1 /* Basic authentication token and access key management
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
23 struct kmem_cache
*key_jar
;
24 struct rb_root key_serial_tree
; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock
);
27 struct rb_root key_user_tree
; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock
);
30 unsigned int key_quota_root_maxkeys
= 1000000; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes
= 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys
= 200; /* general key count quota */
33 unsigned int key_quota_maxbytes
= 20000; /* general key space quota */
35 static LIST_HEAD(key_types_list
);
36 static DECLARE_RWSEM(key_types_sem
);
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex
);
42 void __key_check(const struct key
*key
)
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key
, key
->magic
, KEY_DEBUG_MAGIC
);
51 * Get the key quota record for a user, allocating a new record if one doesn't
54 struct key_user
*key_user_lookup(kuid_t uid
)
56 struct key_user
*candidate
= NULL
, *user
;
57 struct rb_node
*parent
= NULL
;
61 p
= &key_user_tree
.rb_node
;
62 spin_lock(&key_user_lock
);
64 /* search the tree for a user record with a matching UID */
67 user
= rb_entry(parent
, struct key_user
, node
);
69 if (uid_lt(uid
, user
->uid
))
71 else if (uid_gt(uid
, user
->uid
))
77 /* if we get here, we failed to find a match in the tree */
79 /* allocate a candidate user record if we don't already have
81 spin_unlock(&key_user_lock
);
84 candidate
= kmalloc(sizeof(struct key_user
), GFP_KERNEL
);
85 if (unlikely(!candidate
))
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 atomic_set(&candidate
->usage
, 1);
97 atomic_set(&candidate
->nkeys
, 0);
98 atomic_set(&candidate
->nikeys
, 0);
100 candidate
->qnkeys
= 0;
101 candidate
->qnbytes
= 0;
102 spin_lock_init(&candidate
->lock
);
103 mutex_init(&candidate
->cons_lock
);
105 rb_link_node(&candidate
->node
, parent
, p
);
106 rb_insert_color(&candidate
->node
, &key_user_tree
);
107 spin_unlock(&key_user_lock
);
111 /* okay - we found a user record for this UID */
113 atomic_inc(&user
->usage
);
114 spin_unlock(&key_user_lock
);
121 * Dispose of a user structure
123 void key_user_put(struct key_user
*user
)
125 if (atomic_dec_and_lock(&user
->usage
, &key_user_lock
)) {
126 rb_erase(&user
->node
, &key_user_tree
);
127 spin_unlock(&key_user_lock
);
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
137 static inline void key_alloc_serial(struct key
*key
)
139 struct rb_node
*parent
, **p
;
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
145 get_random_bytes(&key
->serial
, sizeof(key
->serial
));
147 key
->serial
>>= 1; /* negative numbers are not permitted */
148 } while (key
->serial
< 3);
150 spin_lock(&key_serial_lock
);
154 p
= &key_serial_tree
.rb_node
;
158 xkey
= rb_entry(parent
, struct key
, serial_node
);
160 if (key
->serial
< xkey
->serial
)
162 else if (key
->serial
> xkey
->serial
)
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key
->serial_node
, parent
, p
);
170 rb_insert_color(&key
->serial_node
, &key_serial_tree
);
172 spin_unlock(&key_serial_lock
);
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
180 if (key
->serial
< 3) {
182 goto attempt_insertion
;
185 parent
= rb_next(parent
);
187 goto attempt_insertion
;
189 xkey
= rb_entry(parent
, struct key
, serial_node
);
190 if (key
->serial
< xkey
->serial
)
191 goto attempt_insertion
;
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
205 * Allocate a key of the specified type with the attributes given. The key is
206 * returned in an uninstantiated state and the caller needs to instantiate the
207 * key before returning.
209 * The user's key count quota is updated to reflect the creation of the key and
210 * the user's key data quota has the default for the key type reserved. The
211 * instantiation function should amend this as necessary. If insufficient
212 * quota is available, -EDQUOT will be returned.
214 * The LSM security modules can prevent a key being created, in which case
215 * -EACCES will be returned.
217 * Returns a pointer to the new key if successful and an error code otherwise.
219 * Note that the caller needs to ensure the key type isn't uninstantiated.
220 * Internally this can be done by locking key_types_sem. Externally, this can
221 * be done by either never unregistering the key type, or making sure
222 * key_alloc() calls don't race with module unloading.
224 struct key
*key_alloc(struct key_type
*type
, const char *desc
,
225 kuid_t uid
, kgid_t gid
, const struct cred
*cred
,
226 key_perm_t perm
, unsigned long flags
)
228 struct key_user
*user
= NULL
;
230 size_t desclen
, quotalen
;
233 key
= ERR_PTR(-EINVAL
);
237 if (type
->vet_description
) {
238 ret
= type
->vet_description(desc
);
245 desclen
= strlen(desc
);
246 quotalen
= desclen
+ 1 + type
->def_datalen
;
248 /* get hold of the key tracking for this user */
249 user
= key_user_lookup(uid
);
253 /* check that the user's quota permits allocation of another key and
255 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
256 unsigned maxkeys
= uid_eq(uid
, GLOBAL_ROOT_UID
) ?
257 key_quota_root_maxkeys
: key_quota_maxkeys
;
258 unsigned maxbytes
= uid_eq(uid
, GLOBAL_ROOT_UID
) ?
259 key_quota_root_maxbytes
: key_quota_maxbytes
;
261 spin_lock(&user
->lock
);
262 if (!(flags
& KEY_ALLOC_QUOTA_OVERRUN
)) {
263 if (user
->qnkeys
+ 1 >= maxkeys
||
264 user
->qnbytes
+ quotalen
>= maxbytes
||
265 user
->qnbytes
+ quotalen
< user
->qnbytes
)
270 user
->qnbytes
+= quotalen
;
271 spin_unlock(&user
->lock
);
274 /* allocate and initialise the key and its description */
275 key
= kmem_cache_zalloc(key_jar
, GFP_KERNEL
);
279 key
->index_key
.desc_len
= desclen
;
280 key
->index_key
.description
= kmemdup(desc
, desclen
+ 1, GFP_KERNEL
);
281 if (!key
->index_key
.description
)
284 atomic_set(&key
->usage
, 1);
285 init_rwsem(&key
->sem
);
286 lockdep_set_class(&key
->sem
, &type
->lock_class
);
287 key
->index_key
.type
= type
;
289 key
->quotalen
= quotalen
;
290 key
->datalen
= type
->def_datalen
;
295 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
))
296 key
->flags
|= 1 << KEY_FLAG_IN_QUOTA
;
297 if (flags
& KEY_ALLOC_TRUSTED
)
298 key
->flags
|= 1 << KEY_FLAG_TRUSTED
;
301 key
->magic
= KEY_DEBUG_MAGIC
;
304 /* let the security module know about the key */
305 ret
= security_key_alloc(key
, cred
, flags
);
309 /* publish the key by giving it a serial number */
310 atomic_inc(&user
->nkeys
);
311 key_alloc_serial(key
);
317 kfree(key
->description
);
318 kmem_cache_free(key_jar
, key
);
319 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
320 spin_lock(&user
->lock
);
322 user
->qnbytes
-= quotalen
;
323 spin_unlock(&user
->lock
);
330 kmem_cache_free(key_jar
, key
);
332 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
333 spin_lock(&user
->lock
);
335 user
->qnbytes
-= quotalen
;
336 spin_unlock(&user
->lock
);
340 key
= ERR_PTR(-ENOMEM
);
344 spin_unlock(&user
->lock
);
346 key
= ERR_PTR(-EDQUOT
);
349 EXPORT_SYMBOL(key_alloc
);
352 * key_payload_reserve - Adjust data quota reservation for the key's payload
353 * @key: The key to make the reservation for.
354 * @datalen: The amount of data payload the caller now wants.
356 * Adjust the amount of the owning user's key data quota that a key reserves.
357 * If the amount is increased, then -EDQUOT may be returned if there isn't
358 * enough free quota available.
360 * If successful, 0 is returned.
362 int key_payload_reserve(struct key
*key
, size_t datalen
)
364 int delta
= (int)datalen
- key
->datalen
;
369 /* contemplate the quota adjustment */
370 if (delta
!= 0 && test_bit(KEY_FLAG_IN_QUOTA
, &key
->flags
)) {
371 unsigned maxbytes
= uid_eq(key
->user
->uid
, GLOBAL_ROOT_UID
) ?
372 key_quota_root_maxbytes
: key_quota_maxbytes
;
374 spin_lock(&key
->user
->lock
);
377 (key
->user
->qnbytes
+ delta
>= maxbytes
||
378 key
->user
->qnbytes
+ delta
< key
->user
->qnbytes
)) {
382 key
->user
->qnbytes
+= delta
;
383 key
->quotalen
+= delta
;
385 spin_unlock(&key
->user
->lock
);
388 /* change the recorded data length if that didn't generate an error */
390 key
->datalen
= datalen
;
394 EXPORT_SYMBOL(key_payload_reserve
);
397 * Instantiate a key and link it into the target keyring atomically. Must be
398 * called with the target keyring's semaphore writelocked. The target key's
399 * semaphore need not be locked as instantiation is serialised by
400 * key_construction_mutex.
402 static int __key_instantiate_and_link(struct key
*key
,
403 struct key_preparsed_payload
*prep
,
406 struct assoc_array_edit
**_edit
)
416 mutex_lock(&key_construction_mutex
);
418 /* can't instantiate twice */
419 if (!test_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
)) {
420 /* instantiate the key */
421 ret
= key
->type
->instantiate(key
, prep
);
424 /* mark the key as being instantiated */
425 atomic_inc(&key
->user
->nikeys
);
426 set_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
);
428 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT
, &key
->flags
))
431 /* and link it into the destination keyring */
433 __key_link(key
, _edit
);
435 /* disable the authorisation key */
439 if (prep
->expiry
!= TIME_T_MAX
) {
440 key
->expiry
= prep
->expiry
;
441 key_schedule_gc(prep
->expiry
+ key_gc_delay
);
446 mutex_unlock(&key_construction_mutex
);
448 /* wake up anyone waiting for a key to be constructed */
450 wake_up_bit(&key
->flags
, KEY_FLAG_USER_CONSTRUCT
);
456 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
457 * @key: The key to instantiate.
458 * @data: The data to use to instantiate the keyring.
459 * @datalen: The length of @data.
460 * @keyring: Keyring to create a link in on success (or NULL).
461 * @authkey: The authorisation token permitting instantiation.
463 * Instantiate a key that's in the uninstantiated state using the provided data
464 * and, if successful, link it in to the destination keyring if one is
467 * If successful, 0 is returned, the authorisation token is revoked and anyone
468 * waiting for the key is woken up. If the key was already instantiated,
469 * -EBUSY will be returned.
471 int key_instantiate_and_link(struct key
*key
,
477 struct key_preparsed_payload prep
;
478 struct assoc_array_edit
*edit
;
481 memset(&prep
, 0, sizeof(prep
));
483 prep
.datalen
= datalen
;
484 prep
.quotalen
= key
->type
->def_datalen
;
485 prep
.expiry
= TIME_T_MAX
;
486 if (key
->type
->preparse
) {
487 ret
= key
->type
->preparse(&prep
);
493 ret
= __key_link_begin(keyring
, &key
->index_key
, &edit
);
498 ret
= __key_instantiate_and_link(key
, &prep
, keyring
, authkey
, &edit
);
501 __key_link_end(keyring
, &key
->index_key
, edit
);
504 if (key
->type
->preparse
)
505 key
->type
->free_preparse(&prep
);
509 EXPORT_SYMBOL(key_instantiate_and_link
);
512 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
513 * @key: The key to instantiate.
514 * @timeout: The timeout on the negative key.
515 * @error: The error to return when the key is hit.
516 * @keyring: Keyring to create a link in on success (or NULL).
517 * @authkey: The authorisation token permitting instantiation.
519 * Negatively instantiate a key that's in the uninstantiated state and, if
520 * successful, set its timeout and stored error and link it in to the
521 * destination keyring if one is supplied. The key and any links to the key
522 * will be automatically garbage collected after the timeout expires.
524 * Negative keys are used to rate limit repeated request_key() calls by causing
525 * them to return the stored error code (typically ENOKEY) until the negative
528 * If successful, 0 is returned, the authorisation token is revoked and anyone
529 * waiting for the key is woken up. If the key was already instantiated,
530 * -EBUSY will be returned.
532 int key_reject_and_link(struct key
*key
,
538 struct assoc_array_edit
*edit
;
540 int ret
, awaken
, link_ret
= 0;
549 link_ret
= __key_link_begin(keyring
, &key
->index_key
, &edit
);
551 mutex_lock(&key_construction_mutex
);
553 /* can't instantiate twice */
554 if (!test_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
)) {
555 /* mark the key as being negatively instantiated */
556 atomic_inc(&key
->user
->nikeys
);
557 key
->reject_error
= -error
;
559 set_bit(KEY_FLAG_NEGATIVE
, &key
->flags
);
560 set_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
);
561 now
= current_kernel_time();
562 key
->expiry
= now
.tv_sec
+ timeout
;
563 key_schedule_gc(key
->expiry
+ key_gc_delay
);
565 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT
, &key
->flags
))
570 /* and link it into the destination keyring */
571 if (keyring
&& link_ret
== 0)
572 __key_link(key
, &edit
);
574 /* disable the authorisation key */
579 mutex_unlock(&key_construction_mutex
);
582 __key_link_end(keyring
, &key
->index_key
, edit
);
584 /* wake up anyone waiting for a key to be constructed */
586 wake_up_bit(&key
->flags
, KEY_FLAG_USER_CONSTRUCT
);
588 return ret
== 0 ? link_ret
: ret
;
590 EXPORT_SYMBOL(key_reject_and_link
);
593 * key_put - Discard a reference to a key.
594 * @key: The key to discard a reference from.
596 * Discard a reference to a key, and when all the references are gone, we
597 * schedule the cleanup task to come and pull it out of the tree in process
598 * context at some later time.
600 void key_put(struct key
*key
)
605 if (atomic_dec_and_test(&key
->usage
))
606 schedule_work(&key_gc_work
);
609 EXPORT_SYMBOL(key_put
);
612 * Find a key by its serial number.
614 struct key
*key_lookup(key_serial_t id
)
619 spin_lock(&key_serial_lock
);
621 /* search the tree for the specified key */
622 n
= key_serial_tree
.rb_node
;
624 key
= rb_entry(n
, struct key
, serial_node
);
626 if (id
< key
->serial
)
628 else if (id
> key
->serial
)
635 key
= ERR_PTR(-ENOKEY
);
639 /* pretend it doesn't exist if it is awaiting deletion */
640 if (atomic_read(&key
->usage
) == 0)
643 /* this races with key_put(), but that doesn't matter since key_put()
644 * doesn't actually change the key
649 spin_unlock(&key_serial_lock
);
654 * Find and lock the specified key type against removal.
656 * We return with the sem read-locked if successful. If the type wasn't
657 * available -ENOKEY is returned instead.
659 struct key_type
*key_type_lookup(const char *type
)
661 struct key_type
*ktype
;
663 down_read(&key_types_sem
);
665 /* look up the key type to see if it's one of the registered kernel
667 list_for_each_entry(ktype
, &key_types_list
, link
) {
668 if (strcmp(ktype
->name
, type
) == 0)
669 goto found_kernel_type
;
672 up_read(&key_types_sem
);
673 ktype
= ERR_PTR(-ENOKEY
);
679 void key_set_timeout(struct key
*key
, unsigned timeout
)
684 /* make the changes with the locks held to prevent races */
685 down_write(&key
->sem
);
688 now
= current_kernel_time();
689 expiry
= now
.tv_sec
+ timeout
;
692 key
->expiry
= expiry
;
693 key_schedule_gc(key
->expiry
+ key_gc_delay
);
697 EXPORT_SYMBOL_GPL(key_set_timeout
);
700 * Unlock a key type locked by key_type_lookup().
702 void key_type_put(struct key_type
*ktype
)
704 up_read(&key_types_sem
);
708 * Attempt to update an existing key.
710 * The key is given to us with an incremented refcount that we need to discard
711 * if we get an error.
713 static inline key_ref_t
__key_update(key_ref_t key_ref
,
714 struct key_preparsed_payload
*prep
)
716 struct key
*key
= key_ref_to_ptr(key_ref
);
719 /* need write permission on the key to update it */
720 ret
= key_permission(key_ref
, KEY_NEED_WRITE
);
725 if (!key
->type
->update
)
728 down_write(&key
->sem
);
730 ret
= key
->type
->update(key
, prep
);
732 /* updating a negative key instantiates it */
733 clear_bit(KEY_FLAG_NEGATIVE
, &key
->flags
);
744 key_ref
= ERR_PTR(ret
);
749 * key_create_or_update - Update or create and instantiate a key.
750 * @keyring_ref: A pointer to the destination keyring with possession flag.
751 * @type: The type of key.
752 * @description: The searchable description for the key.
753 * @payload: The data to use to instantiate or update the key.
754 * @plen: The length of @payload.
755 * @perm: The permissions mask for a new key.
756 * @flags: The quota flags for a new key.
758 * Search the destination keyring for a key of the same description and if one
759 * is found, update it, otherwise create and instantiate a new one and create a
760 * link to it from that keyring.
762 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
765 * Returns a pointer to the new key if successful, -ENODEV if the key type
766 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
767 * caller isn't permitted to modify the keyring or the LSM did not permit
768 * creation of the key.
770 * On success, the possession flag from the keyring ref will be tacked on to
771 * the key ref before it is returned.
773 key_ref_t
key_create_or_update(key_ref_t keyring_ref
,
775 const char *description
,
781 struct keyring_index_key index_key
= {
782 .description
= description
,
784 struct key_preparsed_payload prep
;
785 struct assoc_array_edit
*edit
;
786 const struct cred
*cred
= current_cred();
787 struct key
*keyring
, *key
= NULL
;
791 /* look up the key type to see if it's one of the registered kernel
793 index_key
.type
= key_type_lookup(type
);
794 if (IS_ERR(index_key
.type
)) {
795 key_ref
= ERR_PTR(-ENODEV
);
799 key_ref
= ERR_PTR(-EINVAL
);
800 if (!index_key
.type
->instantiate
||
801 (!index_key
.description
&& !index_key
.type
->preparse
))
804 keyring
= key_ref_to_ptr(keyring_ref
);
808 key_ref
= ERR_PTR(-ENOTDIR
);
809 if (keyring
->type
!= &key_type_keyring
)
812 memset(&prep
, 0, sizeof(prep
));
815 prep
.quotalen
= index_key
.type
->def_datalen
;
816 prep
.trusted
= flags
& KEY_ALLOC_TRUSTED
;
817 prep
.expiry
= TIME_T_MAX
;
818 if (index_key
.type
->preparse
) {
819 ret
= index_key
.type
->preparse(&prep
);
821 key_ref
= ERR_PTR(ret
);
822 goto error_free_prep
;
824 if (!index_key
.description
)
825 index_key
.description
= prep
.description
;
826 key_ref
= ERR_PTR(-EINVAL
);
827 if (!index_key
.description
)
828 goto error_free_prep
;
830 index_key
.desc_len
= strlen(index_key
.description
);
832 key_ref
= ERR_PTR(-EPERM
);
833 if (!prep
.trusted
&& test_bit(KEY_FLAG_TRUSTED_ONLY
, &keyring
->flags
))
834 goto error_free_prep
;
835 flags
|= prep
.trusted
? KEY_ALLOC_TRUSTED
: 0;
837 ret
= __key_link_begin(keyring
, &index_key
, &edit
);
839 key_ref
= ERR_PTR(ret
);
840 goto error_free_prep
;
843 /* if we're going to allocate a new key, we're going to have
844 * to modify the keyring */
845 ret
= key_permission(keyring_ref
, KEY_NEED_WRITE
);
847 key_ref
= ERR_PTR(ret
);
851 /* if it's possible to update this type of key, search for an existing
852 * key of the same type and description in the destination keyring and
853 * update that instead if possible
855 if (index_key
.type
->update
) {
856 key_ref
= find_key_to_update(keyring_ref
, &index_key
);
858 goto found_matching_key
;
861 /* if the client doesn't provide, decide on the permissions we want */
862 if (perm
== KEY_PERM_UNDEF
) {
863 perm
= KEY_POS_VIEW
| KEY_POS_SEARCH
| KEY_POS_LINK
| KEY_POS_SETATTR
;
864 perm
|= KEY_USR_VIEW
;
866 if (index_key
.type
->read
)
867 perm
|= KEY_POS_READ
;
869 if (index_key
.type
== &key_type_keyring
||
870 index_key
.type
->update
)
871 perm
|= KEY_POS_WRITE
;
874 /* allocate a new key */
875 key
= key_alloc(index_key
.type
, index_key
.description
,
876 cred
->fsuid
, cred
->fsgid
, cred
, perm
, flags
);
878 key_ref
= ERR_CAST(key
);
882 /* instantiate it and link it into the target keyring */
883 ret
= __key_instantiate_and_link(key
, &prep
, keyring
, NULL
, &edit
);
886 key_ref
= ERR_PTR(ret
);
890 key_ref
= make_key_ref(key
, is_key_possessed(keyring_ref
));
893 __key_link_end(keyring
, &index_key
, edit
);
895 if (index_key
.type
->preparse
)
896 index_key
.type
->free_preparse(&prep
);
898 key_type_put(index_key
.type
);
903 /* we found a matching key, so we're going to try to update it
904 * - we can drop the locks first as we have the key pinned
906 __key_link_end(keyring
, &index_key
, edit
);
908 key_ref
= __key_update(key_ref
, &prep
);
909 goto error_free_prep
;
911 EXPORT_SYMBOL(key_create_or_update
);
914 * key_update - Update a key's contents.
915 * @key_ref: The pointer (plus possession flag) to the key.
916 * @payload: The data to be used to update the key.
917 * @plen: The length of @payload.
919 * Attempt to update the contents of a key with the given payload data. The
920 * caller must be granted Write permission on the key. Negative keys can be
921 * instantiated by this method.
923 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
924 * type does not support updating. The key type may return other errors.
926 int key_update(key_ref_t key_ref
, const void *payload
, size_t plen
)
928 struct key_preparsed_payload prep
;
929 struct key
*key
= key_ref_to_ptr(key_ref
);
934 /* the key must be writable */
935 ret
= key_permission(key_ref
, KEY_NEED_WRITE
);
939 /* attempt to update it if supported */
941 if (!key
->type
->update
)
944 memset(&prep
, 0, sizeof(prep
));
947 prep
.quotalen
= key
->type
->def_datalen
;
948 prep
.expiry
= TIME_T_MAX
;
949 if (key
->type
->preparse
) {
950 ret
= key
->type
->preparse(&prep
);
955 down_write(&key
->sem
);
957 ret
= key
->type
->update(key
, &prep
);
959 /* updating a negative key instantiates it */
960 clear_bit(KEY_FLAG_NEGATIVE
, &key
->flags
);
965 if (key
->type
->preparse
)
966 key
->type
->free_preparse(&prep
);
969 EXPORT_SYMBOL(key_update
);
972 * key_revoke - Revoke a key.
973 * @key: The key to be revoked.
975 * Mark a key as being revoked and ask the type to free up its resources. The
976 * revocation timeout is set and the key and all its links will be
977 * automatically garbage collected after key_gc_delay amount of time if they
978 * are not manually dealt with first.
980 void key_revoke(struct key
*key
)
987 /* make sure no one's trying to change or use the key when we mark it
988 * - we tell lockdep that we might nest because we might be revoking an
989 * authorisation key whilst holding the sem on a key we've just
992 down_write_nested(&key
->sem
, 1);
993 if (!test_and_set_bit(KEY_FLAG_REVOKED
, &key
->flags
) &&
995 key
->type
->revoke(key
);
997 /* set the death time to no more than the expiry time */
998 now
= current_kernel_time();
1000 if (key
->revoked_at
== 0 || key
->revoked_at
> time
) {
1001 key
->revoked_at
= time
;
1002 key_schedule_gc(key
->revoked_at
+ key_gc_delay
);
1005 up_write(&key
->sem
);
1007 EXPORT_SYMBOL(key_revoke
);
1010 * key_invalidate - Invalidate a key.
1011 * @key: The key to be invalidated.
1013 * Mark a key as being invalidated and have it cleaned up immediately. The key
1014 * is ignored by all searches and other operations from this point.
1016 void key_invalidate(struct key
*key
)
1018 kenter("%d", key_serial(key
));
1022 if (!test_bit(KEY_FLAG_INVALIDATED
, &key
->flags
)) {
1023 down_write_nested(&key
->sem
, 1);
1024 if (!test_and_set_bit(KEY_FLAG_INVALIDATED
, &key
->flags
))
1025 key_schedule_gc_links();
1026 up_write(&key
->sem
);
1029 EXPORT_SYMBOL(key_invalidate
);
1032 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1033 * @key: The key to be instantiated
1034 * @prep: The preparsed data to load.
1036 * Instantiate a key from preparsed data. We assume we can just copy the data
1037 * in directly and clear the old pointers.
1039 * This can be pointed to directly by the key type instantiate op pointer.
1041 int generic_key_instantiate(struct key
*key
, struct key_preparsed_payload
*prep
)
1045 pr_devel("==>%s()\n", __func__
);
1047 ret
= key_payload_reserve(key
, prep
->quotalen
);
1049 rcu_assign_keypointer(key
, prep
->payload
.data
[0]);
1050 key
->payload
.data
[1] = prep
->payload
.data
[1];
1051 key
->payload
.data
[2] = prep
->payload
.data
[2];
1052 key
->payload
.data
[3] = prep
->payload
.data
[3];
1053 prep
->payload
.data
[0] = NULL
;
1054 prep
->payload
.data
[1] = NULL
;
1055 prep
->payload
.data
[2] = NULL
;
1056 prep
->payload
.data
[3] = NULL
;
1058 pr_devel("<==%s() = %d\n", __func__
, ret
);
1061 EXPORT_SYMBOL(generic_key_instantiate
);
1064 * register_key_type - Register a type of key.
1065 * @ktype: The new key type.
1067 * Register a new key type.
1069 * Returns 0 on success or -EEXIST if a type of this name already exists.
1071 int register_key_type(struct key_type
*ktype
)
1076 memset(&ktype
->lock_class
, 0, sizeof(ktype
->lock_class
));
1079 down_write(&key_types_sem
);
1081 /* disallow key types with the same name */
1082 list_for_each_entry(p
, &key_types_list
, link
) {
1083 if (strcmp(p
->name
, ktype
->name
) == 0)
1087 /* store the type */
1088 list_add(&ktype
->link
, &key_types_list
);
1090 pr_notice("Key type %s registered\n", ktype
->name
);
1094 up_write(&key_types_sem
);
1097 EXPORT_SYMBOL(register_key_type
);
1100 * unregister_key_type - Unregister a type of key.
1101 * @ktype: The key type.
1103 * Unregister a key type and mark all the extant keys of this type as dead.
1104 * Those keys of this type are then destroyed to get rid of their payloads and
1105 * they and their links will be garbage collected as soon as possible.
1107 void unregister_key_type(struct key_type
*ktype
)
1109 down_write(&key_types_sem
);
1110 list_del_init(&ktype
->link
);
1111 downgrade_write(&key_types_sem
);
1112 key_gc_keytype(ktype
);
1113 pr_notice("Key type %s unregistered\n", ktype
->name
);
1114 up_read(&key_types_sem
);
1116 EXPORT_SYMBOL(unregister_key_type
);
1119 * Initialise the key management state.
1121 void __init
key_init(void)
1123 /* allocate a slab in which we can store keys */
1124 key_jar
= kmem_cache_create("key_jar", sizeof(struct key
),
1125 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1127 /* add the special key types */
1128 list_add_tail(&key_type_keyring
.link
, &key_types_list
);
1129 list_add_tail(&key_type_dead
.link
, &key_types_list
);
1130 list_add_tail(&key_type_user
.link
, &key_types_list
);
1131 list_add_tail(&key_type_logon
.link
, &key_types_list
);
1133 /* record the root user tracking */
1134 rb_link_node(&root_key_user
.node
,
1136 &key_user_tree
.rb_node
);
1138 rb_insert_color(&root_key_user
.node
,