]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - security/keys/keyring.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-kernels.git] / security / keys / keyring.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Keyring handling
3 *
4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/security.h>
13 #include <linux/seq_file.h>
14 #include <linux/err.h>
15 #include <keys/keyring-type.h>
16 #include <keys/user-type.h>
17 #include <linux/assoc_array_priv.h>
18 #include <linux/uaccess.h>
19 #include "internal.h"
20
21 /*
22 * When plumbing the depths of the key tree, this sets a hard limit
23 * set on how deep we're willing to go.
24 */
25 #define KEYRING_SEARCH_MAX_DEPTH 6
26
27 /*
28 * We keep all named keyrings in a hash to speed looking them up.
29 */
30 #define KEYRING_NAME_HASH_SIZE (1 << 5)
31
32 /*
33 * We mark pointers we pass to the associative array with bit 1 set if
34 * they're keyrings and clear otherwise.
35 */
36 #define KEYRING_PTR_SUBTYPE 0x2UL
37
38 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
39 {
40 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
41 }
42 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
43 {
44 void *object = assoc_array_ptr_to_leaf(x);
45 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
46 }
47 static inline void *keyring_key_to_ptr(struct key *key)
48 {
49 if (key->type == &key_type_keyring)
50 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
51 return key;
52 }
53
54 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
55 static DEFINE_RWLOCK(keyring_name_lock);
56
57 static inline unsigned keyring_hash(const char *desc)
58 {
59 unsigned bucket = 0;
60
61 for (; *desc; desc++)
62 bucket += (unsigned char)*desc;
63
64 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
65 }
66
67 /*
68 * The keyring key type definition. Keyrings are simply keys of this type and
69 * can be treated as ordinary keys in addition to having their own special
70 * operations.
71 */
72 static int keyring_preparse(struct key_preparsed_payload *prep);
73 static void keyring_free_preparse(struct key_preparsed_payload *prep);
74 static int keyring_instantiate(struct key *keyring,
75 struct key_preparsed_payload *prep);
76 static void keyring_revoke(struct key *keyring);
77 static void keyring_destroy(struct key *keyring);
78 static void keyring_describe(const struct key *keyring, struct seq_file *m);
79 static long keyring_read(const struct key *keyring,
80 char __user *buffer, size_t buflen);
81
82 struct key_type key_type_keyring = {
83 .name = "keyring",
84 .def_datalen = 0,
85 .preparse = keyring_preparse,
86 .free_preparse = keyring_free_preparse,
87 .instantiate = keyring_instantiate,
88 .revoke = keyring_revoke,
89 .destroy = keyring_destroy,
90 .describe = keyring_describe,
91 .read = keyring_read,
92 };
93 EXPORT_SYMBOL(key_type_keyring);
94
95 /*
96 * Semaphore to serialise link/link calls to prevent two link calls in parallel
97 * introducing a cycle.
98 */
99 static DECLARE_RWSEM(keyring_serialise_link_sem);
100
101 /*
102 * Publish the name of a keyring so that it can be found by name (if it has
103 * one).
104 */
105 static void keyring_publish_name(struct key *keyring)
106 {
107 int bucket;
108
109 if (keyring->description) {
110 bucket = keyring_hash(keyring->description);
111
112 write_lock(&keyring_name_lock);
113
114 if (!keyring_name_hash[bucket].next)
115 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
116
117 list_add_tail(&keyring->name_link,
118 &keyring_name_hash[bucket]);
119
120 write_unlock(&keyring_name_lock);
121 }
122 }
123
124 /*
125 * Preparse a keyring payload
126 */
127 static int keyring_preparse(struct key_preparsed_payload *prep)
128 {
129 return prep->datalen != 0 ? -EINVAL : 0;
130 }
131
132 /*
133 * Free a preparse of a user defined key payload
134 */
135 static void keyring_free_preparse(struct key_preparsed_payload *prep)
136 {
137 }
138
139 /*
140 * Initialise a keyring.
141 *
142 * Returns 0 on success, -EINVAL if given any data.
143 */
144 static int keyring_instantiate(struct key *keyring,
145 struct key_preparsed_payload *prep)
146 {
147 assoc_array_init(&keyring->keys);
148 /* make the keyring available by name if it has one */
149 keyring_publish_name(keyring);
150 return 0;
151 }
152
153 /*
154 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
155 * fold the carry back too, but that requires inline asm.
156 */
157 static u64 mult_64x32_and_fold(u64 x, u32 y)
158 {
159 u64 hi = (u64)(u32)(x >> 32) * y;
160 u64 lo = (u64)(u32)(x) * y;
161 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
162 }
163
164 /*
165 * Hash a key type and description.
166 */
167 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
168 {
169 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
170 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
171 const char *description = index_key->description;
172 unsigned long hash, type;
173 u32 piece;
174 u64 acc;
175 int n, desc_len = index_key->desc_len;
176
177 type = (unsigned long)index_key->type;
178
179 acc = mult_64x32_and_fold(type, desc_len + 13);
180 acc = mult_64x32_and_fold(acc, 9207);
181 for (;;) {
182 n = desc_len;
183 if (n <= 0)
184 break;
185 if (n > 4)
186 n = 4;
187 piece = 0;
188 memcpy(&piece, description, n);
189 description += n;
190 desc_len -= n;
191 acc = mult_64x32_and_fold(acc, piece);
192 acc = mult_64x32_and_fold(acc, 9207);
193 }
194
195 /* Fold the hash down to 32 bits if need be. */
196 hash = acc;
197 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
198 hash ^= acc >> 32;
199
200 /* Squidge all the keyrings into a separate part of the tree to
201 * ordinary keys by making sure the lowest level segment in the hash is
202 * zero for keyrings and non-zero otherwise.
203 */
204 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
205 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
206 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
207 return (hash + (hash << level_shift)) & ~fan_mask;
208 return hash;
209 }
210
211 /*
212 * Build the next index key chunk.
213 *
214 * On 32-bit systems the index key is laid out as:
215 *
216 * 0 4 5 9...
217 * hash desclen typeptr desc[]
218 *
219 * On 64-bit systems:
220 *
221 * 0 8 9 17...
222 * hash desclen typeptr desc[]
223 *
224 * We return it one word-sized chunk at a time.
225 */
226 static unsigned long keyring_get_key_chunk(const void *data, int level)
227 {
228 const struct keyring_index_key *index_key = data;
229 unsigned long chunk = 0;
230 long offset = 0;
231 int desc_len = index_key->desc_len, n = sizeof(chunk);
232
233 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
234 switch (level) {
235 case 0:
236 return hash_key_type_and_desc(index_key);
237 case 1:
238 return ((unsigned long)index_key->type << 8) | desc_len;
239 case 2:
240 if (desc_len == 0)
241 return (u8)((unsigned long)index_key->type >>
242 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
243 n--;
244 offset = 1;
245 /* fall through */
246 default:
247 offset += sizeof(chunk) - 1;
248 offset += (level - 3) * sizeof(chunk);
249 if (offset >= desc_len)
250 return 0;
251 desc_len -= offset;
252 if (desc_len > n)
253 desc_len = n;
254 offset += desc_len;
255 do {
256 chunk <<= 8;
257 chunk |= ((u8*)index_key->description)[--offset];
258 } while (--desc_len > 0);
259
260 if (level == 2) {
261 chunk <<= 8;
262 chunk |= (u8)((unsigned long)index_key->type >>
263 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
264 }
265 return chunk;
266 }
267 }
268
269 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
270 {
271 const struct key *key = keyring_ptr_to_key(object);
272 return keyring_get_key_chunk(&key->index_key, level);
273 }
274
275 static bool keyring_compare_object(const void *object, const void *data)
276 {
277 const struct keyring_index_key *index_key = data;
278 const struct key *key = keyring_ptr_to_key(object);
279
280 return key->index_key.type == index_key->type &&
281 key->index_key.desc_len == index_key->desc_len &&
282 memcmp(key->index_key.description, index_key->description,
283 index_key->desc_len) == 0;
284 }
285
286 /*
287 * Compare the index keys of a pair of objects and determine the bit position
288 * at which they differ - if they differ.
289 */
290 static int keyring_diff_objects(const void *object, const void *data)
291 {
292 const struct key *key_a = keyring_ptr_to_key(object);
293 const struct keyring_index_key *a = &key_a->index_key;
294 const struct keyring_index_key *b = data;
295 unsigned long seg_a, seg_b;
296 int level, i;
297
298 level = 0;
299 seg_a = hash_key_type_and_desc(a);
300 seg_b = hash_key_type_and_desc(b);
301 if ((seg_a ^ seg_b) != 0)
302 goto differ;
303
304 /* The number of bits contributed by the hash is controlled by a
305 * constant in the assoc_array headers. Everything else thereafter we
306 * can deal with as being machine word-size dependent.
307 */
308 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
309 seg_a = a->desc_len;
310 seg_b = b->desc_len;
311 if ((seg_a ^ seg_b) != 0)
312 goto differ;
313
314 /* The next bit may not work on big endian */
315 level++;
316 seg_a = (unsigned long)a->type;
317 seg_b = (unsigned long)b->type;
318 if ((seg_a ^ seg_b) != 0)
319 goto differ;
320
321 level += sizeof(unsigned long);
322 if (a->desc_len == 0)
323 goto same;
324
325 i = 0;
326 if (((unsigned long)a->description | (unsigned long)b->description) &
327 (sizeof(unsigned long) - 1)) {
328 do {
329 seg_a = *(unsigned long *)(a->description + i);
330 seg_b = *(unsigned long *)(b->description + i);
331 if ((seg_a ^ seg_b) != 0)
332 goto differ_plus_i;
333 i += sizeof(unsigned long);
334 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
335 }
336
337 for (; i < a->desc_len; i++) {
338 seg_a = *(unsigned char *)(a->description + i);
339 seg_b = *(unsigned char *)(b->description + i);
340 if ((seg_a ^ seg_b) != 0)
341 goto differ_plus_i;
342 }
343
344 same:
345 return -1;
346
347 differ_plus_i:
348 level += i;
349 differ:
350 i = level * 8 + __ffs(seg_a ^ seg_b);
351 return i;
352 }
353
354 /*
355 * Free an object after stripping the keyring flag off of the pointer.
356 */
357 static void keyring_free_object(void *object)
358 {
359 key_put(keyring_ptr_to_key(object));
360 }
361
362 /*
363 * Operations for keyring management by the index-tree routines.
364 */
365 static const struct assoc_array_ops keyring_assoc_array_ops = {
366 .get_key_chunk = keyring_get_key_chunk,
367 .get_object_key_chunk = keyring_get_object_key_chunk,
368 .compare_object = keyring_compare_object,
369 .diff_objects = keyring_diff_objects,
370 .free_object = keyring_free_object,
371 };
372
373 /*
374 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
375 * and dispose of its data.
376 *
377 * The garbage collector detects the final key_put(), removes the keyring from
378 * the serial number tree and then does RCU synchronisation before coming here,
379 * so we shouldn't need to worry about code poking around here with the RCU
380 * readlock held by this time.
381 */
382 static void keyring_destroy(struct key *keyring)
383 {
384 if (keyring->description) {
385 write_lock(&keyring_name_lock);
386
387 if (keyring->name_link.next != NULL &&
388 !list_empty(&keyring->name_link))
389 list_del(&keyring->name_link);
390
391 write_unlock(&keyring_name_lock);
392 }
393
394 if (keyring->restrict_link) {
395 struct key_restriction *keyres = keyring->restrict_link;
396
397 key_put(keyres->key);
398 kfree(keyres);
399 }
400
401 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
402 }
403
404 /*
405 * Describe a keyring for /proc.
406 */
407 static void keyring_describe(const struct key *keyring, struct seq_file *m)
408 {
409 if (keyring->description)
410 seq_puts(m, keyring->description);
411 else
412 seq_puts(m, "[anon]");
413
414 if (key_is_positive(keyring)) {
415 if (keyring->keys.nr_leaves_on_tree != 0)
416 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
417 else
418 seq_puts(m, ": empty");
419 }
420 }
421
422 struct keyring_read_iterator_context {
423 size_t buflen;
424 size_t count;
425 key_serial_t __user *buffer;
426 };
427
428 static int keyring_read_iterator(const void *object, void *data)
429 {
430 struct keyring_read_iterator_context *ctx = data;
431 const struct key *key = keyring_ptr_to_key(object);
432 int ret;
433
434 kenter("{%s,%d},,{%zu/%zu}",
435 key->type->name, key->serial, ctx->count, ctx->buflen);
436
437 if (ctx->count >= ctx->buflen)
438 return 1;
439
440 ret = put_user(key->serial, ctx->buffer);
441 if (ret < 0)
442 return ret;
443 ctx->buffer++;
444 ctx->count += sizeof(key->serial);
445 return 0;
446 }
447
448 /*
449 * Read a list of key IDs from the keyring's contents in binary form
450 *
451 * The keyring's semaphore is read-locked by the caller. This prevents someone
452 * from modifying it under us - which could cause us to read key IDs multiple
453 * times.
454 */
455 static long keyring_read(const struct key *keyring,
456 char __user *buffer, size_t buflen)
457 {
458 struct keyring_read_iterator_context ctx;
459 long ret;
460
461 kenter("{%d},,%zu", key_serial(keyring), buflen);
462
463 if (buflen & (sizeof(key_serial_t) - 1))
464 return -EINVAL;
465
466 /* Copy as many key IDs as fit into the buffer */
467 if (buffer && buflen) {
468 ctx.buffer = (key_serial_t __user *)buffer;
469 ctx.buflen = buflen;
470 ctx.count = 0;
471 ret = assoc_array_iterate(&keyring->keys,
472 keyring_read_iterator, &ctx);
473 if (ret < 0) {
474 kleave(" = %ld [iterate]", ret);
475 return ret;
476 }
477 }
478
479 /* Return the size of the buffer needed */
480 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
481 if (ret <= buflen)
482 kleave("= %ld [ok]", ret);
483 else
484 kleave("= %ld [buffer too small]", ret);
485 return ret;
486 }
487
488 /*
489 * Allocate a keyring and link into the destination keyring.
490 */
491 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
492 const struct cred *cred, key_perm_t perm,
493 unsigned long flags,
494 struct key_restriction *restrict_link,
495 struct key *dest)
496 {
497 struct key *keyring;
498 int ret;
499
500 keyring = key_alloc(&key_type_keyring, description,
501 uid, gid, cred, perm, flags, restrict_link);
502 if (!IS_ERR(keyring)) {
503 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
504 if (ret < 0) {
505 key_put(keyring);
506 keyring = ERR_PTR(ret);
507 }
508 }
509
510 return keyring;
511 }
512 EXPORT_SYMBOL(keyring_alloc);
513
514 /**
515 * restrict_link_reject - Give -EPERM to restrict link
516 * @keyring: The keyring being added to.
517 * @type: The type of key being added.
518 * @payload: The payload of the key intended to be added.
519 * @data: Additional data for evaluating restriction.
520 *
521 * Reject the addition of any links to a keyring. It can be overridden by
522 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
523 * adding a key to a keyring.
524 *
525 * This is meant to be stored in a key_restriction structure which is passed
526 * in the restrict_link parameter to keyring_alloc().
527 */
528 int restrict_link_reject(struct key *keyring,
529 const struct key_type *type,
530 const union key_payload *payload,
531 struct key *restriction_key)
532 {
533 return -EPERM;
534 }
535
536 /*
537 * By default, we keys found by getting an exact match on their descriptions.
538 */
539 bool key_default_cmp(const struct key *key,
540 const struct key_match_data *match_data)
541 {
542 return strcmp(key->description, match_data->raw_data) == 0;
543 }
544
545 /*
546 * Iteration function to consider each key found.
547 */
548 static int keyring_search_iterator(const void *object, void *iterator_data)
549 {
550 struct keyring_search_context *ctx = iterator_data;
551 const struct key *key = keyring_ptr_to_key(object);
552 unsigned long kflags = READ_ONCE(key->flags);
553 short state = READ_ONCE(key->state);
554
555 kenter("{%d}", key->serial);
556
557 /* ignore keys not of this type */
558 if (key->type != ctx->index_key.type) {
559 kleave(" = 0 [!type]");
560 return 0;
561 }
562
563 /* skip invalidated, revoked and expired keys */
564 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
565 time64_t expiry = READ_ONCE(key->expiry);
566
567 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
568 (1 << KEY_FLAG_REVOKED))) {
569 ctx->result = ERR_PTR(-EKEYREVOKED);
570 kleave(" = %d [invrev]", ctx->skipped_ret);
571 goto skipped;
572 }
573
574 if (expiry && ctx->now >= expiry) {
575 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
576 ctx->result = ERR_PTR(-EKEYEXPIRED);
577 kleave(" = %d [expire]", ctx->skipped_ret);
578 goto skipped;
579 }
580 }
581
582 /* keys that don't match */
583 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
584 kleave(" = 0 [!match]");
585 return 0;
586 }
587
588 /* key must have search permissions */
589 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
590 key_task_permission(make_key_ref(key, ctx->possessed),
591 ctx->cred, KEY_NEED_SEARCH) < 0) {
592 ctx->result = ERR_PTR(-EACCES);
593 kleave(" = %d [!perm]", ctx->skipped_ret);
594 goto skipped;
595 }
596
597 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
598 /* we set a different error code if we pass a negative key */
599 if (state < 0) {
600 ctx->result = ERR_PTR(state);
601 kleave(" = %d [neg]", ctx->skipped_ret);
602 goto skipped;
603 }
604 }
605
606 /* Found */
607 ctx->result = make_key_ref(key, ctx->possessed);
608 kleave(" = 1 [found]");
609 return 1;
610
611 skipped:
612 return ctx->skipped_ret;
613 }
614
615 /*
616 * Search inside a keyring for a key. We can search by walking to it
617 * directly based on its index-key or we can iterate over the entire
618 * tree looking for it, based on the match function.
619 */
620 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
621 {
622 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
623 const void *object;
624
625 object = assoc_array_find(&keyring->keys,
626 &keyring_assoc_array_ops,
627 &ctx->index_key);
628 return object ? ctx->iterator(object, ctx) : 0;
629 }
630 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
631 }
632
633 /*
634 * Search a tree of keyrings that point to other keyrings up to the maximum
635 * depth.
636 */
637 static bool search_nested_keyrings(struct key *keyring,
638 struct keyring_search_context *ctx)
639 {
640 struct {
641 struct key *keyring;
642 struct assoc_array_node *node;
643 int slot;
644 } stack[KEYRING_SEARCH_MAX_DEPTH];
645
646 struct assoc_array_shortcut *shortcut;
647 struct assoc_array_node *node;
648 struct assoc_array_ptr *ptr;
649 struct key *key;
650 int sp = 0, slot;
651
652 kenter("{%d},{%s,%s}",
653 keyring->serial,
654 ctx->index_key.type->name,
655 ctx->index_key.description);
656
657 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
658 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
659 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
660
661 /* Check to see if this top-level keyring is what we are looking for
662 * and whether it is valid or not.
663 */
664 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
665 keyring_compare_object(keyring, &ctx->index_key)) {
666 ctx->skipped_ret = 2;
667 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
668 case 1:
669 goto found;
670 case 2:
671 return false;
672 default:
673 break;
674 }
675 }
676
677 ctx->skipped_ret = 0;
678
679 /* Start processing a new keyring */
680 descend_to_keyring:
681 kdebug("descend to %d", keyring->serial);
682 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
683 (1 << KEY_FLAG_REVOKED)))
684 goto not_this_keyring;
685
686 /* Search through the keys in this keyring before its searching its
687 * subtrees.
688 */
689 if (search_keyring(keyring, ctx))
690 goto found;
691
692 /* Then manually iterate through the keyrings nested in this one.
693 *
694 * Start from the root node of the index tree. Because of the way the
695 * hash function has been set up, keyrings cluster on the leftmost
696 * branch of the root node (root slot 0) or in the root node itself.
697 * Non-keyrings avoid the leftmost branch of the root entirely (root
698 * slots 1-15).
699 */
700 ptr = READ_ONCE(keyring->keys.root);
701 if (!ptr)
702 goto not_this_keyring;
703
704 if (assoc_array_ptr_is_shortcut(ptr)) {
705 /* If the root is a shortcut, either the keyring only contains
706 * keyring pointers (everything clusters behind root slot 0) or
707 * doesn't contain any keyring pointers.
708 */
709 shortcut = assoc_array_ptr_to_shortcut(ptr);
710 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
711 goto not_this_keyring;
712
713 ptr = READ_ONCE(shortcut->next_node);
714 node = assoc_array_ptr_to_node(ptr);
715 goto begin_node;
716 }
717
718 node = assoc_array_ptr_to_node(ptr);
719 ptr = node->slots[0];
720 if (!assoc_array_ptr_is_meta(ptr))
721 goto begin_node;
722
723 descend_to_node:
724 /* Descend to a more distal node in this keyring's content tree and go
725 * through that.
726 */
727 kdebug("descend");
728 if (assoc_array_ptr_is_shortcut(ptr)) {
729 shortcut = assoc_array_ptr_to_shortcut(ptr);
730 ptr = READ_ONCE(shortcut->next_node);
731 BUG_ON(!assoc_array_ptr_is_node(ptr));
732 }
733 node = assoc_array_ptr_to_node(ptr);
734
735 begin_node:
736 kdebug("begin_node");
737 slot = 0;
738 ascend_to_node:
739 /* Go through the slots in a node */
740 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
741 ptr = READ_ONCE(node->slots[slot]);
742
743 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
744 goto descend_to_node;
745
746 if (!keyring_ptr_is_keyring(ptr))
747 continue;
748
749 key = keyring_ptr_to_key(ptr);
750
751 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
752 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
753 ctx->result = ERR_PTR(-ELOOP);
754 return false;
755 }
756 goto not_this_keyring;
757 }
758
759 /* Search a nested keyring */
760 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
761 key_task_permission(make_key_ref(key, ctx->possessed),
762 ctx->cred, KEY_NEED_SEARCH) < 0)
763 continue;
764
765 /* stack the current position */
766 stack[sp].keyring = keyring;
767 stack[sp].node = node;
768 stack[sp].slot = slot;
769 sp++;
770
771 /* begin again with the new keyring */
772 keyring = key;
773 goto descend_to_keyring;
774 }
775
776 /* We've dealt with all the slots in the current node, so now we need
777 * to ascend to the parent and continue processing there.
778 */
779 ptr = READ_ONCE(node->back_pointer);
780 slot = node->parent_slot;
781
782 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
783 shortcut = assoc_array_ptr_to_shortcut(ptr);
784 ptr = READ_ONCE(shortcut->back_pointer);
785 slot = shortcut->parent_slot;
786 }
787 if (!ptr)
788 goto not_this_keyring;
789 node = assoc_array_ptr_to_node(ptr);
790 slot++;
791
792 /* If we've ascended to the root (zero backpointer), we must have just
793 * finished processing the leftmost branch rather than the root slots -
794 * so there can't be any more keyrings for us to find.
795 */
796 if (node->back_pointer) {
797 kdebug("ascend %d", slot);
798 goto ascend_to_node;
799 }
800
801 /* The keyring we're looking at was disqualified or didn't contain a
802 * matching key.
803 */
804 not_this_keyring:
805 kdebug("not_this_keyring %d", sp);
806 if (sp <= 0) {
807 kleave(" = false");
808 return false;
809 }
810
811 /* Resume the processing of a keyring higher up in the tree */
812 sp--;
813 keyring = stack[sp].keyring;
814 node = stack[sp].node;
815 slot = stack[sp].slot + 1;
816 kdebug("ascend to %d [%d]", keyring->serial, slot);
817 goto ascend_to_node;
818
819 /* We found a viable match */
820 found:
821 key = key_ref_to_ptr(ctx->result);
822 key_check(key);
823 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
824 key->last_used_at = ctx->now;
825 keyring->last_used_at = ctx->now;
826 while (sp > 0)
827 stack[--sp].keyring->last_used_at = ctx->now;
828 }
829 kleave(" = true");
830 return true;
831 }
832
833 /**
834 * keyring_search_aux - Search a keyring tree for a key matching some criteria
835 * @keyring_ref: A pointer to the keyring with possession indicator.
836 * @ctx: The keyring search context.
837 *
838 * Search the supplied keyring tree for a key that matches the criteria given.
839 * The root keyring and any linked keyrings must grant Search permission to the
840 * caller to be searchable and keys can only be found if they too grant Search
841 * to the caller. The possession flag on the root keyring pointer controls use
842 * of the possessor bits in permissions checking of the entire tree. In
843 * addition, the LSM gets to forbid keyring searches and key matches.
844 *
845 * The search is performed as a breadth-then-depth search up to the prescribed
846 * limit (KEYRING_SEARCH_MAX_DEPTH).
847 *
848 * Keys are matched to the type provided and are then filtered by the match
849 * function, which is given the description to use in any way it sees fit. The
850 * match function may use any attributes of a key that it wishes to to
851 * determine the match. Normally the match function from the key type would be
852 * used.
853 *
854 * RCU can be used to prevent the keyring key lists from disappearing without
855 * the need to take lots of locks.
856 *
857 * Returns a pointer to the found key and increments the key usage count if
858 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
859 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
860 * specified keyring wasn't a keyring.
861 *
862 * In the case of a successful return, the possession attribute from
863 * @keyring_ref is propagated to the returned key reference.
864 */
865 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
866 struct keyring_search_context *ctx)
867 {
868 struct key *keyring;
869 long err;
870
871 ctx->iterator = keyring_search_iterator;
872 ctx->possessed = is_key_possessed(keyring_ref);
873 ctx->result = ERR_PTR(-EAGAIN);
874
875 keyring = key_ref_to_ptr(keyring_ref);
876 key_check(keyring);
877
878 if (keyring->type != &key_type_keyring)
879 return ERR_PTR(-ENOTDIR);
880
881 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
882 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
883 if (err < 0)
884 return ERR_PTR(err);
885 }
886
887 rcu_read_lock();
888 ctx->now = ktime_get_real_seconds();
889 if (search_nested_keyrings(keyring, ctx))
890 __key_get(key_ref_to_ptr(ctx->result));
891 rcu_read_unlock();
892 return ctx->result;
893 }
894
895 /**
896 * keyring_search - Search the supplied keyring tree for a matching key
897 * @keyring: The root of the keyring tree to be searched.
898 * @type: The type of keyring we want to find.
899 * @description: The name of the keyring we want to find.
900 *
901 * As keyring_search_aux() above, but using the current task's credentials and
902 * type's default matching function and preferred search method.
903 */
904 key_ref_t keyring_search(key_ref_t keyring,
905 struct key_type *type,
906 const char *description)
907 {
908 struct keyring_search_context ctx = {
909 .index_key.type = type,
910 .index_key.description = description,
911 .index_key.desc_len = strlen(description),
912 .cred = current_cred(),
913 .match_data.cmp = key_default_cmp,
914 .match_data.raw_data = description,
915 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
916 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
917 };
918 key_ref_t key;
919 int ret;
920
921 if (type->match_preparse) {
922 ret = type->match_preparse(&ctx.match_data);
923 if (ret < 0)
924 return ERR_PTR(ret);
925 }
926
927 key = keyring_search_aux(keyring, &ctx);
928
929 if (type->match_free)
930 type->match_free(&ctx.match_data);
931 return key;
932 }
933 EXPORT_SYMBOL(keyring_search);
934
935 static struct key_restriction *keyring_restriction_alloc(
936 key_restrict_link_func_t check)
937 {
938 struct key_restriction *keyres =
939 kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
940
941 if (!keyres)
942 return ERR_PTR(-ENOMEM);
943
944 keyres->check = check;
945
946 return keyres;
947 }
948
949 /*
950 * Semaphore to serialise restriction setup to prevent reference count
951 * cycles through restriction key pointers.
952 */
953 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
954
955 /*
956 * Check for restriction cycles that would prevent keyring garbage collection.
957 * keyring_serialise_restrict_sem must be held.
958 */
959 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
960 struct key_restriction *keyres)
961 {
962 while (keyres && keyres->key &&
963 keyres->key->type == &key_type_keyring) {
964 if (keyres->key == dest_keyring)
965 return true;
966
967 keyres = keyres->key->restrict_link;
968 }
969
970 return false;
971 }
972
973 /**
974 * keyring_restrict - Look up and apply a restriction to a keyring
975 *
976 * @keyring: The keyring to be restricted
977 * @restriction: The restriction options to apply to the keyring
978 */
979 int keyring_restrict(key_ref_t keyring_ref, const char *type,
980 const char *restriction)
981 {
982 struct key *keyring;
983 struct key_type *restrict_type = NULL;
984 struct key_restriction *restrict_link;
985 int ret = 0;
986
987 keyring = key_ref_to_ptr(keyring_ref);
988 key_check(keyring);
989
990 if (keyring->type != &key_type_keyring)
991 return -ENOTDIR;
992
993 if (!type) {
994 restrict_link = keyring_restriction_alloc(restrict_link_reject);
995 } else {
996 restrict_type = key_type_lookup(type);
997
998 if (IS_ERR(restrict_type))
999 return PTR_ERR(restrict_type);
1000
1001 if (!restrict_type->lookup_restriction) {
1002 ret = -ENOENT;
1003 goto error;
1004 }
1005
1006 restrict_link = restrict_type->lookup_restriction(restriction);
1007 }
1008
1009 if (IS_ERR(restrict_link)) {
1010 ret = PTR_ERR(restrict_link);
1011 goto error;
1012 }
1013
1014 down_write(&keyring->sem);
1015 down_write(&keyring_serialise_restrict_sem);
1016
1017 if (keyring->restrict_link)
1018 ret = -EEXIST;
1019 else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1020 ret = -EDEADLK;
1021 else
1022 keyring->restrict_link = restrict_link;
1023
1024 up_write(&keyring_serialise_restrict_sem);
1025 up_write(&keyring->sem);
1026
1027 if (ret < 0) {
1028 key_put(restrict_link->key);
1029 kfree(restrict_link);
1030 }
1031
1032 error:
1033 if (restrict_type)
1034 key_type_put(restrict_type);
1035
1036 return ret;
1037 }
1038 EXPORT_SYMBOL(keyring_restrict);
1039
1040 /*
1041 * Search the given keyring for a key that might be updated.
1042 *
1043 * The caller must guarantee that the keyring is a keyring and that the
1044 * permission is granted to modify the keyring as no check is made here. The
1045 * caller must also hold a lock on the keyring semaphore.
1046 *
1047 * Returns a pointer to the found key with usage count incremented if
1048 * successful and returns NULL if not found. Revoked and invalidated keys are
1049 * skipped over.
1050 *
1051 * If successful, the possession indicator is propagated from the keyring ref
1052 * to the returned key reference.
1053 */
1054 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1055 const struct keyring_index_key *index_key)
1056 {
1057 struct key *keyring, *key;
1058 const void *object;
1059
1060 keyring = key_ref_to_ptr(keyring_ref);
1061
1062 kenter("{%d},{%s,%s}",
1063 keyring->serial, index_key->type->name, index_key->description);
1064
1065 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1066 index_key);
1067
1068 if (object)
1069 goto found;
1070
1071 kleave(" = NULL");
1072 return NULL;
1073
1074 found:
1075 key = keyring_ptr_to_key(object);
1076 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1077 (1 << KEY_FLAG_REVOKED))) {
1078 kleave(" = NULL [x]");
1079 return NULL;
1080 }
1081 __key_get(key);
1082 kleave(" = {%d}", key->serial);
1083 return make_key_ref(key, is_key_possessed(keyring_ref));
1084 }
1085
1086 /*
1087 * Find a keyring with the specified name.
1088 *
1089 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1090 * user in the current user namespace are considered. If @uid_keyring is %true,
1091 * the keyring additionally must have been allocated as a user or user session
1092 * keyring; otherwise, it must grant Search permission directly to the caller.
1093 *
1094 * Returns a pointer to the keyring with the keyring's refcount having being
1095 * incremented on success. -ENOKEY is returned if a key could not be found.
1096 */
1097 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1098 {
1099 struct key *keyring;
1100 int bucket;
1101
1102 if (!name)
1103 return ERR_PTR(-EINVAL);
1104
1105 bucket = keyring_hash(name);
1106
1107 read_lock(&keyring_name_lock);
1108
1109 if (keyring_name_hash[bucket].next) {
1110 /* search this hash bucket for a keyring with a matching name
1111 * that's readable and that hasn't been revoked */
1112 list_for_each_entry(keyring,
1113 &keyring_name_hash[bucket],
1114 name_link
1115 ) {
1116 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1117 continue;
1118
1119 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1120 continue;
1121
1122 if (strcmp(keyring->description, name) != 0)
1123 continue;
1124
1125 if (uid_keyring) {
1126 if (!test_bit(KEY_FLAG_UID_KEYRING,
1127 &keyring->flags))
1128 continue;
1129 } else {
1130 if (key_permission(make_key_ref(keyring, 0),
1131 KEY_NEED_SEARCH) < 0)
1132 continue;
1133 }
1134
1135 /* we've got a match but we might end up racing with
1136 * key_cleanup() if the keyring is currently 'dead'
1137 * (ie. it has a zero usage count) */
1138 if (!refcount_inc_not_zero(&keyring->usage))
1139 continue;
1140 keyring->last_used_at = ktime_get_real_seconds();
1141 goto out;
1142 }
1143 }
1144
1145 keyring = ERR_PTR(-ENOKEY);
1146 out:
1147 read_unlock(&keyring_name_lock);
1148 return keyring;
1149 }
1150
1151 static int keyring_detect_cycle_iterator(const void *object,
1152 void *iterator_data)
1153 {
1154 struct keyring_search_context *ctx = iterator_data;
1155 const struct key *key = keyring_ptr_to_key(object);
1156
1157 kenter("{%d}", key->serial);
1158
1159 /* We might get a keyring with matching index-key that is nonetheless a
1160 * different keyring. */
1161 if (key != ctx->match_data.raw_data)
1162 return 0;
1163
1164 ctx->result = ERR_PTR(-EDEADLK);
1165 return 1;
1166 }
1167
1168 /*
1169 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1170 * tree A at the topmost level (ie: as a direct child of A).
1171 *
1172 * Since we are adding B to A at the top level, checking for cycles should just
1173 * be a matter of seeing if node A is somewhere in tree B.
1174 */
1175 static int keyring_detect_cycle(struct key *A, struct key *B)
1176 {
1177 struct keyring_search_context ctx = {
1178 .index_key = A->index_key,
1179 .match_data.raw_data = A,
1180 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1181 .iterator = keyring_detect_cycle_iterator,
1182 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1183 KEYRING_SEARCH_NO_UPDATE_TIME |
1184 KEYRING_SEARCH_NO_CHECK_PERM |
1185 KEYRING_SEARCH_DETECT_TOO_DEEP),
1186 };
1187
1188 rcu_read_lock();
1189 search_nested_keyrings(B, &ctx);
1190 rcu_read_unlock();
1191 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1192 }
1193
1194 /*
1195 * Preallocate memory so that a key can be linked into to a keyring.
1196 */
1197 int __key_link_begin(struct key *keyring,
1198 const struct keyring_index_key *index_key,
1199 struct assoc_array_edit **_edit)
1200 __acquires(&keyring->sem)
1201 __acquires(&keyring_serialise_link_sem)
1202 {
1203 struct assoc_array_edit *edit;
1204 int ret;
1205
1206 kenter("%d,%s,%s,",
1207 keyring->serial, index_key->type->name, index_key->description);
1208
1209 BUG_ON(index_key->desc_len == 0);
1210
1211 if (keyring->type != &key_type_keyring)
1212 return -ENOTDIR;
1213
1214 down_write(&keyring->sem);
1215
1216 ret = -EKEYREVOKED;
1217 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1218 goto error_krsem;
1219
1220 /* serialise link/link calls to prevent parallel calls causing a cycle
1221 * when linking two keyring in opposite orders */
1222 if (index_key->type == &key_type_keyring)
1223 down_write(&keyring_serialise_link_sem);
1224
1225 /* Create an edit script that will insert/replace the key in the
1226 * keyring tree.
1227 */
1228 edit = assoc_array_insert(&keyring->keys,
1229 &keyring_assoc_array_ops,
1230 index_key,
1231 NULL);
1232 if (IS_ERR(edit)) {
1233 ret = PTR_ERR(edit);
1234 goto error_sem;
1235 }
1236
1237 /* If we're not replacing a link in-place then we're going to need some
1238 * extra quota.
1239 */
1240 if (!edit->dead_leaf) {
1241 ret = key_payload_reserve(keyring,
1242 keyring->datalen + KEYQUOTA_LINK_BYTES);
1243 if (ret < 0)
1244 goto error_cancel;
1245 }
1246
1247 *_edit = edit;
1248 kleave(" = 0");
1249 return 0;
1250
1251 error_cancel:
1252 assoc_array_cancel_edit(edit);
1253 error_sem:
1254 if (index_key->type == &key_type_keyring)
1255 up_write(&keyring_serialise_link_sem);
1256 error_krsem:
1257 up_write(&keyring->sem);
1258 kleave(" = %d", ret);
1259 return ret;
1260 }
1261
1262 /*
1263 * Check already instantiated keys aren't going to be a problem.
1264 *
1265 * The caller must have called __key_link_begin(). Don't need to call this for
1266 * keys that were created since __key_link_begin() was called.
1267 */
1268 int __key_link_check_live_key(struct key *keyring, struct key *key)
1269 {
1270 if (key->type == &key_type_keyring)
1271 /* check that we aren't going to create a cycle by linking one
1272 * keyring to another */
1273 return keyring_detect_cycle(keyring, key);
1274 return 0;
1275 }
1276
1277 /*
1278 * Link a key into to a keyring.
1279 *
1280 * Must be called with __key_link_begin() having being called. Discards any
1281 * already extant link to matching key if there is one, so that each keyring
1282 * holds at most one link to any given key of a particular type+description
1283 * combination.
1284 */
1285 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1286 {
1287 __key_get(key);
1288 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1289 assoc_array_apply_edit(*_edit);
1290 *_edit = NULL;
1291 }
1292
1293 /*
1294 * Finish linking a key into to a keyring.
1295 *
1296 * Must be called with __key_link_begin() having being called.
1297 */
1298 void __key_link_end(struct key *keyring,
1299 const struct keyring_index_key *index_key,
1300 struct assoc_array_edit *edit)
1301 __releases(&keyring->sem)
1302 __releases(&keyring_serialise_link_sem)
1303 {
1304 BUG_ON(index_key->type == NULL);
1305 kenter("%d,%s,", keyring->serial, index_key->type->name);
1306
1307 if (index_key->type == &key_type_keyring)
1308 up_write(&keyring_serialise_link_sem);
1309
1310 if (edit) {
1311 if (!edit->dead_leaf) {
1312 key_payload_reserve(keyring,
1313 keyring->datalen - KEYQUOTA_LINK_BYTES);
1314 }
1315 assoc_array_cancel_edit(edit);
1316 }
1317 up_write(&keyring->sem);
1318 }
1319
1320 /*
1321 * Check addition of keys to restricted keyrings.
1322 */
1323 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1324 {
1325 if (!keyring->restrict_link || !keyring->restrict_link->check)
1326 return 0;
1327 return keyring->restrict_link->check(keyring, key->type, &key->payload,
1328 keyring->restrict_link->key);
1329 }
1330
1331 /**
1332 * key_link - Link a key to a keyring
1333 * @keyring: The keyring to make the link in.
1334 * @key: The key to link to.
1335 *
1336 * Make a link in a keyring to a key, such that the keyring holds a reference
1337 * on that key and the key can potentially be found by searching that keyring.
1338 *
1339 * This function will write-lock the keyring's semaphore and will consume some
1340 * of the user's key data quota to hold the link.
1341 *
1342 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1343 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1344 * full, -EDQUOT if there is insufficient key data quota remaining to add
1345 * another link or -ENOMEM if there's insufficient memory.
1346 *
1347 * It is assumed that the caller has checked that it is permitted for a link to
1348 * be made (the keyring should have Write permission and the key Link
1349 * permission).
1350 */
1351 int key_link(struct key *keyring, struct key *key)
1352 {
1353 struct assoc_array_edit *edit;
1354 int ret;
1355
1356 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1357
1358 key_check(keyring);
1359 key_check(key);
1360
1361 ret = __key_link_begin(keyring, &key->index_key, &edit);
1362 if (ret == 0) {
1363 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1364 ret = __key_link_check_restriction(keyring, key);
1365 if (ret == 0)
1366 ret = __key_link_check_live_key(keyring, key);
1367 if (ret == 0)
1368 __key_link(key, &edit);
1369 __key_link_end(keyring, &key->index_key, edit);
1370 }
1371
1372 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1373 return ret;
1374 }
1375 EXPORT_SYMBOL(key_link);
1376
1377 /**
1378 * key_unlink - Unlink the first link to a key from a keyring.
1379 * @keyring: The keyring to remove the link from.
1380 * @key: The key the link is to.
1381 *
1382 * Remove a link from a keyring to a key.
1383 *
1384 * This function will write-lock the keyring's semaphore.
1385 *
1386 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1387 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1388 * memory.
1389 *
1390 * It is assumed that the caller has checked that it is permitted for a link to
1391 * be removed (the keyring should have Write permission; no permissions are
1392 * required on the key).
1393 */
1394 int key_unlink(struct key *keyring, struct key *key)
1395 {
1396 struct assoc_array_edit *edit;
1397 int ret;
1398
1399 key_check(keyring);
1400 key_check(key);
1401
1402 if (keyring->type != &key_type_keyring)
1403 return -ENOTDIR;
1404
1405 down_write(&keyring->sem);
1406
1407 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1408 &key->index_key);
1409 if (IS_ERR(edit)) {
1410 ret = PTR_ERR(edit);
1411 goto error;
1412 }
1413 ret = -ENOENT;
1414 if (edit == NULL)
1415 goto error;
1416
1417 assoc_array_apply_edit(edit);
1418 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1419 ret = 0;
1420
1421 error:
1422 up_write(&keyring->sem);
1423 return ret;
1424 }
1425 EXPORT_SYMBOL(key_unlink);
1426
1427 /**
1428 * keyring_clear - Clear a keyring
1429 * @keyring: The keyring to clear.
1430 *
1431 * Clear the contents of the specified keyring.
1432 *
1433 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1434 */
1435 int keyring_clear(struct key *keyring)
1436 {
1437 struct assoc_array_edit *edit;
1438 int ret;
1439
1440 if (keyring->type != &key_type_keyring)
1441 return -ENOTDIR;
1442
1443 down_write(&keyring->sem);
1444
1445 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1446 if (IS_ERR(edit)) {
1447 ret = PTR_ERR(edit);
1448 } else {
1449 if (edit)
1450 assoc_array_apply_edit(edit);
1451 key_payload_reserve(keyring, 0);
1452 ret = 0;
1453 }
1454
1455 up_write(&keyring->sem);
1456 return ret;
1457 }
1458 EXPORT_SYMBOL(keyring_clear);
1459
1460 /*
1461 * Dispose of the links from a revoked keyring.
1462 *
1463 * This is called with the key sem write-locked.
1464 */
1465 static void keyring_revoke(struct key *keyring)
1466 {
1467 struct assoc_array_edit *edit;
1468
1469 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1470 if (!IS_ERR(edit)) {
1471 if (edit)
1472 assoc_array_apply_edit(edit);
1473 key_payload_reserve(keyring, 0);
1474 }
1475 }
1476
1477 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1478 {
1479 struct key *key = keyring_ptr_to_key(object);
1480 time64_t *limit = iterator_data;
1481
1482 if (key_is_dead(key, *limit))
1483 return false;
1484 key_get(key);
1485 return true;
1486 }
1487
1488 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1489 {
1490 const struct key *key = keyring_ptr_to_key(object);
1491 time64_t *limit = iterator_data;
1492
1493 key_check(key);
1494 return key_is_dead(key, *limit);
1495 }
1496
1497 /*
1498 * Garbage collect pointers from a keyring.
1499 *
1500 * Not called with any locks held. The keyring's key struct will not be
1501 * deallocated under us as only our caller may deallocate it.
1502 */
1503 void keyring_gc(struct key *keyring, time64_t limit)
1504 {
1505 int result;
1506
1507 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1508
1509 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1510 (1 << KEY_FLAG_REVOKED)))
1511 goto dont_gc;
1512
1513 /* scan the keyring looking for dead keys */
1514 rcu_read_lock();
1515 result = assoc_array_iterate(&keyring->keys,
1516 keyring_gc_check_iterator, &limit);
1517 rcu_read_unlock();
1518 if (result == true)
1519 goto do_gc;
1520
1521 dont_gc:
1522 kleave(" [no gc]");
1523 return;
1524
1525 do_gc:
1526 down_write(&keyring->sem);
1527 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1528 keyring_gc_select_iterator, &limit);
1529 up_write(&keyring->sem);
1530 kleave(" [gc]");
1531 }
1532
1533 /*
1534 * Garbage collect restriction pointers from a keyring.
1535 *
1536 * Keyring restrictions are associated with a key type, and must be cleaned
1537 * up if the key type is unregistered. The restriction is altered to always
1538 * reject additional keys so a keyring cannot be opened up by unregistering
1539 * a key type.
1540 *
1541 * Not called with any keyring locks held. The keyring's key struct will not
1542 * be deallocated under us as only our caller may deallocate it.
1543 *
1544 * The caller is required to hold key_types_sem and dead_type->sem. This is
1545 * fulfilled by key_gc_keytype() holding the locks on behalf of
1546 * key_garbage_collector(), which it invokes on a workqueue.
1547 */
1548 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1549 {
1550 struct key_restriction *keyres;
1551
1552 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1553
1554 /*
1555 * keyring->restrict_link is only assigned at key allocation time
1556 * or with the key type locked, so the only values that could be
1557 * concurrently assigned to keyring->restrict_link are for key
1558 * types other than dead_type. Given this, it's ok to check
1559 * the key type before acquiring keyring->sem.
1560 */
1561 if (!dead_type || !keyring->restrict_link ||
1562 keyring->restrict_link->keytype != dead_type) {
1563 kleave(" [no restriction gc]");
1564 return;
1565 }
1566
1567 /* Lock the keyring to ensure that a link is not in progress */
1568 down_write(&keyring->sem);
1569
1570 keyres = keyring->restrict_link;
1571
1572 keyres->check = restrict_link_reject;
1573
1574 key_put(keyres->key);
1575 keyres->key = NULL;
1576 keyres->keytype = NULL;
1577
1578 up_write(&keyring->sem);
1579
1580 kleave(" [restriction gc]");
1581 }