]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - security/keys/keyctl.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[mirror_ubuntu-hirsute-kernel.git] / security / keys / keyctl.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Userspace key control operations
3 *
4 * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/init.h>
9 #include <linux/sched.h>
10 #include <linux/sched/task.h>
11 #include <linux/slab.h>
12 #include <linux/syscalls.h>
13 #include <linux/key.h>
14 #include <linux/keyctl.h>
15 #include <linux/fs.h>
16 #include <linux/capability.h>
17 #include <linux/cred.h>
18 #include <linux/string.h>
19 #include <linux/err.h>
20 #include <linux/vmalloc.h>
21 #include <linux/security.h>
22 #include <linux/uio.h>
23 #include <linux/uaccess.h>
24 #include <keys/request_key_auth-type.h>
25 #include "internal.h"
26
27 #define KEY_MAX_DESC_SIZE 4096
28
29 static const unsigned char keyrings_capabilities[2] = {
30 [0] = (KEYCTL_CAPS0_CAPABILITIES |
31 (IS_ENABLED(CONFIG_PERSISTENT_KEYRINGS) ? KEYCTL_CAPS0_PERSISTENT_KEYRINGS : 0) |
32 (IS_ENABLED(CONFIG_KEY_DH_OPERATIONS) ? KEYCTL_CAPS0_DIFFIE_HELLMAN : 0) |
33 (IS_ENABLED(CONFIG_ASYMMETRIC_KEY_TYPE) ? KEYCTL_CAPS0_PUBLIC_KEY : 0) |
34 (IS_ENABLED(CONFIG_BIG_KEYS) ? KEYCTL_CAPS0_BIG_KEY : 0) |
35 KEYCTL_CAPS0_INVALIDATE |
36 KEYCTL_CAPS0_RESTRICT_KEYRING |
37 KEYCTL_CAPS0_MOVE
38 ),
39 [1] = (KEYCTL_CAPS1_NS_KEYRING_NAME |
40 KEYCTL_CAPS1_NS_KEY_TAG),
41 };
42
43 static int key_get_type_from_user(char *type,
44 const char __user *_type,
45 unsigned len)
46 {
47 int ret;
48
49 ret = strncpy_from_user(type, _type, len);
50 if (ret < 0)
51 return ret;
52 if (ret == 0 || ret >= len)
53 return -EINVAL;
54 if (type[0] == '.')
55 return -EPERM;
56 type[len - 1] = '\0';
57 return 0;
58 }
59
60 /*
61 * Extract the description of a new key from userspace and either add it as a
62 * new key to the specified keyring or update a matching key in that keyring.
63 *
64 * If the description is NULL or an empty string, the key type is asked to
65 * generate one from the payload.
66 *
67 * The keyring must be writable so that we can attach the key to it.
68 *
69 * If successful, the new key's serial number is returned, otherwise an error
70 * code is returned.
71 */
72 SYSCALL_DEFINE5(add_key, const char __user *, _type,
73 const char __user *, _description,
74 const void __user *, _payload,
75 size_t, plen,
76 key_serial_t, ringid)
77 {
78 key_ref_t keyring_ref, key_ref;
79 char type[32], *description;
80 void *payload;
81 long ret;
82
83 ret = -EINVAL;
84 if (plen > 1024 * 1024 - 1)
85 goto error;
86
87 /* draw all the data into kernel space */
88 ret = key_get_type_from_user(type, _type, sizeof(type));
89 if (ret < 0)
90 goto error;
91
92 description = NULL;
93 if (_description) {
94 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
95 if (IS_ERR(description)) {
96 ret = PTR_ERR(description);
97 goto error;
98 }
99 if (!*description) {
100 kfree(description);
101 description = NULL;
102 } else if ((description[0] == '.') &&
103 (strncmp(type, "keyring", 7) == 0)) {
104 ret = -EPERM;
105 goto error2;
106 }
107 }
108
109 /* pull the payload in if one was supplied */
110 payload = NULL;
111
112 if (plen) {
113 ret = -ENOMEM;
114 payload = kvmalloc(plen, GFP_KERNEL);
115 if (!payload)
116 goto error2;
117
118 ret = -EFAULT;
119 if (copy_from_user(payload, _payload, plen) != 0)
120 goto error3;
121 }
122
123 /* find the target keyring (which must be writable) */
124 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
125 if (IS_ERR(keyring_ref)) {
126 ret = PTR_ERR(keyring_ref);
127 goto error3;
128 }
129
130 /* create or update the requested key and add it to the target
131 * keyring */
132 key_ref = key_create_or_update(keyring_ref, type, description,
133 payload, plen, KEY_PERM_UNDEF,
134 KEY_ALLOC_IN_QUOTA);
135 if (!IS_ERR(key_ref)) {
136 ret = key_ref_to_ptr(key_ref)->serial;
137 key_ref_put(key_ref);
138 }
139 else {
140 ret = PTR_ERR(key_ref);
141 }
142
143 key_ref_put(keyring_ref);
144 error3:
145 if (payload) {
146 memzero_explicit(payload, plen);
147 kvfree(payload);
148 }
149 error2:
150 kfree(description);
151 error:
152 return ret;
153 }
154
155 /*
156 * Search the process keyrings and keyring trees linked from those for a
157 * matching key. Keyrings must have appropriate Search permission to be
158 * searched.
159 *
160 * If a key is found, it will be attached to the destination keyring if there's
161 * one specified and the serial number of the key will be returned.
162 *
163 * If no key is found, /sbin/request-key will be invoked if _callout_info is
164 * non-NULL in an attempt to create a key. The _callout_info string will be
165 * passed to /sbin/request-key to aid with completing the request. If the
166 * _callout_info string is "" then it will be changed to "-".
167 */
168 SYSCALL_DEFINE4(request_key, const char __user *, _type,
169 const char __user *, _description,
170 const char __user *, _callout_info,
171 key_serial_t, destringid)
172 {
173 struct key_type *ktype;
174 struct key *key;
175 key_ref_t dest_ref;
176 size_t callout_len;
177 char type[32], *description, *callout_info;
178 long ret;
179
180 /* pull the type into kernel space */
181 ret = key_get_type_from_user(type, _type, sizeof(type));
182 if (ret < 0)
183 goto error;
184
185 /* pull the description into kernel space */
186 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
187 if (IS_ERR(description)) {
188 ret = PTR_ERR(description);
189 goto error;
190 }
191
192 /* pull the callout info into kernel space */
193 callout_info = NULL;
194 callout_len = 0;
195 if (_callout_info) {
196 callout_info = strndup_user(_callout_info, PAGE_SIZE);
197 if (IS_ERR(callout_info)) {
198 ret = PTR_ERR(callout_info);
199 goto error2;
200 }
201 callout_len = strlen(callout_info);
202 }
203
204 /* get the destination keyring if specified */
205 dest_ref = NULL;
206 if (destringid) {
207 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
208 KEY_NEED_WRITE);
209 if (IS_ERR(dest_ref)) {
210 ret = PTR_ERR(dest_ref);
211 goto error3;
212 }
213 }
214
215 /* find the key type */
216 ktype = key_type_lookup(type);
217 if (IS_ERR(ktype)) {
218 ret = PTR_ERR(ktype);
219 goto error4;
220 }
221
222 /* do the search */
223 key = request_key_and_link(ktype, description, NULL, callout_info,
224 callout_len, NULL, key_ref_to_ptr(dest_ref),
225 KEY_ALLOC_IN_QUOTA);
226 if (IS_ERR(key)) {
227 ret = PTR_ERR(key);
228 goto error5;
229 }
230
231 /* wait for the key to finish being constructed */
232 ret = wait_for_key_construction(key, 1);
233 if (ret < 0)
234 goto error6;
235
236 ret = key->serial;
237
238 error6:
239 key_put(key);
240 error5:
241 key_type_put(ktype);
242 error4:
243 key_ref_put(dest_ref);
244 error3:
245 kfree(callout_info);
246 error2:
247 kfree(description);
248 error:
249 return ret;
250 }
251
252 /*
253 * Get the ID of the specified process keyring.
254 *
255 * The requested keyring must have search permission to be found.
256 *
257 * If successful, the ID of the requested keyring will be returned.
258 */
259 long keyctl_get_keyring_ID(key_serial_t id, int create)
260 {
261 key_ref_t key_ref;
262 unsigned long lflags;
263 long ret;
264
265 lflags = create ? KEY_LOOKUP_CREATE : 0;
266 key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
267 if (IS_ERR(key_ref)) {
268 ret = PTR_ERR(key_ref);
269 goto error;
270 }
271
272 ret = key_ref_to_ptr(key_ref)->serial;
273 key_ref_put(key_ref);
274 error:
275 return ret;
276 }
277
278 /*
279 * Join a (named) session keyring.
280 *
281 * Create and join an anonymous session keyring or join a named session
282 * keyring, creating it if necessary. A named session keyring must have Search
283 * permission for it to be joined. Session keyrings without this permit will
284 * be skipped over. It is not permitted for userspace to create or join
285 * keyrings whose name begin with a dot.
286 *
287 * If successful, the ID of the joined session keyring will be returned.
288 */
289 long keyctl_join_session_keyring(const char __user *_name)
290 {
291 char *name;
292 long ret;
293
294 /* fetch the name from userspace */
295 name = NULL;
296 if (_name) {
297 name = strndup_user(_name, KEY_MAX_DESC_SIZE);
298 if (IS_ERR(name)) {
299 ret = PTR_ERR(name);
300 goto error;
301 }
302
303 ret = -EPERM;
304 if (name[0] == '.')
305 goto error_name;
306 }
307
308 /* join the session */
309 ret = join_session_keyring(name);
310 error_name:
311 kfree(name);
312 error:
313 return ret;
314 }
315
316 /*
317 * Update a key's data payload from the given data.
318 *
319 * The key must grant the caller Write permission and the key type must support
320 * updating for this to work. A negative key can be positively instantiated
321 * with this call.
322 *
323 * If successful, 0 will be returned. If the key type does not support
324 * updating, then -EOPNOTSUPP will be returned.
325 */
326 long keyctl_update_key(key_serial_t id,
327 const void __user *_payload,
328 size_t plen)
329 {
330 key_ref_t key_ref;
331 void *payload;
332 long ret;
333
334 ret = -EINVAL;
335 if (plen > PAGE_SIZE)
336 goto error;
337
338 /* pull the payload in if one was supplied */
339 payload = NULL;
340 if (plen) {
341 ret = -ENOMEM;
342 payload = kvmalloc(plen, GFP_KERNEL);
343 if (!payload)
344 goto error;
345
346 ret = -EFAULT;
347 if (copy_from_user(payload, _payload, plen) != 0)
348 goto error2;
349 }
350
351 /* find the target key (which must be writable) */
352 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
353 if (IS_ERR(key_ref)) {
354 ret = PTR_ERR(key_ref);
355 goto error2;
356 }
357
358 /* update the key */
359 ret = key_update(key_ref, payload, plen);
360
361 key_ref_put(key_ref);
362 error2:
363 __kvzfree(payload, plen);
364 error:
365 return ret;
366 }
367
368 /*
369 * Revoke a key.
370 *
371 * The key must be grant the caller Write or Setattr permission for this to
372 * work. The key type should give up its quota claim when revoked. The key
373 * and any links to the key will be automatically garbage collected after a
374 * certain amount of time (/proc/sys/kernel/keys/gc_delay).
375 *
376 * Keys with KEY_FLAG_KEEP set should not be revoked.
377 *
378 * If successful, 0 is returned.
379 */
380 long keyctl_revoke_key(key_serial_t id)
381 {
382 key_ref_t key_ref;
383 struct key *key;
384 long ret;
385
386 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
387 if (IS_ERR(key_ref)) {
388 ret = PTR_ERR(key_ref);
389 if (ret != -EACCES)
390 goto error;
391 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
392 if (IS_ERR(key_ref)) {
393 ret = PTR_ERR(key_ref);
394 goto error;
395 }
396 }
397
398 key = key_ref_to_ptr(key_ref);
399 ret = 0;
400 if (test_bit(KEY_FLAG_KEEP, &key->flags))
401 ret = -EPERM;
402 else
403 key_revoke(key);
404
405 key_ref_put(key_ref);
406 error:
407 return ret;
408 }
409
410 /*
411 * Invalidate a key.
412 *
413 * The key must be grant the caller Invalidate permission for this to work.
414 * The key and any links to the key will be automatically garbage collected
415 * immediately.
416 *
417 * Keys with KEY_FLAG_KEEP set should not be invalidated.
418 *
419 * If successful, 0 is returned.
420 */
421 long keyctl_invalidate_key(key_serial_t id)
422 {
423 key_ref_t key_ref;
424 struct key *key;
425 long ret;
426
427 kenter("%d", id);
428
429 key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
430 if (IS_ERR(key_ref)) {
431 ret = PTR_ERR(key_ref);
432
433 /* Root is permitted to invalidate certain special keys */
434 if (capable(CAP_SYS_ADMIN)) {
435 key_ref = lookup_user_key(id, 0, 0);
436 if (IS_ERR(key_ref))
437 goto error;
438 if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
439 &key_ref_to_ptr(key_ref)->flags))
440 goto invalidate;
441 goto error_put;
442 }
443
444 goto error;
445 }
446
447 invalidate:
448 key = key_ref_to_ptr(key_ref);
449 ret = 0;
450 if (test_bit(KEY_FLAG_KEEP, &key->flags))
451 ret = -EPERM;
452 else
453 key_invalidate(key);
454 error_put:
455 key_ref_put(key_ref);
456 error:
457 kleave(" = %ld", ret);
458 return ret;
459 }
460
461 /*
462 * Clear the specified keyring, creating an empty process keyring if one of the
463 * special keyring IDs is used.
464 *
465 * The keyring must grant the caller Write permission and not have
466 * KEY_FLAG_KEEP set for this to work. If successful, 0 will be returned.
467 */
468 long keyctl_keyring_clear(key_serial_t ringid)
469 {
470 key_ref_t keyring_ref;
471 struct key *keyring;
472 long ret;
473
474 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
475 if (IS_ERR(keyring_ref)) {
476 ret = PTR_ERR(keyring_ref);
477
478 /* Root is permitted to invalidate certain special keyrings */
479 if (capable(CAP_SYS_ADMIN)) {
480 keyring_ref = lookup_user_key(ringid, 0, 0);
481 if (IS_ERR(keyring_ref))
482 goto error;
483 if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
484 &key_ref_to_ptr(keyring_ref)->flags))
485 goto clear;
486 goto error_put;
487 }
488
489 goto error;
490 }
491
492 clear:
493 keyring = key_ref_to_ptr(keyring_ref);
494 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
495 ret = -EPERM;
496 else
497 ret = keyring_clear(keyring);
498 error_put:
499 key_ref_put(keyring_ref);
500 error:
501 return ret;
502 }
503
504 /*
505 * Create a link from a keyring to a key if there's no matching key in the
506 * keyring, otherwise replace the link to the matching key with a link to the
507 * new key.
508 *
509 * The key must grant the caller Link permission and the the keyring must grant
510 * the caller Write permission. Furthermore, if an additional link is created,
511 * the keyring's quota will be extended.
512 *
513 * If successful, 0 will be returned.
514 */
515 long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
516 {
517 key_ref_t keyring_ref, key_ref;
518 long ret;
519
520 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
521 if (IS_ERR(keyring_ref)) {
522 ret = PTR_ERR(keyring_ref);
523 goto error;
524 }
525
526 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
527 if (IS_ERR(key_ref)) {
528 ret = PTR_ERR(key_ref);
529 goto error2;
530 }
531
532 ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
533
534 key_ref_put(key_ref);
535 error2:
536 key_ref_put(keyring_ref);
537 error:
538 return ret;
539 }
540
541 /*
542 * Unlink a key from a keyring.
543 *
544 * The keyring must grant the caller Write permission for this to work; the key
545 * itself need not grant the caller anything. If the last link to a key is
546 * removed then that key will be scheduled for destruction.
547 *
548 * Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked.
549 *
550 * If successful, 0 will be returned.
551 */
552 long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
553 {
554 key_ref_t keyring_ref, key_ref;
555 struct key *keyring, *key;
556 long ret;
557
558 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
559 if (IS_ERR(keyring_ref)) {
560 ret = PTR_ERR(keyring_ref);
561 goto error;
562 }
563
564 key_ref = lookup_user_key(id, KEY_LOOKUP_FOR_UNLINK, 0);
565 if (IS_ERR(key_ref)) {
566 ret = PTR_ERR(key_ref);
567 goto error2;
568 }
569
570 keyring = key_ref_to_ptr(keyring_ref);
571 key = key_ref_to_ptr(key_ref);
572 if (test_bit(KEY_FLAG_KEEP, &keyring->flags) &&
573 test_bit(KEY_FLAG_KEEP, &key->flags))
574 ret = -EPERM;
575 else
576 ret = key_unlink(keyring, key);
577
578 key_ref_put(key_ref);
579 error2:
580 key_ref_put(keyring_ref);
581 error:
582 return ret;
583 }
584
585 /*
586 * Move a link to a key from one keyring to another, displacing any matching
587 * key from the destination keyring.
588 *
589 * The key must grant the caller Link permission and both keyrings must grant
590 * the caller Write permission. There must also be a link in the from keyring
591 * to the key. If both keyrings are the same, nothing is done.
592 *
593 * If successful, 0 will be returned.
594 */
595 long keyctl_keyring_move(key_serial_t id, key_serial_t from_ringid,
596 key_serial_t to_ringid, unsigned int flags)
597 {
598 key_ref_t key_ref, from_ref, to_ref;
599 long ret;
600
601 if (flags & ~KEYCTL_MOVE_EXCL)
602 return -EINVAL;
603
604 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
605 if (IS_ERR(key_ref))
606 return PTR_ERR(key_ref);
607
608 from_ref = lookup_user_key(from_ringid, 0, KEY_NEED_WRITE);
609 if (IS_ERR(from_ref)) {
610 ret = PTR_ERR(from_ref);
611 goto error2;
612 }
613
614 to_ref = lookup_user_key(to_ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
615 if (IS_ERR(to_ref)) {
616 ret = PTR_ERR(to_ref);
617 goto error3;
618 }
619
620 ret = key_move(key_ref_to_ptr(key_ref), key_ref_to_ptr(from_ref),
621 key_ref_to_ptr(to_ref), flags);
622
623 key_ref_put(to_ref);
624 error3:
625 key_ref_put(from_ref);
626 error2:
627 key_ref_put(key_ref);
628 return ret;
629 }
630
631 /*
632 * Return a description of a key to userspace.
633 *
634 * The key must grant the caller View permission for this to work.
635 *
636 * If there's a buffer, we place up to buflen bytes of data into it formatted
637 * in the following way:
638 *
639 * type;uid;gid;perm;description<NUL>
640 *
641 * If successful, we return the amount of description available, irrespective
642 * of how much we may have copied into the buffer.
643 */
644 long keyctl_describe_key(key_serial_t keyid,
645 char __user *buffer,
646 size_t buflen)
647 {
648 struct key *key, *instkey;
649 key_ref_t key_ref;
650 char *infobuf;
651 long ret;
652 int desclen, infolen;
653
654 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
655 if (IS_ERR(key_ref)) {
656 /* viewing a key under construction is permitted if we have the
657 * authorisation token handy */
658 if (PTR_ERR(key_ref) == -EACCES) {
659 instkey = key_get_instantiation_authkey(keyid);
660 if (!IS_ERR(instkey)) {
661 key_put(instkey);
662 key_ref = lookup_user_key(keyid,
663 KEY_LOOKUP_PARTIAL,
664 0);
665 if (!IS_ERR(key_ref))
666 goto okay;
667 }
668 }
669
670 ret = PTR_ERR(key_ref);
671 goto error;
672 }
673
674 okay:
675 key = key_ref_to_ptr(key_ref);
676 desclen = strlen(key->description);
677
678 /* calculate how much information we're going to return */
679 ret = -ENOMEM;
680 infobuf = kasprintf(GFP_KERNEL,
681 "%s;%d;%d;%08x;",
682 key->type->name,
683 from_kuid_munged(current_user_ns(), key->uid),
684 from_kgid_munged(current_user_ns(), key->gid),
685 key->perm);
686 if (!infobuf)
687 goto error2;
688 infolen = strlen(infobuf);
689 ret = infolen + desclen + 1;
690
691 /* consider returning the data */
692 if (buffer && buflen >= ret) {
693 if (copy_to_user(buffer, infobuf, infolen) != 0 ||
694 copy_to_user(buffer + infolen, key->description,
695 desclen + 1) != 0)
696 ret = -EFAULT;
697 }
698
699 kfree(infobuf);
700 error2:
701 key_ref_put(key_ref);
702 error:
703 return ret;
704 }
705
706 /*
707 * Search the specified keyring and any keyrings it links to for a matching
708 * key. Only keyrings that grant the caller Search permission will be searched
709 * (this includes the starting keyring). Only keys with Search permission can
710 * be found.
711 *
712 * If successful, the found key will be linked to the destination keyring if
713 * supplied and the key has Link permission, and the found key ID will be
714 * returned.
715 */
716 long keyctl_keyring_search(key_serial_t ringid,
717 const char __user *_type,
718 const char __user *_description,
719 key_serial_t destringid)
720 {
721 struct key_type *ktype;
722 key_ref_t keyring_ref, key_ref, dest_ref;
723 char type[32], *description;
724 long ret;
725
726 /* pull the type and description into kernel space */
727 ret = key_get_type_from_user(type, _type, sizeof(type));
728 if (ret < 0)
729 goto error;
730
731 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
732 if (IS_ERR(description)) {
733 ret = PTR_ERR(description);
734 goto error;
735 }
736
737 /* get the keyring at which to begin the search */
738 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
739 if (IS_ERR(keyring_ref)) {
740 ret = PTR_ERR(keyring_ref);
741 goto error2;
742 }
743
744 /* get the destination keyring if specified */
745 dest_ref = NULL;
746 if (destringid) {
747 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
748 KEY_NEED_WRITE);
749 if (IS_ERR(dest_ref)) {
750 ret = PTR_ERR(dest_ref);
751 goto error3;
752 }
753 }
754
755 /* find the key type */
756 ktype = key_type_lookup(type);
757 if (IS_ERR(ktype)) {
758 ret = PTR_ERR(ktype);
759 goto error4;
760 }
761
762 /* do the search */
763 key_ref = keyring_search(keyring_ref, ktype, description, true);
764 if (IS_ERR(key_ref)) {
765 ret = PTR_ERR(key_ref);
766
767 /* treat lack or presence of a negative key the same */
768 if (ret == -EAGAIN)
769 ret = -ENOKEY;
770 goto error5;
771 }
772
773 /* link the resulting key to the destination keyring if we can */
774 if (dest_ref) {
775 ret = key_permission(key_ref, KEY_NEED_LINK);
776 if (ret < 0)
777 goto error6;
778
779 ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
780 if (ret < 0)
781 goto error6;
782 }
783
784 ret = key_ref_to_ptr(key_ref)->serial;
785
786 error6:
787 key_ref_put(key_ref);
788 error5:
789 key_type_put(ktype);
790 error4:
791 key_ref_put(dest_ref);
792 error3:
793 key_ref_put(keyring_ref);
794 error2:
795 kfree(description);
796 error:
797 return ret;
798 }
799
800 /*
801 * Call the read method
802 */
803 static long __keyctl_read_key(struct key *key, char *buffer, size_t buflen)
804 {
805 long ret;
806
807 down_read(&key->sem);
808 ret = key_validate(key);
809 if (ret == 0)
810 ret = key->type->read(key, buffer, buflen);
811 up_read(&key->sem);
812 return ret;
813 }
814
815 /*
816 * Read a key's payload.
817 *
818 * The key must either grant the caller Read permission, or it must grant the
819 * caller Search permission when searched for from the process keyrings.
820 *
821 * If successful, we place up to buflen bytes of data into the buffer, if one
822 * is provided, and return the amount of data that is available in the key,
823 * irrespective of how much we copied into the buffer.
824 */
825 long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
826 {
827 struct key *key;
828 key_ref_t key_ref;
829 long ret;
830 char *key_data = NULL;
831 size_t key_data_len;
832
833 /* find the key first */
834 key_ref = lookup_user_key(keyid, 0, 0);
835 if (IS_ERR(key_ref)) {
836 ret = -ENOKEY;
837 goto out;
838 }
839
840 key = key_ref_to_ptr(key_ref);
841
842 ret = key_read_state(key);
843 if (ret < 0)
844 goto key_put_out; /* Negatively instantiated */
845
846 /* see if we can read it directly */
847 ret = key_permission(key_ref, KEY_NEED_READ);
848 if (ret == 0)
849 goto can_read_key;
850 if (ret != -EACCES)
851 goto key_put_out;
852
853 /* we can't; see if it's searchable from this process's keyrings
854 * - we automatically take account of the fact that it may be
855 * dangling off an instantiation key
856 */
857 if (!is_key_possessed(key_ref)) {
858 ret = -EACCES;
859 goto key_put_out;
860 }
861
862 /* the key is probably readable - now try to read it */
863 can_read_key:
864 if (!key->type->read) {
865 ret = -EOPNOTSUPP;
866 goto key_put_out;
867 }
868
869 if (!buffer || !buflen) {
870 /* Get the key length from the read method */
871 ret = __keyctl_read_key(key, NULL, 0);
872 goto key_put_out;
873 }
874
875 /*
876 * Read the data with the semaphore held (since we might sleep)
877 * to protect against the key being updated or revoked.
878 *
879 * Allocating a temporary buffer to hold the keys before
880 * transferring them to user buffer to avoid potential
881 * deadlock involving page fault and mmap_sem.
882 *
883 * key_data_len = (buflen <= PAGE_SIZE)
884 * ? buflen : actual length of key data
885 *
886 * This prevents allocating arbitrary large buffer which can
887 * be much larger than the actual key length. In the latter case,
888 * at least 2 passes of this loop is required.
889 */
890 key_data_len = (buflen <= PAGE_SIZE) ? buflen : 0;
891 for (;;) {
892 if (key_data_len) {
893 key_data = kvmalloc(key_data_len, GFP_KERNEL);
894 if (!key_data) {
895 ret = -ENOMEM;
896 goto key_put_out;
897 }
898 }
899
900 ret = __keyctl_read_key(key, key_data, key_data_len);
901
902 /*
903 * Read methods will just return the required length without
904 * any copying if the provided length isn't large enough.
905 */
906 if (ret <= 0 || ret > buflen)
907 break;
908
909 /*
910 * The key may change (unlikely) in between 2 consecutive
911 * __keyctl_read_key() calls. In this case, we reallocate
912 * a larger buffer and redo the key read when
913 * key_data_len < ret <= buflen.
914 */
915 if (ret > key_data_len) {
916 if (unlikely(key_data))
917 __kvzfree(key_data, key_data_len);
918 key_data_len = ret;
919 continue; /* Allocate buffer */
920 }
921
922 if (copy_to_user(buffer, key_data, ret))
923 ret = -EFAULT;
924 break;
925 }
926 __kvzfree(key_data, key_data_len);
927
928 key_put_out:
929 key_put(key);
930 out:
931 return ret;
932 }
933
934 /*
935 * Change the ownership of a key
936 *
937 * The key must grant the caller Setattr permission for this to work, though
938 * the key need not be fully instantiated yet. For the UID to be changed, or
939 * for the GID to be changed to a group the caller is not a member of, the
940 * caller must have sysadmin capability. If either uid or gid is -1 then that
941 * attribute is not changed.
942 *
943 * If the UID is to be changed, the new user must have sufficient quota to
944 * accept the key. The quota deduction will be removed from the old user to
945 * the new user should the attribute be changed.
946 *
947 * If successful, 0 will be returned.
948 */
949 long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
950 {
951 struct key_user *newowner, *zapowner = NULL;
952 struct key *key;
953 key_ref_t key_ref;
954 long ret;
955 kuid_t uid;
956 kgid_t gid;
957
958 uid = make_kuid(current_user_ns(), user);
959 gid = make_kgid(current_user_ns(), group);
960 ret = -EINVAL;
961 if ((user != (uid_t) -1) && !uid_valid(uid))
962 goto error;
963 if ((group != (gid_t) -1) && !gid_valid(gid))
964 goto error;
965
966 ret = 0;
967 if (user == (uid_t) -1 && group == (gid_t) -1)
968 goto error;
969
970 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
971 KEY_NEED_SETATTR);
972 if (IS_ERR(key_ref)) {
973 ret = PTR_ERR(key_ref);
974 goto error;
975 }
976
977 key = key_ref_to_ptr(key_ref);
978
979 /* make the changes with the locks held to prevent chown/chown races */
980 ret = -EACCES;
981 down_write(&key->sem);
982
983 if (!capable(CAP_SYS_ADMIN)) {
984 /* only the sysadmin can chown a key to some other UID */
985 if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
986 goto error_put;
987
988 /* only the sysadmin can set the key's GID to a group other
989 * than one of those that the current process subscribes to */
990 if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
991 goto error_put;
992 }
993
994 /* change the UID */
995 if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
996 ret = -ENOMEM;
997 newowner = key_user_lookup(uid);
998 if (!newowner)
999 goto error_put;
1000
1001 /* transfer the quota burden to the new user */
1002 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
1003 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
1004 key_quota_root_maxkeys : key_quota_maxkeys;
1005 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
1006 key_quota_root_maxbytes : key_quota_maxbytes;
1007
1008 spin_lock(&newowner->lock);
1009 if (newowner->qnkeys + 1 > maxkeys ||
1010 newowner->qnbytes + key->quotalen > maxbytes ||
1011 newowner->qnbytes + key->quotalen <
1012 newowner->qnbytes)
1013 goto quota_overrun;
1014
1015 newowner->qnkeys++;
1016 newowner->qnbytes += key->quotalen;
1017 spin_unlock(&newowner->lock);
1018
1019 spin_lock(&key->user->lock);
1020 key->user->qnkeys--;
1021 key->user->qnbytes -= key->quotalen;
1022 spin_unlock(&key->user->lock);
1023 }
1024
1025 atomic_dec(&key->user->nkeys);
1026 atomic_inc(&newowner->nkeys);
1027
1028 if (key->state != KEY_IS_UNINSTANTIATED) {
1029 atomic_dec(&key->user->nikeys);
1030 atomic_inc(&newowner->nikeys);
1031 }
1032
1033 zapowner = key->user;
1034 key->user = newowner;
1035 key->uid = uid;
1036 }
1037
1038 /* change the GID */
1039 if (group != (gid_t) -1)
1040 key->gid = gid;
1041
1042 ret = 0;
1043
1044 error_put:
1045 up_write(&key->sem);
1046 key_put(key);
1047 if (zapowner)
1048 key_user_put(zapowner);
1049 error:
1050 return ret;
1051
1052 quota_overrun:
1053 spin_unlock(&newowner->lock);
1054 zapowner = newowner;
1055 ret = -EDQUOT;
1056 goto error_put;
1057 }
1058
1059 /*
1060 * Change the permission mask on a key.
1061 *
1062 * The key must grant the caller Setattr permission for this to work, though
1063 * the key need not be fully instantiated yet. If the caller does not have
1064 * sysadmin capability, it may only change the permission on keys that it owns.
1065 */
1066 long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
1067 {
1068 struct key *key;
1069 key_ref_t key_ref;
1070 long ret;
1071
1072 ret = -EINVAL;
1073 if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
1074 goto error;
1075
1076 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1077 KEY_NEED_SETATTR);
1078 if (IS_ERR(key_ref)) {
1079 ret = PTR_ERR(key_ref);
1080 goto error;
1081 }
1082
1083 key = key_ref_to_ptr(key_ref);
1084
1085 /* make the changes with the locks held to prevent chown/chmod races */
1086 ret = -EACCES;
1087 down_write(&key->sem);
1088
1089 /* if we're not the sysadmin, we can only change a key that we own */
1090 if (capable(CAP_SYS_ADMIN) || uid_eq(key->uid, current_fsuid())) {
1091 key->perm = perm;
1092 ret = 0;
1093 }
1094
1095 up_write(&key->sem);
1096 key_put(key);
1097 error:
1098 return ret;
1099 }
1100
1101 /*
1102 * Get the destination keyring for instantiation and check that the caller has
1103 * Write permission on it.
1104 */
1105 static long get_instantiation_keyring(key_serial_t ringid,
1106 struct request_key_auth *rka,
1107 struct key **_dest_keyring)
1108 {
1109 key_ref_t dkref;
1110
1111 *_dest_keyring = NULL;
1112
1113 /* just return a NULL pointer if we weren't asked to make a link */
1114 if (ringid == 0)
1115 return 0;
1116
1117 /* if a specific keyring is nominated by ID, then use that */
1118 if (ringid > 0) {
1119 dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
1120 if (IS_ERR(dkref))
1121 return PTR_ERR(dkref);
1122 *_dest_keyring = key_ref_to_ptr(dkref);
1123 return 0;
1124 }
1125
1126 if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
1127 return -EINVAL;
1128
1129 /* otherwise specify the destination keyring recorded in the
1130 * authorisation key (any KEY_SPEC_*_KEYRING) */
1131 if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
1132 *_dest_keyring = key_get(rka->dest_keyring);
1133 return 0;
1134 }
1135
1136 return -ENOKEY;
1137 }
1138
1139 /*
1140 * Change the request_key authorisation key on the current process.
1141 */
1142 static int keyctl_change_reqkey_auth(struct key *key)
1143 {
1144 struct cred *new;
1145
1146 new = prepare_creds();
1147 if (!new)
1148 return -ENOMEM;
1149
1150 key_put(new->request_key_auth);
1151 new->request_key_auth = key_get(key);
1152
1153 return commit_creds(new);
1154 }
1155
1156 /*
1157 * Instantiate a key with the specified payload and link the key into the
1158 * destination keyring if one is given.
1159 *
1160 * The caller must have the appropriate instantiation permit set for this to
1161 * work (see keyctl_assume_authority). No other permissions are required.
1162 *
1163 * If successful, 0 will be returned.
1164 */
1165 long keyctl_instantiate_key_common(key_serial_t id,
1166 struct iov_iter *from,
1167 key_serial_t ringid)
1168 {
1169 const struct cred *cred = current_cred();
1170 struct request_key_auth *rka;
1171 struct key *instkey, *dest_keyring;
1172 size_t plen = from ? iov_iter_count(from) : 0;
1173 void *payload;
1174 long ret;
1175
1176 kenter("%d,,%zu,%d", id, plen, ringid);
1177
1178 if (!plen)
1179 from = NULL;
1180
1181 ret = -EINVAL;
1182 if (plen > 1024 * 1024 - 1)
1183 goto error;
1184
1185 /* the appropriate instantiation authorisation key must have been
1186 * assumed before calling this */
1187 ret = -EPERM;
1188 instkey = cred->request_key_auth;
1189 if (!instkey)
1190 goto error;
1191
1192 rka = instkey->payload.data[0];
1193 if (rka->target_key->serial != id)
1194 goto error;
1195
1196 /* pull the payload in if one was supplied */
1197 payload = NULL;
1198
1199 if (from) {
1200 ret = -ENOMEM;
1201 payload = kvmalloc(plen, GFP_KERNEL);
1202 if (!payload)
1203 goto error;
1204
1205 ret = -EFAULT;
1206 if (!copy_from_iter_full(payload, plen, from))
1207 goto error2;
1208 }
1209
1210 /* find the destination keyring amongst those belonging to the
1211 * requesting task */
1212 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1213 if (ret < 0)
1214 goto error2;
1215
1216 /* instantiate the key and link it into a keyring */
1217 ret = key_instantiate_and_link(rka->target_key, payload, plen,
1218 dest_keyring, instkey);
1219
1220 key_put(dest_keyring);
1221
1222 /* discard the assumed authority if it's just been disabled by
1223 * instantiation of the key */
1224 if (ret == 0)
1225 keyctl_change_reqkey_auth(NULL);
1226
1227 error2:
1228 if (payload) {
1229 memzero_explicit(payload, plen);
1230 kvfree(payload);
1231 }
1232 error:
1233 return ret;
1234 }
1235
1236 /*
1237 * Instantiate a key with the specified payload and link the key into the
1238 * destination keyring if one is given.
1239 *
1240 * The caller must have the appropriate instantiation permit set for this to
1241 * work (see keyctl_assume_authority). No other permissions are required.
1242 *
1243 * If successful, 0 will be returned.
1244 */
1245 long keyctl_instantiate_key(key_serial_t id,
1246 const void __user *_payload,
1247 size_t plen,
1248 key_serial_t ringid)
1249 {
1250 if (_payload && plen) {
1251 struct iovec iov;
1252 struct iov_iter from;
1253 int ret;
1254
1255 ret = import_single_range(WRITE, (void __user *)_payload, plen,
1256 &iov, &from);
1257 if (unlikely(ret))
1258 return ret;
1259
1260 return keyctl_instantiate_key_common(id, &from, ringid);
1261 }
1262
1263 return keyctl_instantiate_key_common(id, NULL, ringid);
1264 }
1265
1266 /*
1267 * Instantiate a key with the specified multipart payload and link the key into
1268 * the destination keyring if one is given.
1269 *
1270 * The caller must have the appropriate instantiation permit set for this to
1271 * work (see keyctl_assume_authority). No other permissions are required.
1272 *
1273 * If successful, 0 will be returned.
1274 */
1275 long keyctl_instantiate_key_iov(key_serial_t id,
1276 const struct iovec __user *_payload_iov,
1277 unsigned ioc,
1278 key_serial_t ringid)
1279 {
1280 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1281 struct iov_iter from;
1282 long ret;
1283
1284 if (!_payload_iov)
1285 ioc = 0;
1286
1287 ret = import_iovec(WRITE, _payload_iov, ioc,
1288 ARRAY_SIZE(iovstack), &iov, &from);
1289 if (ret < 0)
1290 return ret;
1291 ret = keyctl_instantiate_key_common(id, &from, ringid);
1292 kfree(iov);
1293 return ret;
1294 }
1295
1296 /*
1297 * Negatively instantiate the key with the given timeout (in seconds) and link
1298 * the key into the destination keyring if one is given.
1299 *
1300 * The caller must have the appropriate instantiation permit set for this to
1301 * work (see keyctl_assume_authority). No other permissions are required.
1302 *
1303 * The key and any links to the key will be automatically garbage collected
1304 * after the timeout expires.
1305 *
1306 * Negative keys are used to rate limit repeated request_key() calls by causing
1307 * them to return -ENOKEY until the negative key expires.
1308 *
1309 * If successful, 0 will be returned.
1310 */
1311 long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1312 {
1313 return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1314 }
1315
1316 /*
1317 * Negatively instantiate the key with the given timeout (in seconds) and error
1318 * code and link the key into the destination keyring if one is given.
1319 *
1320 * The caller must have the appropriate instantiation permit set for this to
1321 * work (see keyctl_assume_authority). No other permissions are required.
1322 *
1323 * The key and any links to the key will be automatically garbage collected
1324 * after the timeout expires.
1325 *
1326 * Negative keys are used to rate limit repeated request_key() calls by causing
1327 * them to return the specified error code until the negative key expires.
1328 *
1329 * If successful, 0 will be returned.
1330 */
1331 long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1332 key_serial_t ringid)
1333 {
1334 const struct cred *cred = current_cred();
1335 struct request_key_auth *rka;
1336 struct key *instkey, *dest_keyring;
1337 long ret;
1338
1339 kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1340
1341 /* must be a valid error code and mustn't be a kernel special */
1342 if (error <= 0 ||
1343 error >= MAX_ERRNO ||
1344 error == ERESTARTSYS ||
1345 error == ERESTARTNOINTR ||
1346 error == ERESTARTNOHAND ||
1347 error == ERESTART_RESTARTBLOCK)
1348 return -EINVAL;
1349
1350 /* the appropriate instantiation authorisation key must have been
1351 * assumed before calling this */
1352 ret = -EPERM;
1353 instkey = cred->request_key_auth;
1354 if (!instkey)
1355 goto error;
1356
1357 rka = instkey->payload.data[0];
1358 if (rka->target_key->serial != id)
1359 goto error;
1360
1361 /* find the destination keyring if present (which must also be
1362 * writable) */
1363 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1364 if (ret < 0)
1365 goto error;
1366
1367 /* instantiate the key and link it into a keyring */
1368 ret = key_reject_and_link(rka->target_key, timeout, error,
1369 dest_keyring, instkey);
1370
1371 key_put(dest_keyring);
1372
1373 /* discard the assumed authority if it's just been disabled by
1374 * instantiation of the key */
1375 if (ret == 0)
1376 keyctl_change_reqkey_auth(NULL);
1377
1378 error:
1379 return ret;
1380 }
1381
1382 /*
1383 * Read or set the default keyring in which request_key() will cache keys and
1384 * return the old setting.
1385 *
1386 * If a thread or process keyring is specified then it will be created if it
1387 * doesn't yet exist. The old setting will be returned if successful.
1388 */
1389 long keyctl_set_reqkey_keyring(int reqkey_defl)
1390 {
1391 struct cred *new;
1392 int ret, old_setting;
1393
1394 old_setting = current_cred_xxx(jit_keyring);
1395
1396 if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1397 return old_setting;
1398
1399 new = prepare_creds();
1400 if (!new)
1401 return -ENOMEM;
1402
1403 switch (reqkey_defl) {
1404 case KEY_REQKEY_DEFL_THREAD_KEYRING:
1405 ret = install_thread_keyring_to_cred(new);
1406 if (ret < 0)
1407 goto error;
1408 goto set;
1409
1410 case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1411 ret = install_process_keyring_to_cred(new);
1412 if (ret < 0)
1413 goto error;
1414 goto set;
1415
1416 case KEY_REQKEY_DEFL_DEFAULT:
1417 case KEY_REQKEY_DEFL_SESSION_KEYRING:
1418 case KEY_REQKEY_DEFL_USER_KEYRING:
1419 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1420 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1421 goto set;
1422
1423 case KEY_REQKEY_DEFL_NO_CHANGE:
1424 case KEY_REQKEY_DEFL_GROUP_KEYRING:
1425 default:
1426 ret = -EINVAL;
1427 goto error;
1428 }
1429
1430 set:
1431 new->jit_keyring = reqkey_defl;
1432 commit_creds(new);
1433 return old_setting;
1434 error:
1435 abort_creds(new);
1436 return ret;
1437 }
1438
1439 /*
1440 * Set or clear the timeout on a key.
1441 *
1442 * Either the key must grant the caller Setattr permission or else the caller
1443 * must hold an instantiation authorisation token for the key.
1444 *
1445 * The timeout is either 0 to clear the timeout, or a number of seconds from
1446 * the current time. The key and any links to the key will be automatically
1447 * garbage collected after the timeout expires.
1448 *
1449 * Keys with KEY_FLAG_KEEP set should not be timed out.
1450 *
1451 * If successful, 0 is returned.
1452 */
1453 long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1454 {
1455 struct key *key, *instkey;
1456 key_ref_t key_ref;
1457 long ret;
1458
1459 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1460 KEY_NEED_SETATTR);
1461 if (IS_ERR(key_ref)) {
1462 /* setting the timeout on a key under construction is permitted
1463 * if we have the authorisation token handy */
1464 if (PTR_ERR(key_ref) == -EACCES) {
1465 instkey = key_get_instantiation_authkey(id);
1466 if (!IS_ERR(instkey)) {
1467 key_put(instkey);
1468 key_ref = lookup_user_key(id,
1469 KEY_LOOKUP_PARTIAL,
1470 0);
1471 if (!IS_ERR(key_ref))
1472 goto okay;
1473 }
1474 }
1475
1476 ret = PTR_ERR(key_ref);
1477 goto error;
1478 }
1479
1480 okay:
1481 key = key_ref_to_ptr(key_ref);
1482 ret = 0;
1483 if (test_bit(KEY_FLAG_KEEP, &key->flags))
1484 ret = -EPERM;
1485 else
1486 key_set_timeout(key, timeout);
1487 key_put(key);
1488
1489 error:
1490 return ret;
1491 }
1492
1493 /*
1494 * Assume (or clear) the authority to instantiate the specified key.
1495 *
1496 * This sets the authoritative token currently in force for key instantiation.
1497 * This must be done for a key to be instantiated. It has the effect of making
1498 * available all the keys from the caller of the request_key() that created a
1499 * key to request_key() calls made by the caller of this function.
1500 *
1501 * The caller must have the instantiation key in their process keyrings with a
1502 * Search permission grant available to the caller.
1503 *
1504 * If the ID given is 0, then the setting will be cleared and 0 returned.
1505 *
1506 * If the ID given has a matching an authorisation key, then that key will be
1507 * set and its ID will be returned. The authorisation key can be read to get
1508 * the callout information passed to request_key().
1509 */
1510 long keyctl_assume_authority(key_serial_t id)
1511 {
1512 struct key *authkey;
1513 long ret;
1514
1515 /* special key IDs aren't permitted */
1516 ret = -EINVAL;
1517 if (id < 0)
1518 goto error;
1519
1520 /* we divest ourselves of authority if given an ID of 0 */
1521 if (id == 0) {
1522 ret = keyctl_change_reqkey_auth(NULL);
1523 goto error;
1524 }
1525
1526 /* attempt to assume the authority temporarily granted to us whilst we
1527 * instantiate the specified key
1528 * - the authorisation key must be in the current task's keyrings
1529 * somewhere
1530 */
1531 authkey = key_get_instantiation_authkey(id);
1532 if (IS_ERR(authkey)) {
1533 ret = PTR_ERR(authkey);
1534 goto error;
1535 }
1536
1537 ret = keyctl_change_reqkey_auth(authkey);
1538 if (ret == 0)
1539 ret = authkey->serial;
1540 key_put(authkey);
1541 error:
1542 return ret;
1543 }
1544
1545 /*
1546 * Get a key's the LSM security label.
1547 *
1548 * The key must grant the caller View permission for this to work.
1549 *
1550 * If there's a buffer, then up to buflen bytes of data will be placed into it.
1551 *
1552 * If successful, the amount of information available will be returned,
1553 * irrespective of how much was copied (including the terminal NUL).
1554 */
1555 long keyctl_get_security(key_serial_t keyid,
1556 char __user *buffer,
1557 size_t buflen)
1558 {
1559 struct key *key, *instkey;
1560 key_ref_t key_ref;
1561 char *context;
1562 long ret;
1563
1564 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
1565 if (IS_ERR(key_ref)) {
1566 if (PTR_ERR(key_ref) != -EACCES)
1567 return PTR_ERR(key_ref);
1568
1569 /* viewing a key under construction is also permitted if we
1570 * have the authorisation token handy */
1571 instkey = key_get_instantiation_authkey(keyid);
1572 if (IS_ERR(instkey))
1573 return PTR_ERR(instkey);
1574 key_put(instkey);
1575
1576 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, 0);
1577 if (IS_ERR(key_ref))
1578 return PTR_ERR(key_ref);
1579 }
1580
1581 key = key_ref_to_ptr(key_ref);
1582 ret = security_key_getsecurity(key, &context);
1583 if (ret == 0) {
1584 /* if no information was returned, give userspace an empty
1585 * string */
1586 ret = 1;
1587 if (buffer && buflen > 0 &&
1588 copy_to_user(buffer, "", 1) != 0)
1589 ret = -EFAULT;
1590 } else if (ret > 0) {
1591 /* return as much data as there's room for */
1592 if (buffer && buflen > 0) {
1593 if (buflen > ret)
1594 buflen = ret;
1595
1596 if (copy_to_user(buffer, context, buflen) != 0)
1597 ret = -EFAULT;
1598 }
1599
1600 kfree(context);
1601 }
1602
1603 key_ref_put(key_ref);
1604 return ret;
1605 }
1606
1607 /*
1608 * Attempt to install the calling process's session keyring on the process's
1609 * parent process.
1610 *
1611 * The keyring must exist and must grant the caller LINK permission, and the
1612 * parent process must be single-threaded and must have the same effective
1613 * ownership as this process and mustn't be SUID/SGID.
1614 *
1615 * The keyring will be emplaced on the parent when it next resumes userspace.
1616 *
1617 * If successful, 0 will be returned.
1618 */
1619 long keyctl_session_to_parent(void)
1620 {
1621 struct task_struct *me, *parent;
1622 const struct cred *mycred, *pcred;
1623 struct callback_head *newwork, *oldwork;
1624 key_ref_t keyring_r;
1625 struct cred *cred;
1626 int ret;
1627
1628 keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
1629 if (IS_ERR(keyring_r))
1630 return PTR_ERR(keyring_r);
1631
1632 ret = -ENOMEM;
1633
1634 /* our parent is going to need a new cred struct, a new tgcred struct
1635 * and new security data, so we allocate them here to prevent ENOMEM in
1636 * our parent */
1637 cred = cred_alloc_blank();
1638 if (!cred)
1639 goto error_keyring;
1640 newwork = &cred->rcu;
1641
1642 cred->session_keyring = key_ref_to_ptr(keyring_r);
1643 keyring_r = NULL;
1644 init_task_work(newwork, key_change_session_keyring);
1645
1646 me = current;
1647 rcu_read_lock();
1648 write_lock_irq(&tasklist_lock);
1649
1650 ret = -EPERM;
1651 oldwork = NULL;
1652 parent = rcu_dereference_protected(me->real_parent,
1653 lockdep_is_held(&tasklist_lock));
1654
1655 /* the parent mustn't be init and mustn't be a kernel thread */
1656 if (parent->pid <= 1 || !parent->mm)
1657 goto unlock;
1658
1659 /* the parent must be single threaded */
1660 if (!thread_group_empty(parent))
1661 goto unlock;
1662
1663 /* the parent and the child must have different session keyrings or
1664 * there's no point */
1665 mycred = current_cred();
1666 pcred = __task_cred(parent);
1667 if (mycred == pcred ||
1668 mycred->session_keyring == pcred->session_keyring) {
1669 ret = 0;
1670 goto unlock;
1671 }
1672
1673 /* the parent must have the same effective ownership and mustn't be
1674 * SUID/SGID */
1675 if (!uid_eq(pcred->uid, mycred->euid) ||
1676 !uid_eq(pcred->euid, mycred->euid) ||
1677 !uid_eq(pcred->suid, mycred->euid) ||
1678 !gid_eq(pcred->gid, mycred->egid) ||
1679 !gid_eq(pcred->egid, mycred->egid) ||
1680 !gid_eq(pcred->sgid, mycred->egid))
1681 goto unlock;
1682
1683 /* the keyrings must have the same UID */
1684 if ((pcred->session_keyring &&
1685 !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1686 !uid_eq(mycred->session_keyring->uid, mycred->euid))
1687 goto unlock;
1688
1689 /* cancel an already pending keyring replacement */
1690 oldwork = task_work_cancel(parent, key_change_session_keyring);
1691
1692 /* the replacement session keyring is applied just prior to userspace
1693 * restarting */
1694 ret = task_work_add(parent, newwork, true);
1695 if (!ret)
1696 newwork = NULL;
1697 unlock:
1698 write_unlock_irq(&tasklist_lock);
1699 rcu_read_unlock();
1700 if (oldwork)
1701 put_cred(container_of(oldwork, struct cred, rcu));
1702 if (newwork)
1703 put_cred(cred);
1704 return ret;
1705
1706 error_keyring:
1707 key_ref_put(keyring_r);
1708 return ret;
1709 }
1710
1711 /*
1712 * Apply a restriction to a given keyring.
1713 *
1714 * The caller must have Setattr permission to change keyring restrictions.
1715 *
1716 * The requested type name may be a NULL pointer to reject all attempts
1717 * to link to the keyring. In this case, _restriction must also be NULL.
1718 * Otherwise, both _type and _restriction must be non-NULL.
1719 *
1720 * Returns 0 if successful.
1721 */
1722 long keyctl_restrict_keyring(key_serial_t id, const char __user *_type,
1723 const char __user *_restriction)
1724 {
1725 key_ref_t key_ref;
1726 char type[32];
1727 char *restriction = NULL;
1728 long ret;
1729
1730 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
1731 if (IS_ERR(key_ref))
1732 return PTR_ERR(key_ref);
1733
1734 ret = -EINVAL;
1735 if (_type) {
1736 if (!_restriction)
1737 goto error;
1738
1739 ret = key_get_type_from_user(type, _type, sizeof(type));
1740 if (ret < 0)
1741 goto error;
1742
1743 restriction = strndup_user(_restriction, PAGE_SIZE);
1744 if (IS_ERR(restriction)) {
1745 ret = PTR_ERR(restriction);
1746 goto error;
1747 }
1748 } else {
1749 if (_restriction)
1750 goto error;
1751 }
1752
1753 ret = keyring_restrict(key_ref, _type ? type : NULL, restriction);
1754 kfree(restriction);
1755 error:
1756 key_ref_put(key_ref);
1757 return ret;
1758 }
1759
1760 /*
1761 * Get keyrings subsystem capabilities.
1762 */
1763 long keyctl_capabilities(unsigned char __user *_buffer, size_t buflen)
1764 {
1765 size_t size = buflen;
1766
1767 if (size > 0) {
1768 if (size > sizeof(keyrings_capabilities))
1769 size = sizeof(keyrings_capabilities);
1770 if (copy_to_user(_buffer, keyrings_capabilities, size) != 0)
1771 return -EFAULT;
1772 if (size < buflen &&
1773 clear_user(_buffer + size, buflen - size) != 0)
1774 return -EFAULT;
1775 }
1776
1777 return sizeof(keyrings_capabilities);
1778 }
1779
1780 /*
1781 * The key control system call
1782 */
1783 SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1784 unsigned long, arg4, unsigned long, arg5)
1785 {
1786 switch (option) {
1787 case KEYCTL_GET_KEYRING_ID:
1788 return keyctl_get_keyring_ID((key_serial_t) arg2,
1789 (int) arg3);
1790
1791 case KEYCTL_JOIN_SESSION_KEYRING:
1792 return keyctl_join_session_keyring((const char __user *) arg2);
1793
1794 case KEYCTL_UPDATE:
1795 return keyctl_update_key((key_serial_t) arg2,
1796 (const void __user *) arg3,
1797 (size_t) arg4);
1798
1799 case KEYCTL_REVOKE:
1800 return keyctl_revoke_key((key_serial_t) arg2);
1801
1802 case KEYCTL_DESCRIBE:
1803 return keyctl_describe_key((key_serial_t) arg2,
1804 (char __user *) arg3,
1805 (unsigned) arg4);
1806
1807 case KEYCTL_CLEAR:
1808 return keyctl_keyring_clear((key_serial_t) arg2);
1809
1810 case KEYCTL_LINK:
1811 return keyctl_keyring_link((key_serial_t) arg2,
1812 (key_serial_t) arg3);
1813
1814 case KEYCTL_UNLINK:
1815 return keyctl_keyring_unlink((key_serial_t) arg2,
1816 (key_serial_t) arg3);
1817
1818 case KEYCTL_SEARCH:
1819 return keyctl_keyring_search((key_serial_t) arg2,
1820 (const char __user *) arg3,
1821 (const char __user *) arg4,
1822 (key_serial_t) arg5);
1823
1824 case KEYCTL_READ:
1825 return keyctl_read_key((key_serial_t) arg2,
1826 (char __user *) arg3,
1827 (size_t) arg4);
1828
1829 case KEYCTL_CHOWN:
1830 return keyctl_chown_key((key_serial_t) arg2,
1831 (uid_t) arg3,
1832 (gid_t) arg4);
1833
1834 case KEYCTL_SETPERM:
1835 return keyctl_setperm_key((key_serial_t) arg2,
1836 (key_perm_t) arg3);
1837
1838 case KEYCTL_INSTANTIATE:
1839 return keyctl_instantiate_key((key_serial_t) arg2,
1840 (const void __user *) arg3,
1841 (size_t) arg4,
1842 (key_serial_t) arg5);
1843
1844 case KEYCTL_NEGATE:
1845 return keyctl_negate_key((key_serial_t) arg2,
1846 (unsigned) arg3,
1847 (key_serial_t) arg4);
1848
1849 case KEYCTL_SET_REQKEY_KEYRING:
1850 return keyctl_set_reqkey_keyring(arg2);
1851
1852 case KEYCTL_SET_TIMEOUT:
1853 return keyctl_set_timeout((key_serial_t) arg2,
1854 (unsigned) arg3);
1855
1856 case KEYCTL_ASSUME_AUTHORITY:
1857 return keyctl_assume_authority((key_serial_t) arg2);
1858
1859 case KEYCTL_GET_SECURITY:
1860 return keyctl_get_security((key_serial_t) arg2,
1861 (char __user *) arg3,
1862 (size_t) arg4);
1863
1864 case KEYCTL_SESSION_TO_PARENT:
1865 return keyctl_session_to_parent();
1866
1867 case KEYCTL_REJECT:
1868 return keyctl_reject_key((key_serial_t) arg2,
1869 (unsigned) arg3,
1870 (unsigned) arg4,
1871 (key_serial_t) arg5);
1872
1873 case KEYCTL_INSTANTIATE_IOV:
1874 return keyctl_instantiate_key_iov(
1875 (key_serial_t) arg2,
1876 (const struct iovec __user *) arg3,
1877 (unsigned) arg4,
1878 (key_serial_t) arg5);
1879
1880 case KEYCTL_INVALIDATE:
1881 return keyctl_invalidate_key((key_serial_t) arg2);
1882
1883 case KEYCTL_GET_PERSISTENT:
1884 return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
1885
1886 case KEYCTL_DH_COMPUTE:
1887 return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2,
1888 (char __user *) arg3, (size_t) arg4,
1889 (struct keyctl_kdf_params __user *) arg5);
1890
1891 case KEYCTL_RESTRICT_KEYRING:
1892 return keyctl_restrict_keyring((key_serial_t) arg2,
1893 (const char __user *) arg3,
1894 (const char __user *) arg4);
1895
1896 case KEYCTL_PKEY_QUERY:
1897 if (arg3 != 0)
1898 return -EINVAL;
1899 return keyctl_pkey_query((key_serial_t)arg2,
1900 (const char __user *)arg4,
1901 (struct keyctl_pkey_query __user *)arg5);
1902
1903 case KEYCTL_PKEY_ENCRYPT:
1904 case KEYCTL_PKEY_DECRYPT:
1905 case KEYCTL_PKEY_SIGN:
1906 return keyctl_pkey_e_d_s(
1907 option,
1908 (const struct keyctl_pkey_params __user *)arg2,
1909 (const char __user *)arg3,
1910 (const void __user *)arg4,
1911 (void __user *)arg5);
1912
1913 case KEYCTL_PKEY_VERIFY:
1914 return keyctl_pkey_verify(
1915 (const struct keyctl_pkey_params __user *)arg2,
1916 (const char __user *)arg3,
1917 (const void __user *)arg4,
1918 (const void __user *)arg5);
1919
1920 case KEYCTL_MOVE:
1921 return keyctl_keyring_move((key_serial_t)arg2,
1922 (key_serial_t)arg3,
1923 (key_serial_t)arg4,
1924 (unsigned int)arg5);
1925
1926 case KEYCTL_CAPABILITIES:
1927 return keyctl_capabilities((unsigned char __user *)arg2, (size_t)arg3);
1928
1929 default:
1930 return -EOPNOTSUPP;
1931 }
1932 }