]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - security/keys/key.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / security / keys / key.c
1 /* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29
30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
34
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
47 }
48 #endif
49
50 /*
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
53 */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent = NULL;
58 struct rb_node **p;
59
60 try_again:
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
63
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
68
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
75 }
76
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
82
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
87
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
92 }
93
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 refcount_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
104
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
110
111 /* okay - we found a user record for this UID */
112 found:
113 refcount_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116 out:
117 return user;
118 }
119
120 /*
121 * Dispose of a user structure
122 */
123 void key_user_put(struct key_user *user)
124 {
125 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
128
129 kfree(user);
130 }
131 }
132
133 /*
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
136 */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 struct rb_node *parent, **p;
140 struct key *xkey;
141
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
146
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
149
150 spin_lock(&key_serial_lock);
151
152 attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
159
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
166 }
167
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
171
172 spin_unlock(&key_serial_lock);
173 return;
174
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177 serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
183 }
184
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
188
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
192 }
193 }
194
195 /**
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 * @restrict_link: Optional link restriction for new keyrings.
205 *
206 * Allocate a key of the specified type with the attributes given. The key is
207 * returned in an uninstantiated state and the caller needs to instantiate the
208 * key before returning.
209 *
210 * The restrict_link structure (if not NULL) will be freed when the
211 * keyring is destroyed, so it must be dynamically allocated.
212 *
213 * The user's key count quota is updated to reflect the creation of the key and
214 * the user's key data quota has the default for the key type reserved. The
215 * instantiation function should amend this as necessary. If insufficient
216 * quota is available, -EDQUOT will be returned.
217 *
218 * The LSM security modules can prevent a key being created, in which case
219 * -EACCES will be returned.
220 *
221 * Returns a pointer to the new key if successful and an error code otherwise.
222 *
223 * Note that the caller needs to ensure the key type isn't uninstantiated.
224 * Internally this can be done by locking key_types_sem. Externally, this can
225 * be done by either never unregistering the key type, or making sure
226 * key_alloc() calls don't race with module unloading.
227 */
228 struct key *key_alloc(struct key_type *type, const char *desc,
229 kuid_t uid, kgid_t gid, const struct cred *cred,
230 key_perm_t perm, unsigned long flags,
231 struct key_restriction *restrict_link)
232 {
233 struct key_user *user = NULL;
234 struct key *key;
235 size_t desclen, quotalen;
236 int ret;
237
238 key = ERR_PTR(-EINVAL);
239 if (!desc || !*desc)
240 goto error;
241
242 if (type->vet_description) {
243 ret = type->vet_description(desc);
244 if (ret < 0) {
245 key = ERR_PTR(ret);
246 goto error;
247 }
248 }
249
250 desclen = strlen(desc);
251 quotalen = desclen + 1 + type->def_datalen;
252
253 /* get hold of the key tracking for this user */
254 user = key_user_lookup(uid);
255 if (!user)
256 goto no_memory_1;
257
258 /* check that the user's quota permits allocation of another key and
259 * its description */
260 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
261 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
262 key_quota_root_maxkeys : key_quota_maxkeys;
263 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
264 key_quota_root_maxbytes : key_quota_maxbytes;
265
266 spin_lock(&user->lock);
267 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
268 if (user->qnkeys + 1 >= maxkeys ||
269 user->qnbytes + quotalen >= maxbytes ||
270 user->qnbytes + quotalen < user->qnbytes)
271 goto no_quota;
272 }
273
274 user->qnkeys++;
275 user->qnbytes += quotalen;
276 spin_unlock(&user->lock);
277 }
278
279 /* allocate and initialise the key and its description */
280 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
281 if (!key)
282 goto no_memory_2;
283
284 key->index_key.desc_len = desclen;
285 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
286 if (!key->index_key.description)
287 goto no_memory_3;
288
289 refcount_set(&key->usage, 1);
290 init_rwsem(&key->sem);
291 lockdep_set_class(&key->sem, &type->lock_class);
292 key->index_key.type = type;
293 key->user = user;
294 key->quotalen = quotalen;
295 key->datalen = type->def_datalen;
296 key->uid = uid;
297 key->gid = gid;
298 key->perm = perm;
299 key->restrict_link = restrict_link;
300
301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303 if (flags & KEY_ALLOC_BUILT_IN)
304 key->flags |= 1 << KEY_FLAG_BUILTIN;
305
306 #ifdef KEY_DEBUGGING
307 key->magic = KEY_DEBUG_MAGIC;
308 #endif
309
310 /* let the security module know about the key */
311 ret = security_key_alloc(key, cred, flags);
312 if (ret < 0)
313 goto security_error;
314
315 /* publish the key by giving it a serial number */
316 atomic_inc(&user->nkeys);
317 key_alloc_serial(key);
318
319 error:
320 return key;
321
322 security_error:
323 kfree(key->description);
324 kmem_cache_free(key_jar, key);
325 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
326 spin_lock(&user->lock);
327 user->qnkeys--;
328 user->qnbytes -= quotalen;
329 spin_unlock(&user->lock);
330 }
331 key_user_put(user);
332 key = ERR_PTR(ret);
333 goto error;
334
335 no_memory_3:
336 kmem_cache_free(key_jar, key);
337 no_memory_2:
338 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
339 spin_lock(&user->lock);
340 user->qnkeys--;
341 user->qnbytes -= quotalen;
342 spin_unlock(&user->lock);
343 }
344 key_user_put(user);
345 no_memory_1:
346 key = ERR_PTR(-ENOMEM);
347 goto error;
348
349 no_quota:
350 spin_unlock(&user->lock);
351 key_user_put(user);
352 key = ERR_PTR(-EDQUOT);
353 goto error;
354 }
355 EXPORT_SYMBOL(key_alloc);
356
357 /**
358 * key_payload_reserve - Adjust data quota reservation for the key's payload
359 * @key: The key to make the reservation for.
360 * @datalen: The amount of data payload the caller now wants.
361 *
362 * Adjust the amount of the owning user's key data quota that a key reserves.
363 * If the amount is increased, then -EDQUOT may be returned if there isn't
364 * enough free quota available.
365 *
366 * If successful, 0 is returned.
367 */
368 int key_payload_reserve(struct key *key, size_t datalen)
369 {
370 int delta = (int)datalen - key->datalen;
371 int ret = 0;
372
373 key_check(key);
374
375 /* contemplate the quota adjustment */
376 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
377 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
378 key_quota_root_maxbytes : key_quota_maxbytes;
379
380 spin_lock(&key->user->lock);
381
382 if (delta > 0 &&
383 (key->user->qnbytes + delta >= maxbytes ||
384 key->user->qnbytes + delta < key->user->qnbytes)) {
385 ret = -EDQUOT;
386 }
387 else {
388 key->user->qnbytes += delta;
389 key->quotalen += delta;
390 }
391 spin_unlock(&key->user->lock);
392 }
393
394 /* change the recorded data length if that didn't generate an error */
395 if (ret == 0)
396 key->datalen = datalen;
397
398 return ret;
399 }
400 EXPORT_SYMBOL(key_payload_reserve);
401
402 /*
403 * Instantiate a key and link it into the target keyring atomically. Must be
404 * called with the target keyring's semaphore writelocked. The target key's
405 * semaphore need not be locked as instantiation is serialised by
406 * key_construction_mutex.
407 */
408 static int __key_instantiate_and_link(struct key *key,
409 struct key_preparsed_payload *prep,
410 struct key *keyring,
411 struct key *authkey,
412 struct assoc_array_edit **_edit)
413 {
414 int ret, awaken;
415
416 key_check(key);
417 key_check(keyring);
418
419 awaken = 0;
420 ret = -EBUSY;
421
422 mutex_lock(&key_construction_mutex);
423
424 /* can't instantiate twice */
425 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
426 /* instantiate the key */
427 ret = key->type->instantiate(key, prep);
428
429 if (ret == 0) {
430 /* mark the key as being instantiated */
431 atomic_inc(&key->user->nikeys);
432 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
433
434 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
435 awaken = 1;
436
437 /* and link it into the destination keyring */
438 if (keyring) {
439 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
440 set_bit(KEY_FLAG_KEEP, &key->flags);
441
442 __key_link(key, _edit);
443 }
444
445 /* disable the authorisation key */
446 if (authkey)
447 key_revoke(authkey);
448
449 if (prep->expiry != TIME_T_MAX) {
450 key->expiry = prep->expiry;
451 key_schedule_gc(prep->expiry + key_gc_delay);
452 }
453 }
454 }
455
456 mutex_unlock(&key_construction_mutex);
457
458 /* wake up anyone waiting for a key to be constructed */
459 if (awaken)
460 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
461
462 return ret;
463 }
464
465 /**
466 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
467 * @key: The key to instantiate.
468 * @data: The data to use to instantiate the keyring.
469 * @datalen: The length of @data.
470 * @keyring: Keyring to create a link in on success (or NULL).
471 * @authkey: The authorisation token permitting instantiation.
472 *
473 * Instantiate a key that's in the uninstantiated state using the provided data
474 * and, if successful, link it in to the destination keyring if one is
475 * supplied.
476 *
477 * If successful, 0 is returned, the authorisation token is revoked and anyone
478 * waiting for the key is woken up. If the key was already instantiated,
479 * -EBUSY will be returned.
480 */
481 int key_instantiate_and_link(struct key *key,
482 const void *data,
483 size_t datalen,
484 struct key *keyring,
485 struct key *authkey)
486 {
487 struct key_preparsed_payload prep;
488 struct assoc_array_edit *edit;
489 int ret;
490
491 memset(&prep, 0, sizeof(prep));
492 prep.data = data;
493 prep.datalen = datalen;
494 prep.quotalen = key->type->def_datalen;
495 prep.expiry = TIME_T_MAX;
496 if (key->type->preparse) {
497 ret = key->type->preparse(&prep);
498 if (ret < 0)
499 goto error;
500 }
501
502 if (keyring) {
503 ret = __key_link_begin(keyring, &key->index_key, &edit);
504 if (ret < 0)
505 goto error;
506
507 if (keyring->restrict_link && keyring->restrict_link->check) {
508 struct key_restriction *keyres = keyring->restrict_link;
509
510 ret = keyres->check(keyring, key->type, &prep.payload,
511 keyres->key);
512 if (ret < 0)
513 goto error_link_end;
514 }
515 }
516
517 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
518
519 error_link_end:
520 if (keyring)
521 __key_link_end(keyring, &key->index_key, edit);
522
523 error:
524 if (key->type->preparse)
525 key->type->free_preparse(&prep);
526 return ret;
527 }
528
529 EXPORT_SYMBOL(key_instantiate_and_link);
530
531 /**
532 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
533 * @key: The key to instantiate.
534 * @timeout: The timeout on the negative key.
535 * @error: The error to return when the key is hit.
536 * @keyring: Keyring to create a link in on success (or NULL).
537 * @authkey: The authorisation token permitting instantiation.
538 *
539 * Negatively instantiate a key that's in the uninstantiated state and, if
540 * successful, set its timeout and stored error and link it in to the
541 * destination keyring if one is supplied. The key and any links to the key
542 * will be automatically garbage collected after the timeout expires.
543 *
544 * Negative keys are used to rate limit repeated request_key() calls by causing
545 * them to return the stored error code (typically ENOKEY) until the negative
546 * key expires.
547 *
548 * If successful, 0 is returned, the authorisation token is revoked and anyone
549 * waiting for the key is woken up. If the key was already instantiated,
550 * -EBUSY will be returned.
551 */
552 int key_reject_and_link(struct key *key,
553 unsigned timeout,
554 unsigned error,
555 struct key *keyring,
556 struct key *authkey)
557 {
558 struct assoc_array_edit *edit;
559 struct timespec now;
560 int ret, awaken, link_ret = 0;
561
562 key_check(key);
563 key_check(keyring);
564
565 awaken = 0;
566 ret = -EBUSY;
567
568 if (keyring) {
569 if (keyring->restrict_link)
570 return -EPERM;
571
572 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
573 }
574
575 mutex_lock(&key_construction_mutex);
576
577 /* can't instantiate twice */
578 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
579 /* mark the key as being negatively instantiated */
580 atomic_inc(&key->user->nikeys);
581 key->reject_error = -error;
582 smp_wmb();
583 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
584 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
585 now = current_kernel_time();
586 key->expiry = now.tv_sec + timeout;
587 key_schedule_gc(key->expiry + key_gc_delay);
588
589 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
590 awaken = 1;
591
592 ret = 0;
593
594 /* and link it into the destination keyring */
595 if (keyring && link_ret == 0)
596 __key_link(key, &edit);
597
598 /* disable the authorisation key */
599 if (authkey)
600 key_revoke(authkey);
601 }
602
603 mutex_unlock(&key_construction_mutex);
604
605 if (keyring && link_ret == 0)
606 __key_link_end(keyring, &key->index_key, edit);
607
608 /* wake up anyone waiting for a key to be constructed */
609 if (awaken)
610 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
611
612 return ret == 0 ? link_ret : ret;
613 }
614 EXPORT_SYMBOL(key_reject_and_link);
615
616 /**
617 * key_put - Discard a reference to a key.
618 * @key: The key to discard a reference from.
619 *
620 * Discard a reference to a key, and when all the references are gone, we
621 * schedule the cleanup task to come and pull it out of the tree in process
622 * context at some later time.
623 */
624 void key_put(struct key *key)
625 {
626 if (key) {
627 key_check(key);
628
629 if (refcount_dec_and_test(&key->usage))
630 schedule_work(&key_gc_work);
631 }
632 }
633 EXPORT_SYMBOL(key_put);
634
635 /*
636 * Find a key by its serial number.
637 */
638 struct key *key_lookup(key_serial_t id)
639 {
640 struct rb_node *n;
641 struct key *key;
642
643 spin_lock(&key_serial_lock);
644
645 /* search the tree for the specified key */
646 n = key_serial_tree.rb_node;
647 while (n) {
648 key = rb_entry(n, struct key, serial_node);
649
650 if (id < key->serial)
651 n = n->rb_left;
652 else if (id > key->serial)
653 n = n->rb_right;
654 else
655 goto found;
656 }
657
658 not_found:
659 key = ERR_PTR(-ENOKEY);
660 goto error;
661
662 found:
663 /* A key is allowed to be looked up only if someone still owns a
664 * reference to it - otherwise it's awaiting the gc.
665 */
666 if (!refcount_inc_not_zero(&key->usage))
667 goto not_found;
668
669 error:
670 spin_unlock(&key_serial_lock);
671 return key;
672 }
673
674 /*
675 * Find and lock the specified key type against removal.
676 *
677 * We return with the sem read-locked if successful. If the type wasn't
678 * available -ENOKEY is returned instead.
679 */
680 struct key_type *key_type_lookup(const char *type)
681 {
682 struct key_type *ktype;
683
684 down_read(&key_types_sem);
685
686 /* look up the key type to see if it's one of the registered kernel
687 * types */
688 list_for_each_entry(ktype, &key_types_list, link) {
689 if (strcmp(ktype->name, type) == 0)
690 goto found_kernel_type;
691 }
692
693 up_read(&key_types_sem);
694 ktype = ERR_PTR(-ENOKEY);
695
696 found_kernel_type:
697 return ktype;
698 }
699
700 void key_set_timeout(struct key *key, unsigned timeout)
701 {
702 struct timespec now;
703 time_t expiry = 0;
704
705 /* make the changes with the locks held to prevent races */
706 down_write(&key->sem);
707
708 if (timeout > 0) {
709 now = current_kernel_time();
710 expiry = now.tv_sec + timeout;
711 }
712
713 key->expiry = expiry;
714 key_schedule_gc(key->expiry + key_gc_delay);
715
716 up_write(&key->sem);
717 }
718 EXPORT_SYMBOL_GPL(key_set_timeout);
719
720 /*
721 * Unlock a key type locked by key_type_lookup().
722 */
723 void key_type_put(struct key_type *ktype)
724 {
725 up_read(&key_types_sem);
726 }
727
728 /*
729 * Attempt to update an existing key.
730 *
731 * The key is given to us with an incremented refcount that we need to discard
732 * if we get an error.
733 */
734 static inline key_ref_t __key_update(key_ref_t key_ref,
735 struct key_preparsed_payload *prep)
736 {
737 struct key *key = key_ref_to_ptr(key_ref);
738 int ret;
739
740 /* need write permission on the key to update it */
741 ret = key_permission(key_ref, KEY_NEED_WRITE);
742 if (ret < 0)
743 goto error;
744
745 ret = -EEXIST;
746 if (!key->type->update)
747 goto error;
748
749 down_write(&key->sem);
750
751 ret = key->type->update(key, prep);
752 if (ret == 0)
753 /* updating a negative key instantiates it */
754 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
755
756 up_write(&key->sem);
757
758 if (ret < 0)
759 goto error;
760 out:
761 return key_ref;
762
763 error:
764 key_put(key);
765 key_ref = ERR_PTR(ret);
766 goto out;
767 }
768
769 /**
770 * key_create_or_update - Update or create and instantiate a key.
771 * @keyring_ref: A pointer to the destination keyring with possession flag.
772 * @type: The type of key.
773 * @description: The searchable description for the key.
774 * @payload: The data to use to instantiate or update the key.
775 * @plen: The length of @payload.
776 * @perm: The permissions mask for a new key.
777 * @flags: The quota flags for a new key.
778 *
779 * Search the destination keyring for a key of the same description and if one
780 * is found, update it, otherwise create and instantiate a new one and create a
781 * link to it from that keyring.
782 *
783 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
784 * concocted.
785 *
786 * Returns a pointer to the new key if successful, -ENODEV if the key type
787 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
788 * caller isn't permitted to modify the keyring or the LSM did not permit
789 * creation of the key.
790 *
791 * On success, the possession flag from the keyring ref will be tacked on to
792 * the key ref before it is returned.
793 */
794 key_ref_t key_create_or_update(key_ref_t keyring_ref,
795 const char *type,
796 const char *description,
797 const void *payload,
798 size_t plen,
799 key_perm_t perm,
800 unsigned long flags)
801 {
802 struct keyring_index_key index_key = {
803 .description = description,
804 };
805 struct key_preparsed_payload prep;
806 struct assoc_array_edit *edit;
807 const struct cred *cred = current_cred();
808 struct key *keyring, *key = NULL;
809 key_ref_t key_ref;
810 int ret;
811 struct key_restriction *restrict_link = NULL;
812
813 /* look up the key type to see if it's one of the registered kernel
814 * types */
815 index_key.type = key_type_lookup(type);
816 if (IS_ERR(index_key.type)) {
817 key_ref = ERR_PTR(-ENODEV);
818 goto error;
819 }
820
821 key_ref = ERR_PTR(-EINVAL);
822 if (!index_key.type->instantiate ||
823 (!index_key.description && !index_key.type->preparse))
824 goto error_put_type;
825
826 keyring = key_ref_to_ptr(keyring_ref);
827
828 key_check(keyring);
829
830 key_ref = ERR_PTR(-EPERM);
831 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
832 restrict_link = keyring->restrict_link;
833
834 key_ref = ERR_PTR(-ENOTDIR);
835 if (keyring->type != &key_type_keyring)
836 goto error_put_type;
837
838 memset(&prep, 0, sizeof(prep));
839 prep.data = payload;
840 prep.datalen = plen;
841 prep.quotalen = index_key.type->def_datalen;
842 prep.expiry = TIME_T_MAX;
843 if (index_key.type->preparse) {
844 ret = index_key.type->preparse(&prep);
845 if (ret < 0) {
846 key_ref = ERR_PTR(ret);
847 goto error_free_prep;
848 }
849 if (!index_key.description)
850 index_key.description = prep.description;
851 key_ref = ERR_PTR(-EINVAL);
852 if (!index_key.description)
853 goto error_free_prep;
854 }
855 index_key.desc_len = strlen(index_key.description);
856
857 ret = __key_link_begin(keyring, &index_key, &edit);
858 if (ret < 0) {
859 key_ref = ERR_PTR(ret);
860 goto error_free_prep;
861 }
862
863 if (restrict_link && restrict_link->check) {
864 ret = restrict_link->check(keyring, index_key.type,
865 &prep.payload, restrict_link->key);
866 if (ret < 0) {
867 key_ref = ERR_PTR(ret);
868 goto error_link_end;
869 }
870 }
871
872 /* if we're going to allocate a new key, we're going to have
873 * to modify the keyring */
874 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
875 if (ret < 0) {
876 key_ref = ERR_PTR(ret);
877 goto error_link_end;
878 }
879
880 /* if it's possible to update this type of key, search for an existing
881 * key of the same type and description in the destination keyring and
882 * update that instead if possible
883 */
884 if (index_key.type->update) {
885 key_ref = find_key_to_update(keyring_ref, &index_key);
886 if (key_ref)
887 goto found_matching_key;
888 }
889
890 /* if the client doesn't provide, decide on the permissions we want */
891 if (perm == KEY_PERM_UNDEF) {
892 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
893 perm |= KEY_USR_VIEW;
894
895 if (index_key.type->read)
896 perm |= KEY_POS_READ;
897
898 if (index_key.type == &key_type_keyring ||
899 index_key.type->update)
900 perm |= KEY_POS_WRITE;
901 }
902
903 /* allocate a new key */
904 key = key_alloc(index_key.type, index_key.description,
905 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
906 if (IS_ERR(key)) {
907 key_ref = ERR_CAST(key);
908 goto error_link_end;
909 }
910
911 /* instantiate it and link it into the target keyring */
912 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
913 if (ret < 0) {
914 key_put(key);
915 key_ref = ERR_PTR(ret);
916 goto error_link_end;
917 }
918
919 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
920
921 error_link_end:
922 __key_link_end(keyring, &index_key, edit);
923 error_free_prep:
924 if (index_key.type->preparse)
925 index_key.type->free_preparse(&prep);
926 error_put_type:
927 key_type_put(index_key.type);
928 error:
929 return key_ref;
930
931 found_matching_key:
932 /* we found a matching key, so we're going to try to update it
933 * - we can drop the locks first as we have the key pinned
934 */
935 __key_link_end(keyring, &index_key, edit);
936
937 key_ref = __key_update(key_ref, &prep);
938 goto error_free_prep;
939 }
940 EXPORT_SYMBOL(key_create_or_update);
941
942 /**
943 * key_update - Update a key's contents.
944 * @key_ref: The pointer (plus possession flag) to the key.
945 * @payload: The data to be used to update the key.
946 * @plen: The length of @payload.
947 *
948 * Attempt to update the contents of a key with the given payload data. The
949 * caller must be granted Write permission on the key. Negative keys can be
950 * instantiated by this method.
951 *
952 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
953 * type does not support updating. The key type may return other errors.
954 */
955 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
956 {
957 struct key_preparsed_payload prep;
958 struct key *key = key_ref_to_ptr(key_ref);
959 int ret;
960
961 key_check(key);
962
963 /* the key must be writable */
964 ret = key_permission(key_ref, KEY_NEED_WRITE);
965 if (ret < 0)
966 return ret;
967
968 /* attempt to update it if supported */
969 if (!key->type->update)
970 return -EOPNOTSUPP;
971
972 memset(&prep, 0, sizeof(prep));
973 prep.data = payload;
974 prep.datalen = plen;
975 prep.quotalen = key->type->def_datalen;
976 prep.expiry = TIME_T_MAX;
977 if (key->type->preparse) {
978 ret = key->type->preparse(&prep);
979 if (ret < 0)
980 goto error;
981 }
982
983 down_write(&key->sem);
984
985 ret = key->type->update(key, &prep);
986 if (ret == 0)
987 /* updating a negative key instantiates it */
988 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
989
990 up_write(&key->sem);
991
992 error:
993 if (key->type->preparse)
994 key->type->free_preparse(&prep);
995 return ret;
996 }
997 EXPORT_SYMBOL(key_update);
998
999 /**
1000 * key_revoke - Revoke a key.
1001 * @key: The key to be revoked.
1002 *
1003 * Mark a key as being revoked and ask the type to free up its resources. The
1004 * revocation timeout is set and the key and all its links will be
1005 * automatically garbage collected after key_gc_delay amount of time if they
1006 * are not manually dealt with first.
1007 */
1008 void key_revoke(struct key *key)
1009 {
1010 struct timespec now;
1011 time_t time;
1012
1013 key_check(key);
1014
1015 /* make sure no one's trying to change or use the key when we mark it
1016 * - we tell lockdep that we might nest because we might be revoking an
1017 * authorisation key whilst holding the sem on a key we've just
1018 * instantiated
1019 */
1020 down_write_nested(&key->sem, 1);
1021 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1022 key->type->revoke)
1023 key->type->revoke(key);
1024
1025 /* set the death time to no more than the expiry time */
1026 now = current_kernel_time();
1027 time = now.tv_sec;
1028 if (key->revoked_at == 0 || key->revoked_at > time) {
1029 key->revoked_at = time;
1030 key_schedule_gc(key->revoked_at + key_gc_delay);
1031 }
1032
1033 up_write(&key->sem);
1034 }
1035 EXPORT_SYMBOL(key_revoke);
1036
1037 /**
1038 * key_invalidate - Invalidate a key.
1039 * @key: The key to be invalidated.
1040 *
1041 * Mark a key as being invalidated and have it cleaned up immediately. The key
1042 * is ignored by all searches and other operations from this point.
1043 */
1044 void key_invalidate(struct key *key)
1045 {
1046 kenter("%d", key_serial(key));
1047
1048 key_check(key);
1049
1050 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1051 down_write_nested(&key->sem, 1);
1052 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1053 key_schedule_gc_links();
1054 up_write(&key->sem);
1055 }
1056 }
1057 EXPORT_SYMBOL(key_invalidate);
1058
1059 /**
1060 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1061 * @key: The key to be instantiated
1062 * @prep: The preparsed data to load.
1063 *
1064 * Instantiate a key from preparsed data. We assume we can just copy the data
1065 * in directly and clear the old pointers.
1066 *
1067 * This can be pointed to directly by the key type instantiate op pointer.
1068 */
1069 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1070 {
1071 int ret;
1072
1073 pr_devel("==>%s()\n", __func__);
1074
1075 ret = key_payload_reserve(key, prep->quotalen);
1076 if (ret == 0) {
1077 rcu_assign_keypointer(key, prep->payload.data[0]);
1078 key->payload.data[1] = prep->payload.data[1];
1079 key->payload.data[2] = prep->payload.data[2];
1080 key->payload.data[3] = prep->payload.data[3];
1081 prep->payload.data[0] = NULL;
1082 prep->payload.data[1] = NULL;
1083 prep->payload.data[2] = NULL;
1084 prep->payload.data[3] = NULL;
1085 }
1086 pr_devel("<==%s() = %d\n", __func__, ret);
1087 return ret;
1088 }
1089 EXPORT_SYMBOL(generic_key_instantiate);
1090
1091 /**
1092 * register_key_type - Register a type of key.
1093 * @ktype: The new key type.
1094 *
1095 * Register a new key type.
1096 *
1097 * Returns 0 on success or -EEXIST if a type of this name already exists.
1098 */
1099 int register_key_type(struct key_type *ktype)
1100 {
1101 struct key_type *p;
1102 int ret;
1103
1104 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1105
1106 ret = -EEXIST;
1107 down_write(&key_types_sem);
1108
1109 /* disallow key types with the same name */
1110 list_for_each_entry(p, &key_types_list, link) {
1111 if (strcmp(p->name, ktype->name) == 0)
1112 goto out;
1113 }
1114
1115 /* store the type */
1116 list_add(&ktype->link, &key_types_list);
1117
1118 pr_notice("Key type %s registered\n", ktype->name);
1119 ret = 0;
1120
1121 out:
1122 up_write(&key_types_sem);
1123 return ret;
1124 }
1125 EXPORT_SYMBOL(register_key_type);
1126
1127 /**
1128 * unregister_key_type - Unregister a type of key.
1129 * @ktype: The key type.
1130 *
1131 * Unregister a key type and mark all the extant keys of this type as dead.
1132 * Those keys of this type are then destroyed to get rid of their payloads and
1133 * they and their links will be garbage collected as soon as possible.
1134 */
1135 void unregister_key_type(struct key_type *ktype)
1136 {
1137 down_write(&key_types_sem);
1138 list_del_init(&ktype->link);
1139 downgrade_write(&key_types_sem);
1140 key_gc_keytype(ktype);
1141 pr_notice("Key type %s unregistered\n", ktype->name);
1142 up_read(&key_types_sem);
1143 }
1144 EXPORT_SYMBOL(unregister_key_type);
1145
1146 /*
1147 * Initialise the key management state.
1148 */
1149 void __init key_init(void)
1150 {
1151 /* allocate a slab in which we can store keys */
1152 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1153 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1154
1155 /* add the special key types */
1156 list_add_tail(&key_type_keyring.link, &key_types_list);
1157 list_add_tail(&key_type_dead.link, &key_types_list);
1158 list_add_tail(&key_type_user.link, &key_types_list);
1159 list_add_tail(&key_type_logon.link, &key_types_list);
1160
1161 /* record the root user tracking */
1162 rb_link_node(&root_key_user.node,
1163 NULL,
1164 &key_user_tree.rb_node);
1165
1166 rb_insert_color(&root_key_user.node,
1167 &key_user_tree);
1168 }