]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - security/keys/keyring.c
KEYS: Add a 'trusted' flag and a 'trusted only' flag
[mirror_ubuntu-artful-kernel.git] / security / keys / keyring.c
1 /* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24
25 /*
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
28 */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30
31 /*
32 * We keep all named keyrings in a hash to speed looking them up.
33 */
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
35
36 /*
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
39 */
40 #define KEYRING_PTR_SUBTYPE 0x2UL
41
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
56 }
57
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 unsigned bucket = 0;
64
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
67
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70
71 /*
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
75 */
76 static int keyring_instantiate(struct key *keyring,
77 struct key_preparsed_payload *prep);
78 static void keyring_revoke(struct key *keyring);
79 static void keyring_destroy(struct key *keyring);
80 static void keyring_describe(const struct key *keyring, struct seq_file *m);
81 static long keyring_read(const struct key *keyring,
82 char __user *buffer, size_t buflen);
83
84 struct key_type key_type_keyring = {
85 .name = "keyring",
86 .def_datalen = 0,
87 .instantiate = keyring_instantiate,
88 .match = user_match,
89 .revoke = keyring_revoke,
90 .destroy = keyring_destroy,
91 .describe = keyring_describe,
92 .read = keyring_read,
93 };
94 EXPORT_SYMBOL(key_type_keyring);
95
96 /*
97 * Semaphore to serialise link/link calls to prevent two link calls in parallel
98 * introducing a cycle.
99 */
100 static DECLARE_RWSEM(keyring_serialise_link_sem);
101
102 /*
103 * Publish the name of a keyring so that it can be found by name (if it has
104 * one).
105 */
106 static void keyring_publish_name(struct key *keyring)
107 {
108 int bucket;
109
110 if (keyring->description) {
111 bucket = keyring_hash(keyring->description);
112
113 write_lock(&keyring_name_lock);
114
115 if (!keyring_name_hash[bucket].next)
116 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
117
118 list_add_tail(&keyring->type_data.link,
119 &keyring_name_hash[bucket]);
120
121 write_unlock(&keyring_name_lock);
122 }
123 }
124
125 /*
126 * Initialise a keyring.
127 *
128 * Returns 0 on success, -EINVAL if given any data.
129 */
130 static int keyring_instantiate(struct key *keyring,
131 struct key_preparsed_payload *prep)
132 {
133 int ret;
134
135 ret = -EINVAL;
136 if (prep->datalen == 0) {
137 assoc_array_init(&keyring->keys);
138 /* make the keyring available by name if it has one */
139 keyring_publish_name(keyring);
140 ret = 0;
141 }
142
143 return ret;
144 }
145
146 /*
147 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
148 * fold the carry back too, but that requires inline asm.
149 */
150 static u64 mult_64x32_and_fold(u64 x, u32 y)
151 {
152 u64 hi = (u64)(u32)(x >> 32) * y;
153 u64 lo = (u64)(u32)(x) * y;
154 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
155 }
156
157 /*
158 * Hash a key type and description.
159 */
160 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
161 {
162 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
163 const unsigned long level_mask = ASSOC_ARRAY_LEVEL_STEP_MASK;
164 const char *description = index_key->description;
165 unsigned long hash, type;
166 u32 piece;
167 u64 acc;
168 int n, desc_len = index_key->desc_len;
169
170 type = (unsigned long)index_key->type;
171
172 acc = mult_64x32_and_fold(type, desc_len + 13);
173 acc = mult_64x32_and_fold(acc, 9207);
174 for (;;) {
175 n = desc_len;
176 if (n <= 0)
177 break;
178 if (n > 4)
179 n = 4;
180 piece = 0;
181 memcpy(&piece, description, n);
182 description += n;
183 desc_len -= n;
184 acc = mult_64x32_and_fold(acc, piece);
185 acc = mult_64x32_and_fold(acc, 9207);
186 }
187
188 /* Fold the hash down to 32 bits if need be. */
189 hash = acc;
190 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
191 hash ^= acc >> 32;
192
193 /* Squidge all the keyrings into a separate part of the tree to
194 * ordinary keys by making sure the lowest level segment in the hash is
195 * zero for keyrings and non-zero otherwise.
196 */
197 if (index_key->type != &key_type_keyring && (hash & level_mask) == 0)
198 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
199 if (index_key->type == &key_type_keyring && (hash & level_mask) != 0)
200 return (hash + (hash << level_shift)) & ~level_mask;
201 return hash;
202 }
203
204 /*
205 * Build the next index key chunk.
206 *
207 * On 32-bit systems the index key is laid out as:
208 *
209 * 0 4 5 9...
210 * hash desclen typeptr desc[]
211 *
212 * On 64-bit systems:
213 *
214 * 0 8 9 17...
215 * hash desclen typeptr desc[]
216 *
217 * We return it one word-sized chunk at a time.
218 */
219 static unsigned long keyring_get_key_chunk(const void *data, int level)
220 {
221 const struct keyring_index_key *index_key = data;
222 unsigned long chunk = 0;
223 long offset = 0;
224 int desc_len = index_key->desc_len, n = sizeof(chunk);
225
226 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
227 switch (level) {
228 case 0:
229 return hash_key_type_and_desc(index_key);
230 case 1:
231 return ((unsigned long)index_key->type << 8) | desc_len;
232 case 2:
233 if (desc_len == 0)
234 return (u8)((unsigned long)index_key->type >>
235 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
236 n--;
237 offset = 1;
238 default:
239 offset += sizeof(chunk) - 1;
240 offset += (level - 3) * sizeof(chunk);
241 if (offset >= desc_len)
242 return 0;
243 desc_len -= offset;
244 if (desc_len > n)
245 desc_len = n;
246 offset += desc_len;
247 do {
248 chunk <<= 8;
249 chunk |= ((u8*)index_key->description)[--offset];
250 } while (--desc_len > 0);
251
252 if (level == 2) {
253 chunk <<= 8;
254 chunk |= (u8)((unsigned long)index_key->type >>
255 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
256 }
257 return chunk;
258 }
259 }
260
261 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
262 {
263 const struct key *key = keyring_ptr_to_key(object);
264 return keyring_get_key_chunk(&key->index_key, level);
265 }
266
267 static bool keyring_compare_object(const void *object, const void *data)
268 {
269 const struct keyring_index_key *index_key = data;
270 const struct key *key = keyring_ptr_to_key(object);
271
272 return key->index_key.type == index_key->type &&
273 key->index_key.desc_len == index_key->desc_len &&
274 memcmp(key->index_key.description, index_key->description,
275 index_key->desc_len) == 0;
276 }
277
278 /*
279 * Compare the index keys of a pair of objects and determine the bit position
280 * at which they differ - if they differ.
281 */
282 static int keyring_diff_objects(const void *_a, const void *_b)
283 {
284 const struct key *key_a = keyring_ptr_to_key(_a);
285 const struct key *key_b = keyring_ptr_to_key(_b);
286 const struct keyring_index_key *a = &key_a->index_key;
287 const struct keyring_index_key *b = &key_b->index_key;
288 unsigned long seg_a, seg_b;
289 int level, i;
290
291 level = 0;
292 seg_a = hash_key_type_and_desc(a);
293 seg_b = hash_key_type_and_desc(b);
294 if ((seg_a ^ seg_b) != 0)
295 goto differ;
296
297 /* The number of bits contributed by the hash is controlled by a
298 * constant in the assoc_array headers. Everything else thereafter we
299 * can deal with as being machine word-size dependent.
300 */
301 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
302 seg_a = a->desc_len;
303 seg_b = b->desc_len;
304 if ((seg_a ^ seg_b) != 0)
305 goto differ;
306
307 /* The next bit may not work on big endian */
308 level++;
309 seg_a = (unsigned long)a->type;
310 seg_b = (unsigned long)b->type;
311 if ((seg_a ^ seg_b) != 0)
312 goto differ;
313
314 level += sizeof(unsigned long);
315 if (a->desc_len == 0)
316 goto same;
317
318 i = 0;
319 if (((unsigned long)a->description | (unsigned long)b->description) &
320 (sizeof(unsigned long) - 1)) {
321 do {
322 seg_a = *(unsigned long *)(a->description + i);
323 seg_b = *(unsigned long *)(b->description + i);
324 if ((seg_a ^ seg_b) != 0)
325 goto differ_plus_i;
326 i += sizeof(unsigned long);
327 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
328 }
329
330 for (; i < a->desc_len; i++) {
331 seg_a = *(unsigned char *)(a->description + i);
332 seg_b = *(unsigned char *)(b->description + i);
333 if ((seg_a ^ seg_b) != 0)
334 goto differ_plus_i;
335 }
336
337 same:
338 return -1;
339
340 differ_plus_i:
341 level += i;
342 differ:
343 i = level * 8 + __ffs(seg_a ^ seg_b);
344 return i;
345 }
346
347 /*
348 * Free an object after stripping the keyring flag off of the pointer.
349 */
350 static void keyring_free_object(void *object)
351 {
352 key_put(keyring_ptr_to_key(object));
353 }
354
355 /*
356 * Operations for keyring management by the index-tree routines.
357 */
358 static const struct assoc_array_ops keyring_assoc_array_ops = {
359 .get_key_chunk = keyring_get_key_chunk,
360 .get_object_key_chunk = keyring_get_object_key_chunk,
361 .compare_object = keyring_compare_object,
362 .diff_objects = keyring_diff_objects,
363 .free_object = keyring_free_object,
364 };
365
366 /*
367 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
368 * and dispose of its data.
369 *
370 * The garbage collector detects the final key_put(), removes the keyring from
371 * the serial number tree and then does RCU synchronisation before coming here,
372 * so we shouldn't need to worry about code poking around here with the RCU
373 * readlock held by this time.
374 */
375 static void keyring_destroy(struct key *keyring)
376 {
377 if (keyring->description) {
378 write_lock(&keyring_name_lock);
379
380 if (keyring->type_data.link.next != NULL &&
381 !list_empty(&keyring->type_data.link))
382 list_del(&keyring->type_data.link);
383
384 write_unlock(&keyring_name_lock);
385 }
386
387 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
388 }
389
390 /*
391 * Describe a keyring for /proc.
392 */
393 static void keyring_describe(const struct key *keyring, struct seq_file *m)
394 {
395 if (keyring->description)
396 seq_puts(m, keyring->description);
397 else
398 seq_puts(m, "[anon]");
399
400 if (key_is_instantiated(keyring)) {
401 if (keyring->keys.nr_leaves_on_tree != 0)
402 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
403 else
404 seq_puts(m, ": empty");
405 }
406 }
407
408 struct keyring_read_iterator_context {
409 size_t qty;
410 size_t count;
411 key_serial_t __user *buffer;
412 };
413
414 static int keyring_read_iterator(const void *object, void *data)
415 {
416 struct keyring_read_iterator_context *ctx = data;
417 const struct key *key = keyring_ptr_to_key(object);
418 int ret;
419
420 kenter("{%s,%d},,{%zu/%zu}",
421 key->type->name, key->serial, ctx->count, ctx->qty);
422
423 if (ctx->count >= ctx->qty)
424 return 1;
425
426 ret = put_user(key->serial, ctx->buffer);
427 if (ret < 0)
428 return ret;
429 ctx->buffer++;
430 ctx->count += sizeof(key->serial);
431 return 0;
432 }
433
434 /*
435 * Read a list of key IDs from the keyring's contents in binary form
436 *
437 * The keyring's semaphore is read-locked by the caller. This prevents someone
438 * from modifying it under us - which could cause us to read key IDs multiple
439 * times.
440 */
441 static long keyring_read(const struct key *keyring,
442 char __user *buffer, size_t buflen)
443 {
444 struct keyring_read_iterator_context ctx;
445 unsigned long nr_keys;
446 int ret;
447
448 kenter("{%d},,%zu", key_serial(keyring), buflen);
449
450 if (buflen & (sizeof(key_serial_t) - 1))
451 return -EINVAL;
452
453 nr_keys = keyring->keys.nr_leaves_on_tree;
454 if (nr_keys == 0)
455 return 0;
456
457 /* Calculate how much data we could return */
458 ctx.qty = nr_keys * sizeof(key_serial_t);
459
460 if (!buffer || !buflen)
461 return ctx.qty;
462
463 if (buflen > ctx.qty)
464 ctx.qty = buflen;
465
466 /* Copy the IDs of the subscribed keys into the buffer */
467 ctx.buffer = (key_serial_t __user *)buffer;
468 ctx.count = 0;
469 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
470 if (ret < 0) {
471 kleave(" = %d [iterate]", ret);
472 return ret;
473 }
474
475 kleave(" = %zu [ok]", ctx.count);
476 return ctx.count;
477 }
478
479 /*
480 * Allocate a keyring and link into the destination keyring.
481 */
482 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
483 const struct cred *cred, key_perm_t perm,
484 unsigned long flags, struct key *dest)
485 {
486 struct key *keyring;
487 int ret;
488
489 keyring = key_alloc(&key_type_keyring, description,
490 uid, gid, cred, perm, flags);
491 if (!IS_ERR(keyring)) {
492 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
493 if (ret < 0) {
494 key_put(keyring);
495 keyring = ERR_PTR(ret);
496 }
497 }
498
499 return keyring;
500 }
501 EXPORT_SYMBOL(keyring_alloc);
502
503 /*
504 * Iteration function to consider each key found.
505 */
506 static int keyring_search_iterator(const void *object, void *iterator_data)
507 {
508 struct keyring_search_context *ctx = iterator_data;
509 const struct key *key = keyring_ptr_to_key(object);
510 unsigned long kflags = key->flags;
511
512 kenter("{%d}", key->serial);
513
514 /* ignore keys not of this type */
515 if (key->type != ctx->index_key.type) {
516 kleave(" = 0 [!type]");
517 return 0;
518 }
519
520 /* skip invalidated, revoked and expired keys */
521 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
522 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
523 (1 << KEY_FLAG_REVOKED))) {
524 ctx->result = ERR_PTR(-EKEYREVOKED);
525 kleave(" = %d [invrev]", ctx->skipped_ret);
526 goto skipped;
527 }
528
529 if (key->expiry && ctx->now.tv_sec >= key->expiry) {
530 ctx->result = ERR_PTR(-EKEYEXPIRED);
531 kleave(" = %d [expire]", ctx->skipped_ret);
532 goto skipped;
533 }
534 }
535
536 /* keys that don't match */
537 if (!ctx->match(key, ctx->match_data)) {
538 kleave(" = 0 [!match]");
539 return 0;
540 }
541
542 /* key must have search permissions */
543 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
544 key_task_permission(make_key_ref(key, ctx->possessed),
545 ctx->cred, KEY_SEARCH) < 0) {
546 ctx->result = ERR_PTR(-EACCES);
547 kleave(" = %d [!perm]", ctx->skipped_ret);
548 goto skipped;
549 }
550
551 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
552 /* we set a different error code if we pass a negative key */
553 if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
554 ctx->result = ERR_PTR(key->type_data.reject_error);
555 kleave(" = %d [neg]", ctx->skipped_ret);
556 goto skipped;
557 }
558 }
559
560 /* Found */
561 ctx->result = make_key_ref(key, ctx->possessed);
562 kleave(" = 1 [found]");
563 return 1;
564
565 skipped:
566 return ctx->skipped_ret;
567 }
568
569 /*
570 * Search inside a keyring for a key. We can search by walking to it
571 * directly based on its index-key or we can iterate over the entire
572 * tree looking for it, based on the match function.
573 */
574 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
575 {
576 if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) ==
577 KEYRING_SEARCH_LOOKUP_DIRECT) {
578 const void *object;
579
580 object = assoc_array_find(&keyring->keys,
581 &keyring_assoc_array_ops,
582 &ctx->index_key);
583 return object ? ctx->iterator(object, ctx) : 0;
584 }
585 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
586 }
587
588 /*
589 * Search a tree of keyrings that point to other keyrings up to the maximum
590 * depth.
591 */
592 static bool search_nested_keyrings(struct key *keyring,
593 struct keyring_search_context *ctx)
594 {
595 struct {
596 struct key *keyring;
597 struct assoc_array_node *node;
598 int slot;
599 } stack[KEYRING_SEARCH_MAX_DEPTH];
600
601 struct assoc_array_shortcut *shortcut;
602 struct assoc_array_node *node;
603 struct assoc_array_ptr *ptr;
604 struct key *key;
605 int sp = 0, slot;
606
607 kenter("{%d},{%s,%s}",
608 keyring->serial,
609 ctx->index_key.type->name,
610 ctx->index_key.description);
611
612 if (ctx->index_key.description)
613 ctx->index_key.desc_len = strlen(ctx->index_key.description);
614
615 /* Check to see if this top-level keyring is what we are looking for
616 * and whether it is valid or not.
617 */
618 if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE ||
619 keyring_compare_object(keyring, &ctx->index_key)) {
620 ctx->skipped_ret = 2;
621 ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
622 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
623 case 1:
624 goto found;
625 case 2:
626 return false;
627 default:
628 break;
629 }
630 }
631
632 ctx->skipped_ret = 0;
633 if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
634 ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
635
636 /* Start processing a new keyring */
637 descend_to_keyring:
638 kdebug("descend to %d", keyring->serial);
639 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
640 (1 << KEY_FLAG_REVOKED)))
641 goto not_this_keyring;
642
643 /* Search through the keys in this keyring before its searching its
644 * subtrees.
645 */
646 if (search_keyring(keyring, ctx))
647 goto found;
648
649 /* Then manually iterate through the keyrings nested in this one.
650 *
651 * Start from the root node of the index tree. Because of the way the
652 * hash function has been set up, keyrings cluster on the leftmost
653 * branch of the root node (root slot 0) or in the root node itself.
654 * Non-keyrings avoid the leftmost branch of the root entirely (root
655 * slots 1-15).
656 */
657 ptr = ACCESS_ONCE(keyring->keys.root);
658 if (!ptr)
659 goto not_this_keyring;
660
661 if (assoc_array_ptr_is_shortcut(ptr)) {
662 /* If the root is a shortcut, either the keyring only contains
663 * keyring pointers (everything clusters behind root slot 0) or
664 * doesn't contain any keyring pointers.
665 */
666 shortcut = assoc_array_ptr_to_shortcut(ptr);
667 smp_read_barrier_depends();
668 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
669 goto not_this_keyring;
670
671 ptr = ACCESS_ONCE(shortcut->next_node);
672 node = assoc_array_ptr_to_node(ptr);
673 goto begin_node;
674 }
675
676 node = assoc_array_ptr_to_node(ptr);
677 smp_read_barrier_depends();
678
679 ptr = node->slots[0];
680 if (!assoc_array_ptr_is_meta(ptr))
681 goto begin_node;
682
683 descend_to_node:
684 /* Descend to a more distal node in this keyring's content tree and go
685 * through that.
686 */
687 kdebug("descend");
688 if (assoc_array_ptr_is_shortcut(ptr)) {
689 shortcut = assoc_array_ptr_to_shortcut(ptr);
690 smp_read_barrier_depends();
691 ptr = ACCESS_ONCE(shortcut->next_node);
692 BUG_ON(!assoc_array_ptr_is_node(ptr));
693 node = assoc_array_ptr_to_node(ptr);
694 }
695
696 begin_node:
697 kdebug("begin_node");
698 smp_read_barrier_depends();
699 slot = 0;
700 ascend_to_node:
701 /* Go through the slots in a node */
702 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
703 ptr = ACCESS_ONCE(node->slots[slot]);
704
705 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
706 goto descend_to_node;
707
708 if (!keyring_ptr_is_keyring(ptr))
709 continue;
710
711 key = keyring_ptr_to_key(ptr);
712
713 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
714 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
715 ctx->result = ERR_PTR(-ELOOP);
716 return false;
717 }
718 goto not_this_keyring;
719 }
720
721 /* Search a nested keyring */
722 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
723 key_task_permission(make_key_ref(key, ctx->possessed),
724 ctx->cred, KEY_SEARCH) < 0)
725 continue;
726
727 /* stack the current position */
728 stack[sp].keyring = keyring;
729 stack[sp].node = node;
730 stack[sp].slot = slot;
731 sp++;
732
733 /* begin again with the new keyring */
734 keyring = key;
735 goto descend_to_keyring;
736 }
737
738 /* We've dealt with all the slots in the current node, so now we need
739 * to ascend to the parent and continue processing there.
740 */
741 ptr = ACCESS_ONCE(node->back_pointer);
742 slot = node->parent_slot;
743
744 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
745 shortcut = assoc_array_ptr_to_shortcut(ptr);
746 smp_read_barrier_depends();
747 ptr = ACCESS_ONCE(shortcut->back_pointer);
748 slot = shortcut->parent_slot;
749 }
750 if (!ptr)
751 goto not_this_keyring;
752 node = assoc_array_ptr_to_node(ptr);
753 smp_read_barrier_depends();
754 slot++;
755
756 /* If we've ascended to the root (zero backpointer), we must have just
757 * finished processing the leftmost branch rather than the root slots -
758 * so there can't be any more keyrings for us to find.
759 */
760 if (node->back_pointer) {
761 kdebug("ascend %d", slot);
762 goto ascend_to_node;
763 }
764
765 /* The keyring we're looking at was disqualified or didn't contain a
766 * matching key.
767 */
768 not_this_keyring:
769 kdebug("not_this_keyring %d", sp);
770 if (sp <= 0) {
771 kleave(" = false");
772 return false;
773 }
774
775 /* Resume the processing of a keyring higher up in the tree */
776 sp--;
777 keyring = stack[sp].keyring;
778 node = stack[sp].node;
779 slot = stack[sp].slot + 1;
780 kdebug("ascend to %d [%d]", keyring->serial, slot);
781 goto ascend_to_node;
782
783 /* We found a viable match */
784 found:
785 key = key_ref_to_ptr(ctx->result);
786 key_check(key);
787 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
788 key->last_used_at = ctx->now.tv_sec;
789 keyring->last_used_at = ctx->now.tv_sec;
790 while (sp > 0)
791 stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
792 }
793 kleave(" = true");
794 return true;
795 }
796
797 /**
798 * keyring_search_aux - Search a keyring tree for a key matching some criteria
799 * @keyring_ref: A pointer to the keyring with possession indicator.
800 * @ctx: The keyring search context.
801 *
802 * Search the supplied keyring tree for a key that matches the criteria given.
803 * The root keyring and any linked keyrings must grant Search permission to the
804 * caller to be searchable and keys can only be found if they too grant Search
805 * to the caller. The possession flag on the root keyring pointer controls use
806 * of the possessor bits in permissions checking of the entire tree. In
807 * addition, the LSM gets to forbid keyring searches and key matches.
808 *
809 * The search is performed as a breadth-then-depth search up to the prescribed
810 * limit (KEYRING_SEARCH_MAX_DEPTH).
811 *
812 * Keys are matched to the type provided and are then filtered by the match
813 * function, which is given the description to use in any way it sees fit. The
814 * match function may use any attributes of a key that it wishes to to
815 * determine the match. Normally the match function from the key type would be
816 * used.
817 *
818 * RCU can be used to prevent the keyring key lists from disappearing without
819 * the need to take lots of locks.
820 *
821 * Returns a pointer to the found key and increments the key usage count if
822 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
823 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
824 * specified keyring wasn't a keyring.
825 *
826 * In the case of a successful return, the possession attribute from
827 * @keyring_ref is propagated to the returned key reference.
828 */
829 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
830 struct keyring_search_context *ctx)
831 {
832 struct key *keyring;
833 long err;
834
835 ctx->iterator = keyring_search_iterator;
836 ctx->possessed = is_key_possessed(keyring_ref);
837 ctx->result = ERR_PTR(-EAGAIN);
838
839 keyring = key_ref_to_ptr(keyring_ref);
840 key_check(keyring);
841
842 if (keyring->type != &key_type_keyring)
843 return ERR_PTR(-ENOTDIR);
844
845 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
846 err = key_task_permission(keyring_ref, ctx->cred, KEY_SEARCH);
847 if (err < 0)
848 return ERR_PTR(err);
849 }
850
851 rcu_read_lock();
852 ctx->now = current_kernel_time();
853 if (search_nested_keyrings(keyring, ctx))
854 __key_get(key_ref_to_ptr(ctx->result));
855 rcu_read_unlock();
856 return ctx->result;
857 }
858
859 /**
860 * keyring_search - Search the supplied keyring tree for a matching key
861 * @keyring: The root of the keyring tree to be searched.
862 * @type: The type of keyring we want to find.
863 * @description: The name of the keyring we want to find.
864 *
865 * As keyring_search_aux() above, but using the current task's credentials and
866 * type's default matching function and preferred search method.
867 */
868 key_ref_t keyring_search(key_ref_t keyring,
869 struct key_type *type,
870 const char *description)
871 {
872 struct keyring_search_context ctx = {
873 .index_key.type = type,
874 .index_key.description = description,
875 .cred = current_cred(),
876 .match = type->match,
877 .match_data = description,
878 .flags = (type->def_lookup_type |
879 KEYRING_SEARCH_DO_STATE_CHECK),
880 };
881
882 if (!ctx.match)
883 return ERR_PTR(-ENOKEY);
884
885 return keyring_search_aux(keyring, &ctx);
886 }
887 EXPORT_SYMBOL(keyring_search);
888
889 /*
890 * Search the given keyring for a key that might be updated.
891 *
892 * The caller must guarantee that the keyring is a keyring and that the
893 * permission is granted to modify the keyring as no check is made here. The
894 * caller must also hold a lock on the keyring semaphore.
895 *
896 * Returns a pointer to the found key with usage count incremented if
897 * successful and returns NULL if not found. Revoked and invalidated keys are
898 * skipped over.
899 *
900 * If successful, the possession indicator is propagated from the keyring ref
901 * to the returned key reference.
902 */
903 key_ref_t find_key_to_update(key_ref_t keyring_ref,
904 const struct keyring_index_key *index_key)
905 {
906 struct key *keyring, *key;
907 const void *object;
908
909 keyring = key_ref_to_ptr(keyring_ref);
910
911 kenter("{%d},{%s,%s}",
912 keyring->serial, index_key->type->name, index_key->description);
913
914 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
915 index_key);
916
917 if (object)
918 goto found;
919
920 kleave(" = NULL");
921 return NULL;
922
923 found:
924 key = keyring_ptr_to_key(object);
925 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
926 (1 << KEY_FLAG_REVOKED))) {
927 kleave(" = NULL [x]");
928 return NULL;
929 }
930 __key_get(key);
931 kleave(" = {%d}", key->serial);
932 return make_key_ref(key, is_key_possessed(keyring_ref));
933 }
934
935 /*
936 * Find a keyring with the specified name.
937 *
938 * All named keyrings in the current user namespace are searched, provided they
939 * grant Search permission directly to the caller (unless this check is
940 * skipped). Keyrings whose usage points have reached zero or who have been
941 * revoked are skipped.
942 *
943 * Returns a pointer to the keyring with the keyring's refcount having being
944 * incremented on success. -ENOKEY is returned if a key could not be found.
945 */
946 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
947 {
948 struct key *keyring;
949 int bucket;
950
951 if (!name)
952 return ERR_PTR(-EINVAL);
953
954 bucket = keyring_hash(name);
955
956 read_lock(&keyring_name_lock);
957
958 if (keyring_name_hash[bucket].next) {
959 /* search this hash bucket for a keyring with a matching name
960 * that's readable and that hasn't been revoked */
961 list_for_each_entry(keyring,
962 &keyring_name_hash[bucket],
963 type_data.link
964 ) {
965 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
966 continue;
967
968 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
969 continue;
970
971 if (strcmp(keyring->description, name) != 0)
972 continue;
973
974 if (!skip_perm_check &&
975 key_permission(make_key_ref(keyring, 0),
976 KEY_SEARCH) < 0)
977 continue;
978
979 /* we've got a match but we might end up racing with
980 * key_cleanup() if the keyring is currently 'dead'
981 * (ie. it has a zero usage count) */
982 if (!atomic_inc_not_zero(&keyring->usage))
983 continue;
984 keyring->last_used_at = current_kernel_time().tv_sec;
985 goto out;
986 }
987 }
988
989 keyring = ERR_PTR(-ENOKEY);
990 out:
991 read_unlock(&keyring_name_lock);
992 return keyring;
993 }
994
995 static int keyring_detect_cycle_iterator(const void *object,
996 void *iterator_data)
997 {
998 struct keyring_search_context *ctx = iterator_data;
999 const struct key *key = keyring_ptr_to_key(object);
1000
1001 kenter("{%d}", key->serial);
1002
1003 BUG_ON(key != ctx->match_data);
1004 ctx->result = ERR_PTR(-EDEADLK);
1005 return 1;
1006 }
1007
1008 /*
1009 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1010 * tree A at the topmost level (ie: as a direct child of A).
1011 *
1012 * Since we are adding B to A at the top level, checking for cycles should just
1013 * be a matter of seeing if node A is somewhere in tree B.
1014 */
1015 static int keyring_detect_cycle(struct key *A, struct key *B)
1016 {
1017 struct keyring_search_context ctx = {
1018 .index_key = A->index_key,
1019 .match_data = A,
1020 .iterator = keyring_detect_cycle_iterator,
1021 .flags = (KEYRING_SEARCH_LOOKUP_DIRECT |
1022 KEYRING_SEARCH_NO_STATE_CHECK |
1023 KEYRING_SEARCH_NO_UPDATE_TIME |
1024 KEYRING_SEARCH_NO_CHECK_PERM |
1025 KEYRING_SEARCH_DETECT_TOO_DEEP),
1026 };
1027
1028 rcu_read_lock();
1029 search_nested_keyrings(B, &ctx);
1030 rcu_read_unlock();
1031 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1032 }
1033
1034 /*
1035 * Preallocate memory so that a key can be linked into to a keyring.
1036 */
1037 int __key_link_begin(struct key *keyring,
1038 const struct keyring_index_key *index_key,
1039 struct assoc_array_edit **_edit)
1040 __acquires(&keyring->sem)
1041 __acquires(&keyring_serialise_link_sem)
1042 {
1043 struct assoc_array_edit *edit;
1044 int ret;
1045
1046 kenter("%d,%s,%s,",
1047 keyring->serial, index_key->type->name, index_key->description);
1048
1049 BUG_ON(index_key->desc_len == 0);
1050
1051 if (keyring->type != &key_type_keyring)
1052 return -ENOTDIR;
1053
1054 down_write(&keyring->sem);
1055
1056 ret = -EKEYREVOKED;
1057 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1058 goto error_krsem;
1059
1060 /* serialise link/link calls to prevent parallel calls causing a cycle
1061 * when linking two keyring in opposite orders */
1062 if (index_key->type == &key_type_keyring)
1063 down_write(&keyring_serialise_link_sem);
1064
1065 /* check that we aren't going to overrun the user's quota */
1066 ret = key_payload_reserve(keyring,
1067 keyring->datalen + KEYQUOTA_LINK_BYTES);
1068 if (ret < 0)
1069 goto error_sem;
1070
1071 /* Create an edit script that will insert/replace the key in the
1072 * keyring tree.
1073 */
1074 edit = assoc_array_insert(&keyring->keys,
1075 &keyring_assoc_array_ops,
1076 index_key,
1077 NULL);
1078 if (IS_ERR(edit)) {
1079 ret = PTR_ERR(edit);
1080 goto error_quota;
1081 }
1082
1083 *_edit = edit;
1084 kleave(" = 0");
1085 return 0;
1086
1087 error_quota:
1088 /* undo the quota changes */
1089 key_payload_reserve(keyring,
1090 keyring->datalen - KEYQUOTA_LINK_BYTES);
1091 error_sem:
1092 if (index_key->type == &key_type_keyring)
1093 up_write(&keyring_serialise_link_sem);
1094 error_krsem:
1095 up_write(&keyring->sem);
1096 kleave(" = %d", ret);
1097 return ret;
1098 }
1099
1100 /*
1101 * Check already instantiated keys aren't going to be a problem.
1102 *
1103 * The caller must have called __key_link_begin(). Don't need to call this for
1104 * keys that were created since __key_link_begin() was called.
1105 */
1106 int __key_link_check_live_key(struct key *keyring, struct key *key)
1107 {
1108 if (key->type == &key_type_keyring)
1109 /* check that we aren't going to create a cycle by linking one
1110 * keyring to another */
1111 return keyring_detect_cycle(keyring, key);
1112 return 0;
1113 }
1114
1115 /*
1116 * Link a key into to a keyring.
1117 *
1118 * Must be called with __key_link_begin() having being called. Discards any
1119 * already extant link to matching key if there is one, so that each keyring
1120 * holds at most one link to any given key of a particular type+description
1121 * combination.
1122 */
1123 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1124 {
1125 __key_get(key);
1126 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1127 assoc_array_apply_edit(*_edit);
1128 *_edit = NULL;
1129 }
1130
1131 /*
1132 * Finish linking a key into to a keyring.
1133 *
1134 * Must be called with __key_link_begin() having being called.
1135 */
1136 void __key_link_end(struct key *keyring,
1137 const struct keyring_index_key *index_key,
1138 struct assoc_array_edit *edit)
1139 __releases(&keyring->sem)
1140 __releases(&keyring_serialise_link_sem)
1141 {
1142 BUG_ON(index_key->type == NULL);
1143 kenter("%d,%s,", keyring->serial, index_key->type->name);
1144
1145 if (index_key->type == &key_type_keyring)
1146 up_write(&keyring_serialise_link_sem);
1147
1148 if (edit) {
1149 key_payload_reserve(keyring,
1150 keyring->datalen - KEYQUOTA_LINK_BYTES);
1151 assoc_array_cancel_edit(edit);
1152 }
1153 up_write(&keyring->sem);
1154 }
1155
1156 /**
1157 * key_link - Link a key to a keyring
1158 * @keyring: The keyring to make the link in.
1159 * @key: The key to link to.
1160 *
1161 * Make a link in a keyring to a key, such that the keyring holds a reference
1162 * on that key and the key can potentially be found by searching that keyring.
1163 *
1164 * This function will write-lock the keyring's semaphore and will consume some
1165 * of the user's key data quota to hold the link.
1166 *
1167 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1168 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1169 * full, -EDQUOT if there is insufficient key data quota remaining to add
1170 * another link or -ENOMEM if there's insufficient memory.
1171 *
1172 * It is assumed that the caller has checked that it is permitted for a link to
1173 * be made (the keyring should have Write permission and the key Link
1174 * permission).
1175 */
1176 int key_link(struct key *keyring, struct key *key)
1177 {
1178 struct assoc_array_edit *edit;
1179 int ret;
1180
1181 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1182
1183 key_check(keyring);
1184 key_check(key);
1185
1186 if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1187 !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1188 return -EPERM;
1189
1190 ret = __key_link_begin(keyring, &key->index_key, &edit);
1191 if (ret == 0) {
1192 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1193 ret = __key_link_check_live_key(keyring, key);
1194 if (ret == 0)
1195 __key_link(key, &edit);
1196 __key_link_end(keyring, &key->index_key, edit);
1197 }
1198
1199 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1200 return ret;
1201 }
1202 EXPORT_SYMBOL(key_link);
1203
1204 /**
1205 * key_unlink - Unlink the first link to a key from a keyring.
1206 * @keyring: The keyring to remove the link from.
1207 * @key: The key the link is to.
1208 *
1209 * Remove a link from a keyring to a key.
1210 *
1211 * This function will write-lock the keyring's semaphore.
1212 *
1213 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1214 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1215 * memory.
1216 *
1217 * It is assumed that the caller has checked that it is permitted for a link to
1218 * be removed (the keyring should have Write permission; no permissions are
1219 * required on the key).
1220 */
1221 int key_unlink(struct key *keyring, struct key *key)
1222 {
1223 struct assoc_array_edit *edit;
1224 int ret;
1225
1226 key_check(keyring);
1227 key_check(key);
1228
1229 if (keyring->type != &key_type_keyring)
1230 return -ENOTDIR;
1231
1232 down_write(&keyring->sem);
1233
1234 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1235 &key->index_key);
1236 if (IS_ERR(edit)) {
1237 ret = PTR_ERR(edit);
1238 goto error;
1239 }
1240 ret = -ENOENT;
1241 if (edit == NULL)
1242 goto error;
1243
1244 assoc_array_apply_edit(edit);
1245 ret = 0;
1246
1247 error:
1248 up_write(&keyring->sem);
1249 return ret;
1250 }
1251 EXPORT_SYMBOL(key_unlink);
1252
1253 /**
1254 * keyring_clear - Clear a keyring
1255 * @keyring: The keyring to clear.
1256 *
1257 * Clear the contents of the specified keyring.
1258 *
1259 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1260 */
1261 int keyring_clear(struct key *keyring)
1262 {
1263 struct assoc_array_edit *edit;
1264 int ret;
1265
1266 if (keyring->type != &key_type_keyring)
1267 return -ENOTDIR;
1268
1269 down_write(&keyring->sem);
1270
1271 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1272 if (IS_ERR(edit)) {
1273 ret = PTR_ERR(edit);
1274 } else {
1275 if (edit)
1276 assoc_array_apply_edit(edit);
1277 key_payload_reserve(keyring, 0);
1278 ret = 0;
1279 }
1280
1281 up_write(&keyring->sem);
1282 return ret;
1283 }
1284 EXPORT_SYMBOL(keyring_clear);
1285
1286 /*
1287 * Dispose of the links from a revoked keyring.
1288 *
1289 * This is called with the key sem write-locked.
1290 */
1291 static void keyring_revoke(struct key *keyring)
1292 {
1293 struct assoc_array_edit *edit;
1294
1295 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1296 if (!IS_ERR(edit)) {
1297 if (edit)
1298 assoc_array_apply_edit(edit);
1299 key_payload_reserve(keyring, 0);
1300 }
1301 }
1302
1303 static bool gc_iterator(void *object, void *iterator_data)
1304 {
1305 struct key *key = keyring_ptr_to_key(object);
1306 time_t *limit = iterator_data;
1307
1308 if (key_is_dead(key, *limit))
1309 return false;
1310 key_get(key);
1311 return true;
1312 }
1313
1314 /*
1315 * Collect garbage from the contents of a keyring, replacing the old list with
1316 * a new one with the pointers all shuffled down.
1317 *
1318 * Dead keys are classed as oned that are flagged as being dead or are revoked,
1319 * expired or negative keys that were revoked or expired before the specified
1320 * limit.
1321 */
1322 void keyring_gc(struct key *keyring, time_t limit)
1323 {
1324 kenter("{%x,%s}", key_serial(keyring), keyring->description);
1325
1326 down_write(&keyring->sem);
1327 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1328 gc_iterator, &limit);
1329 up_write(&keyring->sem);
1330
1331 kleave("");
1332 }