]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - security/keys/key.c
max17042_battery: Fix build errors caused by missing REGMAP_I2C config
[mirror_ubuntu-jammy-kernel.git] / security / keys / key.c
1 /* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29
30 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
34
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
47 }
48 #endif
49
50 /*
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
53 */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent = NULL;
58 struct rb_node **p;
59
60 try_again:
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
63
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
68
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
75 }
76
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
82
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
87
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
92 }
93
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 atomic_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
104
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
110
111 /* okay - we found a user record for this UID */
112 found:
113 atomic_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116 out:
117 return user;
118 }
119
120 /*
121 * Dispose of a user structure
122 */
123 void key_user_put(struct key_user *user)
124 {
125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
128
129 kfree(user);
130 }
131 }
132
133 /*
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
136 */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 struct rb_node *parent, **p;
140 struct key *xkey;
141
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
146
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
149
150 spin_lock(&key_serial_lock);
151
152 attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
159
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
166 }
167
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
171
172 spin_unlock(&key_serial_lock);
173 return;
174
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177 serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
183 }
184
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
188
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
192 }
193 }
194
195 /**
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 *
205 * Allocate a key of the specified type with the attributes given. The key is
206 * returned in an uninstantiated state and the caller needs to instantiate the
207 * key before returning.
208 *
209 * The user's key count quota is updated to reflect the creation of the key and
210 * the user's key data quota has the default for the key type reserved. The
211 * instantiation function should amend this as necessary. If insufficient
212 * quota is available, -EDQUOT will be returned.
213 *
214 * The LSM security modules can prevent a key being created, in which case
215 * -EACCES will be returned.
216 *
217 * Returns a pointer to the new key if successful and an error code otherwise.
218 *
219 * Note that the caller needs to ensure the key type isn't uninstantiated.
220 * Internally this can be done by locking key_types_sem. Externally, this can
221 * be done by either never unregistering the key type, or making sure
222 * key_alloc() calls don't race with module unloading.
223 */
224 struct key *key_alloc(struct key_type *type, const char *desc,
225 kuid_t uid, kgid_t gid, const struct cred *cred,
226 key_perm_t perm, unsigned long flags)
227 {
228 struct key_user *user = NULL;
229 struct key *key;
230 size_t desclen, quotalen;
231 int ret;
232
233 key = ERR_PTR(-EINVAL);
234 if (!desc || !*desc)
235 goto error;
236
237 if (type->vet_description) {
238 ret = type->vet_description(desc);
239 if (ret < 0) {
240 key = ERR_PTR(ret);
241 goto error;
242 }
243 }
244
245 desclen = strlen(desc);
246 quotalen = desclen + 1 + type->def_datalen;
247
248 /* get hold of the key tracking for this user */
249 user = key_user_lookup(uid);
250 if (!user)
251 goto no_memory_1;
252
253 /* check that the user's quota permits allocation of another key and
254 * its description */
255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257 key_quota_root_maxkeys : key_quota_maxkeys;
258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxbytes : key_quota_maxbytes;
260
261 spin_lock(&user->lock);
262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263 if (user->qnkeys + 1 >= maxkeys ||
264 user->qnbytes + quotalen >= maxbytes ||
265 user->qnbytes + quotalen < user->qnbytes)
266 goto no_quota;
267 }
268
269 user->qnkeys++;
270 user->qnbytes += quotalen;
271 spin_unlock(&user->lock);
272 }
273
274 /* allocate and initialise the key and its description */
275 key = kmem_cache_alloc(key_jar, GFP_KERNEL);
276 if (!key)
277 goto no_memory_2;
278
279 if (desc) {
280 key->index_key.desc_len = desclen;
281 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
282 if (!key->description)
283 goto no_memory_3;
284 }
285
286 atomic_set(&key->usage, 1);
287 init_rwsem(&key->sem);
288 lockdep_set_class(&key->sem, &type->lock_class);
289 key->index_key.type = type;
290 key->user = user;
291 key->quotalen = quotalen;
292 key->datalen = type->def_datalen;
293 key->uid = uid;
294 key->gid = gid;
295 key->perm = perm;
296 key->flags = 0;
297 key->expiry = 0;
298 key->payload.data = NULL;
299 key->security = NULL;
300
301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303 if (flags & KEY_ALLOC_TRUSTED)
304 key->flags |= 1 << KEY_FLAG_TRUSTED;
305
306 memset(&key->type_data, 0, sizeof(key->type_data));
307
308 #ifdef KEY_DEBUGGING
309 key->magic = KEY_DEBUG_MAGIC;
310 #endif
311
312 /* let the security module know about the key */
313 ret = security_key_alloc(key, cred, flags);
314 if (ret < 0)
315 goto security_error;
316
317 /* publish the key by giving it a serial number */
318 atomic_inc(&user->nkeys);
319 key_alloc_serial(key);
320
321 error:
322 return key;
323
324 security_error:
325 kfree(key->description);
326 kmem_cache_free(key_jar, key);
327 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
328 spin_lock(&user->lock);
329 user->qnkeys--;
330 user->qnbytes -= quotalen;
331 spin_unlock(&user->lock);
332 }
333 key_user_put(user);
334 key = ERR_PTR(ret);
335 goto error;
336
337 no_memory_3:
338 kmem_cache_free(key_jar, key);
339 no_memory_2:
340 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
341 spin_lock(&user->lock);
342 user->qnkeys--;
343 user->qnbytes -= quotalen;
344 spin_unlock(&user->lock);
345 }
346 key_user_put(user);
347 no_memory_1:
348 key = ERR_PTR(-ENOMEM);
349 goto error;
350
351 no_quota:
352 spin_unlock(&user->lock);
353 key_user_put(user);
354 key = ERR_PTR(-EDQUOT);
355 goto error;
356 }
357 EXPORT_SYMBOL(key_alloc);
358
359 /**
360 * key_payload_reserve - Adjust data quota reservation for the key's payload
361 * @key: The key to make the reservation for.
362 * @datalen: The amount of data payload the caller now wants.
363 *
364 * Adjust the amount of the owning user's key data quota that a key reserves.
365 * If the amount is increased, then -EDQUOT may be returned if there isn't
366 * enough free quota available.
367 *
368 * If successful, 0 is returned.
369 */
370 int key_payload_reserve(struct key *key, size_t datalen)
371 {
372 int delta = (int)datalen - key->datalen;
373 int ret = 0;
374
375 key_check(key);
376
377 /* contemplate the quota adjustment */
378 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
379 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
380 key_quota_root_maxbytes : key_quota_maxbytes;
381
382 spin_lock(&key->user->lock);
383
384 if (delta > 0 &&
385 (key->user->qnbytes + delta >= maxbytes ||
386 key->user->qnbytes + delta < key->user->qnbytes)) {
387 ret = -EDQUOT;
388 }
389 else {
390 key->user->qnbytes += delta;
391 key->quotalen += delta;
392 }
393 spin_unlock(&key->user->lock);
394 }
395
396 /* change the recorded data length if that didn't generate an error */
397 if (ret == 0)
398 key->datalen = datalen;
399
400 return ret;
401 }
402 EXPORT_SYMBOL(key_payload_reserve);
403
404 /*
405 * Instantiate a key and link it into the target keyring atomically. Must be
406 * called with the target keyring's semaphore writelocked. The target key's
407 * semaphore need not be locked as instantiation is serialised by
408 * key_construction_mutex.
409 */
410 static int __key_instantiate_and_link(struct key *key,
411 struct key_preparsed_payload *prep,
412 struct key *keyring,
413 struct key *authkey,
414 struct assoc_array_edit **_edit)
415 {
416 int ret, awaken;
417
418 key_check(key);
419 key_check(keyring);
420
421 awaken = 0;
422 ret = -EBUSY;
423
424 mutex_lock(&key_construction_mutex);
425
426 /* can't instantiate twice */
427 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
428 /* instantiate the key */
429 ret = key->type->instantiate(key, prep);
430
431 if (ret == 0) {
432 /* mark the key as being instantiated */
433 atomic_inc(&key->user->nikeys);
434 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
435
436 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
437 awaken = 1;
438
439 /* and link it into the destination keyring */
440 if (keyring)
441 __key_link(key, _edit);
442
443 /* disable the authorisation key */
444 if (authkey)
445 key_revoke(authkey);
446 }
447 }
448
449 mutex_unlock(&key_construction_mutex);
450
451 /* wake up anyone waiting for a key to be constructed */
452 if (awaken)
453 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
454
455 return ret;
456 }
457
458 /**
459 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
460 * @key: The key to instantiate.
461 * @data: The data to use to instantiate the keyring.
462 * @datalen: The length of @data.
463 * @keyring: Keyring to create a link in on success (or NULL).
464 * @authkey: The authorisation token permitting instantiation.
465 *
466 * Instantiate a key that's in the uninstantiated state using the provided data
467 * and, if successful, link it in to the destination keyring if one is
468 * supplied.
469 *
470 * If successful, 0 is returned, the authorisation token is revoked and anyone
471 * waiting for the key is woken up. If the key was already instantiated,
472 * -EBUSY will be returned.
473 */
474 int key_instantiate_and_link(struct key *key,
475 const void *data,
476 size_t datalen,
477 struct key *keyring,
478 struct key *authkey)
479 {
480 struct key_preparsed_payload prep;
481 struct assoc_array_edit *edit;
482 int ret;
483
484 memset(&prep, 0, sizeof(prep));
485 prep.data = data;
486 prep.datalen = datalen;
487 prep.quotalen = key->type->def_datalen;
488 if (key->type->preparse) {
489 ret = key->type->preparse(&prep);
490 if (ret < 0)
491 goto error;
492 }
493
494 if (keyring) {
495 ret = __key_link_begin(keyring, &key->index_key, &edit);
496 if (ret < 0)
497 goto error_free_preparse;
498 }
499
500 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
501
502 if (keyring)
503 __key_link_end(keyring, &key->index_key, edit);
504
505 error_free_preparse:
506 if (key->type->preparse)
507 key->type->free_preparse(&prep);
508 error:
509 return ret;
510 }
511
512 EXPORT_SYMBOL(key_instantiate_and_link);
513
514 /**
515 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
516 * @key: The key to instantiate.
517 * @timeout: The timeout on the negative key.
518 * @error: The error to return when the key is hit.
519 * @keyring: Keyring to create a link in on success (or NULL).
520 * @authkey: The authorisation token permitting instantiation.
521 *
522 * Negatively instantiate a key that's in the uninstantiated state and, if
523 * successful, set its timeout and stored error and link it in to the
524 * destination keyring if one is supplied. The key and any links to the key
525 * will be automatically garbage collected after the timeout expires.
526 *
527 * Negative keys are used to rate limit repeated request_key() calls by causing
528 * them to return the stored error code (typically ENOKEY) until the negative
529 * key expires.
530 *
531 * If successful, 0 is returned, the authorisation token is revoked and anyone
532 * waiting for the key is woken up. If the key was already instantiated,
533 * -EBUSY will be returned.
534 */
535 int key_reject_and_link(struct key *key,
536 unsigned timeout,
537 unsigned error,
538 struct key *keyring,
539 struct key *authkey)
540 {
541 struct assoc_array_edit *edit;
542 struct timespec now;
543 int ret, awaken, link_ret = 0;
544
545 key_check(key);
546 key_check(keyring);
547
548 awaken = 0;
549 ret = -EBUSY;
550
551 if (keyring)
552 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
553
554 mutex_lock(&key_construction_mutex);
555
556 /* can't instantiate twice */
557 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
558 /* mark the key as being negatively instantiated */
559 atomic_inc(&key->user->nikeys);
560 key->type_data.reject_error = -error;
561 smp_wmb();
562 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
563 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
564 now = current_kernel_time();
565 key->expiry = now.tv_sec + timeout;
566 key_schedule_gc(key->expiry + key_gc_delay);
567
568 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
569 awaken = 1;
570
571 ret = 0;
572
573 /* and link it into the destination keyring */
574 if (keyring && link_ret == 0)
575 __key_link(key, &edit);
576
577 /* disable the authorisation key */
578 if (authkey)
579 key_revoke(authkey);
580 }
581
582 mutex_unlock(&key_construction_mutex);
583
584 if (keyring)
585 __key_link_end(keyring, &key->index_key, edit);
586
587 /* wake up anyone waiting for a key to be constructed */
588 if (awaken)
589 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
590
591 return ret == 0 ? link_ret : ret;
592 }
593 EXPORT_SYMBOL(key_reject_and_link);
594
595 /**
596 * key_put - Discard a reference to a key.
597 * @key: The key to discard a reference from.
598 *
599 * Discard a reference to a key, and when all the references are gone, we
600 * schedule the cleanup task to come and pull it out of the tree in process
601 * context at some later time.
602 */
603 void key_put(struct key *key)
604 {
605 if (key) {
606 key_check(key);
607
608 if (atomic_dec_and_test(&key->usage))
609 schedule_work(&key_gc_work);
610 }
611 }
612 EXPORT_SYMBOL(key_put);
613
614 /*
615 * Find a key by its serial number.
616 */
617 struct key *key_lookup(key_serial_t id)
618 {
619 struct rb_node *n;
620 struct key *key;
621
622 spin_lock(&key_serial_lock);
623
624 /* search the tree for the specified key */
625 n = key_serial_tree.rb_node;
626 while (n) {
627 key = rb_entry(n, struct key, serial_node);
628
629 if (id < key->serial)
630 n = n->rb_left;
631 else if (id > key->serial)
632 n = n->rb_right;
633 else
634 goto found;
635 }
636
637 not_found:
638 key = ERR_PTR(-ENOKEY);
639 goto error;
640
641 found:
642 /* pretend it doesn't exist if it is awaiting deletion */
643 if (atomic_read(&key->usage) == 0)
644 goto not_found;
645
646 /* this races with key_put(), but that doesn't matter since key_put()
647 * doesn't actually change the key
648 */
649 __key_get(key);
650
651 error:
652 spin_unlock(&key_serial_lock);
653 return key;
654 }
655
656 /*
657 * Find and lock the specified key type against removal.
658 *
659 * We return with the sem read-locked if successful. If the type wasn't
660 * available -ENOKEY is returned instead.
661 */
662 struct key_type *key_type_lookup(const char *type)
663 {
664 struct key_type *ktype;
665
666 down_read(&key_types_sem);
667
668 /* look up the key type to see if it's one of the registered kernel
669 * types */
670 list_for_each_entry(ktype, &key_types_list, link) {
671 if (strcmp(ktype->name, type) == 0)
672 goto found_kernel_type;
673 }
674
675 up_read(&key_types_sem);
676 ktype = ERR_PTR(-ENOKEY);
677
678 found_kernel_type:
679 return ktype;
680 }
681
682 void key_set_timeout(struct key *key, unsigned timeout)
683 {
684 struct timespec now;
685 time_t expiry = 0;
686
687 /* make the changes with the locks held to prevent races */
688 down_write(&key->sem);
689
690 if (timeout > 0) {
691 now = current_kernel_time();
692 expiry = now.tv_sec + timeout;
693 }
694
695 key->expiry = expiry;
696 key_schedule_gc(key->expiry + key_gc_delay);
697
698 up_write(&key->sem);
699 }
700 EXPORT_SYMBOL_GPL(key_set_timeout);
701
702 /*
703 * Unlock a key type locked by key_type_lookup().
704 */
705 void key_type_put(struct key_type *ktype)
706 {
707 up_read(&key_types_sem);
708 }
709
710 /*
711 * Attempt to update an existing key.
712 *
713 * The key is given to us with an incremented refcount that we need to discard
714 * if we get an error.
715 */
716 static inline key_ref_t __key_update(key_ref_t key_ref,
717 struct key_preparsed_payload *prep)
718 {
719 struct key *key = key_ref_to_ptr(key_ref);
720 int ret;
721
722 /* need write permission on the key to update it */
723 ret = key_permission(key_ref, KEY_WRITE);
724 if (ret < 0)
725 goto error;
726
727 ret = -EEXIST;
728 if (!key->type->update)
729 goto error;
730
731 down_write(&key->sem);
732
733 ret = key->type->update(key, prep);
734 if (ret == 0)
735 /* updating a negative key instantiates it */
736 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
737
738 up_write(&key->sem);
739
740 if (ret < 0)
741 goto error;
742 out:
743 return key_ref;
744
745 error:
746 key_put(key);
747 key_ref = ERR_PTR(ret);
748 goto out;
749 }
750
751 /**
752 * key_create_or_update - Update or create and instantiate a key.
753 * @keyring_ref: A pointer to the destination keyring with possession flag.
754 * @type: The type of key.
755 * @description: The searchable description for the key.
756 * @payload: The data to use to instantiate or update the key.
757 * @plen: The length of @payload.
758 * @perm: The permissions mask for a new key.
759 * @flags: The quota flags for a new key.
760 *
761 * Search the destination keyring for a key of the same description and if one
762 * is found, update it, otherwise create and instantiate a new one and create a
763 * link to it from that keyring.
764 *
765 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
766 * concocted.
767 *
768 * Returns a pointer to the new key if successful, -ENODEV if the key type
769 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
770 * caller isn't permitted to modify the keyring or the LSM did not permit
771 * creation of the key.
772 *
773 * On success, the possession flag from the keyring ref will be tacked on to
774 * the key ref before it is returned.
775 */
776 key_ref_t key_create_or_update(key_ref_t keyring_ref,
777 const char *type,
778 const char *description,
779 const void *payload,
780 size_t plen,
781 key_perm_t perm,
782 unsigned long flags)
783 {
784 struct keyring_index_key index_key = {
785 .description = description,
786 };
787 struct key_preparsed_payload prep;
788 struct assoc_array_edit *edit;
789 const struct cred *cred = current_cred();
790 struct key *keyring, *key = NULL;
791 key_ref_t key_ref;
792 int ret;
793
794 /* look up the key type to see if it's one of the registered kernel
795 * types */
796 index_key.type = key_type_lookup(type);
797 if (IS_ERR(index_key.type)) {
798 key_ref = ERR_PTR(-ENODEV);
799 goto error;
800 }
801
802 key_ref = ERR_PTR(-EINVAL);
803 if (!index_key.type->match || !index_key.type->instantiate ||
804 (!index_key.description && !index_key.type->preparse))
805 goto error_put_type;
806
807 keyring = key_ref_to_ptr(keyring_ref);
808
809 key_check(keyring);
810
811 key_ref = ERR_PTR(-ENOTDIR);
812 if (keyring->type != &key_type_keyring)
813 goto error_put_type;
814
815 memset(&prep, 0, sizeof(prep));
816 prep.data = payload;
817 prep.datalen = plen;
818 prep.quotalen = index_key.type->def_datalen;
819 prep.trusted = flags & KEY_ALLOC_TRUSTED;
820 if (index_key.type->preparse) {
821 ret = index_key.type->preparse(&prep);
822 if (ret < 0) {
823 key_ref = ERR_PTR(ret);
824 goto error_put_type;
825 }
826 if (!index_key.description)
827 index_key.description = prep.description;
828 key_ref = ERR_PTR(-EINVAL);
829 if (!index_key.description)
830 goto error_free_prep;
831 }
832 index_key.desc_len = strlen(index_key.description);
833
834 key_ref = ERR_PTR(-EPERM);
835 if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
836 goto error_free_prep;
837 flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
838
839 ret = __key_link_begin(keyring, &index_key, &edit);
840 if (ret < 0) {
841 key_ref = ERR_PTR(ret);
842 goto error_free_prep;
843 }
844
845 /* if we're going to allocate a new key, we're going to have
846 * to modify the keyring */
847 ret = key_permission(keyring_ref, KEY_WRITE);
848 if (ret < 0) {
849 key_ref = ERR_PTR(ret);
850 goto error_link_end;
851 }
852
853 /* if it's possible to update this type of key, search for an existing
854 * key of the same type and description in the destination keyring and
855 * update that instead if possible
856 */
857 if (index_key.type->update) {
858 key_ref = find_key_to_update(keyring_ref, &index_key);
859 if (key_ref)
860 goto found_matching_key;
861 }
862
863 /* if the client doesn't provide, decide on the permissions we want */
864 if (perm == KEY_PERM_UNDEF) {
865 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
866 perm |= KEY_USR_VIEW;
867
868 if (index_key.type->read)
869 perm |= KEY_POS_READ;
870
871 if (index_key.type == &key_type_keyring ||
872 index_key.type->update)
873 perm |= KEY_POS_WRITE;
874 }
875
876 /* allocate a new key */
877 key = key_alloc(index_key.type, index_key.description,
878 cred->fsuid, cred->fsgid, cred, perm, flags);
879 if (IS_ERR(key)) {
880 key_ref = ERR_CAST(key);
881 goto error_link_end;
882 }
883
884 /* instantiate it and link it into the target keyring */
885 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
886 if (ret < 0) {
887 key_put(key);
888 key_ref = ERR_PTR(ret);
889 goto error_link_end;
890 }
891
892 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
893
894 error_link_end:
895 __key_link_end(keyring, &index_key, edit);
896 error_free_prep:
897 if (index_key.type->preparse)
898 index_key.type->free_preparse(&prep);
899 error_put_type:
900 key_type_put(index_key.type);
901 error:
902 return key_ref;
903
904 found_matching_key:
905 /* we found a matching key, so we're going to try to update it
906 * - we can drop the locks first as we have the key pinned
907 */
908 __key_link_end(keyring, &index_key, edit);
909
910 key_ref = __key_update(key_ref, &prep);
911 goto error_free_prep;
912 }
913 EXPORT_SYMBOL(key_create_or_update);
914
915 /**
916 * key_update - Update a key's contents.
917 * @key_ref: The pointer (plus possession flag) to the key.
918 * @payload: The data to be used to update the key.
919 * @plen: The length of @payload.
920 *
921 * Attempt to update the contents of a key with the given payload data. The
922 * caller must be granted Write permission on the key. Negative keys can be
923 * instantiated by this method.
924 *
925 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
926 * type does not support updating. The key type may return other errors.
927 */
928 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
929 {
930 struct key_preparsed_payload prep;
931 struct key *key = key_ref_to_ptr(key_ref);
932 int ret;
933
934 key_check(key);
935
936 /* the key must be writable */
937 ret = key_permission(key_ref, KEY_WRITE);
938 if (ret < 0)
939 goto error;
940
941 /* attempt to update it if supported */
942 ret = -EOPNOTSUPP;
943 if (!key->type->update)
944 goto error;
945
946 memset(&prep, 0, sizeof(prep));
947 prep.data = payload;
948 prep.datalen = plen;
949 prep.quotalen = key->type->def_datalen;
950 if (key->type->preparse) {
951 ret = key->type->preparse(&prep);
952 if (ret < 0)
953 goto error;
954 }
955
956 down_write(&key->sem);
957
958 ret = key->type->update(key, &prep);
959 if (ret == 0)
960 /* updating a negative key instantiates it */
961 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
962
963 up_write(&key->sem);
964
965 if (key->type->preparse)
966 key->type->free_preparse(&prep);
967 error:
968 return ret;
969 }
970 EXPORT_SYMBOL(key_update);
971
972 /**
973 * key_revoke - Revoke a key.
974 * @key: The key to be revoked.
975 *
976 * Mark a key as being revoked and ask the type to free up its resources. The
977 * revocation timeout is set and the key and all its links will be
978 * automatically garbage collected after key_gc_delay amount of time if they
979 * are not manually dealt with first.
980 */
981 void key_revoke(struct key *key)
982 {
983 struct timespec now;
984 time_t time;
985
986 key_check(key);
987
988 /* make sure no one's trying to change or use the key when we mark it
989 * - we tell lockdep that we might nest because we might be revoking an
990 * authorisation key whilst holding the sem on a key we've just
991 * instantiated
992 */
993 down_write_nested(&key->sem, 1);
994 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
995 key->type->revoke)
996 key->type->revoke(key);
997
998 /* set the death time to no more than the expiry time */
999 now = current_kernel_time();
1000 time = now.tv_sec;
1001 if (key->revoked_at == 0 || key->revoked_at > time) {
1002 key->revoked_at = time;
1003 key_schedule_gc(key->revoked_at + key_gc_delay);
1004 }
1005
1006 up_write(&key->sem);
1007 }
1008 EXPORT_SYMBOL(key_revoke);
1009
1010 /**
1011 * key_invalidate - Invalidate a key.
1012 * @key: The key to be invalidated.
1013 *
1014 * Mark a key as being invalidated and have it cleaned up immediately. The key
1015 * is ignored by all searches and other operations from this point.
1016 */
1017 void key_invalidate(struct key *key)
1018 {
1019 kenter("%d", key_serial(key));
1020
1021 key_check(key);
1022
1023 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1024 down_write_nested(&key->sem, 1);
1025 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1026 key_schedule_gc_links();
1027 up_write(&key->sem);
1028 }
1029 }
1030 EXPORT_SYMBOL(key_invalidate);
1031
1032 /**
1033 * register_key_type - Register a type of key.
1034 * @ktype: The new key type.
1035 *
1036 * Register a new key type.
1037 *
1038 * Returns 0 on success or -EEXIST if a type of this name already exists.
1039 */
1040 int register_key_type(struct key_type *ktype)
1041 {
1042 struct key_type *p;
1043 int ret;
1044
1045 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1046
1047 ret = -EEXIST;
1048 down_write(&key_types_sem);
1049
1050 /* disallow key types with the same name */
1051 list_for_each_entry(p, &key_types_list, link) {
1052 if (strcmp(p->name, ktype->name) == 0)
1053 goto out;
1054 }
1055
1056 /* store the type */
1057 list_add(&ktype->link, &key_types_list);
1058
1059 pr_notice("Key type %s registered\n", ktype->name);
1060 ret = 0;
1061
1062 out:
1063 up_write(&key_types_sem);
1064 return ret;
1065 }
1066 EXPORT_SYMBOL(register_key_type);
1067
1068 /**
1069 * unregister_key_type - Unregister a type of key.
1070 * @ktype: The key type.
1071 *
1072 * Unregister a key type and mark all the extant keys of this type as dead.
1073 * Those keys of this type are then destroyed to get rid of their payloads and
1074 * they and their links will be garbage collected as soon as possible.
1075 */
1076 void unregister_key_type(struct key_type *ktype)
1077 {
1078 down_write(&key_types_sem);
1079 list_del_init(&ktype->link);
1080 downgrade_write(&key_types_sem);
1081 key_gc_keytype(ktype);
1082 pr_notice("Key type %s unregistered\n", ktype->name);
1083 up_read(&key_types_sem);
1084 }
1085 EXPORT_SYMBOL(unregister_key_type);
1086
1087 /*
1088 * Initialise the key management state.
1089 */
1090 void __init key_init(void)
1091 {
1092 /* allocate a slab in which we can store keys */
1093 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1094 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1095
1096 /* add the special key types */
1097 list_add_tail(&key_type_keyring.link, &key_types_list);
1098 list_add_tail(&key_type_dead.link, &key_types_list);
1099 list_add_tail(&key_type_user.link, &key_types_list);
1100 list_add_tail(&key_type_logon.link, &key_types_list);
1101
1102 /* record the root user tracking */
1103 rb_link_node(&root_key_user.node,
1104 NULL,
1105 &key_user_tree.rb_node);
1106
1107 rb_insert_color(&root_key_user.node,
1108 &key_user_tree);
1109 }