]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - security/keys/key.c
Merge tag 'renesas-fixes-for-v4.14' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-focal-kernel.git] / security / keys / key.c
1 /* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29
30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
34
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
47 }
48 #endif
49
50 /*
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
53 */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent, **p;
58
59 try_again:
60 parent = NULL;
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
63
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
68
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
75 }
76
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
82
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
87
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
92 }
93
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 refcount_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
104
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
110
111 /* okay - we found a user record for this UID */
112 found:
113 refcount_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116 out:
117 return user;
118 }
119
120 /*
121 * Dispose of a user structure
122 */
123 void key_user_put(struct key_user *user)
124 {
125 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
128
129 kfree(user);
130 }
131 }
132
133 /*
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
136 */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 struct rb_node *parent, **p;
140 struct key *xkey;
141
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
146
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
149
150 spin_lock(&key_serial_lock);
151
152 attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
159
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
166 }
167
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
171
172 spin_unlock(&key_serial_lock);
173 return;
174
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177 serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
183 }
184
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
188
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
192 }
193 }
194
195 /**
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 * @restrict_link: Optional link restriction for new keyrings.
205 *
206 * Allocate a key of the specified type with the attributes given. The key is
207 * returned in an uninstantiated state and the caller needs to instantiate the
208 * key before returning.
209 *
210 * The restrict_link structure (if not NULL) will be freed when the
211 * keyring is destroyed, so it must be dynamically allocated.
212 *
213 * The user's key count quota is updated to reflect the creation of the key and
214 * the user's key data quota has the default for the key type reserved. The
215 * instantiation function should amend this as necessary. If insufficient
216 * quota is available, -EDQUOT will be returned.
217 *
218 * The LSM security modules can prevent a key being created, in which case
219 * -EACCES will be returned.
220 *
221 * Returns a pointer to the new key if successful and an error code otherwise.
222 *
223 * Note that the caller needs to ensure the key type isn't uninstantiated.
224 * Internally this can be done by locking key_types_sem. Externally, this can
225 * be done by either never unregistering the key type, or making sure
226 * key_alloc() calls don't race with module unloading.
227 */
228 struct key *key_alloc(struct key_type *type, const char *desc,
229 kuid_t uid, kgid_t gid, const struct cred *cred,
230 key_perm_t perm, unsigned long flags,
231 struct key_restriction *restrict_link)
232 {
233 struct key_user *user = NULL;
234 struct key *key;
235 size_t desclen, quotalen;
236 int ret;
237
238 key = ERR_PTR(-EINVAL);
239 if (!desc || !*desc)
240 goto error;
241
242 if (type->vet_description) {
243 ret = type->vet_description(desc);
244 if (ret < 0) {
245 key = ERR_PTR(ret);
246 goto error;
247 }
248 }
249
250 desclen = strlen(desc);
251 quotalen = desclen + 1 + type->def_datalen;
252
253 /* get hold of the key tracking for this user */
254 user = key_user_lookup(uid);
255 if (!user)
256 goto no_memory_1;
257
258 /* check that the user's quota permits allocation of another key and
259 * its description */
260 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
261 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
262 key_quota_root_maxkeys : key_quota_maxkeys;
263 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
264 key_quota_root_maxbytes : key_quota_maxbytes;
265
266 spin_lock(&user->lock);
267 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
268 if (user->qnkeys + 1 >= maxkeys ||
269 user->qnbytes + quotalen >= maxbytes ||
270 user->qnbytes + quotalen < user->qnbytes)
271 goto no_quota;
272 }
273
274 user->qnkeys++;
275 user->qnbytes += quotalen;
276 spin_unlock(&user->lock);
277 }
278
279 /* allocate and initialise the key and its description */
280 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
281 if (!key)
282 goto no_memory_2;
283
284 key->index_key.desc_len = desclen;
285 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
286 if (!key->index_key.description)
287 goto no_memory_3;
288
289 refcount_set(&key->usage, 1);
290 init_rwsem(&key->sem);
291 lockdep_set_class(&key->sem, &type->lock_class);
292 key->index_key.type = type;
293 key->user = user;
294 key->quotalen = quotalen;
295 key->datalen = type->def_datalen;
296 key->uid = uid;
297 key->gid = gid;
298 key->perm = perm;
299 key->restrict_link = restrict_link;
300
301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303 if (flags & KEY_ALLOC_BUILT_IN)
304 key->flags |= 1 << KEY_FLAG_BUILTIN;
305 if (flags & KEY_ALLOC_UID_KEYRING)
306 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
307
308 #ifdef KEY_DEBUGGING
309 key->magic = KEY_DEBUG_MAGIC;
310 #endif
311
312 /* let the security module know about the key */
313 ret = security_key_alloc(key, cred, flags);
314 if (ret < 0)
315 goto security_error;
316
317 /* publish the key by giving it a serial number */
318 atomic_inc(&user->nkeys);
319 key_alloc_serial(key);
320
321 error:
322 return key;
323
324 security_error:
325 kfree(key->description);
326 kmem_cache_free(key_jar, key);
327 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
328 spin_lock(&user->lock);
329 user->qnkeys--;
330 user->qnbytes -= quotalen;
331 spin_unlock(&user->lock);
332 }
333 key_user_put(user);
334 key = ERR_PTR(ret);
335 goto error;
336
337 no_memory_3:
338 kmem_cache_free(key_jar, key);
339 no_memory_2:
340 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
341 spin_lock(&user->lock);
342 user->qnkeys--;
343 user->qnbytes -= quotalen;
344 spin_unlock(&user->lock);
345 }
346 key_user_put(user);
347 no_memory_1:
348 key = ERR_PTR(-ENOMEM);
349 goto error;
350
351 no_quota:
352 spin_unlock(&user->lock);
353 key_user_put(user);
354 key = ERR_PTR(-EDQUOT);
355 goto error;
356 }
357 EXPORT_SYMBOL(key_alloc);
358
359 /**
360 * key_payload_reserve - Adjust data quota reservation for the key's payload
361 * @key: The key to make the reservation for.
362 * @datalen: The amount of data payload the caller now wants.
363 *
364 * Adjust the amount of the owning user's key data quota that a key reserves.
365 * If the amount is increased, then -EDQUOT may be returned if there isn't
366 * enough free quota available.
367 *
368 * If successful, 0 is returned.
369 */
370 int key_payload_reserve(struct key *key, size_t datalen)
371 {
372 int delta = (int)datalen - key->datalen;
373 int ret = 0;
374
375 key_check(key);
376
377 /* contemplate the quota adjustment */
378 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
379 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
380 key_quota_root_maxbytes : key_quota_maxbytes;
381
382 spin_lock(&key->user->lock);
383
384 if (delta > 0 &&
385 (key->user->qnbytes + delta >= maxbytes ||
386 key->user->qnbytes + delta < key->user->qnbytes)) {
387 ret = -EDQUOT;
388 }
389 else {
390 key->user->qnbytes += delta;
391 key->quotalen += delta;
392 }
393 spin_unlock(&key->user->lock);
394 }
395
396 /* change the recorded data length if that didn't generate an error */
397 if (ret == 0)
398 key->datalen = datalen;
399
400 return ret;
401 }
402 EXPORT_SYMBOL(key_payload_reserve);
403
404 /*
405 * Instantiate a key and link it into the target keyring atomically. Must be
406 * called with the target keyring's semaphore writelocked. The target key's
407 * semaphore need not be locked as instantiation is serialised by
408 * key_construction_mutex.
409 */
410 static int __key_instantiate_and_link(struct key *key,
411 struct key_preparsed_payload *prep,
412 struct key *keyring,
413 struct key *authkey,
414 struct assoc_array_edit **_edit)
415 {
416 int ret, awaken;
417
418 key_check(key);
419 key_check(keyring);
420
421 awaken = 0;
422 ret = -EBUSY;
423
424 mutex_lock(&key_construction_mutex);
425
426 /* can't instantiate twice */
427 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
428 /* instantiate the key */
429 ret = key->type->instantiate(key, prep);
430
431 if (ret == 0) {
432 /* mark the key as being instantiated */
433 atomic_inc(&key->user->nikeys);
434 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
435
436 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
437 awaken = 1;
438
439 /* and link it into the destination keyring */
440 if (keyring) {
441 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
442 set_bit(KEY_FLAG_KEEP, &key->flags);
443
444 __key_link(key, _edit);
445 }
446
447 /* disable the authorisation key */
448 if (authkey)
449 key_revoke(authkey);
450
451 if (prep->expiry != TIME_T_MAX) {
452 key->expiry = prep->expiry;
453 key_schedule_gc(prep->expiry + key_gc_delay);
454 }
455 }
456 }
457
458 mutex_unlock(&key_construction_mutex);
459
460 /* wake up anyone waiting for a key to be constructed */
461 if (awaken)
462 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
463
464 return ret;
465 }
466
467 /**
468 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
469 * @key: The key to instantiate.
470 * @data: The data to use to instantiate the keyring.
471 * @datalen: The length of @data.
472 * @keyring: Keyring to create a link in on success (or NULL).
473 * @authkey: The authorisation token permitting instantiation.
474 *
475 * Instantiate a key that's in the uninstantiated state using the provided data
476 * and, if successful, link it in to the destination keyring if one is
477 * supplied.
478 *
479 * If successful, 0 is returned, the authorisation token is revoked and anyone
480 * waiting for the key is woken up. If the key was already instantiated,
481 * -EBUSY will be returned.
482 */
483 int key_instantiate_and_link(struct key *key,
484 const void *data,
485 size_t datalen,
486 struct key *keyring,
487 struct key *authkey)
488 {
489 struct key_preparsed_payload prep;
490 struct assoc_array_edit *edit;
491 int ret;
492
493 memset(&prep, 0, sizeof(prep));
494 prep.data = data;
495 prep.datalen = datalen;
496 prep.quotalen = key->type->def_datalen;
497 prep.expiry = TIME_T_MAX;
498 if (key->type->preparse) {
499 ret = key->type->preparse(&prep);
500 if (ret < 0)
501 goto error;
502 }
503
504 if (keyring) {
505 ret = __key_link_begin(keyring, &key->index_key, &edit);
506 if (ret < 0)
507 goto error;
508
509 if (keyring->restrict_link && keyring->restrict_link->check) {
510 struct key_restriction *keyres = keyring->restrict_link;
511
512 ret = keyres->check(keyring, key->type, &prep.payload,
513 keyres->key);
514 if (ret < 0)
515 goto error_link_end;
516 }
517 }
518
519 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
520
521 error_link_end:
522 if (keyring)
523 __key_link_end(keyring, &key->index_key, edit);
524
525 error:
526 if (key->type->preparse)
527 key->type->free_preparse(&prep);
528 return ret;
529 }
530
531 EXPORT_SYMBOL(key_instantiate_and_link);
532
533 /**
534 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
535 * @key: The key to instantiate.
536 * @timeout: The timeout on the negative key.
537 * @error: The error to return when the key is hit.
538 * @keyring: Keyring to create a link in on success (or NULL).
539 * @authkey: The authorisation token permitting instantiation.
540 *
541 * Negatively instantiate a key that's in the uninstantiated state and, if
542 * successful, set its timeout and stored error and link it in to the
543 * destination keyring if one is supplied. The key and any links to the key
544 * will be automatically garbage collected after the timeout expires.
545 *
546 * Negative keys are used to rate limit repeated request_key() calls by causing
547 * them to return the stored error code (typically ENOKEY) until the negative
548 * key expires.
549 *
550 * If successful, 0 is returned, the authorisation token is revoked and anyone
551 * waiting for the key is woken up. If the key was already instantiated,
552 * -EBUSY will be returned.
553 */
554 int key_reject_and_link(struct key *key,
555 unsigned timeout,
556 unsigned error,
557 struct key *keyring,
558 struct key *authkey)
559 {
560 struct assoc_array_edit *edit;
561 struct timespec now;
562 int ret, awaken, link_ret = 0;
563
564 key_check(key);
565 key_check(keyring);
566
567 awaken = 0;
568 ret = -EBUSY;
569
570 if (keyring) {
571 if (keyring->restrict_link)
572 return -EPERM;
573
574 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
575 }
576
577 mutex_lock(&key_construction_mutex);
578
579 /* can't instantiate twice */
580 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
581 /* mark the key as being negatively instantiated */
582 atomic_inc(&key->user->nikeys);
583 key->reject_error = -error;
584 smp_wmb();
585 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
586 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
587 now = current_kernel_time();
588 key->expiry = now.tv_sec + timeout;
589 key_schedule_gc(key->expiry + key_gc_delay);
590
591 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
592 awaken = 1;
593
594 ret = 0;
595
596 /* and link it into the destination keyring */
597 if (keyring && link_ret == 0)
598 __key_link(key, &edit);
599
600 /* disable the authorisation key */
601 if (authkey)
602 key_revoke(authkey);
603 }
604
605 mutex_unlock(&key_construction_mutex);
606
607 if (keyring && link_ret == 0)
608 __key_link_end(keyring, &key->index_key, edit);
609
610 /* wake up anyone waiting for a key to be constructed */
611 if (awaken)
612 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
613
614 return ret == 0 ? link_ret : ret;
615 }
616 EXPORT_SYMBOL(key_reject_and_link);
617
618 /**
619 * key_put - Discard a reference to a key.
620 * @key: The key to discard a reference from.
621 *
622 * Discard a reference to a key, and when all the references are gone, we
623 * schedule the cleanup task to come and pull it out of the tree in process
624 * context at some later time.
625 */
626 void key_put(struct key *key)
627 {
628 if (key) {
629 key_check(key);
630
631 if (refcount_dec_and_test(&key->usage))
632 schedule_work(&key_gc_work);
633 }
634 }
635 EXPORT_SYMBOL(key_put);
636
637 /*
638 * Find a key by its serial number.
639 */
640 struct key *key_lookup(key_serial_t id)
641 {
642 struct rb_node *n;
643 struct key *key;
644
645 spin_lock(&key_serial_lock);
646
647 /* search the tree for the specified key */
648 n = key_serial_tree.rb_node;
649 while (n) {
650 key = rb_entry(n, struct key, serial_node);
651
652 if (id < key->serial)
653 n = n->rb_left;
654 else if (id > key->serial)
655 n = n->rb_right;
656 else
657 goto found;
658 }
659
660 not_found:
661 key = ERR_PTR(-ENOKEY);
662 goto error;
663
664 found:
665 /* A key is allowed to be looked up only if someone still owns a
666 * reference to it - otherwise it's awaiting the gc.
667 */
668 if (!refcount_inc_not_zero(&key->usage))
669 goto not_found;
670
671 error:
672 spin_unlock(&key_serial_lock);
673 return key;
674 }
675
676 /*
677 * Find and lock the specified key type against removal.
678 *
679 * We return with the sem read-locked if successful. If the type wasn't
680 * available -ENOKEY is returned instead.
681 */
682 struct key_type *key_type_lookup(const char *type)
683 {
684 struct key_type *ktype;
685
686 down_read(&key_types_sem);
687
688 /* look up the key type to see if it's one of the registered kernel
689 * types */
690 list_for_each_entry(ktype, &key_types_list, link) {
691 if (strcmp(ktype->name, type) == 0)
692 goto found_kernel_type;
693 }
694
695 up_read(&key_types_sem);
696 ktype = ERR_PTR(-ENOKEY);
697
698 found_kernel_type:
699 return ktype;
700 }
701
702 void key_set_timeout(struct key *key, unsigned timeout)
703 {
704 struct timespec now;
705 time_t expiry = 0;
706
707 /* make the changes with the locks held to prevent races */
708 down_write(&key->sem);
709
710 if (timeout > 0) {
711 now = current_kernel_time();
712 expiry = now.tv_sec + timeout;
713 }
714
715 key->expiry = expiry;
716 key_schedule_gc(key->expiry + key_gc_delay);
717
718 up_write(&key->sem);
719 }
720 EXPORT_SYMBOL_GPL(key_set_timeout);
721
722 /*
723 * Unlock a key type locked by key_type_lookup().
724 */
725 void key_type_put(struct key_type *ktype)
726 {
727 up_read(&key_types_sem);
728 }
729
730 /*
731 * Attempt to update an existing key.
732 *
733 * The key is given to us with an incremented refcount that we need to discard
734 * if we get an error.
735 */
736 static inline key_ref_t __key_update(key_ref_t key_ref,
737 struct key_preparsed_payload *prep)
738 {
739 struct key *key = key_ref_to_ptr(key_ref);
740 int ret;
741
742 /* need write permission on the key to update it */
743 ret = key_permission(key_ref, KEY_NEED_WRITE);
744 if (ret < 0)
745 goto error;
746
747 ret = -EEXIST;
748 if (!key->type->update)
749 goto error;
750
751 down_write(&key->sem);
752
753 ret = key->type->update(key, prep);
754 if (ret == 0)
755 /* updating a negative key instantiates it */
756 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
757
758 up_write(&key->sem);
759
760 if (ret < 0)
761 goto error;
762 out:
763 return key_ref;
764
765 error:
766 key_put(key);
767 key_ref = ERR_PTR(ret);
768 goto out;
769 }
770
771 /**
772 * key_create_or_update - Update or create and instantiate a key.
773 * @keyring_ref: A pointer to the destination keyring with possession flag.
774 * @type: The type of key.
775 * @description: The searchable description for the key.
776 * @payload: The data to use to instantiate or update the key.
777 * @plen: The length of @payload.
778 * @perm: The permissions mask for a new key.
779 * @flags: The quota flags for a new key.
780 *
781 * Search the destination keyring for a key of the same description and if one
782 * is found, update it, otherwise create and instantiate a new one and create a
783 * link to it from that keyring.
784 *
785 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
786 * concocted.
787 *
788 * Returns a pointer to the new key if successful, -ENODEV if the key type
789 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
790 * caller isn't permitted to modify the keyring or the LSM did not permit
791 * creation of the key.
792 *
793 * On success, the possession flag from the keyring ref will be tacked on to
794 * the key ref before it is returned.
795 */
796 key_ref_t key_create_or_update(key_ref_t keyring_ref,
797 const char *type,
798 const char *description,
799 const void *payload,
800 size_t plen,
801 key_perm_t perm,
802 unsigned long flags)
803 {
804 struct keyring_index_key index_key = {
805 .description = description,
806 };
807 struct key_preparsed_payload prep;
808 struct assoc_array_edit *edit;
809 const struct cred *cred = current_cred();
810 struct key *keyring, *key = NULL;
811 key_ref_t key_ref;
812 int ret;
813 struct key_restriction *restrict_link = NULL;
814
815 /* look up the key type to see if it's one of the registered kernel
816 * types */
817 index_key.type = key_type_lookup(type);
818 if (IS_ERR(index_key.type)) {
819 key_ref = ERR_PTR(-ENODEV);
820 goto error;
821 }
822
823 key_ref = ERR_PTR(-EINVAL);
824 if (!index_key.type->instantiate ||
825 (!index_key.description && !index_key.type->preparse))
826 goto error_put_type;
827
828 keyring = key_ref_to_ptr(keyring_ref);
829
830 key_check(keyring);
831
832 key_ref = ERR_PTR(-EPERM);
833 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
834 restrict_link = keyring->restrict_link;
835
836 key_ref = ERR_PTR(-ENOTDIR);
837 if (keyring->type != &key_type_keyring)
838 goto error_put_type;
839
840 memset(&prep, 0, sizeof(prep));
841 prep.data = payload;
842 prep.datalen = plen;
843 prep.quotalen = index_key.type->def_datalen;
844 prep.expiry = TIME_T_MAX;
845 if (index_key.type->preparse) {
846 ret = index_key.type->preparse(&prep);
847 if (ret < 0) {
848 key_ref = ERR_PTR(ret);
849 goto error_free_prep;
850 }
851 if (!index_key.description)
852 index_key.description = prep.description;
853 key_ref = ERR_PTR(-EINVAL);
854 if (!index_key.description)
855 goto error_free_prep;
856 }
857 index_key.desc_len = strlen(index_key.description);
858
859 ret = __key_link_begin(keyring, &index_key, &edit);
860 if (ret < 0) {
861 key_ref = ERR_PTR(ret);
862 goto error_free_prep;
863 }
864
865 if (restrict_link && restrict_link->check) {
866 ret = restrict_link->check(keyring, index_key.type,
867 &prep.payload, restrict_link->key);
868 if (ret < 0) {
869 key_ref = ERR_PTR(ret);
870 goto error_link_end;
871 }
872 }
873
874 /* if we're going to allocate a new key, we're going to have
875 * to modify the keyring */
876 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
877 if (ret < 0) {
878 key_ref = ERR_PTR(ret);
879 goto error_link_end;
880 }
881
882 /* if it's possible to update this type of key, search for an existing
883 * key of the same type and description in the destination keyring and
884 * update that instead if possible
885 */
886 if (index_key.type->update) {
887 key_ref = find_key_to_update(keyring_ref, &index_key);
888 if (key_ref)
889 goto found_matching_key;
890 }
891
892 /* if the client doesn't provide, decide on the permissions we want */
893 if (perm == KEY_PERM_UNDEF) {
894 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
895 perm |= KEY_USR_VIEW;
896
897 if (index_key.type->read)
898 perm |= KEY_POS_READ;
899
900 if (index_key.type == &key_type_keyring ||
901 index_key.type->update)
902 perm |= KEY_POS_WRITE;
903 }
904
905 /* allocate a new key */
906 key = key_alloc(index_key.type, index_key.description,
907 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
908 if (IS_ERR(key)) {
909 key_ref = ERR_CAST(key);
910 goto error_link_end;
911 }
912
913 /* instantiate it and link it into the target keyring */
914 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
915 if (ret < 0) {
916 key_put(key);
917 key_ref = ERR_PTR(ret);
918 goto error_link_end;
919 }
920
921 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
922
923 error_link_end:
924 __key_link_end(keyring, &index_key, edit);
925 error_free_prep:
926 if (index_key.type->preparse)
927 index_key.type->free_preparse(&prep);
928 error_put_type:
929 key_type_put(index_key.type);
930 error:
931 return key_ref;
932
933 found_matching_key:
934 /* we found a matching key, so we're going to try to update it
935 * - we can drop the locks first as we have the key pinned
936 */
937 __key_link_end(keyring, &index_key, edit);
938
939 key_ref = __key_update(key_ref, &prep);
940 goto error_free_prep;
941 }
942 EXPORT_SYMBOL(key_create_or_update);
943
944 /**
945 * key_update - Update a key's contents.
946 * @key_ref: The pointer (plus possession flag) to the key.
947 * @payload: The data to be used to update the key.
948 * @plen: The length of @payload.
949 *
950 * Attempt to update the contents of a key with the given payload data. The
951 * caller must be granted Write permission on the key. Negative keys can be
952 * instantiated by this method.
953 *
954 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
955 * type does not support updating. The key type may return other errors.
956 */
957 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
958 {
959 struct key_preparsed_payload prep;
960 struct key *key = key_ref_to_ptr(key_ref);
961 int ret;
962
963 key_check(key);
964
965 /* the key must be writable */
966 ret = key_permission(key_ref, KEY_NEED_WRITE);
967 if (ret < 0)
968 return ret;
969
970 /* attempt to update it if supported */
971 if (!key->type->update)
972 return -EOPNOTSUPP;
973
974 memset(&prep, 0, sizeof(prep));
975 prep.data = payload;
976 prep.datalen = plen;
977 prep.quotalen = key->type->def_datalen;
978 prep.expiry = TIME_T_MAX;
979 if (key->type->preparse) {
980 ret = key->type->preparse(&prep);
981 if (ret < 0)
982 goto error;
983 }
984
985 down_write(&key->sem);
986
987 ret = key->type->update(key, &prep);
988 if (ret == 0)
989 /* updating a negative key instantiates it */
990 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
991
992 up_write(&key->sem);
993
994 error:
995 if (key->type->preparse)
996 key->type->free_preparse(&prep);
997 return ret;
998 }
999 EXPORT_SYMBOL(key_update);
1000
1001 /**
1002 * key_revoke - Revoke a key.
1003 * @key: The key to be revoked.
1004 *
1005 * Mark a key as being revoked and ask the type to free up its resources. The
1006 * revocation timeout is set and the key and all its links will be
1007 * automatically garbage collected after key_gc_delay amount of time if they
1008 * are not manually dealt with first.
1009 */
1010 void key_revoke(struct key *key)
1011 {
1012 struct timespec now;
1013 time_t time;
1014
1015 key_check(key);
1016
1017 /* make sure no one's trying to change or use the key when we mark it
1018 * - we tell lockdep that we might nest because we might be revoking an
1019 * authorisation key whilst holding the sem on a key we've just
1020 * instantiated
1021 */
1022 down_write_nested(&key->sem, 1);
1023 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1024 key->type->revoke)
1025 key->type->revoke(key);
1026
1027 /* set the death time to no more than the expiry time */
1028 now = current_kernel_time();
1029 time = now.tv_sec;
1030 if (key->revoked_at == 0 || key->revoked_at > time) {
1031 key->revoked_at = time;
1032 key_schedule_gc(key->revoked_at + key_gc_delay);
1033 }
1034
1035 up_write(&key->sem);
1036 }
1037 EXPORT_SYMBOL(key_revoke);
1038
1039 /**
1040 * key_invalidate - Invalidate a key.
1041 * @key: The key to be invalidated.
1042 *
1043 * Mark a key as being invalidated and have it cleaned up immediately. The key
1044 * is ignored by all searches and other operations from this point.
1045 */
1046 void key_invalidate(struct key *key)
1047 {
1048 kenter("%d", key_serial(key));
1049
1050 key_check(key);
1051
1052 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1053 down_write_nested(&key->sem, 1);
1054 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1055 key_schedule_gc_links();
1056 up_write(&key->sem);
1057 }
1058 }
1059 EXPORT_SYMBOL(key_invalidate);
1060
1061 /**
1062 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1063 * @key: The key to be instantiated
1064 * @prep: The preparsed data to load.
1065 *
1066 * Instantiate a key from preparsed data. We assume we can just copy the data
1067 * in directly and clear the old pointers.
1068 *
1069 * This can be pointed to directly by the key type instantiate op pointer.
1070 */
1071 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1072 {
1073 int ret;
1074
1075 pr_devel("==>%s()\n", __func__);
1076
1077 ret = key_payload_reserve(key, prep->quotalen);
1078 if (ret == 0) {
1079 rcu_assign_keypointer(key, prep->payload.data[0]);
1080 key->payload.data[1] = prep->payload.data[1];
1081 key->payload.data[2] = prep->payload.data[2];
1082 key->payload.data[3] = prep->payload.data[3];
1083 prep->payload.data[0] = NULL;
1084 prep->payload.data[1] = NULL;
1085 prep->payload.data[2] = NULL;
1086 prep->payload.data[3] = NULL;
1087 }
1088 pr_devel("<==%s() = %d\n", __func__, ret);
1089 return ret;
1090 }
1091 EXPORT_SYMBOL(generic_key_instantiate);
1092
1093 /**
1094 * register_key_type - Register a type of key.
1095 * @ktype: The new key type.
1096 *
1097 * Register a new key type.
1098 *
1099 * Returns 0 on success or -EEXIST if a type of this name already exists.
1100 */
1101 int register_key_type(struct key_type *ktype)
1102 {
1103 struct key_type *p;
1104 int ret;
1105
1106 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1107
1108 ret = -EEXIST;
1109 down_write(&key_types_sem);
1110
1111 /* disallow key types with the same name */
1112 list_for_each_entry(p, &key_types_list, link) {
1113 if (strcmp(p->name, ktype->name) == 0)
1114 goto out;
1115 }
1116
1117 /* store the type */
1118 list_add(&ktype->link, &key_types_list);
1119
1120 pr_notice("Key type %s registered\n", ktype->name);
1121 ret = 0;
1122
1123 out:
1124 up_write(&key_types_sem);
1125 return ret;
1126 }
1127 EXPORT_SYMBOL(register_key_type);
1128
1129 /**
1130 * unregister_key_type - Unregister a type of key.
1131 * @ktype: The key type.
1132 *
1133 * Unregister a key type and mark all the extant keys of this type as dead.
1134 * Those keys of this type are then destroyed to get rid of their payloads and
1135 * they and their links will be garbage collected as soon as possible.
1136 */
1137 void unregister_key_type(struct key_type *ktype)
1138 {
1139 down_write(&key_types_sem);
1140 list_del_init(&ktype->link);
1141 downgrade_write(&key_types_sem);
1142 key_gc_keytype(ktype);
1143 pr_notice("Key type %s unregistered\n", ktype->name);
1144 up_read(&key_types_sem);
1145 }
1146 EXPORT_SYMBOL(unregister_key_type);
1147
1148 /*
1149 * Initialise the key management state.
1150 */
1151 void __init key_init(void)
1152 {
1153 /* allocate a slab in which we can store keys */
1154 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1155 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1156
1157 /* add the special key types */
1158 list_add_tail(&key_type_keyring.link, &key_types_list);
1159 list_add_tail(&key_type_dead.link, &key_types_list);
1160 list_add_tail(&key_type_user.link, &key_types_list);
1161 list_add_tail(&key_type_logon.link, &key_types_list);
1162
1163 /* record the root user tracking */
1164 rb_link_node(&root_key_user.node,
1165 NULL,
1166 &key_user_tree.rb_node);
1167
1168 rb_insert_color(&root_key_user.node,
1169 &key_user_tree);
1170 }