]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - security/keys/key.c
ASoC: pcm3168a: remove unused variable
[mirror_ubuntu-zesty-kernel.git] / security / keys / key.c
1 /* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29
30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
34
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
47 }
48 #endif
49
50 /*
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
53 */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent = NULL;
58 struct rb_node **p;
59
60 try_again:
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
63
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
68
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
75 }
76
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
82
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
87
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
92 }
93
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 atomic_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
104
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
110
111 /* okay - we found a user record for this UID */
112 found:
113 atomic_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116 out:
117 return user;
118 }
119
120 /*
121 * Dispose of a user structure
122 */
123 void key_user_put(struct key_user *user)
124 {
125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
128
129 kfree(user);
130 }
131 }
132
133 /*
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
136 */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 struct rb_node *parent, **p;
140 struct key *xkey;
141
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
146
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
149
150 spin_lock(&key_serial_lock);
151
152 attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
159
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
166 }
167
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
171
172 spin_unlock(&key_serial_lock);
173 return;
174
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177 serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
183 }
184
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
188
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
192 }
193 }
194
195 /**
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 *
205 * Allocate a key of the specified type with the attributes given. The key is
206 * returned in an uninstantiated state and the caller needs to instantiate the
207 * key before returning.
208 *
209 * The user's key count quota is updated to reflect the creation of the key and
210 * the user's key data quota has the default for the key type reserved. The
211 * instantiation function should amend this as necessary. If insufficient
212 * quota is available, -EDQUOT will be returned.
213 *
214 * The LSM security modules can prevent a key being created, in which case
215 * -EACCES will be returned.
216 *
217 * Returns a pointer to the new key if successful and an error code otherwise.
218 *
219 * Note that the caller needs to ensure the key type isn't uninstantiated.
220 * Internally this can be done by locking key_types_sem. Externally, this can
221 * be done by either never unregistering the key type, or making sure
222 * key_alloc() calls don't race with module unloading.
223 */
224 struct key *key_alloc(struct key_type *type, const char *desc,
225 kuid_t uid, kgid_t gid, const struct cred *cred,
226 key_perm_t perm, unsigned long flags)
227 {
228 struct key_user *user = NULL;
229 struct key *key;
230 size_t desclen, quotalen;
231 int ret;
232
233 key = ERR_PTR(-EINVAL);
234 if (!desc || !*desc)
235 goto error;
236
237 if (type->vet_description) {
238 ret = type->vet_description(desc);
239 if (ret < 0) {
240 key = ERR_PTR(ret);
241 goto error;
242 }
243 }
244
245 desclen = strlen(desc);
246 quotalen = desclen + 1 + type->def_datalen;
247
248 /* get hold of the key tracking for this user */
249 user = key_user_lookup(uid);
250 if (!user)
251 goto no_memory_1;
252
253 /* check that the user's quota permits allocation of another key and
254 * its description */
255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257 key_quota_root_maxkeys : key_quota_maxkeys;
258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxbytes : key_quota_maxbytes;
260
261 spin_lock(&user->lock);
262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263 if (user->qnkeys + 1 >= maxkeys ||
264 user->qnbytes + quotalen >= maxbytes ||
265 user->qnbytes + quotalen < user->qnbytes)
266 goto no_quota;
267 }
268
269 user->qnkeys++;
270 user->qnbytes += quotalen;
271 spin_unlock(&user->lock);
272 }
273
274 /* allocate and initialise the key and its description */
275 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
276 if (!key)
277 goto no_memory_2;
278
279 key->index_key.desc_len = desclen;
280 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
281 if (!key->index_key.description)
282 goto no_memory_3;
283
284 atomic_set(&key->usage, 1);
285 init_rwsem(&key->sem);
286 lockdep_set_class(&key->sem, &type->lock_class);
287 key->index_key.type = type;
288 key->user = user;
289 key->quotalen = quotalen;
290 key->datalen = type->def_datalen;
291 key->uid = uid;
292 key->gid = gid;
293 key->perm = perm;
294
295 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
296 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
297 if (flags & KEY_ALLOC_TRUSTED)
298 key->flags |= 1 << KEY_FLAG_TRUSTED;
299
300 #ifdef KEY_DEBUGGING
301 key->magic = KEY_DEBUG_MAGIC;
302 #endif
303
304 /* let the security module know about the key */
305 ret = security_key_alloc(key, cred, flags);
306 if (ret < 0)
307 goto security_error;
308
309 /* publish the key by giving it a serial number */
310 atomic_inc(&user->nkeys);
311 key_alloc_serial(key);
312
313 error:
314 return key;
315
316 security_error:
317 kfree(key->description);
318 kmem_cache_free(key_jar, key);
319 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
320 spin_lock(&user->lock);
321 user->qnkeys--;
322 user->qnbytes -= quotalen;
323 spin_unlock(&user->lock);
324 }
325 key_user_put(user);
326 key = ERR_PTR(ret);
327 goto error;
328
329 no_memory_3:
330 kmem_cache_free(key_jar, key);
331 no_memory_2:
332 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
333 spin_lock(&user->lock);
334 user->qnkeys--;
335 user->qnbytes -= quotalen;
336 spin_unlock(&user->lock);
337 }
338 key_user_put(user);
339 no_memory_1:
340 key = ERR_PTR(-ENOMEM);
341 goto error;
342
343 no_quota:
344 spin_unlock(&user->lock);
345 key_user_put(user);
346 key = ERR_PTR(-EDQUOT);
347 goto error;
348 }
349 EXPORT_SYMBOL(key_alloc);
350
351 /**
352 * key_payload_reserve - Adjust data quota reservation for the key's payload
353 * @key: The key to make the reservation for.
354 * @datalen: The amount of data payload the caller now wants.
355 *
356 * Adjust the amount of the owning user's key data quota that a key reserves.
357 * If the amount is increased, then -EDQUOT may be returned if there isn't
358 * enough free quota available.
359 *
360 * If successful, 0 is returned.
361 */
362 int key_payload_reserve(struct key *key, size_t datalen)
363 {
364 int delta = (int)datalen - key->datalen;
365 int ret = 0;
366
367 key_check(key);
368
369 /* contemplate the quota adjustment */
370 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
371 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
372 key_quota_root_maxbytes : key_quota_maxbytes;
373
374 spin_lock(&key->user->lock);
375
376 if (delta > 0 &&
377 (key->user->qnbytes + delta >= maxbytes ||
378 key->user->qnbytes + delta < key->user->qnbytes)) {
379 ret = -EDQUOT;
380 }
381 else {
382 key->user->qnbytes += delta;
383 key->quotalen += delta;
384 }
385 spin_unlock(&key->user->lock);
386 }
387
388 /* change the recorded data length if that didn't generate an error */
389 if (ret == 0)
390 key->datalen = datalen;
391
392 return ret;
393 }
394 EXPORT_SYMBOL(key_payload_reserve);
395
396 /*
397 * Instantiate a key and link it into the target keyring atomically. Must be
398 * called with the target keyring's semaphore writelocked. The target key's
399 * semaphore need not be locked as instantiation is serialised by
400 * key_construction_mutex.
401 */
402 static int __key_instantiate_and_link(struct key *key,
403 struct key_preparsed_payload *prep,
404 struct key *keyring,
405 struct key *authkey,
406 struct assoc_array_edit **_edit)
407 {
408 int ret, awaken;
409
410 key_check(key);
411 key_check(keyring);
412
413 awaken = 0;
414 ret = -EBUSY;
415
416 mutex_lock(&key_construction_mutex);
417
418 /* can't instantiate twice */
419 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
420 /* instantiate the key */
421 ret = key->type->instantiate(key, prep);
422
423 if (ret == 0) {
424 /* mark the key as being instantiated */
425 atomic_inc(&key->user->nikeys);
426 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
427
428 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
429 awaken = 1;
430
431 /* and link it into the destination keyring */
432 if (keyring) {
433 set_bit(KEY_FLAG_KEEP, &key->flags);
434
435 __key_link(key, _edit);
436 }
437
438 /* disable the authorisation key */
439 if (authkey)
440 key_revoke(authkey);
441
442 if (prep->expiry != TIME_T_MAX) {
443 key->expiry = prep->expiry;
444 key_schedule_gc(prep->expiry + key_gc_delay);
445 }
446 }
447 }
448
449 mutex_unlock(&key_construction_mutex);
450
451 /* wake up anyone waiting for a key to be constructed */
452 if (awaken)
453 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
454
455 return ret;
456 }
457
458 /**
459 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
460 * @key: The key to instantiate.
461 * @data: The data to use to instantiate the keyring.
462 * @datalen: The length of @data.
463 * @keyring: Keyring to create a link in on success (or NULL).
464 * @authkey: The authorisation token permitting instantiation.
465 *
466 * Instantiate a key that's in the uninstantiated state using the provided data
467 * and, if successful, link it in to the destination keyring if one is
468 * supplied.
469 *
470 * If successful, 0 is returned, the authorisation token is revoked and anyone
471 * waiting for the key is woken up. If the key was already instantiated,
472 * -EBUSY will be returned.
473 */
474 int key_instantiate_and_link(struct key *key,
475 const void *data,
476 size_t datalen,
477 struct key *keyring,
478 struct key *authkey)
479 {
480 struct key_preparsed_payload prep;
481 struct assoc_array_edit *edit;
482 int ret;
483
484 memset(&prep, 0, sizeof(prep));
485 prep.data = data;
486 prep.datalen = datalen;
487 prep.quotalen = key->type->def_datalen;
488 prep.expiry = TIME_T_MAX;
489 if (key->type->preparse) {
490 ret = key->type->preparse(&prep);
491 if (ret < 0)
492 goto error;
493 }
494
495 if (keyring) {
496 ret = __key_link_begin(keyring, &key->index_key, &edit);
497 if (ret < 0)
498 goto error;
499 }
500
501 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
502
503 if (keyring)
504 __key_link_end(keyring, &key->index_key, edit);
505
506 error:
507 if (key->type->preparse)
508 key->type->free_preparse(&prep);
509 return ret;
510 }
511
512 EXPORT_SYMBOL(key_instantiate_and_link);
513
514 /**
515 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
516 * @key: The key to instantiate.
517 * @timeout: The timeout on the negative key.
518 * @error: The error to return when the key is hit.
519 * @keyring: Keyring to create a link in on success (or NULL).
520 * @authkey: The authorisation token permitting instantiation.
521 *
522 * Negatively instantiate a key that's in the uninstantiated state and, if
523 * successful, set its timeout and stored error and link it in to the
524 * destination keyring if one is supplied. The key and any links to the key
525 * will be automatically garbage collected after the timeout expires.
526 *
527 * Negative keys are used to rate limit repeated request_key() calls by causing
528 * them to return the stored error code (typically ENOKEY) until the negative
529 * key expires.
530 *
531 * If successful, 0 is returned, the authorisation token is revoked and anyone
532 * waiting for the key is woken up. If the key was already instantiated,
533 * -EBUSY will be returned.
534 */
535 int key_reject_and_link(struct key *key,
536 unsigned timeout,
537 unsigned error,
538 struct key *keyring,
539 struct key *authkey)
540 {
541 struct assoc_array_edit *edit;
542 struct timespec now;
543 int ret, awaken, link_ret = 0;
544
545 key_check(key);
546 key_check(keyring);
547
548 awaken = 0;
549 ret = -EBUSY;
550
551 if (keyring)
552 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
553
554 mutex_lock(&key_construction_mutex);
555
556 /* can't instantiate twice */
557 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
558 /* mark the key as being negatively instantiated */
559 atomic_inc(&key->user->nikeys);
560 key->reject_error = -error;
561 smp_wmb();
562 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
563 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
564 now = current_kernel_time();
565 key->expiry = now.tv_sec + timeout;
566 key_schedule_gc(key->expiry + key_gc_delay);
567
568 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
569 awaken = 1;
570
571 ret = 0;
572
573 /* and link it into the destination keyring */
574 if (keyring && link_ret == 0)
575 __key_link(key, &edit);
576
577 /* disable the authorisation key */
578 if (authkey)
579 key_revoke(authkey);
580 }
581
582 mutex_unlock(&key_construction_mutex);
583
584 if (keyring)
585 __key_link_end(keyring, &key->index_key, edit);
586
587 /* wake up anyone waiting for a key to be constructed */
588 if (awaken)
589 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
590
591 return ret == 0 ? link_ret : ret;
592 }
593 EXPORT_SYMBOL(key_reject_and_link);
594
595 /**
596 * key_put - Discard a reference to a key.
597 * @key: The key to discard a reference from.
598 *
599 * Discard a reference to a key, and when all the references are gone, we
600 * schedule the cleanup task to come and pull it out of the tree in process
601 * context at some later time.
602 */
603 void key_put(struct key *key)
604 {
605 if (key) {
606 key_check(key);
607
608 if (atomic_dec_and_test(&key->usage))
609 schedule_work(&key_gc_work);
610 }
611 }
612 EXPORT_SYMBOL(key_put);
613
614 /*
615 * Find a key by its serial number.
616 */
617 struct key *key_lookup(key_serial_t id)
618 {
619 struct rb_node *n;
620 struct key *key;
621
622 spin_lock(&key_serial_lock);
623
624 /* search the tree for the specified key */
625 n = key_serial_tree.rb_node;
626 while (n) {
627 key = rb_entry(n, struct key, serial_node);
628
629 if (id < key->serial)
630 n = n->rb_left;
631 else if (id > key->serial)
632 n = n->rb_right;
633 else
634 goto found;
635 }
636
637 not_found:
638 key = ERR_PTR(-ENOKEY);
639 goto error;
640
641 found:
642 /* pretend it doesn't exist if it is awaiting deletion */
643 if (atomic_read(&key->usage) == 0)
644 goto not_found;
645
646 /* this races with key_put(), but that doesn't matter since key_put()
647 * doesn't actually change the key
648 */
649 __key_get(key);
650
651 error:
652 spin_unlock(&key_serial_lock);
653 return key;
654 }
655
656 /*
657 * Find and lock the specified key type against removal.
658 *
659 * We return with the sem read-locked if successful. If the type wasn't
660 * available -ENOKEY is returned instead.
661 */
662 struct key_type *key_type_lookup(const char *type)
663 {
664 struct key_type *ktype;
665
666 down_read(&key_types_sem);
667
668 /* look up the key type to see if it's one of the registered kernel
669 * types */
670 list_for_each_entry(ktype, &key_types_list, link) {
671 if (strcmp(ktype->name, type) == 0)
672 goto found_kernel_type;
673 }
674
675 up_read(&key_types_sem);
676 ktype = ERR_PTR(-ENOKEY);
677
678 found_kernel_type:
679 return ktype;
680 }
681
682 void key_set_timeout(struct key *key, unsigned timeout)
683 {
684 struct timespec now;
685 time_t expiry = 0;
686
687 /* make the changes with the locks held to prevent races */
688 down_write(&key->sem);
689
690 if (timeout > 0) {
691 now = current_kernel_time();
692 expiry = now.tv_sec + timeout;
693 }
694
695 key->expiry = expiry;
696 key_schedule_gc(key->expiry + key_gc_delay);
697
698 up_write(&key->sem);
699 }
700 EXPORT_SYMBOL_GPL(key_set_timeout);
701
702 /*
703 * Unlock a key type locked by key_type_lookup().
704 */
705 void key_type_put(struct key_type *ktype)
706 {
707 up_read(&key_types_sem);
708 }
709
710 /*
711 * Attempt to update an existing key.
712 *
713 * The key is given to us with an incremented refcount that we need to discard
714 * if we get an error.
715 */
716 static inline key_ref_t __key_update(key_ref_t key_ref,
717 struct key_preparsed_payload *prep)
718 {
719 struct key *key = key_ref_to_ptr(key_ref);
720 int ret;
721
722 /* need write permission on the key to update it */
723 ret = key_permission(key_ref, KEY_NEED_WRITE);
724 if (ret < 0)
725 goto error;
726
727 ret = -EEXIST;
728 if (!key->type->update)
729 goto error;
730
731 down_write(&key->sem);
732
733 ret = key->type->update(key, prep);
734 if (ret == 0)
735 /* updating a negative key instantiates it */
736 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
737
738 up_write(&key->sem);
739
740 if (ret < 0)
741 goto error;
742 out:
743 return key_ref;
744
745 error:
746 key_put(key);
747 key_ref = ERR_PTR(ret);
748 goto out;
749 }
750
751 /**
752 * key_create_or_update - Update or create and instantiate a key.
753 * @keyring_ref: A pointer to the destination keyring with possession flag.
754 * @type: The type of key.
755 * @description: The searchable description for the key.
756 * @payload: The data to use to instantiate or update the key.
757 * @plen: The length of @payload.
758 * @perm: The permissions mask for a new key.
759 * @flags: The quota flags for a new key.
760 *
761 * Search the destination keyring for a key of the same description and if one
762 * is found, update it, otherwise create and instantiate a new one and create a
763 * link to it from that keyring.
764 *
765 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
766 * concocted.
767 *
768 * Returns a pointer to the new key if successful, -ENODEV if the key type
769 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
770 * caller isn't permitted to modify the keyring or the LSM did not permit
771 * creation of the key.
772 *
773 * On success, the possession flag from the keyring ref will be tacked on to
774 * the key ref before it is returned.
775 */
776 key_ref_t key_create_or_update(key_ref_t keyring_ref,
777 const char *type,
778 const char *description,
779 const void *payload,
780 size_t plen,
781 key_perm_t perm,
782 unsigned long flags)
783 {
784 struct keyring_index_key index_key = {
785 .description = description,
786 };
787 struct key_preparsed_payload prep;
788 struct assoc_array_edit *edit;
789 const struct cred *cred = current_cred();
790 struct key *keyring, *key = NULL;
791 key_ref_t key_ref;
792 int ret;
793
794 /* look up the key type to see if it's one of the registered kernel
795 * types */
796 index_key.type = key_type_lookup(type);
797 if (IS_ERR(index_key.type)) {
798 key_ref = ERR_PTR(-ENODEV);
799 goto error;
800 }
801
802 key_ref = ERR_PTR(-EINVAL);
803 if (!index_key.type->instantiate ||
804 (!index_key.description && !index_key.type->preparse))
805 goto error_put_type;
806
807 keyring = key_ref_to_ptr(keyring_ref);
808
809 key_check(keyring);
810
811 key_ref = ERR_PTR(-ENOTDIR);
812 if (keyring->type != &key_type_keyring)
813 goto error_put_type;
814
815 memset(&prep, 0, sizeof(prep));
816 prep.data = payload;
817 prep.datalen = plen;
818 prep.quotalen = index_key.type->def_datalen;
819 prep.trusted = flags & KEY_ALLOC_TRUSTED;
820 prep.expiry = TIME_T_MAX;
821 if (index_key.type->preparse) {
822 ret = index_key.type->preparse(&prep);
823 if (ret < 0) {
824 key_ref = ERR_PTR(ret);
825 goto error_free_prep;
826 }
827 if (!index_key.description)
828 index_key.description = prep.description;
829 key_ref = ERR_PTR(-EINVAL);
830 if (!index_key.description)
831 goto error_free_prep;
832 }
833 index_key.desc_len = strlen(index_key.description);
834
835 key_ref = ERR_PTR(-EPERM);
836 if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
837 goto error_free_prep;
838 flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
839
840 ret = __key_link_begin(keyring, &index_key, &edit);
841 if (ret < 0) {
842 key_ref = ERR_PTR(ret);
843 goto error_free_prep;
844 }
845
846 /* if we're going to allocate a new key, we're going to have
847 * to modify the keyring */
848 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
849 if (ret < 0) {
850 key_ref = ERR_PTR(ret);
851 goto error_link_end;
852 }
853
854 /* if it's possible to update this type of key, search for an existing
855 * key of the same type and description in the destination keyring and
856 * update that instead if possible
857 */
858 if (index_key.type->update) {
859 key_ref = find_key_to_update(keyring_ref, &index_key);
860 if (key_ref)
861 goto found_matching_key;
862 }
863
864 /* if the client doesn't provide, decide on the permissions we want */
865 if (perm == KEY_PERM_UNDEF) {
866 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
867 perm |= KEY_USR_VIEW;
868
869 if (index_key.type->read)
870 perm |= KEY_POS_READ;
871
872 if (index_key.type == &key_type_keyring ||
873 index_key.type->update)
874 perm |= KEY_POS_WRITE;
875 }
876
877 /* allocate a new key */
878 key = key_alloc(index_key.type, index_key.description,
879 cred->fsuid, cred->fsgid, cred, perm, flags);
880 if (IS_ERR(key)) {
881 key_ref = ERR_CAST(key);
882 goto error_link_end;
883 }
884
885 /* instantiate it and link it into the target keyring */
886 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
887 if (ret < 0) {
888 key_put(key);
889 key_ref = ERR_PTR(ret);
890 goto error_link_end;
891 }
892
893 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
894
895 error_link_end:
896 __key_link_end(keyring, &index_key, edit);
897 error_free_prep:
898 if (index_key.type->preparse)
899 index_key.type->free_preparse(&prep);
900 error_put_type:
901 key_type_put(index_key.type);
902 error:
903 return key_ref;
904
905 found_matching_key:
906 /* we found a matching key, so we're going to try to update it
907 * - we can drop the locks first as we have the key pinned
908 */
909 __key_link_end(keyring, &index_key, edit);
910
911 key_ref = __key_update(key_ref, &prep);
912 goto error_free_prep;
913 }
914 EXPORT_SYMBOL(key_create_or_update);
915
916 /**
917 * key_update - Update a key's contents.
918 * @key_ref: The pointer (plus possession flag) to the key.
919 * @payload: The data to be used to update the key.
920 * @plen: The length of @payload.
921 *
922 * Attempt to update the contents of a key with the given payload data. The
923 * caller must be granted Write permission on the key. Negative keys can be
924 * instantiated by this method.
925 *
926 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
927 * type does not support updating. The key type may return other errors.
928 */
929 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
930 {
931 struct key_preparsed_payload prep;
932 struct key *key = key_ref_to_ptr(key_ref);
933 int ret;
934
935 key_check(key);
936
937 /* the key must be writable */
938 ret = key_permission(key_ref, KEY_NEED_WRITE);
939 if (ret < 0)
940 goto error;
941
942 /* attempt to update it if supported */
943 ret = -EOPNOTSUPP;
944 if (!key->type->update)
945 goto error;
946
947 memset(&prep, 0, sizeof(prep));
948 prep.data = payload;
949 prep.datalen = plen;
950 prep.quotalen = key->type->def_datalen;
951 prep.expiry = TIME_T_MAX;
952 if (key->type->preparse) {
953 ret = key->type->preparse(&prep);
954 if (ret < 0)
955 goto error;
956 }
957
958 down_write(&key->sem);
959
960 ret = key->type->update(key, &prep);
961 if (ret == 0)
962 /* updating a negative key instantiates it */
963 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
964
965 up_write(&key->sem);
966
967 error:
968 if (key->type->preparse)
969 key->type->free_preparse(&prep);
970 return ret;
971 }
972 EXPORT_SYMBOL(key_update);
973
974 /**
975 * key_revoke - Revoke a key.
976 * @key: The key to be revoked.
977 *
978 * Mark a key as being revoked and ask the type to free up its resources. The
979 * revocation timeout is set and the key and all its links will be
980 * automatically garbage collected after key_gc_delay amount of time if they
981 * are not manually dealt with first.
982 */
983 void key_revoke(struct key *key)
984 {
985 struct timespec now;
986 time_t time;
987
988 key_check(key);
989
990 /* make sure no one's trying to change or use the key when we mark it
991 * - we tell lockdep that we might nest because we might be revoking an
992 * authorisation key whilst holding the sem on a key we've just
993 * instantiated
994 */
995 down_write_nested(&key->sem, 1);
996 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
997 key->type->revoke)
998 key->type->revoke(key);
999
1000 /* set the death time to no more than the expiry time */
1001 now = current_kernel_time();
1002 time = now.tv_sec;
1003 if (key->revoked_at == 0 || key->revoked_at > time) {
1004 key->revoked_at = time;
1005 key_schedule_gc(key->revoked_at + key_gc_delay);
1006 }
1007
1008 up_write(&key->sem);
1009 }
1010 EXPORT_SYMBOL(key_revoke);
1011
1012 /**
1013 * key_invalidate - Invalidate a key.
1014 * @key: The key to be invalidated.
1015 *
1016 * Mark a key as being invalidated and have it cleaned up immediately. The key
1017 * is ignored by all searches and other operations from this point.
1018 */
1019 void key_invalidate(struct key *key)
1020 {
1021 kenter("%d", key_serial(key));
1022
1023 key_check(key);
1024
1025 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1026 down_write_nested(&key->sem, 1);
1027 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1028 key_schedule_gc_links();
1029 up_write(&key->sem);
1030 }
1031 }
1032 EXPORT_SYMBOL(key_invalidate);
1033
1034 /**
1035 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1036 * @key: The key to be instantiated
1037 * @prep: The preparsed data to load.
1038 *
1039 * Instantiate a key from preparsed data. We assume we can just copy the data
1040 * in directly and clear the old pointers.
1041 *
1042 * This can be pointed to directly by the key type instantiate op pointer.
1043 */
1044 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1045 {
1046 int ret;
1047
1048 pr_devel("==>%s()\n", __func__);
1049
1050 ret = key_payload_reserve(key, prep->quotalen);
1051 if (ret == 0) {
1052 rcu_assign_keypointer(key, prep->payload.data[0]);
1053 key->payload.data[1] = prep->payload.data[1];
1054 key->payload.data[2] = prep->payload.data[2];
1055 key->payload.data[3] = prep->payload.data[3];
1056 prep->payload.data[0] = NULL;
1057 prep->payload.data[1] = NULL;
1058 prep->payload.data[2] = NULL;
1059 prep->payload.data[3] = NULL;
1060 }
1061 pr_devel("<==%s() = %d\n", __func__, ret);
1062 return ret;
1063 }
1064 EXPORT_SYMBOL(generic_key_instantiate);
1065
1066 /**
1067 * register_key_type - Register a type of key.
1068 * @ktype: The new key type.
1069 *
1070 * Register a new key type.
1071 *
1072 * Returns 0 on success or -EEXIST if a type of this name already exists.
1073 */
1074 int register_key_type(struct key_type *ktype)
1075 {
1076 struct key_type *p;
1077 int ret;
1078
1079 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1080
1081 ret = -EEXIST;
1082 down_write(&key_types_sem);
1083
1084 /* disallow key types with the same name */
1085 list_for_each_entry(p, &key_types_list, link) {
1086 if (strcmp(p->name, ktype->name) == 0)
1087 goto out;
1088 }
1089
1090 /* store the type */
1091 list_add(&ktype->link, &key_types_list);
1092
1093 pr_notice("Key type %s registered\n", ktype->name);
1094 ret = 0;
1095
1096 out:
1097 up_write(&key_types_sem);
1098 return ret;
1099 }
1100 EXPORT_SYMBOL(register_key_type);
1101
1102 /**
1103 * unregister_key_type - Unregister a type of key.
1104 * @ktype: The key type.
1105 *
1106 * Unregister a key type and mark all the extant keys of this type as dead.
1107 * Those keys of this type are then destroyed to get rid of their payloads and
1108 * they and their links will be garbage collected as soon as possible.
1109 */
1110 void unregister_key_type(struct key_type *ktype)
1111 {
1112 down_write(&key_types_sem);
1113 list_del_init(&ktype->link);
1114 downgrade_write(&key_types_sem);
1115 key_gc_keytype(ktype);
1116 pr_notice("Key type %s unregistered\n", ktype->name);
1117 up_read(&key_types_sem);
1118 }
1119 EXPORT_SYMBOL(unregister_key_type);
1120
1121 /*
1122 * Initialise the key management state.
1123 */
1124 void __init key_init(void)
1125 {
1126 /* allocate a slab in which we can store keys */
1127 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1128 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1129
1130 /* add the special key types */
1131 list_add_tail(&key_type_keyring.link, &key_types_list);
1132 list_add_tail(&key_type_dead.link, &key_types_list);
1133 list_add_tail(&key_type_user.link, &key_types_list);
1134 list_add_tail(&key_type_logon.link, &key_types_list);
1135
1136 /* record the root user tracking */
1137 rb_link_node(&root_key_user.node,
1138 NULL,
1139 &key_user_tree.rb_node);
1140
1141 rb_insert_color(&root_key_user.node,
1142 &key_user_tree);
1143 }