]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - security/keys/big_key.c
octeontx2-af: Support for changing RSS algorithm
[mirror_ubuntu-eoan-kernel.git] / security / keys / big_key.c
1 /* Large capacity key type
2 *
3 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public Licence
9 * as published by the Free Software Foundation; either version
10 * 2 of the Licence, or (at your option) any later version.
11 */
12
13 #define pr_fmt(fmt) "big_key: "fmt
14 #include <linux/init.h>
15 #include <linux/seq_file.h>
16 #include <linux/file.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/err.h>
19 #include <linux/scatterlist.h>
20 #include <linux/random.h>
21 #include <linux/vmalloc.h>
22 #include <keys/user-type.h>
23 #include <keys/big_key-type.h>
24 #include <crypto/aead.h>
25 #include <crypto/gcm.h>
26
27 struct big_key_buf {
28 unsigned int nr_pages;
29 void *virt;
30 struct scatterlist *sg;
31 struct page *pages[];
32 };
33
34 /*
35 * Layout of key payload words.
36 */
37 enum {
38 big_key_data,
39 big_key_path,
40 big_key_path_2nd_part,
41 big_key_len,
42 };
43
44 /*
45 * Crypto operation with big_key data
46 */
47 enum big_key_op {
48 BIG_KEY_ENC,
49 BIG_KEY_DEC,
50 };
51
52 /*
53 * If the data is under this limit, there's no point creating a shm file to
54 * hold it as the permanently resident metadata for the shmem fs will be at
55 * least as large as the data.
56 */
57 #define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
58
59 /*
60 * Key size for big_key data encryption
61 */
62 #define ENC_KEY_SIZE 32
63
64 /*
65 * Authentication tag length
66 */
67 #define ENC_AUTHTAG_SIZE 16
68
69 /*
70 * big_key defined keys take an arbitrary string as the description and an
71 * arbitrary blob of data as the payload
72 */
73 struct key_type key_type_big_key = {
74 .name = "big_key",
75 .preparse = big_key_preparse,
76 .free_preparse = big_key_free_preparse,
77 .instantiate = generic_key_instantiate,
78 .revoke = big_key_revoke,
79 .destroy = big_key_destroy,
80 .describe = big_key_describe,
81 .read = big_key_read,
82 /* no ->update(); don't add it without changing big_key_crypt() nonce */
83 };
84
85 /*
86 * Crypto names for big_key data authenticated encryption
87 */
88 static const char big_key_alg_name[] = "gcm(aes)";
89 #define BIG_KEY_IV_SIZE GCM_AES_IV_SIZE
90
91 /*
92 * Crypto algorithms for big_key data authenticated encryption
93 */
94 static struct crypto_aead *big_key_aead;
95
96 /*
97 * Since changing the key affects the entire object, we need a mutex.
98 */
99 static DEFINE_MUTEX(big_key_aead_lock);
100
101 /*
102 * Encrypt/decrypt big_key data
103 */
104 static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
105 {
106 int ret;
107 struct aead_request *aead_req;
108 /* We always use a zero nonce. The reason we can get away with this is
109 * because we're using a different randomly generated key for every
110 * different encryption. Notably, too, key_type_big_key doesn't define
111 * an .update function, so there's no chance we'll wind up reusing the
112 * key to encrypt updated data. Simply put: one key, one encryption.
113 */
114 u8 zero_nonce[BIG_KEY_IV_SIZE];
115
116 aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
117 if (!aead_req)
118 return -ENOMEM;
119
120 memset(zero_nonce, 0, sizeof(zero_nonce));
121 aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
122 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
123 aead_request_set_ad(aead_req, 0);
124
125 mutex_lock(&big_key_aead_lock);
126 if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
127 ret = -EAGAIN;
128 goto error;
129 }
130 if (op == BIG_KEY_ENC)
131 ret = crypto_aead_encrypt(aead_req);
132 else
133 ret = crypto_aead_decrypt(aead_req);
134 error:
135 mutex_unlock(&big_key_aead_lock);
136 aead_request_free(aead_req);
137 return ret;
138 }
139
140 /*
141 * Free up the buffer.
142 */
143 static void big_key_free_buffer(struct big_key_buf *buf)
144 {
145 unsigned int i;
146
147 if (buf->virt) {
148 memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
149 vunmap(buf->virt);
150 }
151
152 for (i = 0; i < buf->nr_pages; i++)
153 if (buf->pages[i])
154 __free_page(buf->pages[i]);
155
156 kfree(buf);
157 }
158
159 /*
160 * Allocate a buffer consisting of a set of pages with a virtual mapping
161 * applied over them.
162 */
163 static void *big_key_alloc_buffer(size_t len)
164 {
165 struct big_key_buf *buf;
166 unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
167 unsigned int i, l;
168
169 buf = kzalloc(sizeof(struct big_key_buf) +
170 sizeof(struct page) * npg +
171 sizeof(struct scatterlist) * npg,
172 GFP_KERNEL);
173 if (!buf)
174 return NULL;
175
176 buf->nr_pages = npg;
177 buf->sg = (void *)(buf->pages + npg);
178 sg_init_table(buf->sg, npg);
179
180 for (i = 0; i < buf->nr_pages; i++) {
181 buf->pages[i] = alloc_page(GFP_KERNEL);
182 if (!buf->pages[i])
183 goto nomem;
184
185 l = min_t(size_t, len, PAGE_SIZE);
186 sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
187 len -= l;
188 }
189
190 buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
191 if (!buf->virt)
192 goto nomem;
193
194 return buf;
195
196 nomem:
197 big_key_free_buffer(buf);
198 return NULL;
199 }
200
201 /*
202 * Preparse a big key
203 */
204 int big_key_preparse(struct key_preparsed_payload *prep)
205 {
206 struct big_key_buf *buf;
207 struct path *path = (struct path *)&prep->payload.data[big_key_path];
208 struct file *file;
209 u8 *enckey;
210 ssize_t written;
211 size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
212 int ret;
213
214 if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
215 return -EINVAL;
216
217 /* Set an arbitrary quota */
218 prep->quotalen = 16;
219
220 prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
221
222 if (datalen > BIG_KEY_FILE_THRESHOLD) {
223 /* Create a shmem file to store the data in. This will permit the data
224 * to be swapped out if needed.
225 *
226 * File content is stored encrypted with randomly generated key.
227 */
228 loff_t pos = 0;
229
230 buf = big_key_alloc_buffer(enclen);
231 if (!buf)
232 return -ENOMEM;
233 memcpy(buf->virt, prep->data, datalen);
234
235 /* generate random key */
236 enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
237 if (!enckey) {
238 ret = -ENOMEM;
239 goto error;
240 }
241 ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
242 if (unlikely(ret))
243 goto err_enckey;
244
245 /* encrypt aligned data */
246 ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
247 if (ret)
248 goto err_enckey;
249
250 /* save aligned data to file */
251 file = shmem_kernel_file_setup("", enclen, 0);
252 if (IS_ERR(file)) {
253 ret = PTR_ERR(file);
254 goto err_enckey;
255 }
256
257 written = kernel_write(file, buf->virt, enclen, &pos);
258 if (written != enclen) {
259 ret = written;
260 if (written >= 0)
261 ret = -ENOMEM;
262 goto err_fput;
263 }
264
265 /* Pin the mount and dentry to the key so that we can open it again
266 * later
267 */
268 prep->payload.data[big_key_data] = enckey;
269 *path = file->f_path;
270 path_get(path);
271 fput(file);
272 big_key_free_buffer(buf);
273 } else {
274 /* Just store the data in a buffer */
275 void *data = kmalloc(datalen, GFP_KERNEL);
276
277 if (!data)
278 return -ENOMEM;
279
280 prep->payload.data[big_key_data] = data;
281 memcpy(data, prep->data, prep->datalen);
282 }
283 return 0;
284
285 err_fput:
286 fput(file);
287 err_enckey:
288 kzfree(enckey);
289 error:
290 big_key_free_buffer(buf);
291 return ret;
292 }
293
294 /*
295 * Clear preparsement.
296 */
297 void big_key_free_preparse(struct key_preparsed_payload *prep)
298 {
299 if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
300 struct path *path = (struct path *)&prep->payload.data[big_key_path];
301
302 path_put(path);
303 }
304 kzfree(prep->payload.data[big_key_data]);
305 }
306
307 /*
308 * dispose of the links from a revoked keyring
309 * - called with the key sem write-locked
310 */
311 void big_key_revoke(struct key *key)
312 {
313 struct path *path = (struct path *)&key->payload.data[big_key_path];
314
315 /* clear the quota */
316 key_payload_reserve(key, 0);
317 if (key_is_positive(key) &&
318 (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
319 vfs_truncate(path, 0);
320 }
321
322 /*
323 * dispose of the data dangling from the corpse of a big_key key
324 */
325 void big_key_destroy(struct key *key)
326 {
327 size_t datalen = (size_t)key->payload.data[big_key_len];
328
329 if (datalen > BIG_KEY_FILE_THRESHOLD) {
330 struct path *path = (struct path *)&key->payload.data[big_key_path];
331
332 path_put(path);
333 path->mnt = NULL;
334 path->dentry = NULL;
335 }
336 kzfree(key->payload.data[big_key_data]);
337 key->payload.data[big_key_data] = NULL;
338 }
339
340 /*
341 * describe the big_key key
342 */
343 void big_key_describe(const struct key *key, struct seq_file *m)
344 {
345 size_t datalen = (size_t)key->payload.data[big_key_len];
346
347 seq_puts(m, key->description);
348
349 if (key_is_positive(key))
350 seq_printf(m, ": %zu [%s]",
351 datalen,
352 datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
353 }
354
355 /*
356 * read the key data
357 * - the key's semaphore is read-locked
358 */
359 long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
360 {
361 size_t datalen = (size_t)key->payload.data[big_key_len];
362 long ret;
363
364 if (!buffer || buflen < datalen)
365 return datalen;
366
367 if (datalen > BIG_KEY_FILE_THRESHOLD) {
368 struct big_key_buf *buf;
369 struct path *path = (struct path *)&key->payload.data[big_key_path];
370 struct file *file;
371 u8 *enckey = (u8 *)key->payload.data[big_key_data];
372 size_t enclen = datalen + ENC_AUTHTAG_SIZE;
373 loff_t pos = 0;
374
375 buf = big_key_alloc_buffer(enclen);
376 if (!buf)
377 return -ENOMEM;
378
379 file = dentry_open(path, O_RDONLY, current_cred());
380 if (IS_ERR(file)) {
381 ret = PTR_ERR(file);
382 goto error;
383 }
384
385 /* read file to kernel and decrypt */
386 ret = kernel_read(file, buf->virt, enclen, &pos);
387 if (ret >= 0 && ret != enclen) {
388 ret = -EIO;
389 goto err_fput;
390 }
391
392 ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
393 if (ret)
394 goto err_fput;
395
396 ret = datalen;
397
398 /* copy decrypted data to user */
399 if (copy_to_user(buffer, buf->virt, datalen) != 0)
400 ret = -EFAULT;
401
402 err_fput:
403 fput(file);
404 error:
405 big_key_free_buffer(buf);
406 } else {
407 ret = datalen;
408 if (copy_to_user(buffer, key->payload.data[big_key_data],
409 datalen) != 0)
410 ret = -EFAULT;
411 }
412
413 return ret;
414 }
415
416 /*
417 * Register key type
418 */
419 static int __init big_key_init(void)
420 {
421 int ret;
422
423 /* init block cipher */
424 big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
425 if (IS_ERR(big_key_aead)) {
426 ret = PTR_ERR(big_key_aead);
427 pr_err("Can't alloc crypto: %d\n", ret);
428 return ret;
429 }
430
431 if (unlikely(crypto_aead_ivsize(big_key_aead) != BIG_KEY_IV_SIZE)) {
432 WARN(1, "big key algorithm changed?");
433 ret = -EINVAL;
434 goto free_aead;
435 }
436
437 ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
438 if (ret < 0) {
439 pr_err("Can't set crypto auth tag len: %d\n", ret);
440 goto free_aead;
441 }
442
443 ret = register_key_type(&key_type_big_key);
444 if (ret < 0) {
445 pr_err("Can't register type: %d\n", ret);
446 goto free_aead;
447 }
448
449 return 0;
450
451 free_aead:
452 crypto_free_aead(big_key_aead);
453 return ret;
454 }
455
456 late_initcall(big_key_init);