]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - security/integrity/ima/ima_crypto.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / security / integrity / ima / ima_crypto.c
1 /*
2 * Copyright (C) 2005,2006,2007,2008 IBM Corporation
3 *
4 * Authors:
5 * Mimi Zohar <zohar@us.ibm.com>
6 * Kylene Hall <kjhall@us.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, version 2 of the License.
11 *
12 * File: ima_crypto.c
13 * Calculates md5/sha1 file hash, template hash, boot-aggreate hash
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/kernel.h>
19 #include <linux/moduleparam.h>
20 #include <linux/ratelimit.h>
21 #include <linux/file.h>
22 #include <linux/crypto.h>
23 #include <linux/scatterlist.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <crypto/hash.h>
27
28 #include "ima.h"
29
30 /* minimum file size for ahash use */
31 static unsigned long ima_ahash_minsize;
32 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
33 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
34
35 /* default is 0 - 1 page. */
36 static int ima_maxorder;
37 static unsigned int ima_bufsize = PAGE_SIZE;
38
39 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
40 {
41 unsigned long long size;
42 int order;
43
44 size = memparse(val, NULL);
45 order = get_order(size);
46 if (order >= MAX_ORDER)
47 return -EINVAL;
48 ima_maxorder = order;
49 ima_bufsize = PAGE_SIZE << order;
50 return 0;
51 }
52
53 static const struct kernel_param_ops param_ops_bufsize = {
54 .set = param_set_bufsize,
55 .get = param_get_uint,
56 };
57 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
58
59 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
60 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
61
62 static struct crypto_shash *ima_shash_tfm;
63 static struct crypto_ahash *ima_ahash_tfm;
64
65 int __init ima_init_crypto(void)
66 {
67 long rc;
68
69 ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
70 if (IS_ERR(ima_shash_tfm)) {
71 rc = PTR_ERR(ima_shash_tfm);
72 pr_err("Can not allocate %s (reason: %ld)\n",
73 hash_algo_name[ima_hash_algo], rc);
74 return rc;
75 }
76 pr_info("Allocated hash algorithm: %s\n",
77 hash_algo_name[ima_hash_algo]);
78 return 0;
79 }
80
81 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
82 {
83 struct crypto_shash *tfm = ima_shash_tfm;
84 int rc;
85
86 if (algo < 0 || algo >= HASH_ALGO__LAST)
87 algo = ima_hash_algo;
88
89 if (algo != ima_hash_algo) {
90 tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
91 if (IS_ERR(tfm)) {
92 rc = PTR_ERR(tfm);
93 pr_err("Can not allocate %s (reason: %d)\n",
94 hash_algo_name[algo], rc);
95 }
96 }
97 return tfm;
98 }
99
100 static void ima_free_tfm(struct crypto_shash *tfm)
101 {
102 if (tfm != ima_shash_tfm)
103 crypto_free_shash(tfm);
104 }
105
106 /**
107 * ima_alloc_pages() - Allocate contiguous pages.
108 * @max_size: Maximum amount of memory to allocate.
109 * @allocated_size: Returned size of actual allocation.
110 * @last_warn: Should the min_size allocation warn or not.
111 *
112 * Tries to do opportunistic allocation for memory first trying to allocate
113 * max_size amount of memory and then splitting that until zero order is
114 * reached. Allocation is tried without generating allocation warnings unless
115 * last_warn is set. Last_warn set affects only last allocation of zero order.
116 *
117 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
118 *
119 * Return pointer to allocated memory, or NULL on failure.
120 */
121 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
122 int last_warn)
123 {
124 void *ptr;
125 int order = ima_maxorder;
126 gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
127
128 if (order)
129 order = min(get_order(max_size), order);
130
131 for (; order; order--) {
132 ptr = (void *)__get_free_pages(gfp_mask, order);
133 if (ptr) {
134 *allocated_size = PAGE_SIZE << order;
135 return ptr;
136 }
137 }
138
139 /* order is zero - one page */
140
141 gfp_mask = GFP_KERNEL;
142
143 if (!last_warn)
144 gfp_mask |= __GFP_NOWARN;
145
146 ptr = (void *)__get_free_pages(gfp_mask, 0);
147 if (ptr) {
148 *allocated_size = PAGE_SIZE;
149 return ptr;
150 }
151
152 *allocated_size = 0;
153 return NULL;
154 }
155
156 /**
157 * ima_free_pages() - Free pages allocated by ima_alloc_pages().
158 * @ptr: Pointer to allocated pages.
159 * @size: Size of allocated buffer.
160 */
161 static void ima_free_pages(void *ptr, size_t size)
162 {
163 if (!ptr)
164 return;
165 free_pages((unsigned long)ptr, get_order(size));
166 }
167
168 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
169 {
170 struct crypto_ahash *tfm = ima_ahash_tfm;
171 int rc;
172
173 if (algo < 0 || algo >= HASH_ALGO__LAST)
174 algo = ima_hash_algo;
175
176 if (algo != ima_hash_algo || !tfm) {
177 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
178 if (!IS_ERR(tfm)) {
179 if (algo == ima_hash_algo)
180 ima_ahash_tfm = tfm;
181 } else {
182 rc = PTR_ERR(tfm);
183 pr_err("Can not allocate %s (reason: %d)\n",
184 hash_algo_name[algo], rc);
185 }
186 }
187 return tfm;
188 }
189
190 static void ima_free_atfm(struct crypto_ahash *tfm)
191 {
192 if (tfm != ima_ahash_tfm)
193 crypto_free_ahash(tfm);
194 }
195
196 static inline int ahash_wait(int err, struct crypto_wait *wait)
197 {
198
199 err = crypto_wait_req(err, wait);
200
201 if (err)
202 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
203
204 return err;
205 }
206
207 static int ima_calc_file_hash_atfm(struct file *file,
208 struct ima_digest_data *hash,
209 struct crypto_ahash *tfm)
210 {
211 loff_t i_size, offset;
212 char *rbuf[2] = { NULL, };
213 int rc, rbuf_len, active = 0, ahash_rc = 0;
214 struct ahash_request *req;
215 struct scatterlist sg[1];
216 struct crypto_wait wait;
217 size_t rbuf_size[2];
218
219 hash->length = crypto_ahash_digestsize(tfm);
220
221 req = ahash_request_alloc(tfm, GFP_KERNEL);
222 if (!req)
223 return -ENOMEM;
224
225 crypto_init_wait(&wait);
226 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
227 CRYPTO_TFM_REQ_MAY_SLEEP,
228 crypto_req_done, &wait);
229
230 rc = ahash_wait(crypto_ahash_init(req), &wait);
231 if (rc)
232 goto out1;
233
234 i_size = i_size_read(file_inode(file));
235
236 if (i_size == 0)
237 goto out2;
238
239 /*
240 * Try to allocate maximum size of memory.
241 * Fail if even a single page cannot be allocated.
242 */
243 rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
244 if (!rbuf[0]) {
245 rc = -ENOMEM;
246 goto out1;
247 }
248
249 /* Only allocate one buffer if that is enough. */
250 if (i_size > rbuf_size[0]) {
251 /*
252 * Try to allocate secondary buffer. If that fails fallback to
253 * using single buffering. Use previous memory allocation size
254 * as baseline for possible allocation size.
255 */
256 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
257 &rbuf_size[1], 0);
258 }
259
260 for (offset = 0; offset < i_size; offset += rbuf_len) {
261 if (!rbuf[1] && offset) {
262 /* Not using two buffers, and it is not the first
263 * read/request, wait for the completion of the
264 * previous ahash_update() request.
265 */
266 rc = ahash_wait(ahash_rc, &wait);
267 if (rc)
268 goto out3;
269 }
270 /* read buffer */
271 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
272 rc = integrity_kernel_read(file, offset, rbuf[active],
273 rbuf_len);
274 if (rc != rbuf_len)
275 goto out3;
276
277 if (rbuf[1] && offset) {
278 /* Using two buffers, and it is not the first
279 * read/request, wait for the completion of the
280 * previous ahash_update() request.
281 */
282 rc = ahash_wait(ahash_rc, &wait);
283 if (rc)
284 goto out3;
285 }
286
287 sg_init_one(&sg[0], rbuf[active], rbuf_len);
288 ahash_request_set_crypt(req, sg, NULL, rbuf_len);
289
290 ahash_rc = crypto_ahash_update(req);
291
292 if (rbuf[1])
293 active = !active; /* swap buffers, if we use two */
294 }
295 /* wait for the last update request to complete */
296 rc = ahash_wait(ahash_rc, &wait);
297 out3:
298 ima_free_pages(rbuf[0], rbuf_size[0]);
299 ima_free_pages(rbuf[1], rbuf_size[1]);
300 out2:
301 if (!rc) {
302 ahash_request_set_crypt(req, NULL, hash->digest, 0);
303 rc = ahash_wait(crypto_ahash_final(req), &wait);
304 }
305 out1:
306 ahash_request_free(req);
307 return rc;
308 }
309
310 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
311 {
312 struct crypto_ahash *tfm;
313 int rc;
314
315 tfm = ima_alloc_atfm(hash->algo);
316 if (IS_ERR(tfm))
317 return PTR_ERR(tfm);
318
319 rc = ima_calc_file_hash_atfm(file, hash, tfm);
320
321 ima_free_atfm(tfm);
322
323 return rc;
324 }
325
326 static int ima_calc_file_hash_tfm(struct file *file,
327 struct ima_digest_data *hash,
328 struct crypto_shash *tfm)
329 {
330 loff_t i_size, offset = 0;
331 char *rbuf;
332 int rc;
333 SHASH_DESC_ON_STACK(shash, tfm);
334
335 shash->tfm = tfm;
336 shash->flags = 0;
337
338 hash->length = crypto_shash_digestsize(tfm);
339
340 rc = crypto_shash_init(shash);
341 if (rc != 0)
342 return rc;
343
344 i_size = i_size_read(file_inode(file));
345
346 if (i_size == 0)
347 goto out;
348
349 rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
350 if (!rbuf)
351 return -ENOMEM;
352
353 while (offset < i_size) {
354 int rbuf_len;
355
356 rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
357 if (rbuf_len < 0) {
358 rc = rbuf_len;
359 break;
360 }
361 if (rbuf_len == 0)
362 break;
363 offset += rbuf_len;
364
365 rc = crypto_shash_update(shash, rbuf, rbuf_len);
366 if (rc)
367 break;
368 }
369 kfree(rbuf);
370 out:
371 if (!rc)
372 rc = crypto_shash_final(shash, hash->digest);
373 return rc;
374 }
375
376 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
377 {
378 struct crypto_shash *tfm;
379 int rc;
380
381 tfm = ima_alloc_tfm(hash->algo);
382 if (IS_ERR(tfm))
383 return PTR_ERR(tfm);
384
385 rc = ima_calc_file_hash_tfm(file, hash, tfm);
386
387 ima_free_tfm(tfm);
388
389 return rc;
390 }
391
392 /*
393 * ima_calc_file_hash - calculate file hash
394 *
395 * Asynchronous hash (ahash) allows using HW acceleration for calculating
396 * a hash. ahash performance varies for different data sizes on different
397 * crypto accelerators. shash performance might be better for smaller files.
398 * The 'ima.ahash_minsize' module parameter allows specifying the best
399 * minimum file size for using ahash on the system.
400 *
401 * If the ima.ahash_minsize parameter is not specified, this function uses
402 * shash for the hash calculation. If ahash fails, it falls back to using
403 * shash.
404 */
405 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
406 {
407 loff_t i_size;
408 int rc;
409 struct file *f = file;
410 bool new_file_instance = false, modified_flags = false;
411
412 /*
413 * For consistency, fail file's opened with the O_DIRECT flag on
414 * filesystems mounted with/without DAX option.
415 */
416 if (file->f_flags & O_DIRECT) {
417 hash->length = hash_digest_size[ima_hash_algo];
418 hash->algo = ima_hash_algo;
419 return -EINVAL;
420 }
421
422 /* Open a new file instance in O_RDONLY if we cannot read */
423 if (!(file->f_mode & FMODE_READ)) {
424 int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
425 O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
426 flags |= O_RDONLY;
427 f = dentry_open(&file->f_path, flags, file->f_cred);
428 if (IS_ERR(f)) {
429 /*
430 * Cannot open the file again, lets modify f_flags
431 * of original and continue
432 */
433 pr_info_ratelimited("Unable to reopen file for reading.\n");
434 f = file;
435 f->f_flags |= FMODE_READ;
436 modified_flags = true;
437 } else {
438 new_file_instance = true;
439 }
440 }
441
442 i_size = i_size_read(file_inode(f));
443
444 if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
445 rc = ima_calc_file_ahash(f, hash);
446 if (!rc)
447 goto out;
448 }
449
450 rc = ima_calc_file_shash(f, hash);
451 out:
452 if (new_file_instance)
453 fput(f);
454 else if (modified_flags)
455 f->f_flags &= ~FMODE_READ;
456 return rc;
457 }
458
459 /*
460 * Calculate the hash of template data
461 */
462 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
463 struct ima_template_desc *td,
464 int num_fields,
465 struct ima_digest_data *hash,
466 struct crypto_shash *tfm)
467 {
468 SHASH_DESC_ON_STACK(shash, tfm);
469 int rc, i;
470
471 shash->tfm = tfm;
472 shash->flags = 0;
473
474 hash->length = crypto_shash_digestsize(tfm);
475
476 rc = crypto_shash_init(shash);
477 if (rc != 0)
478 return rc;
479
480 for (i = 0; i < num_fields; i++) {
481 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
482 u8 *data_to_hash = field_data[i].data;
483 u32 datalen = field_data[i].len;
484 u32 datalen_to_hash =
485 !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
486
487 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
488 rc = crypto_shash_update(shash,
489 (const u8 *) &datalen_to_hash,
490 sizeof(datalen_to_hash));
491 if (rc)
492 break;
493 } else if (strcmp(td->fields[i]->field_id, "n") == 0) {
494 memcpy(buffer, data_to_hash, datalen);
495 data_to_hash = buffer;
496 datalen = IMA_EVENT_NAME_LEN_MAX + 1;
497 }
498 rc = crypto_shash_update(shash, data_to_hash, datalen);
499 if (rc)
500 break;
501 }
502
503 if (!rc)
504 rc = crypto_shash_final(shash, hash->digest);
505
506 return rc;
507 }
508
509 int ima_calc_field_array_hash(struct ima_field_data *field_data,
510 struct ima_template_desc *desc, int num_fields,
511 struct ima_digest_data *hash)
512 {
513 struct crypto_shash *tfm;
514 int rc;
515
516 tfm = ima_alloc_tfm(hash->algo);
517 if (IS_ERR(tfm))
518 return PTR_ERR(tfm);
519
520 rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
521 hash, tfm);
522
523 ima_free_tfm(tfm);
524
525 return rc;
526 }
527
528 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
529 struct ima_digest_data *hash,
530 struct crypto_ahash *tfm)
531 {
532 struct ahash_request *req;
533 struct scatterlist sg;
534 struct crypto_wait wait;
535 int rc, ahash_rc = 0;
536
537 hash->length = crypto_ahash_digestsize(tfm);
538
539 req = ahash_request_alloc(tfm, GFP_KERNEL);
540 if (!req)
541 return -ENOMEM;
542
543 crypto_init_wait(&wait);
544 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
545 CRYPTO_TFM_REQ_MAY_SLEEP,
546 crypto_req_done, &wait);
547
548 rc = ahash_wait(crypto_ahash_init(req), &wait);
549 if (rc)
550 goto out;
551
552 sg_init_one(&sg, buf, len);
553 ahash_request_set_crypt(req, &sg, NULL, len);
554
555 ahash_rc = crypto_ahash_update(req);
556
557 /* wait for the update request to complete */
558 rc = ahash_wait(ahash_rc, &wait);
559 if (!rc) {
560 ahash_request_set_crypt(req, NULL, hash->digest, 0);
561 rc = ahash_wait(crypto_ahash_final(req), &wait);
562 }
563 out:
564 ahash_request_free(req);
565 return rc;
566 }
567
568 static int calc_buffer_ahash(const void *buf, loff_t len,
569 struct ima_digest_data *hash)
570 {
571 struct crypto_ahash *tfm;
572 int rc;
573
574 tfm = ima_alloc_atfm(hash->algo);
575 if (IS_ERR(tfm))
576 return PTR_ERR(tfm);
577
578 rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
579
580 ima_free_atfm(tfm);
581
582 return rc;
583 }
584
585 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
586 struct ima_digest_data *hash,
587 struct crypto_shash *tfm)
588 {
589 SHASH_DESC_ON_STACK(shash, tfm);
590 unsigned int len;
591 int rc;
592
593 shash->tfm = tfm;
594 shash->flags = 0;
595
596 hash->length = crypto_shash_digestsize(tfm);
597
598 rc = crypto_shash_init(shash);
599 if (rc != 0)
600 return rc;
601
602 while (size) {
603 len = size < PAGE_SIZE ? size : PAGE_SIZE;
604 rc = crypto_shash_update(shash, buf, len);
605 if (rc)
606 break;
607 buf += len;
608 size -= len;
609 }
610
611 if (!rc)
612 rc = crypto_shash_final(shash, hash->digest);
613 return rc;
614 }
615
616 static int calc_buffer_shash(const void *buf, loff_t len,
617 struct ima_digest_data *hash)
618 {
619 struct crypto_shash *tfm;
620 int rc;
621
622 tfm = ima_alloc_tfm(hash->algo);
623 if (IS_ERR(tfm))
624 return PTR_ERR(tfm);
625
626 rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
627
628 ima_free_tfm(tfm);
629 return rc;
630 }
631
632 int ima_calc_buffer_hash(const void *buf, loff_t len,
633 struct ima_digest_data *hash)
634 {
635 int rc;
636
637 if (ima_ahash_minsize && len >= ima_ahash_minsize) {
638 rc = calc_buffer_ahash(buf, len, hash);
639 if (!rc)
640 return 0;
641 }
642
643 return calc_buffer_shash(buf, len, hash);
644 }
645
646 static void __init ima_pcrread(u32 idx, u8 *pcr)
647 {
648 if (!ima_tpm_chip)
649 return;
650
651 if (tpm_pcr_read(ima_tpm_chip, idx, pcr) != 0)
652 pr_err("Error Communicating to TPM chip\n");
653 }
654
655 /*
656 * Calculate the boot aggregate hash
657 */
658 static int __init ima_calc_boot_aggregate_tfm(char *digest,
659 struct crypto_shash *tfm)
660 {
661 u8 pcr_i[TPM_DIGEST_SIZE];
662 int rc;
663 u32 i;
664 SHASH_DESC_ON_STACK(shash, tfm);
665
666 shash->tfm = tfm;
667 shash->flags = 0;
668
669 rc = crypto_shash_init(shash);
670 if (rc != 0)
671 return rc;
672
673 /* cumulative sha1 over tpm registers 0-7 */
674 for (i = TPM_PCR0; i < TPM_PCR8; i++) {
675 ima_pcrread(i, pcr_i);
676 /* now accumulate with current aggregate */
677 rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE);
678 }
679 if (!rc)
680 crypto_shash_final(shash, digest);
681 return rc;
682 }
683
684 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
685 {
686 struct crypto_shash *tfm;
687 int rc;
688
689 tfm = ima_alloc_tfm(hash->algo);
690 if (IS_ERR(tfm))
691 return PTR_ERR(tfm);
692
693 hash->length = crypto_shash_digestsize(tfm);
694 rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
695
696 ima_free_tfm(tfm);
697
698 return rc;
699 }