]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/keys/big_key.c
UBUNTU: [Packaging] Fix missing watchdog for Raspberry Pi
[mirror_ubuntu-bionic-kernel.git] / security / keys / big_key.c
1 /* Large capacity key type
2 *
3 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public Licence
9 * as published by the Free Software Foundation; either version
10 * 2 of the Licence, or (at your option) any later version.
11 */
12
13 #define pr_fmt(fmt) "big_key: "fmt
14 #include <linux/init.h>
15 #include <linux/seq_file.h>
16 #include <linux/file.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/err.h>
19 #include <linux/scatterlist.h>
20 #include <linux/random.h>
21 #include <keys/user-type.h>
22 #include <keys/big_key-type.h>
23 #include <crypto/aead.h>
24
25 /*
26 * Layout of key payload words.
27 */
28 enum {
29 big_key_data,
30 big_key_path,
31 big_key_path_2nd_part,
32 big_key_len,
33 };
34
35 /*
36 * Crypto operation with big_key data
37 */
38 enum big_key_op {
39 BIG_KEY_ENC,
40 BIG_KEY_DEC,
41 };
42
43 /*
44 * If the data is under this limit, there's no point creating a shm file to
45 * hold it as the permanently resident metadata for the shmem fs will be at
46 * least as large as the data.
47 */
48 #define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
49
50 /*
51 * Key size for big_key data encryption
52 */
53 #define ENC_KEY_SIZE 32
54
55 /*
56 * Authentication tag length
57 */
58 #define ENC_AUTHTAG_SIZE 16
59
60 /*
61 * big_key defined keys take an arbitrary string as the description and an
62 * arbitrary blob of data as the payload
63 */
64 struct key_type key_type_big_key = {
65 .name = "big_key",
66 .preparse = big_key_preparse,
67 .free_preparse = big_key_free_preparse,
68 .instantiate = generic_key_instantiate,
69 .revoke = big_key_revoke,
70 .destroy = big_key_destroy,
71 .describe = big_key_describe,
72 .read = big_key_read,
73 /* no ->update(); don't add it without changing big_key_crypt() nonce */
74 };
75
76 /*
77 * Crypto names for big_key data authenticated encryption
78 */
79 static const char big_key_alg_name[] = "gcm(aes)";
80
81 /*
82 * Crypto algorithms for big_key data authenticated encryption
83 */
84 static struct crypto_aead *big_key_aead;
85
86 /*
87 * Since changing the key affects the entire object, we need a mutex.
88 */
89 static DEFINE_MUTEX(big_key_aead_lock);
90
91 /*
92 * Encrypt/decrypt big_key data
93 */
94 static int big_key_crypt(enum big_key_op op, u8 *data, size_t datalen, u8 *key)
95 {
96 int ret;
97 struct scatterlist sgio;
98 struct aead_request *aead_req;
99 /* We always use a zero nonce. The reason we can get away with this is
100 * because we're using a different randomly generated key for every
101 * different encryption. Notably, too, key_type_big_key doesn't define
102 * an .update function, so there's no chance we'll wind up reusing the
103 * key to encrypt updated data. Simply put: one key, one encryption.
104 */
105 u8 zero_nonce[crypto_aead_ivsize(big_key_aead)];
106
107 aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
108 if (!aead_req)
109 return -ENOMEM;
110
111 memset(zero_nonce, 0, sizeof(zero_nonce));
112 sg_init_one(&sgio, data, datalen + (op == BIG_KEY_ENC ? ENC_AUTHTAG_SIZE : 0));
113 aead_request_set_crypt(aead_req, &sgio, &sgio, datalen, zero_nonce);
114 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
115 aead_request_set_ad(aead_req, 0);
116
117 mutex_lock(&big_key_aead_lock);
118 if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
119 ret = -EAGAIN;
120 goto error;
121 }
122 if (op == BIG_KEY_ENC)
123 ret = crypto_aead_encrypt(aead_req);
124 else
125 ret = crypto_aead_decrypt(aead_req);
126 error:
127 mutex_unlock(&big_key_aead_lock);
128 aead_request_free(aead_req);
129 return ret;
130 }
131
132 /*
133 * Preparse a big key
134 */
135 int big_key_preparse(struct key_preparsed_payload *prep)
136 {
137 struct path *path = (struct path *)&prep->payload.data[big_key_path];
138 struct file *file;
139 u8 *enckey;
140 u8 *data = NULL;
141 ssize_t written;
142 size_t datalen = prep->datalen;
143 int ret;
144
145 ret = -EINVAL;
146 if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
147 goto error;
148
149 /* Set an arbitrary quota */
150 prep->quotalen = 16;
151
152 prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
153
154 if (datalen > BIG_KEY_FILE_THRESHOLD) {
155 /* Create a shmem file to store the data in. This will permit the data
156 * to be swapped out if needed.
157 *
158 * File content is stored encrypted with randomly generated key.
159 */
160 size_t enclen = datalen + ENC_AUTHTAG_SIZE;
161 loff_t pos = 0;
162
163 data = kmalloc(enclen, GFP_KERNEL);
164 if (!data)
165 return -ENOMEM;
166 memcpy(data, prep->data, datalen);
167
168 /* generate random key */
169 enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
170 if (!enckey) {
171 ret = -ENOMEM;
172 goto error;
173 }
174 ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
175 if (unlikely(ret))
176 goto err_enckey;
177
178 /* encrypt aligned data */
179 ret = big_key_crypt(BIG_KEY_ENC, data, datalen, enckey);
180 if (ret)
181 goto err_enckey;
182
183 /* save aligned data to file */
184 file = shmem_kernel_file_setup("", enclen, 0);
185 if (IS_ERR(file)) {
186 ret = PTR_ERR(file);
187 goto err_enckey;
188 }
189
190 written = kernel_write(file, data, enclen, &pos);
191 if (written != enclen) {
192 ret = written;
193 if (written >= 0)
194 ret = -ENOMEM;
195 goto err_fput;
196 }
197
198 /* Pin the mount and dentry to the key so that we can open it again
199 * later
200 */
201 prep->payload.data[big_key_data] = enckey;
202 *path = file->f_path;
203 path_get(path);
204 fput(file);
205 kzfree(data);
206 } else {
207 /* Just store the data in a buffer */
208 void *data = kmalloc(datalen, GFP_KERNEL);
209
210 if (!data)
211 return -ENOMEM;
212
213 prep->payload.data[big_key_data] = data;
214 memcpy(data, prep->data, prep->datalen);
215 }
216 return 0;
217
218 err_fput:
219 fput(file);
220 err_enckey:
221 kzfree(enckey);
222 error:
223 kzfree(data);
224 return ret;
225 }
226
227 /*
228 * Clear preparsement.
229 */
230 void big_key_free_preparse(struct key_preparsed_payload *prep)
231 {
232 if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
233 struct path *path = (struct path *)&prep->payload.data[big_key_path];
234
235 path_put(path);
236 }
237 kzfree(prep->payload.data[big_key_data]);
238 }
239
240 /*
241 * dispose of the links from a revoked keyring
242 * - called with the key sem write-locked
243 */
244 void big_key_revoke(struct key *key)
245 {
246 struct path *path = (struct path *)&key->payload.data[big_key_path];
247
248 /* clear the quota */
249 key_payload_reserve(key, 0);
250 if (key_is_positive(key) &&
251 (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
252 vfs_truncate(path, 0);
253 }
254
255 /*
256 * dispose of the data dangling from the corpse of a big_key key
257 */
258 void big_key_destroy(struct key *key)
259 {
260 size_t datalen = (size_t)key->payload.data[big_key_len];
261
262 if (datalen > BIG_KEY_FILE_THRESHOLD) {
263 struct path *path = (struct path *)&key->payload.data[big_key_path];
264
265 path_put(path);
266 path->mnt = NULL;
267 path->dentry = NULL;
268 }
269 kzfree(key->payload.data[big_key_data]);
270 key->payload.data[big_key_data] = NULL;
271 }
272
273 /*
274 * describe the big_key key
275 */
276 void big_key_describe(const struct key *key, struct seq_file *m)
277 {
278 size_t datalen = (size_t)key->payload.data[big_key_len];
279
280 seq_puts(m, key->description);
281
282 if (key_is_positive(key))
283 seq_printf(m, ": %zu [%s]",
284 datalen,
285 datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
286 }
287
288 /*
289 * read the key data
290 * - the key's semaphore is read-locked
291 */
292 long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
293 {
294 size_t datalen = (size_t)key->payload.data[big_key_len];
295 long ret;
296
297 if (!buffer || buflen < datalen)
298 return datalen;
299
300 if (datalen > BIG_KEY_FILE_THRESHOLD) {
301 struct path *path = (struct path *)&key->payload.data[big_key_path];
302 struct file *file;
303 u8 *data;
304 u8 *enckey = (u8 *)key->payload.data[big_key_data];
305 size_t enclen = datalen + ENC_AUTHTAG_SIZE;
306 loff_t pos = 0;
307
308 data = kmalloc(enclen, GFP_KERNEL);
309 if (!data)
310 return -ENOMEM;
311
312 file = dentry_open(path, O_RDONLY, current_cred());
313 if (IS_ERR(file)) {
314 ret = PTR_ERR(file);
315 goto error;
316 }
317
318 /* read file to kernel and decrypt */
319 ret = kernel_read(file, data, enclen, &pos);
320 if (ret >= 0 && ret != enclen) {
321 ret = -EIO;
322 goto err_fput;
323 }
324
325 ret = big_key_crypt(BIG_KEY_DEC, data, enclen, enckey);
326 if (ret)
327 goto err_fput;
328
329 ret = datalen;
330
331 /* copy decrypted data to user */
332 if (copy_to_user(buffer, data, datalen) != 0)
333 ret = -EFAULT;
334
335 err_fput:
336 fput(file);
337 error:
338 kzfree(data);
339 } else {
340 ret = datalen;
341 if (copy_to_user(buffer, key->payload.data[big_key_data],
342 datalen) != 0)
343 ret = -EFAULT;
344 }
345
346 return ret;
347 }
348
349 /*
350 * Register key type
351 */
352 static int __init big_key_init(void)
353 {
354 int ret;
355
356 /* init block cipher */
357 big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
358 if (IS_ERR(big_key_aead)) {
359 ret = PTR_ERR(big_key_aead);
360 pr_err("Can't alloc crypto: %d\n", ret);
361 return ret;
362 }
363 ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
364 if (ret < 0) {
365 pr_err("Can't set crypto auth tag len: %d\n", ret);
366 goto free_aead;
367 }
368
369 ret = register_key_type(&key_type_big_key);
370 if (ret < 0) {
371 pr_err("Can't register type: %d\n", ret);
372 goto free_aead;
373 }
374
375 return 0;
376
377 free_aead:
378 crypto_free_aead(big_key_aead);
379 return ret;
380 }
381
382 late_initcall(big_key_init);