]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - security/keys/keyctl.c
Merge tag 'kbuild-fixes-v5.3-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / security / keys / keyctl.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Userspace key control operations
3 *
4 * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/init.h>
9 #include <linux/sched.h>
10 #include <linux/sched/task.h>
11 #include <linux/slab.h>
12 #include <linux/syscalls.h>
13 #include <linux/key.h>
14 #include <linux/keyctl.h>
15 #include <linux/fs.h>
16 #include <linux/capability.h>
17 #include <linux/cred.h>
18 #include <linux/string.h>
19 #include <linux/err.h>
20 #include <linux/vmalloc.h>
21 #include <linux/security.h>
22 #include <linux/uio.h>
23 #include <linux/uaccess.h>
24 #include <keys/request_key_auth-type.h>
25 #include "internal.h"
26
27 #define KEY_MAX_DESC_SIZE 4096
28
29 static const unsigned char keyrings_capabilities[2] = {
30 [0] = (KEYCTL_CAPS0_CAPABILITIES |
31 (IS_ENABLED(CONFIG_PERSISTENT_KEYRINGS) ? KEYCTL_CAPS0_PERSISTENT_KEYRINGS : 0) |
32 (IS_ENABLED(CONFIG_KEY_DH_OPERATIONS) ? KEYCTL_CAPS0_DIFFIE_HELLMAN : 0) |
33 (IS_ENABLED(CONFIG_ASYMMETRIC_KEY_TYPE) ? KEYCTL_CAPS0_PUBLIC_KEY : 0) |
34 (IS_ENABLED(CONFIG_BIG_KEYS) ? KEYCTL_CAPS0_BIG_KEY : 0) |
35 KEYCTL_CAPS0_INVALIDATE |
36 KEYCTL_CAPS0_RESTRICT_KEYRING |
37 KEYCTL_CAPS0_MOVE
38 ),
39 [1] = (KEYCTL_CAPS1_NS_KEYRING_NAME |
40 KEYCTL_CAPS1_NS_KEY_TAG),
41 };
42
43 static int key_get_type_from_user(char *type,
44 const char __user *_type,
45 unsigned len)
46 {
47 int ret;
48
49 ret = strncpy_from_user(type, _type, len);
50 if (ret < 0)
51 return ret;
52 if (ret == 0 || ret >= len)
53 return -EINVAL;
54 if (type[0] == '.')
55 return -EPERM;
56 type[len - 1] = '\0';
57 return 0;
58 }
59
60 /*
61 * Extract the description of a new key from userspace and either add it as a
62 * new key to the specified keyring or update a matching key in that keyring.
63 *
64 * If the description is NULL or an empty string, the key type is asked to
65 * generate one from the payload.
66 *
67 * The keyring must be writable so that we can attach the key to it.
68 *
69 * If successful, the new key's serial number is returned, otherwise an error
70 * code is returned.
71 */
72 SYSCALL_DEFINE5(add_key, const char __user *, _type,
73 const char __user *, _description,
74 const void __user *, _payload,
75 size_t, plen,
76 key_serial_t, ringid)
77 {
78 key_ref_t keyring_ref, key_ref;
79 char type[32], *description;
80 void *payload;
81 long ret;
82
83 ret = -EINVAL;
84 if (plen > 1024 * 1024 - 1)
85 goto error;
86
87 /* draw all the data into kernel space */
88 ret = key_get_type_from_user(type, _type, sizeof(type));
89 if (ret < 0)
90 goto error;
91
92 description = NULL;
93 if (_description) {
94 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
95 if (IS_ERR(description)) {
96 ret = PTR_ERR(description);
97 goto error;
98 }
99 if (!*description) {
100 kfree(description);
101 description = NULL;
102 } else if ((description[0] == '.') &&
103 (strncmp(type, "keyring", 7) == 0)) {
104 ret = -EPERM;
105 goto error2;
106 }
107 }
108
109 /* pull the payload in if one was supplied */
110 payload = NULL;
111
112 if (plen) {
113 ret = -ENOMEM;
114 payload = kvmalloc(plen, GFP_KERNEL);
115 if (!payload)
116 goto error2;
117
118 ret = -EFAULT;
119 if (copy_from_user(payload, _payload, plen) != 0)
120 goto error3;
121 }
122
123 /* find the target keyring (which must be writable) */
124 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
125 if (IS_ERR(keyring_ref)) {
126 ret = PTR_ERR(keyring_ref);
127 goto error3;
128 }
129
130 /* create or update the requested key and add it to the target
131 * keyring */
132 key_ref = key_create_or_update(keyring_ref, type, description,
133 payload, plen, KEY_PERM_UNDEF,
134 KEY_ALLOC_IN_QUOTA);
135 if (!IS_ERR(key_ref)) {
136 ret = key_ref_to_ptr(key_ref)->serial;
137 key_ref_put(key_ref);
138 }
139 else {
140 ret = PTR_ERR(key_ref);
141 }
142
143 key_ref_put(keyring_ref);
144 error3:
145 if (payload) {
146 memzero_explicit(payload, plen);
147 kvfree(payload);
148 }
149 error2:
150 kfree(description);
151 error:
152 return ret;
153 }
154
155 /*
156 * Search the process keyrings and keyring trees linked from those for a
157 * matching key. Keyrings must have appropriate Search permission to be
158 * searched.
159 *
160 * If a key is found, it will be attached to the destination keyring if there's
161 * one specified and the serial number of the key will be returned.
162 *
163 * If no key is found, /sbin/request-key will be invoked if _callout_info is
164 * non-NULL in an attempt to create a key. The _callout_info string will be
165 * passed to /sbin/request-key to aid with completing the request. If the
166 * _callout_info string is "" then it will be changed to "-".
167 */
168 SYSCALL_DEFINE4(request_key, const char __user *, _type,
169 const char __user *, _description,
170 const char __user *, _callout_info,
171 key_serial_t, destringid)
172 {
173 struct key_type *ktype;
174 struct key *key;
175 key_ref_t dest_ref;
176 size_t callout_len;
177 char type[32], *description, *callout_info;
178 long ret;
179
180 /* pull the type into kernel space */
181 ret = key_get_type_from_user(type, _type, sizeof(type));
182 if (ret < 0)
183 goto error;
184
185 /* pull the description into kernel space */
186 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
187 if (IS_ERR(description)) {
188 ret = PTR_ERR(description);
189 goto error;
190 }
191
192 /* pull the callout info into kernel space */
193 callout_info = NULL;
194 callout_len = 0;
195 if (_callout_info) {
196 callout_info = strndup_user(_callout_info, PAGE_SIZE);
197 if (IS_ERR(callout_info)) {
198 ret = PTR_ERR(callout_info);
199 goto error2;
200 }
201 callout_len = strlen(callout_info);
202 }
203
204 /* get the destination keyring if specified */
205 dest_ref = NULL;
206 if (destringid) {
207 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
208 KEY_NEED_WRITE);
209 if (IS_ERR(dest_ref)) {
210 ret = PTR_ERR(dest_ref);
211 goto error3;
212 }
213 }
214
215 /* find the key type */
216 ktype = key_type_lookup(type);
217 if (IS_ERR(ktype)) {
218 ret = PTR_ERR(ktype);
219 goto error4;
220 }
221
222 /* do the search */
223 key = request_key_and_link(ktype, description, NULL, callout_info,
224 callout_len, NULL, key_ref_to_ptr(dest_ref),
225 KEY_ALLOC_IN_QUOTA);
226 if (IS_ERR(key)) {
227 ret = PTR_ERR(key);
228 goto error5;
229 }
230
231 /* wait for the key to finish being constructed */
232 ret = wait_for_key_construction(key, 1);
233 if (ret < 0)
234 goto error6;
235
236 ret = key->serial;
237
238 error6:
239 key_put(key);
240 error5:
241 key_type_put(ktype);
242 error4:
243 key_ref_put(dest_ref);
244 error3:
245 kfree(callout_info);
246 error2:
247 kfree(description);
248 error:
249 return ret;
250 }
251
252 /*
253 * Get the ID of the specified process keyring.
254 *
255 * The requested keyring must have search permission to be found.
256 *
257 * If successful, the ID of the requested keyring will be returned.
258 */
259 long keyctl_get_keyring_ID(key_serial_t id, int create)
260 {
261 key_ref_t key_ref;
262 unsigned long lflags;
263 long ret;
264
265 lflags = create ? KEY_LOOKUP_CREATE : 0;
266 key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
267 if (IS_ERR(key_ref)) {
268 ret = PTR_ERR(key_ref);
269 goto error;
270 }
271
272 ret = key_ref_to_ptr(key_ref)->serial;
273 key_ref_put(key_ref);
274 error:
275 return ret;
276 }
277
278 /*
279 * Join a (named) session keyring.
280 *
281 * Create and join an anonymous session keyring or join a named session
282 * keyring, creating it if necessary. A named session keyring must have Search
283 * permission for it to be joined. Session keyrings without this permit will
284 * be skipped over. It is not permitted for userspace to create or join
285 * keyrings whose name begin with a dot.
286 *
287 * If successful, the ID of the joined session keyring will be returned.
288 */
289 long keyctl_join_session_keyring(const char __user *_name)
290 {
291 char *name;
292 long ret;
293
294 /* fetch the name from userspace */
295 name = NULL;
296 if (_name) {
297 name = strndup_user(_name, KEY_MAX_DESC_SIZE);
298 if (IS_ERR(name)) {
299 ret = PTR_ERR(name);
300 goto error;
301 }
302
303 ret = -EPERM;
304 if (name[0] == '.')
305 goto error_name;
306 }
307
308 /* join the session */
309 ret = join_session_keyring(name);
310 error_name:
311 kfree(name);
312 error:
313 return ret;
314 }
315
316 /*
317 * Update a key's data payload from the given data.
318 *
319 * The key must grant the caller Write permission and the key type must support
320 * updating for this to work. A negative key can be positively instantiated
321 * with this call.
322 *
323 * If successful, 0 will be returned. If the key type does not support
324 * updating, then -EOPNOTSUPP will be returned.
325 */
326 long keyctl_update_key(key_serial_t id,
327 const void __user *_payload,
328 size_t plen)
329 {
330 key_ref_t key_ref;
331 void *payload;
332 long ret;
333
334 ret = -EINVAL;
335 if (plen > PAGE_SIZE)
336 goto error;
337
338 /* pull the payload in if one was supplied */
339 payload = NULL;
340 if (plen) {
341 ret = -ENOMEM;
342 payload = kmalloc(plen, GFP_KERNEL);
343 if (!payload)
344 goto error;
345
346 ret = -EFAULT;
347 if (copy_from_user(payload, _payload, plen) != 0)
348 goto error2;
349 }
350
351 /* find the target key (which must be writable) */
352 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
353 if (IS_ERR(key_ref)) {
354 ret = PTR_ERR(key_ref);
355 goto error2;
356 }
357
358 /* update the key */
359 ret = key_update(key_ref, payload, plen);
360
361 key_ref_put(key_ref);
362 error2:
363 kzfree(payload);
364 error:
365 return ret;
366 }
367
368 /*
369 * Revoke a key.
370 *
371 * The key must be grant the caller Write or Setattr permission for this to
372 * work. The key type should give up its quota claim when revoked. The key
373 * and any links to the key will be automatically garbage collected after a
374 * certain amount of time (/proc/sys/kernel/keys/gc_delay).
375 *
376 * Keys with KEY_FLAG_KEEP set should not be revoked.
377 *
378 * If successful, 0 is returned.
379 */
380 long keyctl_revoke_key(key_serial_t id)
381 {
382 key_ref_t key_ref;
383 struct key *key;
384 long ret;
385
386 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
387 if (IS_ERR(key_ref)) {
388 ret = PTR_ERR(key_ref);
389 if (ret != -EACCES)
390 goto error;
391 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
392 if (IS_ERR(key_ref)) {
393 ret = PTR_ERR(key_ref);
394 goto error;
395 }
396 }
397
398 key = key_ref_to_ptr(key_ref);
399 ret = 0;
400 if (test_bit(KEY_FLAG_KEEP, &key->flags))
401 ret = -EPERM;
402 else
403 key_revoke(key);
404
405 key_ref_put(key_ref);
406 error:
407 return ret;
408 }
409
410 /*
411 * Invalidate a key.
412 *
413 * The key must be grant the caller Invalidate permission for this to work.
414 * The key and any links to the key will be automatically garbage collected
415 * immediately.
416 *
417 * Keys with KEY_FLAG_KEEP set should not be invalidated.
418 *
419 * If successful, 0 is returned.
420 */
421 long keyctl_invalidate_key(key_serial_t id)
422 {
423 key_ref_t key_ref;
424 struct key *key;
425 long ret;
426
427 kenter("%d", id);
428
429 key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
430 if (IS_ERR(key_ref)) {
431 ret = PTR_ERR(key_ref);
432
433 /* Root is permitted to invalidate certain special keys */
434 if (capable(CAP_SYS_ADMIN)) {
435 key_ref = lookup_user_key(id, 0, 0);
436 if (IS_ERR(key_ref))
437 goto error;
438 if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
439 &key_ref_to_ptr(key_ref)->flags))
440 goto invalidate;
441 goto error_put;
442 }
443
444 goto error;
445 }
446
447 invalidate:
448 key = key_ref_to_ptr(key_ref);
449 ret = 0;
450 if (test_bit(KEY_FLAG_KEEP, &key->flags))
451 ret = -EPERM;
452 else
453 key_invalidate(key);
454 error_put:
455 key_ref_put(key_ref);
456 error:
457 kleave(" = %ld", ret);
458 return ret;
459 }
460
461 /*
462 * Clear the specified keyring, creating an empty process keyring if one of the
463 * special keyring IDs is used.
464 *
465 * The keyring must grant the caller Write permission and not have
466 * KEY_FLAG_KEEP set for this to work. If successful, 0 will be returned.
467 */
468 long keyctl_keyring_clear(key_serial_t ringid)
469 {
470 key_ref_t keyring_ref;
471 struct key *keyring;
472 long ret;
473
474 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
475 if (IS_ERR(keyring_ref)) {
476 ret = PTR_ERR(keyring_ref);
477
478 /* Root is permitted to invalidate certain special keyrings */
479 if (capable(CAP_SYS_ADMIN)) {
480 keyring_ref = lookup_user_key(ringid, 0, 0);
481 if (IS_ERR(keyring_ref))
482 goto error;
483 if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
484 &key_ref_to_ptr(keyring_ref)->flags))
485 goto clear;
486 goto error_put;
487 }
488
489 goto error;
490 }
491
492 clear:
493 keyring = key_ref_to_ptr(keyring_ref);
494 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
495 ret = -EPERM;
496 else
497 ret = keyring_clear(keyring);
498 error_put:
499 key_ref_put(keyring_ref);
500 error:
501 return ret;
502 }
503
504 /*
505 * Create a link from a keyring to a key if there's no matching key in the
506 * keyring, otherwise replace the link to the matching key with a link to the
507 * new key.
508 *
509 * The key must grant the caller Link permission and the the keyring must grant
510 * the caller Write permission. Furthermore, if an additional link is created,
511 * the keyring's quota will be extended.
512 *
513 * If successful, 0 will be returned.
514 */
515 long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
516 {
517 key_ref_t keyring_ref, key_ref;
518 long ret;
519
520 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
521 if (IS_ERR(keyring_ref)) {
522 ret = PTR_ERR(keyring_ref);
523 goto error;
524 }
525
526 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
527 if (IS_ERR(key_ref)) {
528 ret = PTR_ERR(key_ref);
529 goto error2;
530 }
531
532 ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
533
534 key_ref_put(key_ref);
535 error2:
536 key_ref_put(keyring_ref);
537 error:
538 return ret;
539 }
540
541 /*
542 * Unlink a key from a keyring.
543 *
544 * The keyring must grant the caller Write permission for this to work; the key
545 * itself need not grant the caller anything. If the last link to a key is
546 * removed then that key will be scheduled for destruction.
547 *
548 * Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked.
549 *
550 * If successful, 0 will be returned.
551 */
552 long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
553 {
554 key_ref_t keyring_ref, key_ref;
555 struct key *keyring, *key;
556 long ret;
557
558 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
559 if (IS_ERR(keyring_ref)) {
560 ret = PTR_ERR(keyring_ref);
561 goto error;
562 }
563
564 key_ref = lookup_user_key(id, KEY_LOOKUP_FOR_UNLINK, 0);
565 if (IS_ERR(key_ref)) {
566 ret = PTR_ERR(key_ref);
567 goto error2;
568 }
569
570 keyring = key_ref_to_ptr(keyring_ref);
571 key = key_ref_to_ptr(key_ref);
572 if (test_bit(KEY_FLAG_KEEP, &keyring->flags) &&
573 test_bit(KEY_FLAG_KEEP, &key->flags))
574 ret = -EPERM;
575 else
576 ret = key_unlink(keyring, key);
577
578 key_ref_put(key_ref);
579 error2:
580 key_ref_put(keyring_ref);
581 error:
582 return ret;
583 }
584
585 /*
586 * Move a link to a key from one keyring to another, displacing any matching
587 * key from the destination keyring.
588 *
589 * The key must grant the caller Link permission and both keyrings must grant
590 * the caller Write permission. There must also be a link in the from keyring
591 * to the key. If both keyrings are the same, nothing is done.
592 *
593 * If successful, 0 will be returned.
594 */
595 long keyctl_keyring_move(key_serial_t id, key_serial_t from_ringid,
596 key_serial_t to_ringid, unsigned int flags)
597 {
598 key_ref_t key_ref, from_ref, to_ref;
599 long ret;
600
601 if (flags & ~KEYCTL_MOVE_EXCL)
602 return -EINVAL;
603
604 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
605 if (IS_ERR(key_ref))
606 return PTR_ERR(key_ref);
607
608 from_ref = lookup_user_key(from_ringid, 0, KEY_NEED_WRITE);
609 if (IS_ERR(from_ref)) {
610 ret = PTR_ERR(from_ref);
611 goto error2;
612 }
613
614 to_ref = lookup_user_key(to_ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
615 if (IS_ERR(to_ref)) {
616 ret = PTR_ERR(to_ref);
617 goto error3;
618 }
619
620 ret = key_move(key_ref_to_ptr(key_ref), key_ref_to_ptr(from_ref),
621 key_ref_to_ptr(to_ref), flags);
622
623 key_ref_put(to_ref);
624 error3:
625 key_ref_put(from_ref);
626 error2:
627 key_ref_put(key_ref);
628 return ret;
629 }
630
631 /*
632 * Return a description of a key to userspace.
633 *
634 * The key must grant the caller View permission for this to work.
635 *
636 * If there's a buffer, we place up to buflen bytes of data into it formatted
637 * in the following way:
638 *
639 * type;uid;gid;perm;description<NUL>
640 *
641 * If successful, we return the amount of description available, irrespective
642 * of how much we may have copied into the buffer.
643 */
644 long keyctl_describe_key(key_serial_t keyid,
645 char __user *buffer,
646 size_t buflen)
647 {
648 struct key *key, *instkey;
649 key_ref_t key_ref;
650 char *infobuf;
651 long ret;
652 int desclen, infolen;
653
654 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
655 if (IS_ERR(key_ref)) {
656 /* viewing a key under construction is permitted if we have the
657 * authorisation token handy */
658 if (PTR_ERR(key_ref) == -EACCES) {
659 instkey = key_get_instantiation_authkey(keyid);
660 if (!IS_ERR(instkey)) {
661 key_put(instkey);
662 key_ref = lookup_user_key(keyid,
663 KEY_LOOKUP_PARTIAL,
664 0);
665 if (!IS_ERR(key_ref))
666 goto okay;
667 }
668 }
669
670 ret = PTR_ERR(key_ref);
671 goto error;
672 }
673
674 okay:
675 key = key_ref_to_ptr(key_ref);
676 desclen = strlen(key->description);
677
678 /* calculate how much information we're going to return */
679 ret = -ENOMEM;
680 infobuf = kasprintf(GFP_KERNEL,
681 "%s;%d;%d;%08x;",
682 key->type->name,
683 from_kuid_munged(current_user_ns(), key->uid),
684 from_kgid_munged(current_user_ns(), key->gid),
685 key->perm);
686 if (!infobuf)
687 goto error2;
688 infolen = strlen(infobuf);
689 ret = infolen + desclen + 1;
690
691 /* consider returning the data */
692 if (buffer && buflen >= ret) {
693 if (copy_to_user(buffer, infobuf, infolen) != 0 ||
694 copy_to_user(buffer + infolen, key->description,
695 desclen + 1) != 0)
696 ret = -EFAULT;
697 }
698
699 kfree(infobuf);
700 error2:
701 key_ref_put(key_ref);
702 error:
703 return ret;
704 }
705
706 /*
707 * Search the specified keyring and any keyrings it links to for a matching
708 * key. Only keyrings that grant the caller Search permission will be searched
709 * (this includes the starting keyring). Only keys with Search permission can
710 * be found.
711 *
712 * If successful, the found key will be linked to the destination keyring if
713 * supplied and the key has Link permission, and the found key ID will be
714 * returned.
715 */
716 long keyctl_keyring_search(key_serial_t ringid,
717 const char __user *_type,
718 const char __user *_description,
719 key_serial_t destringid)
720 {
721 struct key_type *ktype;
722 key_ref_t keyring_ref, key_ref, dest_ref;
723 char type[32], *description;
724 long ret;
725
726 /* pull the type and description into kernel space */
727 ret = key_get_type_from_user(type, _type, sizeof(type));
728 if (ret < 0)
729 goto error;
730
731 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
732 if (IS_ERR(description)) {
733 ret = PTR_ERR(description);
734 goto error;
735 }
736
737 /* get the keyring at which to begin the search */
738 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
739 if (IS_ERR(keyring_ref)) {
740 ret = PTR_ERR(keyring_ref);
741 goto error2;
742 }
743
744 /* get the destination keyring if specified */
745 dest_ref = NULL;
746 if (destringid) {
747 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
748 KEY_NEED_WRITE);
749 if (IS_ERR(dest_ref)) {
750 ret = PTR_ERR(dest_ref);
751 goto error3;
752 }
753 }
754
755 /* find the key type */
756 ktype = key_type_lookup(type);
757 if (IS_ERR(ktype)) {
758 ret = PTR_ERR(ktype);
759 goto error4;
760 }
761
762 /* do the search */
763 key_ref = keyring_search(keyring_ref, ktype, description, true);
764 if (IS_ERR(key_ref)) {
765 ret = PTR_ERR(key_ref);
766
767 /* treat lack or presence of a negative key the same */
768 if (ret == -EAGAIN)
769 ret = -ENOKEY;
770 goto error5;
771 }
772
773 /* link the resulting key to the destination keyring if we can */
774 if (dest_ref) {
775 ret = key_permission(key_ref, KEY_NEED_LINK);
776 if (ret < 0)
777 goto error6;
778
779 ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
780 if (ret < 0)
781 goto error6;
782 }
783
784 ret = key_ref_to_ptr(key_ref)->serial;
785
786 error6:
787 key_ref_put(key_ref);
788 error5:
789 key_type_put(ktype);
790 error4:
791 key_ref_put(dest_ref);
792 error3:
793 key_ref_put(keyring_ref);
794 error2:
795 kfree(description);
796 error:
797 return ret;
798 }
799
800 /*
801 * Read a key's payload.
802 *
803 * The key must either grant the caller Read permission, or it must grant the
804 * caller Search permission when searched for from the process keyrings.
805 *
806 * If successful, we place up to buflen bytes of data into the buffer, if one
807 * is provided, and return the amount of data that is available in the key,
808 * irrespective of how much we copied into the buffer.
809 */
810 long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
811 {
812 struct key *key;
813 key_ref_t key_ref;
814 long ret;
815
816 /* find the key first */
817 key_ref = lookup_user_key(keyid, 0, 0);
818 if (IS_ERR(key_ref)) {
819 ret = -ENOKEY;
820 goto error;
821 }
822
823 key = key_ref_to_ptr(key_ref);
824
825 ret = key_read_state(key);
826 if (ret < 0)
827 goto error2; /* Negatively instantiated */
828
829 /* see if we can read it directly */
830 ret = key_permission(key_ref, KEY_NEED_READ);
831 if (ret == 0)
832 goto can_read_key;
833 if (ret != -EACCES)
834 goto error2;
835
836 /* we can't; see if it's searchable from this process's keyrings
837 * - we automatically take account of the fact that it may be
838 * dangling off an instantiation key
839 */
840 if (!is_key_possessed(key_ref)) {
841 ret = -EACCES;
842 goto error2;
843 }
844
845 /* the key is probably readable - now try to read it */
846 can_read_key:
847 ret = -EOPNOTSUPP;
848 if (key->type->read) {
849 /* Read the data with the semaphore held (since we might sleep)
850 * to protect against the key being updated or revoked.
851 */
852 down_read(&key->sem);
853 ret = key_validate(key);
854 if (ret == 0)
855 ret = key->type->read(key, buffer, buflen);
856 up_read(&key->sem);
857 }
858
859 error2:
860 key_put(key);
861 error:
862 return ret;
863 }
864
865 /*
866 * Change the ownership of a key
867 *
868 * The key must grant the caller Setattr permission for this to work, though
869 * the key need not be fully instantiated yet. For the UID to be changed, or
870 * for the GID to be changed to a group the caller is not a member of, the
871 * caller must have sysadmin capability. If either uid or gid is -1 then that
872 * attribute is not changed.
873 *
874 * If the UID is to be changed, the new user must have sufficient quota to
875 * accept the key. The quota deduction will be removed from the old user to
876 * the new user should the attribute be changed.
877 *
878 * If successful, 0 will be returned.
879 */
880 long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
881 {
882 struct key_user *newowner, *zapowner = NULL;
883 struct key *key;
884 key_ref_t key_ref;
885 long ret;
886 kuid_t uid;
887 kgid_t gid;
888
889 uid = make_kuid(current_user_ns(), user);
890 gid = make_kgid(current_user_ns(), group);
891 ret = -EINVAL;
892 if ((user != (uid_t) -1) && !uid_valid(uid))
893 goto error;
894 if ((group != (gid_t) -1) && !gid_valid(gid))
895 goto error;
896
897 ret = 0;
898 if (user == (uid_t) -1 && group == (gid_t) -1)
899 goto error;
900
901 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
902 KEY_NEED_SETATTR);
903 if (IS_ERR(key_ref)) {
904 ret = PTR_ERR(key_ref);
905 goto error;
906 }
907
908 key = key_ref_to_ptr(key_ref);
909
910 /* make the changes with the locks held to prevent chown/chown races */
911 ret = -EACCES;
912 down_write(&key->sem);
913
914 if (!capable(CAP_SYS_ADMIN)) {
915 /* only the sysadmin can chown a key to some other UID */
916 if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
917 goto error_put;
918
919 /* only the sysadmin can set the key's GID to a group other
920 * than one of those that the current process subscribes to */
921 if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
922 goto error_put;
923 }
924
925 /* change the UID */
926 if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
927 ret = -ENOMEM;
928 newowner = key_user_lookup(uid);
929 if (!newowner)
930 goto error_put;
931
932 /* transfer the quota burden to the new user */
933 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
934 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
935 key_quota_root_maxkeys : key_quota_maxkeys;
936 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
937 key_quota_root_maxbytes : key_quota_maxbytes;
938
939 spin_lock(&newowner->lock);
940 if (newowner->qnkeys + 1 >= maxkeys ||
941 newowner->qnbytes + key->quotalen >= maxbytes ||
942 newowner->qnbytes + key->quotalen <
943 newowner->qnbytes)
944 goto quota_overrun;
945
946 newowner->qnkeys++;
947 newowner->qnbytes += key->quotalen;
948 spin_unlock(&newowner->lock);
949
950 spin_lock(&key->user->lock);
951 key->user->qnkeys--;
952 key->user->qnbytes -= key->quotalen;
953 spin_unlock(&key->user->lock);
954 }
955
956 atomic_dec(&key->user->nkeys);
957 atomic_inc(&newowner->nkeys);
958
959 if (key->state != KEY_IS_UNINSTANTIATED) {
960 atomic_dec(&key->user->nikeys);
961 atomic_inc(&newowner->nikeys);
962 }
963
964 zapowner = key->user;
965 key->user = newowner;
966 key->uid = uid;
967 }
968
969 /* change the GID */
970 if (group != (gid_t) -1)
971 key->gid = gid;
972
973 ret = 0;
974
975 error_put:
976 up_write(&key->sem);
977 key_put(key);
978 if (zapowner)
979 key_user_put(zapowner);
980 error:
981 return ret;
982
983 quota_overrun:
984 spin_unlock(&newowner->lock);
985 zapowner = newowner;
986 ret = -EDQUOT;
987 goto error_put;
988 }
989
990 /*
991 * Change the permission mask on a key.
992 *
993 * The key must grant the caller Setattr permission for this to work, though
994 * the key need not be fully instantiated yet. If the caller does not have
995 * sysadmin capability, it may only change the permission on keys that it owns.
996 */
997 long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
998 {
999 struct key *key;
1000 key_ref_t key_ref;
1001 long ret;
1002
1003 ret = -EINVAL;
1004 if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
1005 goto error;
1006
1007 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1008 KEY_NEED_SETATTR);
1009 if (IS_ERR(key_ref)) {
1010 ret = PTR_ERR(key_ref);
1011 goto error;
1012 }
1013
1014 key = key_ref_to_ptr(key_ref);
1015
1016 /* make the changes with the locks held to prevent chown/chmod races */
1017 ret = -EACCES;
1018 down_write(&key->sem);
1019
1020 /* if we're not the sysadmin, we can only change a key that we own */
1021 if (capable(CAP_SYS_ADMIN) || uid_eq(key->uid, current_fsuid())) {
1022 key->perm = perm;
1023 ret = 0;
1024 }
1025
1026 up_write(&key->sem);
1027 key_put(key);
1028 error:
1029 return ret;
1030 }
1031
1032 /*
1033 * Get the destination keyring for instantiation and check that the caller has
1034 * Write permission on it.
1035 */
1036 static long get_instantiation_keyring(key_serial_t ringid,
1037 struct request_key_auth *rka,
1038 struct key **_dest_keyring)
1039 {
1040 key_ref_t dkref;
1041
1042 *_dest_keyring = NULL;
1043
1044 /* just return a NULL pointer if we weren't asked to make a link */
1045 if (ringid == 0)
1046 return 0;
1047
1048 /* if a specific keyring is nominated by ID, then use that */
1049 if (ringid > 0) {
1050 dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
1051 if (IS_ERR(dkref))
1052 return PTR_ERR(dkref);
1053 *_dest_keyring = key_ref_to_ptr(dkref);
1054 return 0;
1055 }
1056
1057 if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
1058 return -EINVAL;
1059
1060 /* otherwise specify the destination keyring recorded in the
1061 * authorisation key (any KEY_SPEC_*_KEYRING) */
1062 if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
1063 *_dest_keyring = key_get(rka->dest_keyring);
1064 return 0;
1065 }
1066
1067 return -ENOKEY;
1068 }
1069
1070 /*
1071 * Change the request_key authorisation key on the current process.
1072 */
1073 static int keyctl_change_reqkey_auth(struct key *key)
1074 {
1075 struct cred *new;
1076
1077 new = prepare_creds();
1078 if (!new)
1079 return -ENOMEM;
1080
1081 key_put(new->request_key_auth);
1082 new->request_key_auth = key_get(key);
1083
1084 return commit_creds(new);
1085 }
1086
1087 /*
1088 * Instantiate a key with the specified payload and link the key into the
1089 * destination keyring if one is given.
1090 *
1091 * The caller must have the appropriate instantiation permit set for this to
1092 * work (see keyctl_assume_authority). No other permissions are required.
1093 *
1094 * If successful, 0 will be returned.
1095 */
1096 long keyctl_instantiate_key_common(key_serial_t id,
1097 struct iov_iter *from,
1098 key_serial_t ringid)
1099 {
1100 const struct cred *cred = current_cred();
1101 struct request_key_auth *rka;
1102 struct key *instkey, *dest_keyring;
1103 size_t plen = from ? iov_iter_count(from) : 0;
1104 void *payload;
1105 long ret;
1106
1107 kenter("%d,,%zu,%d", id, plen, ringid);
1108
1109 if (!plen)
1110 from = NULL;
1111
1112 ret = -EINVAL;
1113 if (plen > 1024 * 1024 - 1)
1114 goto error;
1115
1116 /* the appropriate instantiation authorisation key must have been
1117 * assumed before calling this */
1118 ret = -EPERM;
1119 instkey = cred->request_key_auth;
1120 if (!instkey)
1121 goto error;
1122
1123 rka = instkey->payload.data[0];
1124 if (rka->target_key->serial != id)
1125 goto error;
1126
1127 /* pull the payload in if one was supplied */
1128 payload = NULL;
1129
1130 if (from) {
1131 ret = -ENOMEM;
1132 payload = kvmalloc(plen, GFP_KERNEL);
1133 if (!payload)
1134 goto error;
1135
1136 ret = -EFAULT;
1137 if (!copy_from_iter_full(payload, plen, from))
1138 goto error2;
1139 }
1140
1141 /* find the destination keyring amongst those belonging to the
1142 * requesting task */
1143 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1144 if (ret < 0)
1145 goto error2;
1146
1147 /* instantiate the key and link it into a keyring */
1148 ret = key_instantiate_and_link(rka->target_key, payload, plen,
1149 dest_keyring, instkey);
1150
1151 key_put(dest_keyring);
1152
1153 /* discard the assumed authority if it's just been disabled by
1154 * instantiation of the key */
1155 if (ret == 0)
1156 keyctl_change_reqkey_auth(NULL);
1157
1158 error2:
1159 if (payload) {
1160 memzero_explicit(payload, plen);
1161 kvfree(payload);
1162 }
1163 error:
1164 return ret;
1165 }
1166
1167 /*
1168 * Instantiate a key with the specified payload and link the key into the
1169 * destination keyring if one is given.
1170 *
1171 * The caller must have the appropriate instantiation permit set for this to
1172 * work (see keyctl_assume_authority). No other permissions are required.
1173 *
1174 * If successful, 0 will be returned.
1175 */
1176 long keyctl_instantiate_key(key_serial_t id,
1177 const void __user *_payload,
1178 size_t plen,
1179 key_serial_t ringid)
1180 {
1181 if (_payload && plen) {
1182 struct iovec iov;
1183 struct iov_iter from;
1184 int ret;
1185
1186 ret = import_single_range(WRITE, (void __user *)_payload, plen,
1187 &iov, &from);
1188 if (unlikely(ret))
1189 return ret;
1190
1191 return keyctl_instantiate_key_common(id, &from, ringid);
1192 }
1193
1194 return keyctl_instantiate_key_common(id, NULL, ringid);
1195 }
1196
1197 /*
1198 * Instantiate a key with the specified multipart payload and link the key into
1199 * the destination keyring if one is given.
1200 *
1201 * The caller must have the appropriate instantiation permit set for this to
1202 * work (see keyctl_assume_authority). No other permissions are required.
1203 *
1204 * If successful, 0 will be returned.
1205 */
1206 long keyctl_instantiate_key_iov(key_serial_t id,
1207 const struct iovec __user *_payload_iov,
1208 unsigned ioc,
1209 key_serial_t ringid)
1210 {
1211 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1212 struct iov_iter from;
1213 long ret;
1214
1215 if (!_payload_iov)
1216 ioc = 0;
1217
1218 ret = import_iovec(WRITE, _payload_iov, ioc,
1219 ARRAY_SIZE(iovstack), &iov, &from);
1220 if (ret < 0)
1221 return ret;
1222 ret = keyctl_instantiate_key_common(id, &from, ringid);
1223 kfree(iov);
1224 return ret;
1225 }
1226
1227 /*
1228 * Negatively instantiate the key with the given timeout (in seconds) and link
1229 * the key into the destination keyring if one is given.
1230 *
1231 * The caller must have the appropriate instantiation permit set for this to
1232 * work (see keyctl_assume_authority). No other permissions are required.
1233 *
1234 * The key and any links to the key will be automatically garbage collected
1235 * after the timeout expires.
1236 *
1237 * Negative keys are used to rate limit repeated request_key() calls by causing
1238 * them to return -ENOKEY until the negative key expires.
1239 *
1240 * If successful, 0 will be returned.
1241 */
1242 long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1243 {
1244 return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1245 }
1246
1247 /*
1248 * Negatively instantiate the key with the given timeout (in seconds) and error
1249 * code and link the key into the destination keyring if one is given.
1250 *
1251 * The caller must have the appropriate instantiation permit set for this to
1252 * work (see keyctl_assume_authority). No other permissions are required.
1253 *
1254 * The key and any links to the key will be automatically garbage collected
1255 * after the timeout expires.
1256 *
1257 * Negative keys are used to rate limit repeated request_key() calls by causing
1258 * them to return the specified error code until the negative key expires.
1259 *
1260 * If successful, 0 will be returned.
1261 */
1262 long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1263 key_serial_t ringid)
1264 {
1265 const struct cred *cred = current_cred();
1266 struct request_key_auth *rka;
1267 struct key *instkey, *dest_keyring;
1268 long ret;
1269
1270 kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1271
1272 /* must be a valid error code and mustn't be a kernel special */
1273 if (error <= 0 ||
1274 error >= MAX_ERRNO ||
1275 error == ERESTARTSYS ||
1276 error == ERESTARTNOINTR ||
1277 error == ERESTARTNOHAND ||
1278 error == ERESTART_RESTARTBLOCK)
1279 return -EINVAL;
1280
1281 /* the appropriate instantiation authorisation key must have been
1282 * assumed before calling this */
1283 ret = -EPERM;
1284 instkey = cred->request_key_auth;
1285 if (!instkey)
1286 goto error;
1287
1288 rka = instkey->payload.data[0];
1289 if (rka->target_key->serial != id)
1290 goto error;
1291
1292 /* find the destination keyring if present (which must also be
1293 * writable) */
1294 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1295 if (ret < 0)
1296 goto error;
1297
1298 /* instantiate the key and link it into a keyring */
1299 ret = key_reject_and_link(rka->target_key, timeout, error,
1300 dest_keyring, instkey);
1301
1302 key_put(dest_keyring);
1303
1304 /* discard the assumed authority if it's just been disabled by
1305 * instantiation of the key */
1306 if (ret == 0)
1307 keyctl_change_reqkey_auth(NULL);
1308
1309 error:
1310 return ret;
1311 }
1312
1313 /*
1314 * Read or set the default keyring in which request_key() will cache keys and
1315 * return the old setting.
1316 *
1317 * If a thread or process keyring is specified then it will be created if it
1318 * doesn't yet exist. The old setting will be returned if successful.
1319 */
1320 long keyctl_set_reqkey_keyring(int reqkey_defl)
1321 {
1322 struct cred *new;
1323 int ret, old_setting;
1324
1325 old_setting = current_cred_xxx(jit_keyring);
1326
1327 if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1328 return old_setting;
1329
1330 new = prepare_creds();
1331 if (!new)
1332 return -ENOMEM;
1333
1334 switch (reqkey_defl) {
1335 case KEY_REQKEY_DEFL_THREAD_KEYRING:
1336 ret = install_thread_keyring_to_cred(new);
1337 if (ret < 0)
1338 goto error;
1339 goto set;
1340
1341 case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1342 ret = install_process_keyring_to_cred(new);
1343 if (ret < 0)
1344 goto error;
1345 goto set;
1346
1347 case KEY_REQKEY_DEFL_DEFAULT:
1348 case KEY_REQKEY_DEFL_SESSION_KEYRING:
1349 case KEY_REQKEY_DEFL_USER_KEYRING:
1350 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1351 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1352 goto set;
1353
1354 case KEY_REQKEY_DEFL_NO_CHANGE:
1355 case KEY_REQKEY_DEFL_GROUP_KEYRING:
1356 default:
1357 ret = -EINVAL;
1358 goto error;
1359 }
1360
1361 set:
1362 new->jit_keyring = reqkey_defl;
1363 commit_creds(new);
1364 return old_setting;
1365 error:
1366 abort_creds(new);
1367 return ret;
1368 }
1369
1370 /*
1371 * Set or clear the timeout on a key.
1372 *
1373 * Either the key must grant the caller Setattr permission or else the caller
1374 * must hold an instantiation authorisation token for the key.
1375 *
1376 * The timeout is either 0 to clear the timeout, or a number of seconds from
1377 * the current time. The key and any links to the key will be automatically
1378 * garbage collected after the timeout expires.
1379 *
1380 * Keys with KEY_FLAG_KEEP set should not be timed out.
1381 *
1382 * If successful, 0 is returned.
1383 */
1384 long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1385 {
1386 struct key *key, *instkey;
1387 key_ref_t key_ref;
1388 long ret;
1389
1390 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1391 KEY_NEED_SETATTR);
1392 if (IS_ERR(key_ref)) {
1393 /* setting the timeout on a key under construction is permitted
1394 * if we have the authorisation token handy */
1395 if (PTR_ERR(key_ref) == -EACCES) {
1396 instkey = key_get_instantiation_authkey(id);
1397 if (!IS_ERR(instkey)) {
1398 key_put(instkey);
1399 key_ref = lookup_user_key(id,
1400 KEY_LOOKUP_PARTIAL,
1401 0);
1402 if (!IS_ERR(key_ref))
1403 goto okay;
1404 }
1405 }
1406
1407 ret = PTR_ERR(key_ref);
1408 goto error;
1409 }
1410
1411 okay:
1412 key = key_ref_to_ptr(key_ref);
1413 ret = 0;
1414 if (test_bit(KEY_FLAG_KEEP, &key->flags))
1415 ret = -EPERM;
1416 else
1417 key_set_timeout(key, timeout);
1418 key_put(key);
1419
1420 error:
1421 return ret;
1422 }
1423
1424 /*
1425 * Assume (or clear) the authority to instantiate the specified key.
1426 *
1427 * This sets the authoritative token currently in force for key instantiation.
1428 * This must be done for a key to be instantiated. It has the effect of making
1429 * available all the keys from the caller of the request_key() that created a
1430 * key to request_key() calls made by the caller of this function.
1431 *
1432 * The caller must have the instantiation key in their process keyrings with a
1433 * Search permission grant available to the caller.
1434 *
1435 * If the ID given is 0, then the setting will be cleared and 0 returned.
1436 *
1437 * If the ID given has a matching an authorisation key, then that key will be
1438 * set and its ID will be returned. The authorisation key can be read to get
1439 * the callout information passed to request_key().
1440 */
1441 long keyctl_assume_authority(key_serial_t id)
1442 {
1443 struct key *authkey;
1444 long ret;
1445
1446 /* special key IDs aren't permitted */
1447 ret = -EINVAL;
1448 if (id < 0)
1449 goto error;
1450
1451 /* we divest ourselves of authority if given an ID of 0 */
1452 if (id == 0) {
1453 ret = keyctl_change_reqkey_auth(NULL);
1454 goto error;
1455 }
1456
1457 /* attempt to assume the authority temporarily granted to us whilst we
1458 * instantiate the specified key
1459 * - the authorisation key must be in the current task's keyrings
1460 * somewhere
1461 */
1462 authkey = key_get_instantiation_authkey(id);
1463 if (IS_ERR(authkey)) {
1464 ret = PTR_ERR(authkey);
1465 goto error;
1466 }
1467
1468 ret = keyctl_change_reqkey_auth(authkey);
1469 if (ret == 0)
1470 ret = authkey->serial;
1471 key_put(authkey);
1472 error:
1473 return ret;
1474 }
1475
1476 /*
1477 * Get a key's the LSM security label.
1478 *
1479 * The key must grant the caller View permission for this to work.
1480 *
1481 * If there's a buffer, then up to buflen bytes of data will be placed into it.
1482 *
1483 * If successful, the amount of information available will be returned,
1484 * irrespective of how much was copied (including the terminal NUL).
1485 */
1486 long keyctl_get_security(key_serial_t keyid,
1487 char __user *buffer,
1488 size_t buflen)
1489 {
1490 struct key *key, *instkey;
1491 key_ref_t key_ref;
1492 char *context;
1493 long ret;
1494
1495 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
1496 if (IS_ERR(key_ref)) {
1497 if (PTR_ERR(key_ref) != -EACCES)
1498 return PTR_ERR(key_ref);
1499
1500 /* viewing a key under construction is also permitted if we
1501 * have the authorisation token handy */
1502 instkey = key_get_instantiation_authkey(keyid);
1503 if (IS_ERR(instkey))
1504 return PTR_ERR(instkey);
1505 key_put(instkey);
1506
1507 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, 0);
1508 if (IS_ERR(key_ref))
1509 return PTR_ERR(key_ref);
1510 }
1511
1512 key = key_ref_to_ptr(key_ref);
1513 ret = security_key_getsecurity(key, &context);
1514 if (ret == 0) {
1515 /* if no information was returned, give userspace an empty
1516 * string */
1517 ret = 1;
1518 if (buffer && buflen > 0 &&
1519 copy_to_user(buffer, "", 1) != 0)
1520 ret = -EFAULT;
1521 } else if (ret > 0) {
1522 /* return as much data as there's room for */
1523 if (buffer && buflen > 0) {
1524 if (buflen > ret)
1525 buflen = ret;
1526
1527 if (copy_to_user(buffer, context, buflen) != 0)
1528 ret = -EFAULT;
1529 }
1530
1531 kfree(context);
1532 }
1533
1534 key_ref_put(key_ref);
1535 return ret;
1536 }
1537
1538 /*
1539 * Attempt to install the calling process's session keyring on the process's
1540 * parent process.
1541 *
1542 * The keyring must exist and must grant the caller LINK permission, and the
1543 * parent process must be single-threaded and must have the same effective
1544 * ownership as this process and mustn't be SUID/SGID.
1545 *
1546 * The keyring will be emplaced on the parent when it next resumes userspace.
1547 *
1548 * If successful, 0 will be returned.
1549 */
1550 long keyctl_session_to_parent(void)
1551 {
1552 struct task_struct *me, *parent;
1553 const struct cred *mycred, *pcred;
1554 struct callback_head *newwork, *oldwork;
1555 key_ref_t keyring_r;
1556 struct cred *cred;
1557 int ret;
1558
1559 keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
1560 if (IS_ERR(keyring_r))
1561 return PTR_ERR(keyring_r);
1562
1563 ret = -ENOMEM;
1564
1565 /* our parent is going to need a new cred struct, a new tgcred struct
1566 * and new security data, so we allocate them here to prevent ENOMEM in
1567 * our parent */
1568 cred = cred_alloc_blank();
1569 if (!cred)
1570 goto error_keyring;
1571 newwork = &cred->rcu;
1572
1573 cred->session_keyring = key_ref_to_ptr(keyring_r);
1574 keyring_r = NULL;
1575 init_task_work(newwork, key_change_session_keyring);
1576
1577 me = current;
1578 rcu_read_lock();
1579 write_lock_irq(&tasklist_lock);
1580
1581 ret = -EPERM;
1582 oldwork = NULL;
1583 parent = rcu_dereference_protected(me->real_parent,
1584 lockdep_is_held(&tasklist_lock));
1585
1586 /* the parent mustn't be init and mustn't be a kernel thread */
1587 if (parent->pid <= 1 || !parent->mm)
1588 goto unlock;
1589
1590 /* the parent must be single threaded */
1591 if (!thread_group_empty(parent))
1592 goto unlock;
1593
1594 /* the parent and the child must have different session keyrings or
1595 * there's no point */
1596 mycred = current_cred();
1597 pcred = __task_cred(parent);
1598 if (mycred == pcred ||
1599 mycred->session_keyring == pcred->session_keyring) {
1600 ret = 0;
1601 goto unlock;
1602 }
1603
1604 /* the parent must have the same effective ownership and mustn't be
1605 * SUID/SGID */
1606 if (!uid_eq(pcred->uid, mycred->euid) ||
1607 !uid_eq(pcred->euid, mycred->euid) ||
1608 !uid_eq(pcred->suid, mycred->euid) ||
1609 !gid_eq(pcred->gid, mycred->egid) ||
1610 !gid_eq(pcred->egid, mycred->egid) ||
1611 !gid_eq(pcred->sgid, mycred->egid))
1612 goto unlock;
1613
1614 /* the keyrings must have the same UID */
1615 if ((pcred->session_keyring &&
1616 !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1617 !uid_eq(mycred->session_keyring->uid, mycred->euid))
1618 goto unlock;
1619
1620 /* cancel an already pending keyring replacement */
1621 oldwork = task_work_cancel(parent, key_change_session_keyring);
1622
1623 /* the replacement session keyring is applied just prior to userspace
1624 * restarting */
1625 ret = task_work_add(parent, newwork, true);
1626 if (!ret)
1627 newwork = NULL;
1628 unlock:
1629 write_unlock_irq(&tasklist_lock);
1630 rcu_read_unlock();
1631 if (oldwork)
1632 put_cred(container_of(oldwork, struct cred, rcu));
1633 if (newwork)
1634 put_cred(cred);
1635 return ret;
1636
1637 error_keyring:
1638 key_ref_put(keyring_r);
1639 return ret;
1640 }
1641
1642 /*
1643 * Apply a restriction to a given keyring.
1644 *
1645 * The caller must have Setattr permission to change keyring restrictions.
1646 *
1647 * The requested type name may be a NULL pointer to reject all attempts
1648 * to link to the keyring. In this case, _restriction must also be NULL.
1649 * Otherwise, both _type and _restriction must be non-NULL.
1650 *
1651 * Returns 0 if successful.
1652 */
1653 long keyctl_restrict_keyring(key_serial_t id, const char __user *_type,
1654 const char __user *_restriction)
1655 {
1656 key_ref_t key_ref;
1657 char type[32];
1658 char *restriction = NULL;
1659 long ret;
1660
1661 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
1662 if (IS_ERR(key_ref))
1663 return PTR_ERR(key_ref);
1664
1665 ret = -EINVAL;
1666 if (_type) {
1667 if (!_restriction)
1668 goto error;
1669
1670 ret = key_get_type_from_user(type, _type, sizeof(type));
1671 if (ret < 0)
1672 goto error;
1673
1674 restriction = strndup_user(_restriction, PAGE_SIZE);
1675 if (IS_ERR(restriction)) {
1676 ret = PTR_ERR(restriction);
1677 goto error;
1678 }
1679 } else {
1680 if (_restriction)
1681 goto error;
1682 }
1683
1684 ret = keyring_restrict(key_ref, _type ? type : NULL, restriction);
1685 kfree(restriction);
1686 error:
1687 key_ref_put(key_ref);
1688 return ret;
1689 }
1690
1691 /*
1692 * Get keyrings subsystem capabilities.
1693 */
1694 long keyctl_capabilities(unsigned char __user *_buffer, size_t buflen)
1695 {
1696 size_t size = buflen;
1697
1698 if (size > 0) {
1699 if (size > sizeof(keyrings_capabilities))
1700 size = sizeof(keyrings_capabilities);
1701 if (copy_to_user(_buffer, keyrings_capabilities, size) != 0)
1702 return -EFAULT;
1703 if (size < buflen &&
1704 clear_user(_buffer + size, buflen - size) != 0)
1705 return -EFAULT;
1706 }
1707
1708 return sizeof(keyrings_capabilities);
1709 }
1710
1711 /*
1712 * The key control system call
1713 */
1714 SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1715 unsigned long, arg4, unsigned long, arg5)
1716 {
1717 switch (option) {
1718 case KEYCTL_GET_KEYRING_ID:
1719 return keyctl_get_keyring_ID((key_serial_t) arg2,
1720 (int) arg3);
1721
1722 case KEYCTL_JOIN_SESSION_KEYRING:
1723 return keyctl_join_session_keyring((const char __user *) arg2);
1724
1725 case KEYCTL_UPDATE:
1726 return keyctl_update_key((key_serial_t) arg2,
1727 (const void __user *) arg3,
1728 (size_t) arg4);
1729
1730 case KEYCTL_REVOKE:
1731 return keyctl_revoke_key((key_serial_t) arg2);
1732
1733 case KEYCTL_DESCRIBE:
1734 return keyctl_describe_key((key_serial_t) arg2,
1735 (char __user *) arg3,
1736 (unsigned) arg4);
1737
1738 case KEYCTL_CLEAR:
1739 return keyctl_keyring_clear((key_serial_t) arg2);
1740
1741 case KEYCTL_LINK:
1742 return keyctl_keyring_link((key_serial_t) arg2,
1743 (key_serial_t) arg3);
1744
1745 case KEYCTL_UNLINK:
1746 return keyctl_keyring_unlink((key_serial_t) arg2,
1747 (key_serial_t) arg3);
1748
1749 case KEYCTL_SEARCH:
1750 return keyctl_keyring_search((key_serial_t) arg2,
1751 (const char __user *) arg3,
1752 (const char __user *) arg4,
1753 (key_serial_t) arg5);
1754
1755 case KEYCTL_READ:
1756 return keyctl_read_key((key_serial_t) arg2,
1757 (char __user *) arg3,
1758 (size_t) arg4);
1759
1760 case KEYCTL_CHOWN:
1761 return keyctl_chown_key((key_serial_t) arg2,
1762 (uid_t) arg3,
1763 (gid_t) arg4);
1764
1765 case KEYCTL_SETPERM:
1766 return keyctl_setperm_key((key_serial_t) arg2,
1767 (key_perm_t) arg3);
1768
1769 case KEYCTL_INSTANTIATE:
1770 return keyctl_instantiate_key((key_serial_t) arg2,
1771 (const void __user *) arg3,
1772 (size_t) arg4,
1773 (key_serial_t) arg5);
1774
1775 case KEYCTL_NEGATE:
1776 return keyctl_negate_key((key_serial_t) arg2,
1777 (unsigned) arg3,
1778 (key_serial_t) arg4);
1779
1780 case KEYCTL_SET_REQKEY_KEYRING:
1781 return keyctl_set_reqkey_keyring(arg2);
1782
1783 case KEYCTL_SET_TIMEOUT:
1784 return keyctl_set_timeout((key_serial_t) arg2,
1785 (unsigned) arg3);
1786
1787 case KEYCTL_ASSUME_AUTHORITY:
1788 return keyctl_assume_authority((key_serial_t) arg2);
1789
1790 case KEYCTL_GET_SECURITY:
1791 return keyctl_get_security((key_serial_t) arg2,
1792 (char __user *) arg3,
1793 (size_t) arg4);
1794
1795 case KEYCTL_SESSION_TO_PARENT:
1796 return keyctl_session_to_parent();
1797
1798 case KEYCTL_REJECT:
1799 return keyctl_reject_key((key_serial_t) arg2,
1800 (unsigned) arg3,
1801 (unsigned) arg4,
1802 (key_serial_t) arg5);
1803
1804 case KEYCTL_INSTANTIATE_IOV:
1805 return keyctl_instantiate_key_iov(
1806 (key_serial_t) arg2,
1807 (const struct iovec __user *) arg3,
1808 (unsigned) arg4,
1809 (key_serial_t) arg5);
1810
1811 case KEYCTL_INVALIDATE:
1812 return keyctl_invalidate_key((key_serial_t) arg2);
1813
1814 case KEYCTL_GET_PERSISTENT:
1815 return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
1816
1817 case KEYCTL_DH_COMPUTE:
1818 return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2,
1819 (char __user *) arg3, (size_t) arg4,
1820 (struct keyctl_kdf_params __user *) arg5);
1821
1822 case KEYCTL_RESTRICT_KEYRING:
1823 return keyctl_restrict_keyring((key_serial_t) arg2,
1824 (const char __user *) arg3,
1825 (const char __user *) arg4);
1826
1827 case KEYCTL_PKEY_QUERY:
1828 if (arg3 != 0)
1829 return -EINVAL;
1830 return keyctl_pkey_query((key_serial_t)arg2,
1831 (const char __user *)arg4,
1832 (struct keyctl_pkey_query __user *)arg5);
1833
1834 case KEYCTL_PKEY_ENCRYPT:
1835 case KEYCTL_PKEY_DECRYPT:
1836 case KEYCTL_PKEY_SIGN:
1837 return keyctl_pkey_e_d_s(
1838 option,
1839 (const struct keyctl_pkey_params __user *)arg2,
1840 (const char __user *)arg3,
1841 (const void __user *)arg4,
1842 (void __user *)arg5);
1843
1844 case KEYCTL_PKEY_VERIFY:
1845 return keyctl_pkey_verify(
1846 (const struct keyctl_pkey_params __user *)arg2,
1847 (const char __user *)arg3,
1848 (const void __user *)arg4,
1849 (const void __user *)arg5);
1850
1851 case KEYCTL_MOVE:
1852 return keyctl_keyring_move((key_serial_t)arg2,
1853 (key_serial_t)arg3,
1854 (key_serial_t)arg4,
1855 (unsigned int)arg5);
1856
1857 case KEYCTL_CAPABILITIES:
1858 return keyctl_capabilities((unsigned char __user *)arg2, (size_t)arg3);
1859
1860 default:
1861 return -EOPNOTSUPP;
1862 }
1863 }