it has the reverse semantics:
79 * cap_has_capability() returns 0 when a task has a capability, but the
80 * kernel's capable() and has_capability() returns 1 for this case.
81 */
82 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
83 int cap, int audit)
84 {
85 for (;;) {
86 /* The creator of the user namespace has all caps. */
87 if (targ_ns != &init_user_ns && targ_ns->creator == cred->user)
88 return 0;
89
90 /* Do we have the necessary capabilities? */
91 if (targ_ns == cred->user->user_ns)
92 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
93
94 /* Have we tried all of the parent namespaces? */
95 if (targ_ns == &init_user_ns)
96 return -EPERM;
97
98 /*
99 *If you have a capability in a parent user ns, then you have
100 * it over all children user namespaces as well.
101 */
102 targ_ns = targ_ns->creator->user_ns;
103 }
104
105 /* We never get here */
106 }
107
108 /**
109 * cap_settime - Determine whether the current process may set the system clock
110 * @ts: The time to set
111 * @tz: The timezone to set
112 *
113 * Determine whether the current process may set the system clock and timezone
114 * information, returning 0 if permission granted, -ve if denied.
115 */
116 int cap_settime(const struct timespec *ts, const struct timezone *tz)
117 {
118 if (!capable(CAP_SYS_TIME))
119 return -EPERM;
120 return 0;
121 }
122
123 /**
124 * cap_ptrace_access_check - Determine whether the current process may access
125 * another
126 * @child: The process to be accessed
127 * @mode: The mode of attachment.
128 *
129 * If we are in the same or an ancestor user_ns and have all the target
130 * task's capabilities, then ptrace access is allowed.
131 * If we have the ptrace capability to the target user_ns, then ptrace
132 * access is allowed.
133 * Else denied.
134 *
135 * Determine whether a process may access another, returning 0 if permission
136 * granted, -ve if denied.
137 */
138 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140 int ret = 0;
141 const struct cred *cred, *child_cred;
142
143 rcu_read_lock();
144 cred = current_cred();
145 child_cred = __task_cred(child);
146 if (cred->user->user_ns == child_cred->user->user_ns &&
147 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
148 goto out;
149 if (ns_capable(child_cred->user->user_ns, CAP_SYS_PTRACE))
150 goto out;
151 ret = -EPERM;
152 out:
153 rcu_read_unlock();
154 return ret;
155 }
156
157 /**
158 * cap_ptrace_traceme - Determine whether another process may trace the current
159 * @parent: The task proposed to be the tracer
160 *
161 * If parent is in the same or an ancestor user_ns and has all current's
162 * capabilities, then ptrace access is allowed.
163 * If parent has the ptrace capability to current's user_ns, then ptrace
164 * access is allowed.
165 * Else denied.
166 *
167 * Determine whether the nominated task is permitted to trace the current
168 * process, returning 0 if permission is granted, -ve if denied.
169 */
170 int cap_ptrace_traceme(struct task_struct *parent)
171 {
172 int ret = 0;
173 const struct cred *cred, *child_cred;
174
175 rcu_read_lock();
176 cred = __task_cred(parent);
177 child_cred = current_cred();
178 if (cred->user->user_ns == child_cred->user->user_ns &&
179 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
180 goto out;
181 if (has_ns_capability(parent, child_cred->user->user_ns, CAP_SYS_PTRACE))
182 goto out;
183 ret = -EPERM;
184 out:
185 rcu_read_unlock();
186 return ret;
187 }
188
189 /**
190 * cap_capget - Retrieve a task's capability sets
191 * @target: The task from which to retrieve the capability sets
192 * @effective: The place to record the effective set
193 * @inheritable: The place to record the inheritable set
194 * @permitted: The place to record the permitted set
195 *
196 * This function retrieves the capabilities of the nominated task and returns
197 * them to the caller.
198 */
199 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
200 kernel_cap_t *inheritable, kernel_cap_t *permitted)
201 {
202 const struct cred *cred;
203
204 /* Derived from kernel/capability.c:sys_capget. */
205 rcu_read_lock();
206 cred = __task_cred(target);
207 *effective = cred->cap_effective;
208 *inheritable = cred->cap_inheritable;
209 *permitted = cred->cap_permitted;
210 rcu_read_unlock();
211 return 0;
212 }
213
214 /*
215 * Determine whether the inheritable capabilities are limited to the old
216 * permitted set. Returns 1 if they are limited, 0 if they are not.
217 */
218 static inline int cap_inh_is_capped(void)
219 {
220
221 /* they are so limited unless the current task has the CAP_SETPCAP
222 * capability
223 */
224 if (cap_capable(current_cred(), current_cred()->user->user_ns,
225 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
226 return 0;
227 return 1;
228 }
229
230 /**
231 * cap_capset - Validate and apply proposed changes to current's capabilities
232 * @new: The proposed new credentials; alterations should be made here
233 * @old: The current task's current credentials
234 * @effective: A pointer to the proposed new effective capabilities set
235 * @inheritable: A pointer to the proposed new inheritable capabilities set
236 * @permitted: A pointer to the proposed new permitted capabilities set
237 *
238 * This function validates and applies a proposed mass change to the current
239 * process's capability sets. The changes are made to the proposed new
240 * credentials, and assuming no error, will be committed by the caller of LSM.
241 */
242 int cap_capset(struct cred *new,
243 const struct cred *old,
244 const kernel_cap_t *effective,
245 const kernel_cap_t *inheritable,
246 const kernel_cap_t *permitted)
247 {
248 if (cap_inh_is_capped() &&
249 !cap_issubset(*inheritable,
250 cap_combine(old->cap_inheritable,
251 old->cap_permitted)))
252 /* incapable of using this inheritable set */
253 return -EPERM;
254
255 if (!cap_issubset(*inheritable,
256 cap_combine(old->cap_inheritable,
257 old->cap_bset)))
258 /* no new pI capabilities outside bounding set */
259 return -EPERM;
260
261 /* verify restrictions on target's new Permitted set */
262 if (!cap_issubset(*permitted, old->cap_permitted))
263 return -EPERM;
264
265 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
266 if (!cap_issubset(*effective, *permitted))
267 return -EPERM;
268
269 new->cap_effective = *effective;
270 new->cap_inheritable = *inheritable;
271 new->cap_permitted = *permitted;
272 return 0;
273 }
274
275 /*
276 * Clear proposed capability sets for execve().
277 */
278 static inline void bprm_clear_caps(struct linux_binprm *bprm)
279 {
280 cap_clear(bprm->cred->cap_permitted);
281 bprm->cap_effective = false;
282 }
283
284 /**
285 * cap_inode_need_killpriv - Determine if inode change affects privileges
286 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
287 *
288 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
289 * affects the security markings on that inode, and if it is, should
290 * inode_killpriv() be invoked or the change rejected?
291 *
292 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
293 * -ve to deny the change.
294 */
295 int cap_inode_need_killpriv(struct dentry *dentry)
296 {
297 struct inode *inode = dentry->d_inode;
298 int error;
299
300 if (!inode->i_op->getxattr)
301 return 0;
302
303 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
304 if (error <= 0)
305 return 0;
306 return 1;
307 }
308
309 /**
310 * cap_inode_killpriv - Erase the security markings on an inode
311 * @dentry: The inode/dentry to alter
312 *
313 * Erase the privilege-enhancing security markings on an inode.
314 *
315 * Returns 0 if successful, -ve on error.
316 */
317 int cap_inode_killpriv(struct dentry *dentry)
318 {
319 struct inode *inode = dentry->d_inode;
320
321 if (!inode->i_op->removexattr)
322 return 0;
323
324 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
325 }
326
327 /*
328 * Calculate the new process capability sets from the capability sets attached
329 * to a file.
330 */
331 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
332 struct linux_binprm *bprm,
333 bool *effective)
334 {
335 struct cred *new = bprm->cred;
336 unsigned i;
337 int ret = 0;
338
339 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
340 *effective = true;
341
342 CAP_FOR_EACH_U32(i) {
343 __u32 permitted = caps->permitted.cap[i];
344 __u32 inheritable = caps->inheritable.cap[i];
345
346 /*
347 * pP' = (X & fP) | (pI & fI)
348 */
349 new->cap_permitted.cap[i] =
350 (new->cap_bset.cap[i] & permitted) |
351 (new->cap_inheritable.cap[i] & inheritable);
352
353 if (permitted & ~new->cap_permitted.cap[i])
354 /* insufficient to execute correctly */
355 ret = -EPERM;
356 }
357
358 /*
359 * For legacy apps, with no internal support for recognizing they
360 * do not have enough capabilities, we return an error if they are
361 * missing some "forced" (aka file-permitted) capabilities.
362 */
363 return *effective ? ret : 0;
364 }
365
366 /*
367 * Extract the on-exec-apply capability sets for an executable file.
368 */
369 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
370 {
371 struct inode *inode = dentry->d_inode;
372 __u32 magic_etc;
373 unsigned tocopy, i;
374 int size;
375 struct vfs_cap_data caps;
376
377 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
378
379 if (!inode || !inode->i_op->getxattr)
380 return -ENODATA;
381
382 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
383 XATTR_CAPS_SZ);
384 if (size == -ENODATA || size == -EOPNOTSUPP)
385 /* no data, that's ok */
386 return -ENODATA;
387 if (size < 0)
388 return size;
389
390 if (size < sizeof(magic_etc))
391 return -EINVAL;
392
393 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
394
395 switch (magic_etc & VFS_CAP_REVISION_MASK) {
396 case VFS_CAP_REVISION_1:
397 if (size != XATTR_CAPS_SZ_1)
398 return -EINVAL;
399 tocopy = VFS_CAP_U32_1;
400 break;
401 case VFS_CAP_REVISION_2:
402 if (size != XATTR_CAPS_SZ_2)
403 return -EINVAL;
404 tocopy = VFS_CAP_U32_2;
405 break;
406 default:
407 return -EINVAL;
408 }
409
410 CAP_FOR_EACH_U32(i) {
411 if (i >= tocopy)
412 break;
413 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
414 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
415 }
416
417 return 0;
418 }
419
420 /*
421 * Attempt to get the on-exec apply capability sets for an executable file from
422 * its xattrs and, if present, apply them to the proposed credentials being
423 * constructed by execve().
424 */
425 static int get_file_caps(struct linux_binprm *bprm, bool *effective)
426 {
427 struct dentry *dentry;
428 int rc = 0;
429 struct cpu_vfs_cap_data vcaps;
430
431 bprm_clear_caps(bprm);
432
433 if (!file_caps_enabled)
434 return 0;
435
436 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
437 return 0;
438
439 dentry = dget(bprm->file->f_dentry);
440
441 rc = get_vfs_caps_from_disk(dentry, &vcaps);
442 if (rc < 0) {
443 if (rc == -EINVAL)
444 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
445 __func__, rc, bprm->filename);
446 else if (rc == -ENODATA)
447 rc = 0;
448 goto out;
449 }
450
451 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
452 if (rc == -EINVAL)
453 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
454 __func__, rc, bprm->filename);
455
456 out:
457 dput(dentry);
458 if (rc)
459 bprm_clear_caps(bprm);
460
461 return rc;
462 }
463
464 /**
465 * cap_bprm_set_creds - Set up the proposed credentials for execve().
466 * @bprm: The execution parameters, including the proposed creds
467 *
468 * Set up the proposed credentials for a new execution context being
469 * constructed by execve(). The proposed creds in @bprm->cred is altered,
470 * which won't take effect immediately. Returns 0 if successful, -ve on error.
471 */
472 int cap_bprm_set_creds(struct linux_binprm *bprm)
473 {
474 const struct cred *old = current_cred();
475 struct cred *new = bprm->cred;
476 bool effective;
477 int ret;
478
479 effective = false;
480 ret = get_file_caps(bprm, &effective);
481 if (ret < 0)
482 return ret;
483
484 if (!issecure(SECURE_NOROOT)) {
485 /*
486 * If the legacy file capability is set, then don't set privs
487 * for a setuid root binary run by a non-root user. Do set it
488 * for a root user just to cause least surprise to an admin.
489 */
490 if (effective && new->uid != 0 && new->euid == 0) {
491 warn_setuid_and_fcaps_mixed(bprm->filename);
492 goto skip;
493 }
494 /*
495 * To support inheritance of root-permissions and suid-root
496 * executables under compatibility mode, we override the
497 * capability sets for the file.
498 *
499 * If only the real uid is 0, we do not set the effective bit.
500 */
501 if (new->euid == 0 || new->uid == 0) {
502 /* pP' = (cap_bset & ~0) | (pI & ~0) */
503 new->cap_permitted = cap_combine(old->cap_bset,
504 old->cap_inheritable);
505 }
506 if (new->euid == 0)
507 effective = true;
508 }
509 skip:
510
511 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
512 * credentials unless they have the appropriate permit
513 */
514 if ((new->euid != old->uid ||
515 new->egid != old->gid ||
516 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
517 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
518 /* downgrade; they get no more than they had, and maybe less */
519 if (!capable(CAP_SETUID)) {
520 new->euid = new->uid;
521 new->egid = new->gid;
522 }
523 new->cap_permitted = cap_intersect(new->cap_permitted,
524 old->cap_permitted);
525 }
526
527 new->suid = new->fsuid = new->euid;
528 new->sgid = new->fsgid = new->egid;
529
530 if (effective)
531 new->cap_effective = new->cap_permitted;
532 else
533 cap_clear(new->cap_effective);
534 bprm->cap_effective = effective;
535
536 /*
537 * Audit candidate if current->cap_effective is set
538 *
539 * We do not bother to audit if 3 things are true:
540 * 1) cap_effective has all caps
541 * 2) we are root
542 * 3) root is supposed to have all caps (SECURE_NOROOT)
543 * Since this is just a normal root execing a process.
544 *
545 * Number 1 above might fail if you don't have a full bset, but I think
546 * that is interesting information to audit.
547 */
548 if (!cap_isclear(new->cap_effective)) {
549 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
550 new->euid != 0 || new->uid != 0 ||
551 issecure(SECURE_NOROOT)) {
552 ret = audit_log_bprm_fcaps(bprm, new, old);
553 if (ret < 0)
554 return ret;
555 }
556 }
557
558 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
559 return 0;
560 }
561
562 /**
563 * cap_bprm_secureexec - Determine whether a secure execution is required
564 * @bprm: The execution parameters
565 *
566 * Determine whether a secure execution is required, return 1 if it is, and 0
567 * if it is not.
568 *
569 * The credentials have been committed by this point, and so are no longer
570 * available through @bprm->cred.
571 */
572 int cap_bprm_secureexec(struct linux_binprm *bprm)
573 {
574 const struct cred *cred = current_cred();
575
576 if (cred->uid != 0) {
577 if (bprm->cap_effective)
578 return 1;
579 if (!cap_isclear(cred->cap_permitted))
580 return 1;
581 }
582
583 return (cred->euid != cred->uid ||
584 cred->egid != cred->gid);
585 }
586
587 /**
588 * cap_inode_setxattr - Determine whether an xattr may be altered
589 * @dentry: The inode/dentry being altered
590 * @name: The name of the xattr to be changed
591 * @value: The value that the xattr will be changed to
592 * @size: The size of value
593 * @flags: The replacement flag
594 *
595 * Determine whether an xattr may be altered or set on an inode, returning 0 if
596 * permission is granted, -ve if denied.
597 *
598 * This is used to make sure security xattrs don't get updated or set by those
599 * who aren't privileged to do so.
600 */
601 int cap_inode_setxattr(struct dentry *dentry, const char *name,
602 const void *value, size_t size, int flags)
603 {
604 if (!strcmp(name, XATTR_NAME_CAPS)) {
605 if (!capable(CAP_SETFCAP))
606 return -EPERM;
607 return 0;
608 }
609
610 if (!strncmp(name, XATTR_SECURITY_PREFIX,
611 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
612 !capable(CAP_SYS_ADMIN))
613 return -EPERM;
614 return 0;
615 }
616
617 /**
618 * cap_inode_removexattr - Determine whether an xattr may be removed
619 * @dentry: The inode/dentry being altered
620 * @name: The name of the xattr to be changed
621 *
622 * Determine whether an xattr may be removed from an inode, returning 0 if
623 * permission is granted, -ve if denied.
624 *
625 * This is used to make sure security xattrs don't get removed by those who
626 * aren't privileged to remove them.
627 */
628 int cap_inode_removexattr(struct dentry *dentry, const char *name)
629 {
630 if (!strcmp(name, XATTR_NAME_CAPS)) {
631 if (!capable(CAP_SETFCAP))
632 return -EPERM;
633 return 0;
634 }
635
636 if (!strncmp(name, XATTR_SECURITY_PREFIX,
637 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
638 !capable(CAP_SYS_ADMIN))
639 return -EPERM;
640 return 0;
641 }
642
643 /*
644 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
645 * a process after a call to setuid, setreuid, or setresuid.
646 *
647 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
648 * {r,e,s}uid != 0, the permitted and effective capabilities are
649 * cleared.
650 *
651 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
652 * capabilities of the process are cleared.
653 *
654 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
655 * capabilities are set to the permitted capabilities.
656 *
657 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
658 * never happen.
659 *
660 * -astor
661 *
662 * cevans - New behaviour, Oct '99
663 * A process may, via prctl(), elect to keep its capabilities when it
664 * calls setuid() and switches away from uid==0. Both permitted and
665 * effective sets will be retained.
666 * Without this change, it was impossible for a daemon to drop only some
667 * of its privilege. The call to setuid(!=0) would drop all privileges!
668 * Keeping uid 0 is not an option because uid 0 owns too many vital
669 * files..
670 * Thanks to Olaf Kirch and Peter Benie for spotting this.
671 */
672 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
673 {
674 if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
675 (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
676 !issecure(SECURE_KEEP_CAPS)) {
677 cap_clear(new->cap_permitted);
678 cap_clear(new->cap_effective);
679 }
680 if (old->euid == 0 && new->euid != 0)
681 cap_clear(new->cap_effective);
682 if (old->euid != 0 && new->euid == 0)
683 new->cap_effective = new->cap_permitted;
684 }
685
686 /**
687 * cap_task_fix_setuid - Fix up the results of setuid() call
688 * @new: The proposed credentials
689 * @old: The current task's current credentials
690 * @flags: Indications of what has changed
691 *
692 * Fix up the results of setuid() call before the credential changes are
693 * actually applied, returning 0 to grant the changes, -ve to deny them.
694 */
695 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
696 {
697 switch (flags) {
698 case LSM_SETID_RE:
699 case LSM_SETID_ID:
700 case LSM_SETID_RES:
701 /* juggle the capabilities to follow [RES]UID changes unless
702 * otherwise suppressed */
703 if (!issecure(SECURE_NO_SETUID_FIXUP))
704 cap_emulate_setxuid(new, old);
705 break;
706
707 case LSM_SETID_FS:
708 /* juggle the capabilties to follow FSUID changes, unless
709 * otherwise suppressed
710 *
711 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
712 * if not, we might be a bit too harsh here.
713 */
714 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
715 if (old->fsuid == 0 && new->fsuid != 0)
716 new->cap_effective =
717 cap_drop_fs_set(new->cap_effective);
718
719 if (old->fsuid != 0 && new->fsuid == 0)
720 new->cap_effective =
721 cap_raise_fs_set(new->cap_effective,
722 new->cap_permitted);
723 }
724 break;
725
726 default:
727 return -EINVAL;
728 }
729
730 return 0;
731 }
732
733 /*
734 * Rationale: code calling task_setscheduler, task_setioprio, and
735 * task_setnice, assumes that
736 * . if capable(cap_sys_nice), then those actions should be allowed
737 * . if not capable(cap_sys_nice), but acting on your own processes,
738 * then those actions should be allowed
739 * This is insufficient now since you can call code without suid, but
740 * yet with increased caps.
741 * So we check for increased caps on the target process.
742 */
743 static int cap_safe_nice(struct task_struct *p)
744 {
745 int is_subset;
746
747 rcu_read_lock();
748 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
749 current_cred()->cap_permitted);
750 rcu_read_unlock();
751
752 if (!is_subset && !capable(CAP_SYS_NICE))
753 return -EPERM;
754 return 0;
755 }
756
757 /**
758 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
759 * @p: The task to affect
760 *
761 * Detemine if the requested scheduler policy change is permitted for the
762 * specified task, returning 0 if permission is granted, -ve if denied.
763 */
764 int cap_task_setscheduler(struct task_struct *p)
765 {
766 return cap_safe_nice(p);
767 }
768
769 /**
770 * cap_task_ioprio - Detemine if I/O priority change is permitted
771 * @p: The task to affect
772 * @ioprio: The I/O priority to set
773 *
774 * Detemine if the requested I/O priority change is permitted for the specified
775 * task, returning 0 if permission is granted, -ve if denied.
776 */
777 int cap_task_setioprio(struct task_struct *p, int ioprio)
778 {
779 return cap_safe_nice(p);
780 }
781
782 /**
783 * cap_task_ioprio - Detemine if task priority change is permitted
784 * @p: The task to affect
785 * @nice: The nice value to set
786 *
787 * Detemine if the requested task priority change is permitted for the
788 * specified task, returning 0 if permission is granted, -ve if denied.
789 */
790 int cap_task_setnice(struct task_struct *p, int nice)
791 {
792 return cap_safe_nice(p);
793 }
794
795 /*
796 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
797 * the current task's bounding set. Returns 0 on success, -ve on error.
798 */
799 static long cap_prctl_drop(struct cred *new, unsigned long cap)
800 {
801 if (!capable(CAP_SETPCAP))
802 return -EPERM;
803 if (!cap_valid(cap))
804 return -EINVAL;
805
806 cap_lower(new->cap_bset, cap);
807 return 0;
808 }
809
810 /**
811 * cap_task_prctl - Implement process control functions for this security module
812 * @option: The process control function requested
813 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
814 *
815 * Allow process control functions (sys_prctl()) to alter capabilities; may
816 * also deny access to other functions not otherwise implemented here.
817 *
818 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
819 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
820 * modules will consider performing the function.
821 */
822 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
823 unsigned long arg4, unsigned long arg5)
824 {
825 struct cred *new;
826 long error = 0;
827
828 new = prepare_creds();
829 if (!new)
830 return -ENOMEM;
831
832 switch (option) {
833 case PR_CAPBSET_READ:
834 error = -EINVAL;
835 if (!cap_valid(arg2))
836 goto error;
837 error = !!cap_raised(new->cap_bset, arg2);
838 goto no_change;
839
840 case PR_CAPBSET_DROP:
841 error = cap_prctl_drop(new, arg2);
842 if (error < 0)
843 goto error;
844 goto changed;
845
846 /*
847 * The next four prctl's remain to assist with transitioning a
848 * system from legacy UID=0 based privilege (when filesystem
849 * capabilities are not in use) to a system using filesystem
850 * capabilities only - as the POSIX.1e draft intended.
851 *
852 * Note:
853 *
854 * PR_SET_SECUREBITS =
855 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
856 * | issecure_mask(SECURE_NOROOT)
857 * | issecure_mask(SECURE_NOROOT_LOCKED)
858 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
859 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
860 *
861 * will ensure that the current process and all of its
862 * children will be locked into a pure
863 * capability-based-privilege environment.
864 */
865 case PR_SET_SECUREBITS:
866 error = -EPERM;
867 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
868 & (new->securebits ^ arg2)) /*[1]*/
869 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
870 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
871 || (cap_capable(current_cred(),
872 current_cred()->user->user_ns, CAP_SETPCAP,
873 SECURITY_CAP_AUDIT) != 0) /*[4]*/
874 /*
875 * [1] no changing of bits that are locked
876 * [2] no unlocking of locks
877 * [3] no setting of unsupported bits
878 * [4] doing anything requires privilege (go read about
879 * the "sendmail capabilities bug")
880 */
881 )
882 /* cannot change a locked bit */
883 goto error;
884 new->securebits = arg2;
885 goto changed;
886
887 case PR_GET_SECUREBITS:
888 error = new->securebits;
889 goto no_change;
890
891 case PR_GET_KEEPCAPS:
892 if (issecure(SECURE_KEEP_CAPS))
893 error = 1;
894 goto no_change;
895
896 case PR_SET_KEEPCAPS:
897 error = -EINVAL;
898 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
899 goto error;
900 error = -EPERM;
901 if (issecure(SECURE_KEEP_CAPS_LOCKED))
902 goto error;
903 if (arg2)
904 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
905 else
906 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
907 goto changed;
908
909 default:
910 /* No functionality available - continue with default */
911 error = -ENOSYS;
912 goto error;
913 }
914
915 /* Functionality provided */
916 changed:
917 return commit_creds(new);
918
919 no_change:
920 error:
921 abort_creds(new);
922 return error;
923 }
924
925 /**
926 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
927 * @mm: The VM space in which the new mapping is to be made
928 * @pages: The size of the mapping
929 *
930 * Determine whether the allocation of a new virtual mapping by the current
931 * task is permitted, returning 0 if permission is granted, -ve if not.
932 */
933 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
934 {
935 int cap_sys_admin = 0;
936
937 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
938 SECURITY_CAP_NOAUDIT) == 0)
939 cap_sys_admin = 1;
940 return __vm_enough_memory(mm, pages, cap_sys_admin);
941 }
942
943 /*
944 * cap_file_mmap - check if able to map given addr
945 * @file: unused
946 * @reqprot: unused
947 * @prot: unused
948 * @flags: unused
949 * @addr: address attempting to be mapped
950 * @addr_only: unused
951 *
952 * If the process is attempting to map memory below dac_mmap_min_addr they need
953 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
954 * capability security module. Returns 0 if this mapping should be allowed
955 * -EPERM if not.
956 */
957 int cap_file_mmap(struct file *file, unsigned long reqprot,
958 unsigned long prot, unsigned long flags,
959 unsigned long addr, unsigned long addr_only)
960 {
961 int ret = 0;
962
963 if (addr < dac_mmap_min_addr) {
964 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
965 SECURITY_CAP_AUDIT);
966 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
967 if (ret == 0)
968 current->flags |= PF_SUPERPRIV;
969 }
970 return ret;
971 }