]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - security/keys/keyctl.c
Don't leak a key reference if request_key() tries to use a revoked keyring
[mirror_ubuntu-artful-kernel.git] / security / keys / keyctl.c
1 /* Userspace key control operations
2 *
3 * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/key.h>
18 #include <linux/keyctl.h>
19 #include <linux/fs.h>
20 #include <linux/capability.h>
21 #include <linux/string.h>
22 #include <linux/err.h>
23 #include <linux/vmalloc.h>
24 #include <linux/security.h>
25 #include <linux/uio.h>
26 #include <asm/uaccess.h>
27 #include "internal.h"
28
29 #define KEY_MAX_DESC_SIZE 4096
30
31 static int key_get_type_from_user(char *type,
32 const char __user *_type,
33 unsigned len)
34 {
35 int ret;
36
37 ret = strncpy_from_user(type, _type, len);
38 if (ret < 0)
39 return ret;
40 if (ret == 0 || ret >= len)
41 return -EINVAL;
42 if (type[0] == '.')
43 return -EPERM;
44 type[len - 1] = '\0';
45 return 0;
46 }
47
48 /*
49 * Extract the description of a new key from userspace and either add it as a
50 * new key to the specified keyring or update a matching key in that keyring.
51 *
52 * If the description is NULL or an empty string, the key type is asked to
53 * generate one from the payload.
54 *
55 * The keyring must be writable so that we can attach the key to it.
56 *
57 * If successful, the new key's serial number is returned, otherwise an error
58 * code is returned.
59 */
60 SYSCALL_DEFINE5(add_key, const char __user *, _type,
61 const char __user *, _description,
62 const void __user *, _payload,
63 size_t, plen,
64 key_serial_t, ringid)
65 {
66 key_ref_t keyring_ref, key_ref;
67 char type[32], *description;
68 void *payload;
69 long ret;
70 bool vm;
71
72 ret = -EINVAL;
73 if (plen > 1024 * 1024 - 1)
74 goto error;
75
76 /* draw all the data into kernel space */
77 ret = key_get_type_from_user(type, _type, sizeof(type));
78 if (ret < 0)
79 goto error;
80
81 description = NULL;
82 if (_description) {
83 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
84 if (IS_ERR(description)) {
85 ret = PTR_ERR(description);
86 goto error;
87 }
88 if (!*description) {
89 kfree(description);
90 description = NULL;
91 } else if ((description[0] == '.') &&
92 (strncmp(type, "keyring", 7) == 0)) {
93 ret = -EPERM;
94 goto error2;
95 }
96 }
97
98 /* pull the payload in if one was supplied */
99 payload = NULL;
100
101 vm = false;
102 if (_payload) {
103 ret = -ENOMEM;
104 payload = kmalloc(plen, GFP_KERNEL | __GFP_NOWARN);
105 if (!payload) {
106 if (plen <= PAGE_SIZE)
107 goto error2;
108 vm = true;
109 payload = vmalloc(plen);
110 if (!payload)
111 goto error2;
112 }
113
114 ret = -EFAULT;
115 if (copy_from_user(payload, _payload, plen) != 0)
116 goto error3;
117 }
118
119 /* find the target keyring (which must be writable) */
120 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
121 if (IS_ERR(keyring_ref)) {
122 ret = PTR_ERR(keyring_ref);
123 goto error3;
124 }
125
126 /* create or update the requested key and add it to the target
127 * keyring */
128 key_ref = key_create_or_update(keyring_ref, type, description,
129 payload, plen, KEY_PERM_UNDEF,
130 KEY_ALLOC_IN_QUOTA);
131 if (!IS_ERR(key_ref)) {
132 ret = key_ref_to_ptr(key_ref)->serial;
133 key_ref_put(key_ref);
134 }
135 else {
136 ret = PTR_ERR(key_ref);
137 }
138
139 key_ref_put(keyring_ref);
140 error3:
141 if (!vm)
142 kfree(payload);
143 else
144 vfree(payload);
145 error2:
146 kfree(description);
147 error:
148 return ret;
149 }
150
151 /*
152 * Search the process keyrings and keyring trees linked from those for a
153 * matching key. Keyrings must have appropriate Search permission to be
154 * searched.
155 *
156 * If a key is found, it will be attached to the destination keyring if there's
157 * one specified and the serial number of the key will be returned.
158 *
159 * If no key is found, /sbin/request-key will be invoked if _callout_info is
160 * non-NULL in an attempt to create a key. The _callout_info string will be
161 * passed to /sbin/request-key to aid with completing the request. If the
162 * _callout_info string is "" then it will be changed to "-".
163 */
164 SYSCALL_DEFINE4(request_key, const char __user *, _type,
165 const char __user *, _description,
166 const char __user *, _callout_info,
167 key_serial_t, destringid)
168 {
169 struct key_type *ktype;
170 struct key *key;
171 key_ref_t dest_ref;
172 size_t callout_len;
173 char type[32], *description, *callout_info;
174 long ret;
175
176 /* pull the type into kernel space */
177 ret = key_get_type_from_user(type, _type, sizeof(type));
178 if (ret < 0)
179 goto error;
180
181 /* pull the description into kernel space */
182 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
183 if (IS_ERR(description)) {
184 ret = PTR_ERR(description);
185 goto error;
186 }
187
188 /* pull the callout info into kernel space */
189 callout_info = NULL;
190 callout_len = 0;
191 if (_callout_info) {
192 callout_info = strndup_user(_callout_info, PAGE_SIZE);
193 if (IS_ERR(callout_info)) {
194 ret = PTR_ERR(callout_info);
195 goto error2;
196 }
197 callout_len = strlen(callout_info);
198 }
199
200 /* get the destination keyring if specified */
201 dest_ref = NULL;
202 if (destringid) {
203 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
204 KEY_NEED_WRITE);
205 if (IS_ERR(dest_ref)) {
206 ret = PTR_ERR(dest_ref);
207 goto error3;
208 }
209 }
210
211 /* find the key type */
212 ktype = key_type_lookup(type);
213 if (IS_ERR(ktype)) {
214 ret = PTR_ERR(ktype);
215 goto error4;
216 }
217
218 /* do the search */
219 key = request_key_and_link(ktype, description, callout_info,
220 callout_len, NULL, key_ref_to_ptr(dest_ref),
221 KEY_ALLOC_IN_QUOTA);
222 if (IS_ERR(key)) {
223 ret = PTR_ERR(key);
224 goto error5;
225 }
226
227 /* wait for the key to finish being constructed */
228 ret = wait_for_key_construction(key, 1);
229 if (ret < 0)
230 goto error6;
231
232 ret = key->serial;
233
234 error6:
235 key_put(key);
236 error5:
237 key_type_put(ktype);
238 error4:
239 key_ref_put(dest_ref);
240 error3:
241 kfree(callout_info);
242 error2:
243 kfree(description);
244 error:
245 return ret;
246 }
247
248 /*
249 * Get the ID of the specified process keyring.
250 *
251 * The requested keyring must have search permission to be found.
252 *
253 * If successful, the ID of the requested keyring will be returned.
254 */
255 long keyctl_get_keyring_ID(key_serial_t id, int create)
256 {
257 key_ref_t key_ref;
258 unsigned long lflags;
259 long ret;
260
261 lflags = create ? KEY_LOOKUP_CREATE : 0;
262 key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
263 if (IS_ERR(key_ref)) {
264 ret = PTR_ERR(key_ref);
265 goto error;
266 }
267
268 ret = key_ref_to_ptr(key_ref)->serial;
269 key_ref_put(key_ref);
270 error:
271 return ret;
272 }
273
274 /*
275 * Join a (named) session keyring.
276 *
277 * Create and join an anonymous session keyring or join a named session
278 * keyring, creating it if necessary. A named session keyring must have Search
279 * permission for it to be joined. Session keyrings without this permit will
280 * be skipped over.
281 *
282 * If successful, the ID of the joined session keyring will be returned.
283 */
284 long keyctl_join_session_keyring(const char __user *_name)
285 {
286 char *name;
287 long ret;
288
289 /* fetch the name from userspace */
290 name = NULL;
291 if (_name) {
292 name = strndup_user(_name, KEY_MAX_DESC_SIZE);
293 if (IS_ERR(name)) {
294 ret = PTR_ERR(name);
295 goto error;
296 }
297 }
298
299 /* join the session */
300 ret = join_session_keyring(name);
301 kfree(name);
302
303 error:
304 return ret;
305 }
306
307 /*
308 * Update a key's data payload from the given data.
309 *
310 * The key must grant the caller Write permission and the key type must support
311 * updating for this to work. A negative key can be positively instantiated
312 * with this call.
313 *
314 * If successful, 0 will be returned. If the key type does not support
315 * updating, then -EOPNOTSUPP will be returned.
316 */
317 long keyctl_update_key(key_serial_t id,
318 const void __user *_payload,
319 size_t plen)
320 {
321 key_ref_t key_ref;
322 void *payload;
323 long ret;
324
325 ret = -EINVAL;
326 if (plen > PAGE_SIZE)
327 goto error;
328
329 /* pull the payload in if one was supplied */
330 payload = NULL;
331 if (_payload) {
332 ret = -ENOMEM;
333 payload = kmalloc(plen, GFP_KERNEL);
334 if (!payload)
335 goto error;
336
337 ret = -EFAULT;
338 if (copy_from_user(payload, _payload, plen) != 0)
339 goto error2;
340 }
341
342 /* find the target key (which must be writable) */
343 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
344 if (IS_ERR(key_ref)) {
345 ret = PTR_ERR(key_ref);
346 goto error2;
347 }
348
349 /* update the key */
350 ret = key_update(key_ref, payload, plen);
351
352 key_ref_put(key_ref);
353 error2:
354 kfree(payload);
355 error:
356 return ret;
357 }
358
359 /*
360 * Revoke a key.
361 *
362 * The key must be grant the caller Write or Setattr permission for this to
363 * work. The key type should give up its quota claim when revoked. The key
364 * and any links to the key will be automatically garbage collected after a
365 * certain amount of time (/proc/sys/kernel/keys/gc_delay).
366 *
367 * If successful, 0 is returned.
368 */
369 long keyctl_revoke_key(key_serial_t id)
370 {
371 key_ref_t key_ref;
372 long ret;
373
374 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
375 if (IS_ERR(key_ref)) {
376 ret = PTR_ERR(key_ref);
377 if (ret != -EACCES)
378 goto error;
379 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
380 if (IS_ERR(key_ref)) {
381 ret = PTR_ERR(key_ref);
382 goto error;
383 }
384 }
385
386 key_revoke(key_ref_to_ptr(key_ref));
387 ret = 0;
388
389 key_ref_put(key_ref);
390 error:
391 return ret;
392 }
393
394 /*
395 * Invalidate a key.
396 *
397 * The key must be grant the caller Invalidate permission for this to work.
398 * The key and any links to the key will be automatically garbage collected
399 * immediately.
400 *
401 * If successful, 0 is returned.
402 */
403 long keyctl_invalidate_key(key_serial_t id)
404 {
405 key_ref_t key_ref;
406 long ret;
407
408 kenter("%d", id);
409
410 key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
411 if (IS_ERR(key_ref)) {
412 ret = PTR_ERR(key_ref);
413
414 /* Root is permitted to invalidate certain special keys */
415 if (capable(CAP_SYS_ADMIN)) {
416 key_ref = lookup_user_key(id, 0, 0);
417 if (IS_ERR(key_ref))
418 goto error;
419 if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
420 &key_ref_to_ptr(key_ref)->flags))
421 goto invalidate;
422 goto error_put;
423 }
424
425 goto error;
426 }
427
428 invalidate:
429 key_invalidate(key_ref_to_ptr(key_ref));
430 ret = 0;
431 error_put:
432 key_ref_put(key_ref);
433 error:
434 kleave(" = %ld", ret);
435 return ret;
436 }
437
438 /*
439 * Clear the specified keyring, creating an empty process keyring if one of the
440 * special keyring IDs is used.
441 *
442 * The keyring must grant the caller Write permission for this to work. If
443 * successful, 0 will be returned.
444 */
445 long keyctl_keyring_clear(key_serial_t ringid)
446 {
447 key_ref_t keyring_ref;
448 long ret;
449
450 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
451 if (IS_ERR(keyring_ref)) {
452 ret = PTR_ERR(keyring_ref);
453
454 /* Root is permitted to invalidate certain special keyrings */
455 if (capable(CAP_SYS_ADMIN)) {
456 keyring_ref = lookup_user_key(ringid, 0, 0);
457 if (IS_ERR(keyring_ref))
458 goto error;
459 if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
460 &key_ref_to_ptr(keyring_ref)->flags))
461 goto clear;
462 goto error_put;
463 }
464
465 goto error;
466 }
467
468 clear:
469 ret = keyring_clear(key_ref_to_ptr(keyring_ref));
470 error_put:
471 key_ref_put(keyring_ref);
472 error:
473 return ret;
474 }
475
476 /*
477 * Create a link from a keyring to a key if there's no matching key in the
478 * keyring, otherwise replace the link to the matching key with a link to the
479 * new key.
480 *
481 * The key must grant the caller Link permission and the the keyring must grant
482 * the caller Write permission. Furthermore, if an additional link is created,
483 * the keyring's quota will be extended.
484 *
485 * If successful, 0 will be returned.
486 */
487 long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
488 {
489 key_ref_t keyring_ref, key_ref;
490 long ret;
491
492 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
493 if (IS_ERR(keyring_ref)) {
494 ret = PTR_ERR(keyring_ref);
495 goto error;
496 }
497
498 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
499 if (IS_ERR(key_ref)) {
500 ret = PTR_ERR(key_ref);
501 goto error2;
502 }
503
504 ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
505
506 key_ref_put(key_ref);
507 error2:
508 key_ref_put(keyring_ref);
509 error:
510 return ret;
511 }
512
513 /*
514 * Unlink a key from a keyring.
515 *
516 * The keyring must grant the caller Write permission for this to work; the key
517 * itself need not grant the caller anything. If the last link to a key is
518 * removed then that key will be scheduled for destruction.
519 *
520 * If successful, 0 will be returned.
521 */
522 long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
523 {
524 key_ref_t keyring_ref, key_ref;
525 long ret;
526
527 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
528 if (IS_ERR(keyring_ref)) {
529 ret = PTR_ERR(keyring_ref);
530 goto error;
531 }
532
533 key_ref = lookup_user_key(id, KEY_LOOKUP_FOR_UNLINK, 0);
534 if (IS_ERR(key_ref)) {
535 ret = PTR_ERR(key_ref);
536 goto error2;
537 }
538
539 ret = key_unlink(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
540
541 key_ref_put(key_ref);
542 error2:
543 key_ref_put(keyring_ref);
544 error:
545 return ret;
546 }
547
548 /*
549 * Return a description of a key to userspace.
550 *
551 * The key must grant the caller View permission for this to work.
552 *
553 * If there's a buffer, we place up to buflen bytes of data into it formatted
554 * in the following way:
555 *
556 * type;uid;gid;perm;description<NUL>
557 *
558 * If successful, we return the amount of description available, irrespective
559 * of how much we may have copied into the buffer.
560 */
561 long keyctl_describe_key(key_serial_t keyid,
562 char __user *buffer,
563 size_t buflen)
564 {
565 struct key *key, *instkey;
566 key_ref_t key_ref;
567 char *infobuf;
568 long ret;
569 int desclen, infolen;
570
571 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
572 if (IS_ERR(key_ref)) {
573 /* viewing a key under construction is permitted if we have the
574 * authorisation token handy */
575 if (PTR_ERR(key_ref) == -EACCES) {
576 instkey = key_get_instantiation_authkey(keyid);
577 if (!IS_ERR(instkey)) {
578 key_put(instkey);
579 key_ref = lookup_user_key(keyid,
580 KEY_LOOKUP_PARTIAL,
581 0);
582 if (!IS_ERR(key_ref))
583 goto okay;
584 }
585 }
586
587 ret = PTR_ERR(key_ref);
588 goto error;
589 }
590
591 okay:
592 key = key_ref_to_ptr(key_ref);
593 desclen = strlen(key->description);
594
595 /* calculate how much information we're going to return */
596 ret = -ENOMEM;
597 infobuf = kasprintf(GFP_KERNEL,
598 "%s;%d;%d;%08x;",
599 key->type->name,
600 from_kuid_munged(current_user_ns(), key->uid),
601 from_kgid_munged(current_user_ns(), key->gid),
602 key->perm);
603 if (!infobuf)
604 goto error2;
605 infolen = strlen(infobuf);
606 ret = infolen + desclen + 1;
607
608 /* consider returning the data */
609 if (buffer && buflen >= ret) {
610 if (copy_to_user(buffer, infobuf, infolen) != 0 ||
611 copy_to_user(buffer + infolen, key->description,
612 desclen + 1) != 0)
613 ret = -EFAULT;
614 }
615
616 kfree(infobuf);
617 error2:
618 key_ref_put(key_ref);
619 error:
620 return ret;
621 }
622
623 /*
624 * Search the specified keyring and any keyrings it links to for a matching
625 * key. Only keyrings that grant the caller Search permission will be searched
626 * (this includes the starting keyring). Only keys with Search permission can
627 * be found.
628 *
629 * If successful, the found key will be linked to the destination keyring if
630 * supplied and the key has Link permission, and the found key ID will be
631 * returned.
632 */
633 long keyctl_keyring_search(key_serial_t ringid,
634 const char __user *_type,
635 const char __user *_description,
636 key_serial_t destringid)
637 {
638 struct key_type *ktype;
639 key_ref_t keyring_ref, key_ref, dest_ref;
640 char type[32], *description;
641 long ret;
642
643 /* pull the type and description into kernel space */
644 ret = key_get_type_from_user(type, _type, sizeof(type));
645 if (ret < 0)
646 goto error;
647
648 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
649 if (IS_ERR(description)) {
650 ret = PTR_ERR(description);
651 goto error;
652 }
653
654 /* get the keyring at which to begin the search */
655 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
656 if (IS_ERR(keyring_ref)) {
657 ret = PTR_ERR(keyring_ref);
658 goto error2;
659 }
660
661 /* get the destination keyring if specified */
662 dest_ref = NULL;
663 if (destringid) {
664 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
665 KEY_NEED_WRITE);
666 if (IS_ERR(dest_ref)) {
667 ret = PTR_ERR(dest_ref);
668 goto error3;
669 }
670 }
671
672 /* find the key type */
673 ktype = key_type_lookup(type);
674 if (IS_ERR(ktype)) {
675 ret = PTR_ERR(ktype);
676 goto error4;
677 }
678
679 /* do the search */
680 key_ref = keyring_search(keyring_ref, ktype, description);
681 if (IS_ERR(key_ref)) {
682 ret = PTR_ERR(key_ref);
683
684 /* treat lack or presence of a negative key the same */
685 if (ret == -EAGAIN)
686 ret = -ENOKEY;
687 goto error5;
688 }
689
690 /* link the resulting key to the destination keyring if we can */
691 if (dest_ref) {
692 ret = key_permission(key_ref, KEY_NEED_LINK);
693 if (ret < 0)
694 goto error6;
695
696 ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
697 if (ret < 0)
698 goto error6;
699 }
700
701 ret = key_ref_to_ptr(key_ref)->serial;
702
703 error6:
704 key_ref_put(key_ref);
705 error5:
706 key_type_put(ktype);
707 error4:
708 key_ref_put(dest_ref);
709 error3:
710 key_ref_put(keyring_ref);
711 error2:
712 kfree(description);
713 error:
714 return ret;
715 }
716
717 /*
718 * Read a key's payload.
719 *
720 * The key must either grant the caller Read permission, or it must grant the
721 * caller Search permission when searched for from the process keyrings.
722 *
723 * If successful, we place up to buflen bytes of data into the buffer, if one
724 * is provided, and return the amount of data that is available in the key,
725 * irrespective of how much we copied into the buffer.
726 */
727 long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
728 {
729 struct key *key;
730 key_ref_t key_ref;
731 long ret;
732
733 /* find the key first */
734 key_ref = lookup_user_key(keyid, 0, 0);
735 if (IS_ERR(key_ref)) {
736 ret = -ENOKEY;
737 goto error;
738 }
739
740 key = key_ref_to_ptr(key_ref);
741
742 /* see if we can read it directly */
743 ret = key_permission(key_ref, KEY_NEED_READ);
744 if (ret == 0)
745 goto can_read_key;
746 if (ret != -EACCES)
747 goto error;
748
749 /* we can't; see if it's searchable from this process's keyrings
750 * - we automatically take account of the fact that it may be
751 * dangling off an instantiation key
752 */
753 if (!is_key_possessed(key_ref)) {
754 ret = -EACCES;
755 goto error2;
756 }
757
758 /* the key is probably readable - now try to read it */
759 can_read_key:
760 ret = key_validate(key);
761 if (ret == 0) {
762 ret = -EOPNOTSUPP;
763 if (key->type->read) {
764 /* read the data with the semaphore held (since we
765 * might sleep) */
766 down_read(&key->sem);
767 ret = key->type->read(key, buffer, buflen);
768 up_read(&key->sem);
769 }
770 }
771
772 error2:
773 key_put(key);
774 error:
775 return ret;
776 }
777
778 /*
779 * Change the ownership of a key
780 *
781 * The key must grant the caller Setattr permission for this to work, though
782 * the key need not be fully instantiated yet. For the UID to be changed, or
783 * for the GID to be changed to a group the caller is not a member of, the
784 * caller must have sysadmin capability. If either uid or gid is -1 then that
785 * attribute is not changed.
786 *
787 * If the UID is to be changed, the new user must have sufficient quota to
788 * accept the key. The quota deduction will be removed from the old user to
789 * the new user should the attribute be changed.
790 *
791 * If successful, 0 will be returned.
792 */
793 long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
794 {
795 struct key_user *newowner, *zapowner = NULL;
796 struct key *key;
797 key_ref_t key_ref;
798 long ret;
799 kuid_t uid;
800 kgid_t gid;
801
802 uid = make_kuid(current_user_ns(), user);
803 gid = make_kgid(current_user_ns(), group);
804 ret = -EINVAL;
805 if ((user != (uid_t) -1) && !uid_valid(uid))
806 goto error;
807 if ((group != (gid_t) -1) && !gid_valid(gid))
808 goto error;
809
810 ret = 0;
811 if (user == (uid_t) -1 && group == (gid_t) -1)
812 goto error;
813
814 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
815 KEY_NEED_SETATTR);
816 if (IS_ERR(key_ref)) {
817 ret = PTR_ERR(key_ref);
818 goto error;
819 }
820
821 key = key_ref_to_ptr(key_ref);
822
823 /* make the changes with the locks held to prevent chown/chown races */
824 ret = -EACCES;
825 down_write(&key->sem);
826
827 if (!capable(CAP_SYS_ADMIN)) {
828 /* only the sysadmin can chown a key to some other UID */
829 if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
830 goto error_put;
831
832 /* only the sysadmin can set the key's GID to a group other
833 * than one of those that the current process subscribes to */
834 if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
835 goto error_put;
836 }
837
838 /* change the UID */
839 if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
840 ret = -ENOMEM;
841 newowner = key_user_lookup(uid);
842 if (!newowner)
843 goto error_put;
844
845 /* transfer the quota burden to the new user */
846 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
847 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
848 key_quota_root_maxkeys : key_quota_maxkeys;
849 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
850 key_quota_root_maxbytes : key_quota_maxbytes;
851
852 spin_lock(&newowner->lock);
853 if (newowner->qnkeys + 1 >= maxkeys ||
854 newowner->qnbytes + key->quotalen >= maxbytes ||
855 newowner->qnbytes + key->quotalen <
856 newowner->qnbytes)
857 goto quota_overrun;
858
859 newowner->qnkeys++;
860 newowner->qnbytes += key->quotalen;
861 spin_unlock(&newowner->lock);
862
863 spin_lock(&key->user->lock);
864 key->user->qnkeys--;
865 key->user->qnbytes -= key->quotalen;
866 spin_unlock(&key->user->lock);
867 }
868
869 atomic_dec(&key->user->nkeys);
870 atomic_inc(&newowner->nkeys);
871
872 if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
873 atomic_dec(&key->user->nikeys);
874 atomic_inc(&newowner->nikeys);
875 }
876
877 zapowner = key->user;
878 key->user = newowner;
879 key->uid = uid;
880 }
881
882 /* change the GID */
883 if (group != (gid_t) -1)
884 key->gid = gid;
885
886 ret = 0;
887
888 error_put:
889 up_write(&key->sem);
890 key_put(key);
891 if (zapowner)
892 key_user_put(zapowner);
893 error:
894 return ret;
895
896 quota_overrun:
897 spin_unlock(&newowner->lock);
898 zapowner = newowner;
899 ret = -EDQUOT;
900 goto error_put;
901 }
902
903 /*
904 * Change the permission mask on a key.
905 *
906 * The key must grant the caller Setattr permission for this to work, though
907 * the key need not be fully instantiated yet. If the caller does not have
908 * sysadmin capability, it may only change the permission on keys that it owns.
909 */
910 long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
911 {
912 struct key *key;
913 key_ref_t key_ref;
914 long ret;
915
916 ret = -EINVAL;
917 if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
918 goto error;
919
920 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
921 KEY_NEED_SETATTR);
922 if (IS_ERR(key_ref)) {
923 ret = PTR_ERR(key_ref);
924 goto error;
925 }
926
927 key = key_ref_to_ptr(key_ref);
928
929 /* make the changes with the locks held to prevent chown/chmod races */
930 ret = -EACCES;
931 down_write(&key->sem);
932
933 /* if we're not the sysadmin, we can only change a key that we own */
934 if (capable(CAP_SYS_ADMIN) || uid_eq(key->uid, current_fsuid())) {
935 key->perm = perm;
936 ret = 0;
937 }
938
939 up_write(&key->sem);
940 key_put(key);
941 error:
942 return ret;
943 }
944
945 /*
946 * Get the destination keyring for instantiation and check that the caller has
947 * Write permission on it.
948 */
949 static long get_instantiation_keyring(key_serial_t ringid,
950 struct request_key_auth *rka,
951 struct key **_dest_keyring)
952 {
953 key_ref_t dkref;
954
955 *_dest_keyring = NULL;
956
957 /* just return a NULL pointer if we weren't asked to make a link */
958 if (ringid == 0)
959 return 0;
960
961 /* if a specific keyring is nominated by ID, then use that */
962 if (ringid > 0) {
963 dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
964 if (IS_ERR(dkref))
965 return PTR_ERR(dkref);
966 *_dest_keyring = key_ref_to_ptr(dkref);
967 return 0;
968 }
969
970 if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
971 return -EINVAL;
972
973 /* otherwise specify the destination keyring recorded in the
974 * authorisation key (any KEY_SPEC_*_KEYRING) */
975 if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
976 *_dest_keyring = key_get(rka->dest_keyring);
977 return 0;
978 }
979
980 return -ENOKEY;
981 }
982
983 /*
984 * Change the request_key authorisation key on the current process.
985 */
986 static int keyctl_change_reqkey_auth(struct key *key)
987 {
988 struct cred *new;
989
990 new = prepare_creds();
991 if (!new)
992 return -ENOMEM;
993
994 key_put(new->request_key_auth);
995 new->request_key_auth = key_get(key);
996
997 return commit_creds(new);
998 }
999
1000 /*
1001 * Copy the iovec data from userspace
1002 */
1003 static long copy_from_user_iovec(void *buffer, const struct iovec *iov,
1004 unsigned ioc)
1005 {
1006 for (; ioc > 0; ioc--) {
1007 if (copy_from_user(buffer, iov->iov_base, iov->iov_len) != 0)
1008 return -EFAULT;
1009 buffer += iov->iov_len;
1010 iov++;
1011 }
1012 return 0;
1013 }
1014
1015 /*
1016 * Instantiate a key with the specified payload and link the key into the
1017 * destination keyring if one is given.
1018 *
1019 * The caller must have the appropriate instantiation permit set for this to
1020 * work (see keyctl_assume_authority). No other permissions are required.
1021 *
1022 * If successful, 0 will be returned.
1023 */
1024 long keyctl_instantiate_key_common(key_serial_t id,
1025 const struct iovec *payload_iov,
1026 unsigned ioc,
1027 size_t plen,
1028 key_serial_t ringid)
1029 {
1030 const struct cred *cred = current_cred();
1031 struct request_key_auth *rka;
1032 struct key *instkey, *dest_keyring;
1033 void *payload;
1034 long ret;
1035 bool vm = false;
1036
1037 kenter("%d,,%zu,%d", id, plen, ringid);
1038
1039 ret = -EINVAL;
1040 if (plen > 1024 * 1024 - 1)
1041 goto error;
1042
1043 /* the appropriate instantiation authorisation key must have been
1044 * assumed before calling this */
1045 ret = -EPERM;
1046 instkey = cred->request_key_auth;
1047 if (!instkey)
1048 goto error;
1049
1050 rka = instkey->payload.data;
1051 if (rka->target_key->serial != id)
1052 goto error;
1053
1054 /* pull the payload in if one was supplied */
1055 payload = NULL;
1056
1057 if (payload_iov) {
1058 ret = -ENOMEM;
1059 payload = kmalloc(plen, GFP_KERNEL);
1060 if (!payload) {
1061 if (plen <= PAGE_SIZE)
1062 goto error;
1063 vm = true;
1064 payload = vmalloc(plen);
1065 if (!payload)
1066 goto error;
1067 }
1068
1069 ret = copy_from_user_iovec(payload, payload_iov, ioc);
1070 if (ret < 0)
1071 goto error2;
1072 }
1073
1074 /* find the destination keyring amongst those belonging to the
1075 * requesting task */
1076 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1077 if (ret < 0)
1078 goto error2;
1079
1080 /* instantiate the key and link it into a keyring */
1081 ret = key_instantiate_and_link(rka->target_key, payload, plen,
1082 dest_keyring, instkey);
1083
1084 key_put(dest_keyring);
1085
1086 /* discard the assumed authority if it's just been disabled by
1087 * instantiation of the key */
1088 if (ret == 0)
1089 keyctl_change_reqkey_auth(NULL);
1090
1091 error2:
1092 if (!vm)
1093 kfree(payload);
1094 else
1095 vfree(payload);
1096 error:
1097 return ret;
1098 }
1099
1100 /*
1101 * Instantiate a key with the specified payload and link the key into the
1102 * destination keyring if one is given.
1103 *
1104 * The caller must have the appropriate instantiation permit set for this to
1105 * work (see keyctl_assume_authority). No other permissions are required.
1106 *
1107 * If successful, 0 will be returned.
1108 */
1109 long keyctl_instantiate_key(key_serial_t id,
1110 const void __user *_payload,
1111 size_t plen,
1112 key_serial_t ringid)
1113 {
1114 if (_payload && plen) {
1115 struct iovec iov[1] = {
1116 [0].iov_base = (void __user *)_payload,
1117 [0].iov_len = plen
1118 };
1119
1120 return keyctl_instantiate_key_common(id, iov, 1, plen, ringid);
1121 }
1122
1123 return keyctl_instantiate_key_common(id, NULL, 0, 0, ringid);
1124 }
1125
1126 /*
1127 * Instantiate a key with the specified multipart payload and link the key into
1128 * the destination keyring if one is given.
1129 *
1130 * The caller must have the appropriate instantiation permit set for this to
1131 * work (see keyctl_assume_authority). No other permissions are required.
1132 *
1133 * If successful, 0 will be returned.
1134 */
1135 long keyctl_instantiate_key_iov(key_serial_t id,
1136 const struct iovec __user *_payload_iov,
1137 unsigned ioc,
1138 key_serial_t ringid)
1139 {
1140 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1141 long ret;
1142
1143 if (!_payload_iov || !ioc)
1144 goto no_payload;
1145
1146 ret = rw_copy_check_uvector(WRITE, _payload_iov, ioc,
1147 ARRAY_SIZE(iovstack), iovstack, &iov);
1148 if (ret < 0)
1149 goto err;
1150 if (ret == 0)
1151 goto no_payload_free;
1152
1153 ret = keyctl_instantiate_key_common(id, iov, ioc, ret, ringid);
1154 err:
1155 if (iov != iovstack)
1156 kfree(iov);
1157 return ret;
1158
1159 no_payload_free:
1160 if (iov != iovstack)
1161 kfree(iov);
1162 no_payload:
1163 return keyctl_instantiate_key_common(id, NULL, 0, 0, ringid);
1164 }
1165
1166 /*
1167 * Negatively instantiate the key with the given timeout (in seconds) and link
1168 * the key into the destination keyring if one is given.
1169 *
1170 * The caller must have the appropriate instantiation permit set for this to
1171 * work (see keyctl_assume_authority). No other permissions are required.
1172 *
1173 * The key and any links to the key will be automatically garbage collected
1174 * after the timeout expires.
1175 *
1176 * Negative keys are used to rate limit repeated request_key() calls by causing
1177 * them to return -ENOKEY until the negative key expires.
1178 *
1179 * If successful, 0 will be returned.
1180 */
1181 long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1182 {
1183 return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1184 }
1185
1186 /*
1187 * Negatively instantiate the key with the given timeout (in seconds) and error
1188 * code and link the key into the destination keyring if one is given.
1189 *
1190 * The caller must have the appropriate instantiation permit set for this to
1191 * work (see keyctl_assume_authority). No other permissions are required.
1192 *
1193 * The key and any links to the key will be automatically garbage collected
1194 * after the timeout expires.
1195 *
1196 * Negative keys are used to rate limit repeated request_key() calls by causing
1197 * them to return the specified error code until the negative key expires.
1198 *
1199 * If successful, 0 will be returned.
1200 */
1201 long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1202 key_serial_t ringid)
1203 {
1204 const struct cred *cred = current_cred();
1205 struct request_key_auth *rka;
1206 struct key *instkey, *dest_keyring;
1207 long ret;
1208
1209 kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1210
1211 /* must be a valid error code and mustn't be a kernel special */
1212 if (error <= 0 ||
1213 error >= MAX_ERRNO ||
1214 error == ERESTARTSYS ||
1215 error == ERESTARTNOINTR ||
1216 error == ERESTARTNOHAND ||
1217 error == ERESTART_RESTARTBLOCK)
1218 return -EINVAL;
1219
1220 /* the appropriate instantiation authorisation key must have been
1221 * assumed before calling this */
1222 ret = -EPERM;
1223 instkey = cred->request_key_auth;
1224 if (!instkey)
1225 goto error;
1226
1227 rka = instkey->payload.data;
1228 if (rka->target_key->serial != id)
1229 goto error;
1230
1231 /* find the destination keyring if present (which must also be
1232 * writable) */
1233 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1234 if (ret < 0)
1235 goto error;
1236
1237 /* instantiate the key and link it into a keyring */
1238 ret = key_reject_and_link(rka->target_key, timeout, error,
1239 dest_keyring, instkey);
1240
1241 key_put(dest_keyring);
1242
1243 /* discard the assumed authority if it's just been disabled by
1244 * instantiation of the key */
1245 if (ret == 0)
1246 keyctl_change_reqkey_auth(NULL);
1247
1248 error:
1249 return ret;
1250 }
1251
1252 /*
1253 * Read or set the default keyring in which request_key() will cache keys and
1254 * return the old setting.
1255 *
1256 * If a process keyring is specified then this will be created if it doesn't
1257 * yet exist. The old setting will be returned if successful.
1258 */
1259 long keyctl_set_reqkey_keyring(int reqkey_defl)
1260 {
1261 struct cred *new;
1262 int ret, old_setting;
1263
1264 old_setting = current_cred_xxx(jit_keyring);
1265
1266 if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1267 return old_setting;
1268
1269 new = prepare_creds();
1270 if (!new)
1271 return -ENOMEM;
1272
1273 switch (reqkey_defl) {
1274 case KEY_REQKEY_DEFL_THREAD_KEYRING:
1275 ret = install_thread_keyring_to_cred(new);
1276 if (ret < 0)
1277 goto error;
1278 goto set;
1279
1280 case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1281 ret = install_process_keyring_to_cred(new);
1282 if (ret < 0) {
1283 if (ret != -EEXIST)
1284 goto error;
1285 ret = 0;
1286 }
1287 goto set;
1288
1289 case KEY_REQKEY_DEFL_DEFAULT:
1290 case KEY_REQKEY_DEFL_SESSION_KEYRING:
1291 case KEY_REQKEY_DEFL_USER_KEYRING:
1292 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1293 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1294 goto set;
1295
1296 case KEY_REQKEY_DEFL_NO_CHANGE:
1297 case KEY_REQKEY_DEFL_GROUP_KEYRING:
1298 default:
1299 ret = -EINVAL;
1300 goto error;
1301 }
1302
1303 set:
1304 new->jit_keyring = reqkey_defl;
1305 commit_creds(new);
1306 return old_setting;
1307 error:
1308 abort_creds(new);
1309 return ret;
1310 }
1311
1312 /*
1313 * Set or clear the timeout on a key.
1314 *
1315 * Either the key must grant the caller Setattr permission or else the caller
1316 * must hold an instantiation authorisation token for the key.
1317 *
1318 * The timeout is either 0 to clear the timeout, or a number of seconds from
1319 * the current time. The key and any links to the key will be automatically
1320 * garbage collected after the timeout expires.
1321 *
1322 * If successful, 0 is returned.
1323 */
1324 long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1325 {
1326 struct key *key, *instkey;
1327 key_ref_t key_ref;
1328 long ret;
1329
1330 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1331 KEY_NEED_SETATTR);
1332 if (IS_ERR(key_ref)) {
1333 /* setting the timeout on a key under construction is permitted
1334 * if we have the authorisation token handy */
1335 if (PTR_ERR(key_ref) == -EACCES) {
1336 instkey = key_get_instantiation_authkey(id);
1337 if (!IS_ERR(instkey)) {
1338 key_put(instkey);
1339 key_ref = lookup_user_key(id,
1340 KEY_LOOKUP_PARTIAL,
1341 0);
1342 if (!IS_ERR(key_ref))
1343 goto okay;
1344 }
1345 }
1346
1347 ret = PTR_ERR(key_ref);
1348 goto error;
1349 }
1350
1351 okay:
1352 key = key_ref_to_ptr(key_ref);
1353 key_set_timeout(key, timeout);
1354 key_put(key);
1355
1356 ret = 0;
1357 error:
1358 return ret;
1359 }
1360
1361 /*
1362 * Assume (or clear) the authority to instantiate the specified key.
1363 *
1364 * This sets the authoritative token currently in force for key instantiation.
1365 * This must be done for a key to be instantiated. It has the effect of making
1366 * available all the keys from the caller of the request_key() that created a
1367 * key to request_key() calls made by the caller of this function.
1368 *
1369 * The caller must have the instantiation key in their process keyrings with a
1370 * Search permission grant available to the caller.
1371 *
1372 * If the ID given is 0, then the setting will be cleared and 0 returned.
1373 *
1374 * If the ID given has a matching an authorisation key, then that key will be
1375 * set and its ID will be returned. The authorisation key can be read to get
1376 * the callout information passed to request_key().
1377 */
1378 long keyctl_assume_authority(key_serial_t id)
1379 {
1380 struct key *authkey;
1381 long ret;
1382
1383 /* special key IDs aren't permitted */
1384 ret = -EINVAL;
1385 if (id < 0)
1386 goto error;
1387
1388 /* we divest ourselves of authority if given an ID of 0 */
1389 if (id == 0) {
1390 ret = keyctl_change_reqkey_auth(NULL);
1391 goto error;
1392 }
1393
1394 /* attempt to assume the authority temporarily granted to us whilst we
1395 * instantiate the specified key
1396 * - the authorisation key must be in the current task's keyrings
1397 * somewhere
1398 */
1399 authkey = key_get_instantiation_authkey(id);
1400 if (IS_ERR(authkey)) {
1401 ret = PTR_ERR(authkey);
1402 goto error;
1403 }
1404
1405 ret = keyctl_change_reqkey_auth(authkey);
1406 if (ret < 0)
1407 goto error;
1408 key_put(authkey);
1409
1410 ret = authkey->serial;
1411 error:
1412 return ret;
1413 }
1414
1415 /*
1416 * Get a key's the LSM security label.
1417 *
1418 * The key must grant the caller View permission for this to work.
1419 *
1420 * If there's a buffer, then up to buflen bytes of data will be placed into it.
1421 *
1422 * If successful, the amount of information available will be returned,
1423 * irrespective of how much was copied (including the terminal NUL).
1424 */
1425 long keyctl_get_security(key_serial_t keyid,
1426 char __user *buffer,
1427 size_t buflen)
1428 {
1429 struct key *key, *instkey;
1430 key_ref_t key_ref;
1431 char *context;
1432 long ret;
1433
1434 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
1435 if (IS_ERR(key_ref)) {
1436 if (PTR_ERR(key_ref) != -EACCES)
1437 return PTR_ERR(key_ref);
1438
1439 /* viewing a key under construction is also permitted if we
1440 * have the authorisation token handy */
1441 instkey = key_get_instantiation_authkey(keyid);
1442 if (IS_ERR(instkey))
1443 return PTR_ERR(instkey);
1444 key_put(instkey);
1445
1446 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, 0);
1447 if (IS_ERR(key_ref))
1448 return PTR_ERR(key_ref);
1449 }
1450
1451 key = key_ref_to_ptr(key_ref);
1452 ret = security_key_getsecurity(key, &context);
1453 if (ret == 0) {
1454 /* if no information was returned, give userspace an empty
1455 * string */
1456 ret = 1;
1457 if (buffer && buflen > 0 &&
1458 copy_to_user(buffer, "", 1) != 0)
1459 ret = -EFAULT;
1460 } else if (ret > 0) {
1461 /* return as much data as there's room for */
1462 if (buffer && buflen > 0) {
1463 if (buflen > ret)
1464 buflen = ret;
1465
1466 if (copy_to_user(buffer, context, buflen) != 0)
1467 ret = -EFAULT;
1468 }
1469
1470 kfree(context);
1471 }
1472
1473 key_ref_put(key_ref);
1474 return ret;
1475 }
1476
1477 /*
1478 * Attempt to install the calling process's session keyring on the process's
1479 * parent process.
1480 *
1481 * The keyring must exist and must grant the caller LINK permission, and the
1482 * parent process must be single-threaded and must have the same effective
1483 * ownership as this process and mustn't be SUID/SGID.
1484 *
1485 * The keyring will be emplaced on the parent when it next resumes userspace.
1486 *
1487 * If successful, 0 will be returned.
1488 */
1489 long keyctl_session_to_parent(void)
1490 {
1491 struct task_struct *me, *parent;
1492 const struct cred *mycred, *pcred;
1493 struct callback_head *newwork, *oldwork;
1494 key_ref_t keyring_r;
1495 struct cred *cred;
1496 int ret;
1497
1498 keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
1499 if (IS_ERR(keyring_r))
1500 return PTR_ERR(keyring_r);
1501
1502 ret = -ENOMEM;
1503
1504 /* our parent is going to need a new cred struct, a new tgcred struct
1505 * and new security data, so we allocate them here to prevent ENOMEM in
1506 * our parent */
1507 cred = cred_alloc_blank();
1508 if (!cred)
1509 goto error_keyring;
1510 newwork = &cred->rcu;
1511
1512 cred->session_keyring = key_ref_to_ptr(keyring_r);
1513 keyring_r = NULL;
1514 init_task_work(newwork, key_change_session_keyring);
1515
1516 me = current;
1517 rcu_read_lock();
1518 write_lock_irq(&tasklist_lock);
1519
1520 ret = -EPERM;
1521 oldwork = NULL;
1522 parent = me->real_parent;
1523
1524 /* the parent mustn't be init and mustn't be a kernel thread */
1525 if (parent->pid <= 1 || !parent->mm)
1526 goto unlock;
1527
1528 /* the parent must be single threaded */
1529 if (!thread_group_empty(parent))
1530 goto unlock;
1531
1532 /* the parent and the child must have different session keyrings or
1533 * there's no point */
1534 mycred = current_cred();
1535 pcred = __task_cred(parent);
1536 if (mycred == pcred ||
1537 mycred->session_keyring == pcred->session_keyring) {
1538 ret = 0;
1539 goto unlock;
1540 }
1541
1542 /* the parent must have the same effective ownership and mustn't be
1543 * SUID/SGID */
1544 if (!uid_eq(pcred->uid, mycred->euid) ||
1545 !uid_eq(pcred->euid, mycred->euid) ||
1546 !uid_eq(pcred->suid, mycred->euid) ||
1547 !gid_eq(pcred->gid, mycred->egid) ||
1548 !gid_eq(pcred->egid, mycred->egid) ||
1549 !gid_eq(pcred->sgid, mycred->egid))
1550 goto unlock;
1551
1552 /* the keyrings must have the same UID */
1553 if ((pcred->session_keyring &&
1554 !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1555 !uid_eq(mycred->session_keyring->uid, mycred->euid))
1556 goto unlock;
1557
1558 /* cancel an already pending keyring replacement */
1559 oldwork = task_work_cancel(parent, key_change_session_keyring);
1560
1561 /* the replacement session keyring is applied just prior to userspace
1562 * restarting */
1563 ret = task_work_add(parent, newwork, true);
1564 if (!ret)
1565 newwork = NULL;
1566 unlock:
1567 write_unlock_irq(&tasklist_lock);
1568 rcu_read_unlock();
1569 if (oldwork)
1570 put_cred(container_of(oldwork, struct cred, rcu));
1571 if (newwork)
1572 put_cred(cred);
1573 return ret;
1574
1575 error_keyring:
1576 key_ref_put(keyring_r);
1577 return ret;
1578 }
1579
1580 /*
1581 * The key control system call
1582 */
1583 SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1584 unsigned long, arg4, unsigned long, arg5)
1585 {
1586 switch (option) {
1587 case KEYCTL_GET_KEYRING_ID:
1588 return keyctl_get_keyring_ID((key_serial_t) arg2,
1589 (int) arg3);
1590
1591 case KEYCTL_JOIN_SESSION_KEYRING:
1592 return keyctl_join_session_keyring((const char __user *) arg2);
1593
1594 case KEYCTL_UPDATE:
1595 return keyctl_update_key((key_serial_t) arg2,
1596 (const void __user *) arg3,
1597 (size_t) arg4);
1598
1599 case KEYCTL_REVOKE:
1600 return keyctl_revoke_key((key_serial_t) arg2);
1601
1602 case KEYCTL_DESCRIBE:
1603 return keyctl_describe_key((key_serial_t) arg2,
1604 (char __user *) arg3,
1605 (unsigned) arg4);
1606
1607 case KEYCTL_CLEAR:
1608 return keyctl_keyring_clear((key_serial_t) arg2);
1609
1610 case KEYCTL_LINK:
1611 return keyctl_keyring_link((key_serial_t) arg2,
1612 (key_serial_t) arg3);
1613
1614 case KEYCTL_UNLINK:
1615 return keyctl_keyring_unlink((key_serial_t) arg2,
1616 (key_serial_t) arg3);
1617
1618 case KEYCTL_SEARCH:
1619 return keyctl_keyring_search((key_serial_t) arg2,
1620 (const char __user *) arg3,
1621 (const char __user *) arg4,
1622 (key_serial_t) arg5);
1623
1624 case KEYCTL_READ:
1625 return keyctl_read_key((key_serial_t) arg2,
1626 (char __user *) arg3,
1627 (size_t) arg4);
1628
1629 case KEYCTL_CHOWN:
1630 return keyctl_chown_key((key_serial_t) arg2,
1631 (uid_t) arg3,
1632 (gid_t) arg4);
1633
1634 case KEYCTL_SETPERM:
1635 return keyctl_setperm_key((key_serial_t) arg2,
1636 (key_perm_t) arg3);
1637
1638 case KEYCTL_INSTANTIATE:
1639 return keyctl_instantiate_key((key_serial_t) arg2,
1640 (const void __user *) arg3,
1641 (size_t) arg4,
1642 (key_serial_t) arg5);
1643
1644 case KEYCTL_NEGATE:
1645 return keyctl_negate_key((key_serial_t) arg2,
1646 (unsigned) arg3,
1647 (key_serial_t) arg4);
1648
1649 case KEYCTL_SET_REQKEY_KEYRING:
1650 return keyctl_set_reqkey_keyring(arg2);
1651
1652 case KEYCTL_SET_TIMEOUT:
1653 return keyctl_set_timeout((key_serial_t) arg2,
1654 (unsigned) arg3);
1655
1656 case KEYCTL_ASSUME_AUTHORITY:
1657 return keyctl_assume_authority((key_serial_t) arg2);
1658
1659 case KEYCTL_GET_SECURITY:
1660 return keyctl_get_security((key_serial_t) arg2,
1661 (char __user *) arg3,
1662 (size_t) arg4);
1663
1664 case KEYCTL_SESSION_TO_PARENT:
1665 return keyctl_session_to_parent();
1666
1667 case KEYCTL_REJECT:
1668 return keyctl_reject_key((key_serial_t) arg2,
1669 (unsigned) arg3,
1670 (unsigned) arg4,
1671 (key_serial_t) arg5);
1672
1673 case KEYCTL_INSTANTIATE_IOV:
1674 return keyctl_instantiate_key_iov(
1675 (key_serial_t) arg2,
1676 (const struct iovec __user *) arg3,
1677 (unsigned) arg4,
1678 (key_serial_t) arg5);
1679
1680 case KEYCTL_INVALIDATE:
1681 return keyctl_invalidate_key((key_serial_t) arg2);
1682
1683 case KEYCTL_GET_PERSISTENT:
1684 return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
1685
1686 default:
1687 return -EOPNOTSUPP;
1688 }
1689 }