]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - security/keys/keyring.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[mirror_ubuntu-jammy-kernel.git] / security / keys / keyring.c
1 /* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24
25 /*
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
28 */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30
31 /*
32 * We keep all named keyrings in a hash to speed looking them up.
33 */
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
35
36 /*
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
39 */
40 #define KEYRING_PTR_SUBTYPE 0x2UL
41
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
56 }
57
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 unsigned bucket = 0;
64
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
67
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70
71 /*
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
75 */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 char __user *buffer, size_t buflen);
85
86 struct key_type key_type_keyring = {
87 .name = "keyring",
88 .def_datalen = 0,
89 .preparse = keyring_preparse,
90 .free_preparse = keyring_free_preparse,
91 .instantiate = keyring_instantiate,
92 .revoke = keyring_revoke,
93 .destroy = keyring_destroy,
94 .describe = keyring_describe,
95 .read = keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98
99 /*
100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
101 * introducing a cycle.
102 */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104
105 /*
106 * Publish the name of a keyring so that it can be found by name (if it has
107 * one).
108 */
109 static void keyring_publish_name(struct key *keyring)
110 {
111 int bucket;
112
113 if (keyring->description) {
114 bucket = keyring_hash(keyring->description);
115
116 write_lock(&keyring_name_lock);
117
118 if (!keyring_name_hash[bucket].next)
119 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120
121 list_add_tail(&keyring->name_link,
122 &keyring_name_hash[bucket]);
123
124 write_unlock(&keyring_name_lock);
125 }
126 }
127
128 /*
129 * Preparse a keyring payload
130 */
131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 return prep->datalen != 0 ? -EINVAL : 0;
134 }
135
136 /*
137 * Free a preparse of a user defined key payload
138 */
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142
143 /*
144 * Initialise a keyring.
145 *
146 * Returns 0 on success, -EINVAL if given any data.
147 */
148 static int keyring_instantiate(struct key *keyring,
149 struct key_preparsed_payload *prep)
150 {
151 assoc_array_init(&keyring->keys);
152 /* make the keyring available by name if it has one */
153 keyring_publish_name(keyring);
154 return 0;
155 }
156
157 /*
158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
159 * fold the carry back too, but that requires inline asm.
160 */
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 u64 hi = (u64)(u32)(x >> 32) * y;
164 u64 lo = (u64)(u32)(x) * y;
165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167
168 /*
169 * Hash a key type and description.
170 */
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 const char *description = index_key->description;
176 unsigned long hash, type;
177 u32 piece;
178 u64 acc;
179 int n, desc_len = index_key->desc_len;
180
181 type = (unsigned long)index_key->type;
182
183 acc = mult_64x32_and_fold(type, desc_len + 13);
184 acc = mult_64x32_and_fold(acc, 9207);
185 for (;;) {
186 n = desc_len;
187 if (n <= 0)
188 break;
189 if (n > 4)
190 n = 4;
191 piece = 0;
192 memcpy(&piece, description, n);
193 description += n;
194 desc_len -= n;
195 acc = mult_64x32_and_fold(acc, piece);
196 acc = mult_64x32_and_fold(acc, 9207);
197 }
198
199 /* Fold the hash down to 32 bits if need be. */
200 hash = acc;
201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 hash ^= acc >> 32;
203
204 /* Squidge all the keyrings into a separate part of the tree to
205 * ordinary keys by making sure the lowest level segment in the hash is
206 * zero for keyrings and non-zero otherwise.
207 */
208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 return (hash + (hash << level_shift)) & ~fan_mask;
212 return hash;
213 }
214
215 /*
216 * Build the next index key chunk.
217 *
218 * On 32-bit systems the index key is laid out as:
219 *
220 * 0 4 5 9...
221 * hash desclen typeptr desc[]
222 *
223 * On 64-bit systems:
224 *
225 * 0 8 9 17...
226 * hash desclen typeptr desc[]
227 *
228 * We return it one word-sized chunk at a time.
229 */
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 const struct keyring_index_key *index_key = data;
233 unsigned long chunk = 0;
234 long offset = 0;
235 int desc_len = index_key->desc_len, n = sizeof(chunk);
236
237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 switch (level) {
239 case 0:
240 return hash_key_type_and_desc(index_key);
241 case 1:
242 return ((unsigned long)index_key->type << 8) | desc_len;
243 case 2:
244 if (desc_len == 0)
245 return (u8)((unsigned long)index_key->type >>
246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 n--;
248 offset = 1;
249 /* fall through */
250 default:
251 offset += sizeof(chunk) - 1;
252 offset += (level - 3) * sizeof(chunk);
253 if (offset >= desc_len)
254 return 0;
255 desc_len -= offset;
256 if (desc_len > n)
257 desc_len = n;
258 offset += desc_len;
259 do {
260 chunk <<= 8;
261 chunk |= ((u8*)index_key->description)[--offset];
262 } while (--desc_len > 0);
263
264 if (level == 2) {
265 chunk <<= 8;
266 chunk |= (u8)((unsigned long)index_key->type >>
267 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
268 }
269 return chunk;
270 }
271 }
272
273 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
274 {
275 const struct key *key = keyring_ptr_to_key(object);
276 return keyring_get_key_chunk(&key->index_key, level);
277 }
278
279 static bool keyring_compare_object(const void *object, const void *data)
280 {
281 const struct keyring_index_key *index_key = data;
282 const struct key *key = keyring_ptr_to_key(object);
283
284 return key->index_key.type == index_key->type &&
285 key->index_key.desc_len == index_key->desc_len &&
286 memcmp(key->index_key.description, index_key->description,
287 index_key->desc_len) == 0;
288 }
289
290 /*
291 * Compare the index keys of a pair of objects and determine the bit position
292 * at which they differ - if they differ.
293 */
294 static int keyring_diff_objects(const void *object, const void *data)
295 {
296 const struct key *key_a = keyring_ptr_to_key(object);
297 const struct keyring_index_key *a = &key_a->index_key;
298 const struct keyring_index_key *b = data;
299 unsigned long seg_a, seg_b;
300 int level, i;
301
302 level = 0;
303 seg_a = hash_key_type_and_desc(a);
304 seg_b = hash_key_type_and_desc(b);
305 if ((seg_a ^ seg_b) != 0)
306 goto differ;
307
308 /* The number of bits contributed by the hash is controlled by a
309 * constant in the assoc_array headers. Everything else thereafter we
310 * can deal with as being machine word-size dependent.
311 */
312 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
313 seg_a = a->desc_len;
314 seg_b = b->desc_len;
315 if ((seg_a ^ seg_b) != 0)
316 goto differ;
317
318 /* The next bit may not work on big endian */
319 level++;
320 seg_a = (unsigned long)a->type;
321 seg_b = (unsigned long)b->type;
322 if ((seg_a ^ seg_b) != 0)
323 goto differ;
324
325 level += sizeof(unsigned long);
326 if (a->desc_len == 0)
327 goto same;
328
329 i = 0;
330 if (((unsigned long)a->description | (unsigned long)b->description) &
331 (sizeof(unsigned long) - 1)) {
332 do {
333 seg_a = *(unsigned long *)(a->description + i);
334 seg_b = *(unsigned long *)(b->description + i);
335 if ((seg_a ^ seg_b) != 0)
336 goto differ_plus_i;
337 i += sizeof(unsigned long);
338 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
339 }
340
341 for (; i < a->desc_len; i++) {
342 seg_a = *(unsigned char *)(a->description + i);
343 seg_b = *(unsigned char *)(b->description + i);
344 if ((seg_a ^ seg_b) != 0)
345 goto differ_plus_i;
346 }
347
348 same:
349 return -1;
350
351 differ_plus_i:
352 level += i;
353 differ:
354 i = level * 8 + __ffs(seg_a ^ seg_b);
355 return i;
356 }
357
358 /*
359 * Free an object after stripping the keyring flag off of the pointer.
360 */
361 static void keyring_free_object(void *object)
362 {
363 key_put(keyring_ptr_to_key(object));
364 }
365
366 /*
367 * Operations for keyring management by the index-tree routines.
368 */
369 static const struct assoc_array_ops keyring_assoc_array_ops = {
370 .get_key_chunk = keyring_get_key_chunk,
371 .get_object_key_chunk = keyring_get_object_key_chunk,
372 .compare_object = keyring_compare_object,
373 .diff_objects = keyring_diff_objects,
374 .free_object = keyring_free_object,
375 };
376
377 /*
378 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
379 * and dispose of its data.
380 *
381 * The garbage collector detects the final key_put(), removes the keyring from
382 * the serial number tree and then does RCU synchronisation before coming here,
383 * so we shouldn't need to worry about code poking around here with the RCU
384 * readlock held by this time.
385 */
386 static void keyring_destroy(struct key *keyring)
387 {
388 if (keyring->description) {
389 write_lock(&keyring_name_lock);
390
391 if (keyring->name_link.next != NULL &&
392 !list_empty(&keyring->name_link))
393 list_del(&keyring->name_link);
394
395 write_unlock(&keyring_name_lock);
396 }
397
398 if (keyring->restrict_link) {
399 struct key_restriction *keyres = keyring->restrict_link;
400
401 key_put(keyres->key);
402 kfree(keyres);
403 }
404
405 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
406 }
407
408 /*
409 * Describe a keyring for /proc.
410 */
411 static void keyring_describe(const struct key *keyring, struct seq_file *m)
412 {
413 if (keyring->description)
414 seq_puts(m, keyring->description);
415 else
416 seq_puts(m, "[anon]");
417
418 if (key_is_positive(keyring)) {
419 if (keyring->keys.nr_leaves_on_tree != 0)
420 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
421 else
422 seq_puts(m, ": empty");
423 }
424 }
425
426 struct keyring_read_iterator_context {
427 size_t buflen;
428 size_t count;
429 key_serial_t __user *buffer;
430 };
431
432 static int keyring_read_iterator(const void *object, void *data)
433 {
434 struct keyring_read_iterator_context *ctx = data;
435 const struct key *key = keyring_ptr_to_key(object);
436 int ret;
437
438 kenter("{%s,%d},,{%zu/%zu}",
439 key->type->name, key->serial, ctx->count, ctx->buflen);
440
441 if (ctx->count >= ctx->buflen)
442 return 1;
443
444 ret = put_user(key->serial, ctx->buffer);
445 if (ret < 0)
446 return ret;
447 ctx->buffer++;
448 ctx->count += sizeof(key->serial);
449 return 0;
450 }
451
452 /*
453 * Read a list of key IDs from the keyring's contents in binary form
454 *
455 * The keyring's semaphore is read-locked by the caller. This prevents someone
456 * from modifying it under us - which could cause us to read key IDs multiple
457 * times.
458 */
459 static long keyring_read(const struct key *keyring,
460 char __user *buffer, size_t buflen)
461 {
462 struct keyring_read_iterator_context ctx;
463 long ret;
464
465 kenter("{%d},,%zu", key_serial(keyring), buflen);
466
467 if (buflen & (sizeof(key_serial_t) - 1))
468 return -EINVAL;
469
470 /* Copy as many key IDs as fit into the buffer */
471 if (buffer && buflen) {
472 ctx.buffer = (key_serial_t __user *)buffer;
473 ctx.buflen = buflen;
474 ctx.count = 0;
475 ret = assoc_array_iterate(&keyring->keys,
476 keyring_read_iterator, &ctx);
477 if (ret < 0) {
478 kleave(" = %ld [iterate]", ret);
479 return ret;
480 }
481 }
482
483 /* Return the size of the buffer needed */
484 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
485 if (ret <= buflen)
486 kleave("= %ld [ok]", ret);
487 else
488 kleave("= %ld [buffer too small]", ret);
489 return ret;
490 }
491
492 /*
493 * Allocate a keyring and link into the destination keyring.
494 */
495 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
496 const struct cred *cred, key_perm_t perm,
497 unsigned long flags,
498 struct key_restriction *restrict_link,
499 struct key *dest)
500 {
501 struct key *keyring;
502 int ret;
503
504 keyring = key_alloc(&key_type_keyring, description,
505 uid, gid, cred, perm, flags, restrict_link);
506 if (!IS_ERR(keyring)) {
507 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
508 if (ret < 0) {
509 key_put(keyring);
510 keyring = ERR_PTR(ret);
511 }
512 }
513
514 return keyring;
515 }
516 EXPORT_SYMBOL(keyring_alloc);
517
518 /**
519 * restrict_link_reject - Give -EPERM to restrict link
520 * @keyring: The keyring being added to.
521 * @type: The type of key being added.
522 * @payload: The payload of the key intended to be added.
523 * @data: Additional data for evaluating restriction.
524 *
525 * Reject the addition of any links to a keyring. It can be overridden by
526 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
527 * adding a key to a keyring.
528 *
529 * This is meant to be stored in a key_restriction structure which is passed
530 * in the restrict_link parameter to keyring_alloc().
531 */
532 int restrict_link_reject(struct key *keyring,
533 const struct key_type *type,
534 const union key_payload *payload,
535 struct key *restriction_key)
536 {
537 return -EPERM;
538 }
539
540 /*
541 * By default, we keys found by getting an exact match on their descriptions.
542 */
543 bool key_default_cmp(const struct key *key,
544 const struct key_match_data *match_data)
545 {
546 return strcmp(key->description, match_data->raw_data) == 0;
547 }
548
549 /*
550 * Iteration function to consider each key found.
551 */
552 static int keyring_search_iterator(const void *object, void *iterator_data)
553 {
554 struct keyring_search_context *ctx = iterator_data;
555 const struct key *key = keyring_ptr_to_key(object);
556 unsigned long kflags = READ_ONCE(key->flags);
557 short state = READ_ONCE(key->state);
558
559 kenter("{%d}", key->serial);
560
561 /* ignore keys not of this type */
562 if (key->type != ctx->index_key.type) {
563 kleave(" = 0 [!type]");
564 return 0;
565 }
566
567 /* skip invalidated, revoked and expired keys */
568 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
569 time64_t expiry = READ_ONCE(key->expiry);
570
571 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
572 (1 << KEY_FLAG_REVOKED))) {
573 ctx->result = ERR_PTR(-EKEYREVOKED);
574 kleave(" = %d [invrev]", ctx->skipped_ret);
575 goto skipped;
576 }
577
578 if (expiry && ctx->now >= expiry) {
579 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
580 ctx->result = ERR_PTR(-EKEYEXPIRED);
581 kleave(" = %d [expire]", ctx->skipped_ret);
582 goto skipped;
583 }
584 }
585
586 /* keys that don't match */
587 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
588 kleave(" = 0 [!match]");
589 return 0;
590 }
591
592 /* key must have search permissions */
593 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
594 key_task_permission(make_key_ref(key, ctx->possessed),
595 ctx->cred, KEY_NEED_SEARCH) < 0) {
596 ctx->result = ERR_PTR(-EACCES);
597 kleave(" = %d [!perm]", ctx->skipped_ret);
598 goto skipped;
599 }
600
601 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
602 /* we set a different error code if we pass a negative key */
603 if (state < 0) {
604 ctx->result = ERR_PTR(state);
605 kleave(" = %d [neg]", ctx->skipped_ret);
606 goto skipped;
607 }
608 }
609
610 /* Found */
611 ctx->result = make_key_ref(key, ctx->possessed);
612 kleave(" = 1 [found]");
613 return 1;
614
615 skipped:
616 return ctx->skipped_ret;
617 }
618
619 /*
620 * Search inside a keyring for a key. We can search by walking to it
621 * directly based on its index-key or we can iterate over the entire
622 * tree looking for it, based on the match function.
623 */
624 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
625 {
626 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
627 const void *object;
628
629 object = assoc_array_find(&keyring->keys,
630 &keyring_assoc_array_ops,
631 &ctx->index_key);
632 return object ? ctx->iterator(object, ctx) : 0;
633 }
634 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
635 }
636
637 /*
638 * Search a tree of keyrings that point to other keyrings up to the maximum
639 * depth.
640 */
641 static bool search_nested_keyrings(struct key *keyring,
642 struct keyring_search_context *ctx)
643 {
644 struct {
645 struct key *keyring;
646 struct assoc_array_node *node;
647 int slot;
648 } stack[KEYRING_SEARCH_MAX_DEPTH];
649
650 struct assoc_array_shortcut *shortcut;
651 struct assoc_array_node *node;
652 struct assoc_array_ptr *ptr;
653 struct key *key;
654 int sp = 0, slot;
655
656 kenter("{%d},{%s,%s}",
657 keyring->serial,
658 ctx->index_key.type->name,
659 ctx->index_key.description);
660
661 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
662 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
663 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
664
665 /* Check to see if this top-level keyring is what we are looking for
666 * and whether it is valid or not.
667 */
668 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
669 keyring_compare_object(keyring, &ctx->index_key)) {
670 ctx->skipped_ret = 2;
671 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
672 case 1:
673 goto found;
674 case 2:
675 return false;
676 default:
677 break;
678 }
679 }
680
681 ctx->skipped_ret = 0;
682
683 /* Start processing a new keyring */
684 descend_to_keyring:
685 kdebug("descend to %d", keyring->serial);
686 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
687 (1 << KEY_FLAG_REVOKED)))
688 goto not_this_keyring;
689
690 /* Search through the keys in this keyring before its searching its
691 * subtrees.
692 */
693 if (search_keyring(keyring, ctx))
694 goto found;
695
696 /* Then manually iterate through the keyrings nested in this one.
697 *
698 * Start from the root node of the index tree. Because of the way the
699 * hash function has been set up, keyrings cluster on the leftmost
700 * branch of the root node (root slot 0) or in the root node itself.
701 * Non-keyrings avoid the leftmost branch of the root entirely (root
702 * slots 1-15).
703 */
704 ptr = READ_ONCE(keyring->keys.root);
705 if (!ptr)
706 goto not_this_keyring;
707
708 if (assoc_array_ptr_is_shortcut(ptr)) {
709 /* If the root is a shortcut, either the keyring only contains
710 * keyring pointers (everything clusters behind root slot 0) or
711 * doesn't contain any keyring pointers.
712 */
713 shortcut = assoc_array_ptr_to_shortcut(ptr);
714 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
715 goto not_this_keyring;
716
717 ptr = READ_ONCE(shortcut->next_node);
718 node = assoc_array_ptr_to_node(ptr);
719 goto begin_node;
720 }
721
722 node = assoc_array_ptr_to_node(ptr);
723 ptr = node->slots[0];
724 if (!assoc_array_ptr_is_meta(ptr))
725 goto begin_node;
726
727 descend_to_node:
728 /* Descend to a more distal node in this keyring's content tree and go
729 * through that.
730 */
731 kdebug("descend");
732 if (assoc_array_ptr_is_shortcut(ptr)) {
733 shortcut = assoc_array_ptr_to_shortcut(ptr);
734 ptr = READ_ONCE(shortcut->next_node);
735 BUG_ON(!assoc_array_ptr_is_node(ptr));
736 }
737 node = assoc_array_ptr_to_node(ptr);
738
739 begin_node:
740 kdebug("begin_node");
741 slot = 0;
742 ascend_to_node:
743 /* Go through the slots in a node */
744 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
745 ptr = READ_ONCE(node->slots[slot]);
746
747 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
748 goto descend_to_node;
749
750 if (!keyring_ptr_is_keyring(ptr))
751 continue;
752
753 key = keyring_ptr_to_key(ptr);
754
755 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
756 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
757 ctx->result = ERR_PTR(-ELOOP);
758 return false;
759 }
760 goto not_this_keyring;
761 }
762
763 /* Search a nested keyring */
764 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
765 key_task_permission(make_key_ref(key, ctx->possessed),
766 ctx->cred, KEY_NEED_SEARCH) < 0)
767 continue;
768
769 /* stack the current position */
770 stack[sp].keyring = keyring;
771 stack[sp].node = node;
772 stack[sp].slot = slot;
773 sp++;
774
775 /* begin again with the new keyring */
776 keyring = key;
777 goto descend_to_keyring;
778 }
779
780 /* We've dealt with all the slots in the current node, so now we need
781 * to ascend to the parent and continue processing there.
782 */
783 ptr = READ_ONCE(node->back_pointer);
784 slot = node->parent_slot;
785
786 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
787 shortcut = assoc_array_ptr_to_shortcut(ptr);
788 ptr = READ_ONCE(shortcut->back_pointer);
789 slot = shortcut->parent_slot;
790 }
791 if (!ptr)
792 goto not_this_keyring;
793 node = assoc_array_ptr_to_node(ptr);
794 slot++;
795
796 /* If we've ascended to the root (zero backpointer), we must have just
797 * finished processing the leftmost branch rather than the root slots -
798 * so there can't be any more keyrings for us to find.
799 */
800 if (node->back_pointer) {
801 kdebug("ascend %d", slot);
802 goto ascend_to_node;
803 }
804
805 /* The keyring we're looking at was disqualified or didn't contain a
806 * matching key.
807 */
808 not_this_keyring:
809 kdebug("not_this_keyring %d", sp);
810 if (sp <= 0) {
811 kleave(" = false");
812 return false;
813 }
814
815 /* Resume the processing of a keyring higher up in the tree */
816 sp--;
817 keyring = stack[sp].keyring;
818 node = stack[sp].node;
819 slot = stack[sp].slot + 1;
820 kdebug("ascend to %d [%d]", keyring->serial, slot);
821 goto ascend_to_node;
822
823 /* We found a viable match */
824 found:
825 key = key_ref_to_ptr(ctx->result);
826 key_check(key);
827 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
828 key->last_used_at = ctx->now;
829 keyring->last_used_at = ctx->now;
830 while (sp > 0)
831 stack[--sp].keyring->last_used_at = ctx->now;
832 }
833 kleave(" = true");
834 return true;
835 }
836
837 /**
838 * keyring_search_aux - Search a keyring tree for a key matching some criteria
839 * @keyring_ref: A pointer to the keyring with possession indicator.
840 * @ctx: The keyring search context.
841 *
842 * Search the supplied keyring tree for a key that matches the criteria given.
843 * The root keyring and any linked keyrings must grant Search permission to the
844 * caller to be searchable and keys can only be found if they too grant Search
845 * to the caller. The possession flag on the root keyring pointer controls use
846 * of the possessor bits in permissions checking of the entire tree. In
847 * addition, the LSM gets to forbid keyring searches and key matches.
848 *
849 * The search is performed as a breadth-then-depth search up to the prescribed
850 * limit (KEYRING_SEARCH_MAX_DEPTH).
851 *
852 * Keys are matched to the type provided and are then filtered by the match
853 * function, which is given the description to use in any way it sees fit. The
854 * match function may use any attributes of a key that it wishes to to
855 * determine the match. Normally the match function from the key type would be
856 * used.
857 *
858 * RCU can be used to prevent the keyring key lists from disappearing without
859 * the need to take lots of locks.
860 *
861 * Returns a pointer to the found key and increments the key usage count if
862 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
863 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
864 * specified keyring wasn't a keyring.
865 *
866 * In the case of a successful return, the possession attribute from
867 * @keyring_ref is propagated to the returned key reference.
868 */
869 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
870 struct keyring_search_context *ctx)
871 {
872 struct key *keyring;
873 long err;
874
875 ctx->iterator = keyring_search_iterator;
876 ctx->possessed = is_key_possessed(keyring_ref);
877 ctx->result = ERR_PTR(-EAGAIN);
878
879 keyring = key_ref_to_ptr(keyring_ref);
880 key_check(keyring);
881
882 if (keyring->type != &key_type_keyring)
883 return ERR_PTR(-ENOTDIR);
884
885 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
886 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
887 if (err < 0)
888 return ERR_PTR(err);
889 }
890
891 rcu_read_lock();
892 ctx->now = ktime_get_real_seconds();
893 if (search_nested_keyrings(keyring, ctx))
894 __key_get(key_ref_to_ptr(ctx->result));
895 rcu_read_unlock();
896 return ctx->result;
897 }
898
899 /**
900 * keyring_search - Search the supplied keyring tree for a matching key
901 * @keyring: The root of the keyring tree to be searched.
902 * @type: The type of keyring we want to find.
903 * @description: The name of the keyring we want to find.
904 *
905 * As keyring_search_aux() above, but using the current task's credentials and
906 * type's default matching function and preferred search method.
907 */
908 key_ref_t keyring_search(key_ref_t keyring,
909 struct key_type *type,
910 const char *description)
911 {
912 struct keyring_search_context ctx = {
913 .index_key.type = type,
914 .index_key.description = description,
915 .index_key.desc_len = strlen(description),
916 .cred = current_cred(),
917 .match_data.cmp = key_default_cmp,
918 .match_data.raw_data = description,
919 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
920 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
921 };
922 key_ref_t key;
923 int ret;
924
925 if (type->match_preparse) {
926 ret = type->match_preparse(&ctx.match_data);
927 if (ret < 0)
928 return ERR_PTR(ret);
929 }
930
931 key = keyring_search_aux(keyring, &ctx);
932
933 if (type->match_free)
934 type->match_free(&ctx.match_data);
935 return key;
936 }
937 EXPORT_SYMBOL(keyring_search);
938
939 static struct key_restriction *keyring_restriction_alloc(
940 key_restrict_link_func_t check)
941 {
942 struct key_restriction *keyres =
943 kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
944
945 if (!keyres)
946 return ERR_PTR(-ENOMEM);
947
948 keyres->check = check;
949
950 return keyres;
951 }
952
953 /*
954 * Semaphore to serialise restriction setup to prevent reference count
955 * cycles through restriction key pointers.
956 */
957 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
958
959 /*
960 * Check for restriction cycles that would prevent keyring garbage collection.
961 * keyring_serialise_restrict_sem must be held.
962 */
963 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
964 struct key_restriction *keyres)
965 {
966 while (keyres && keyres->key &&
967 keyres->key->type == &key_type_keyring) {
968 if (keyres->key == dest_keyring)
969 return true;
970
971 keyres = keyres->key->restrict_link;
972 }
973
974 return false;
975 }
976
977 /**
978 * keyring_restrict - Look up and apply a restriction to a keyring
979 *
980 * @keyring: The keyring to be restricted
981 * @restriction: The restriction options to apply to the keyring
982 */
983 int keyring_restrict(key_ref_t keyring_ref, const char *type,
984 const char *restriction)
985 {
986 struct key *keyring;
987 struct key_type *restrict_type = NULL;
988 struct key_restriction *restrict_link;
989 int ret = 0;
990
991 keyring = key_ref_to_ptr(keyring_ref);
992 key_check(keyring);
993
994 if (keyring->type != &key_type_keyring)
995 return -ENOTDIR;
996
997 if (!type) {
998 restrict_link = keyring_restriction_alloc(restrict_link_reject);
999 } else {
1000 restrict_type = key_type_lookup(type);
1001
1002 if (IS_ERR(restrict_type))
1003 return PTR_ERR(restrict_type);
1004
1005 if (!restrict_type->lookup_restriction) {
1006 ret = -ENOENT;
1007 goto error;
1008 }
1009
1010 restrict_link = restrict_type->lookup_restriction(restriction);
1011 }
1012
1013 if (IS_ERR(restrict_link)) {
1014 ret = PTR_ERR(restrict_link);
1015 goto error;
1016 }
1017
1018 down_write(&keyring->sem);
1019 down_write(&keyring_serialise_restrict_sem);
1020
1021 if (keyring->restrict_link)
1022 ret = -EEXIST;
1023 else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1024 ret = -EDEADLK;
1025 else
1026 keyring->restrict_link = restrict_link;
1027
1028 up_write(&keyring_serialise_restrict_sem);
1029 up_write(&keyring->sem);
1030
1031 if (ret < 0) {
1032 key_put(restrict_link->key);
1033 kfree(restrict_link);
1034 }
1035
1036 error:
1037 if (restrict_type)
1038 key_type_put(restrict_type);
1039
1040 return ret;
1041 }
1042 EXPORT_SYMBOL(keyring_restrict);
1043
1044 /*
1045 * Search the given keyring for a key that might be updated.
1046 *
1047 * The caller must guarantee that the keyring is a keyring and that the
1048 * permission is granted to modify the keyring as no check is made here. The
1049 * caller must also hold a lock on the keyring semaphore.
1050 *
1051 * Returns a pointer to the found key with usage count incremented if
1052 * successful and returns NULL if not found. Revoked and invalidated keys are
1053 * skipped over.
1054 *
1055 * If successful, the possession indicator is propagated from the keyring ref
1056 * to the returned key reference.
1057 */
1058 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1059 const struct keyring_index_key *index_key)
1060 {
1061 struct key *keyring, *key;
1062 const void *object;
1063
1064 keyring = key_ref_to_ptr(keyring_ref);
1065
1066 kenter("{%d},{%s,%s}",
1067 keyring->serial, index_key->type->name, index_key->description);
1068
1069 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1070 index_key);
1071
1072 if (object)
1073 goto found;
1074
1075 kleave(" = NULL");
1076 return NULL;
1077
1078 found:
1079 key = keyring_ptr_to_key(object);
1080 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1081 (1 << KEY_FLAG_REVOKED))) {
1082 kleave(" = NULL [x]");
1083 return NULL;
1084 }
1085 __key_get(key);
1086 kleave(" = {%d}", key->serial);
1087 return make_key_ref(key, is_key_possessed(keyring_ref));
1088 }
1089
1090 /*
1091 * Find a keyring with the specified name.
1092 *
1093 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1094 * user in the current user namespace are considered. If @uid_keyring is %true,
1095 * the keyring additionally must have been allocated as a user or user session
1096 * keyring; otherwise, it must grant Search permission directly to the caller.
1097 *
1098 * Returns a pointer to the keyring with the keyring's refcount having being
1099 * incremented on success. -ENOKEY is returned if a key could not be found.
1100 */
1101 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1102 {
1103 struct key *keyring;
1104 int bucket;
1105
1106 if (!name)
1107 return ERR_PTR(-EINVAL);
1108
1109 bucket = keyring_hash(name);
1110
1111 read_lock(&keyring_name_lock);
1112
1113 if (keyring_name_hash[bucket].next) {
1114 /* search this hash bucket for a keyring with a matching name
1115 * that's readable and that hasn't been revoked */
1116 list_for_each_entry(keyring,
1117 &keyring_name_hash[bucket],
1118 name_link
1119 ) {
1120 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1121 continue;
1122
1123 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1124 continue;
1125
1126 if (strcmp(keyring->description, name) != 0)
1127 continue;
1128
1129 if (uid_keyring) {
1130 if (!test_bit(KEY_FLAG_UID_KEYRING,
1131 &keyring->flags))
1132 continue;
1133 } else {
1134 if (key_permission(make_key_ref(keyring, 0),
1135 KEY_NEED_SEARCH) < 0)
1136 continue;
1137 }
1138
1139 /* we've got a match but we might end up racing with
1140 * key_cleanup() if the keyring is currently 'dead'
1141 * (ie. it has a zero usage count) */
1142 if (!refcount_inc_not_zero(&keyring->usage))
1143 continue;
1144 keyring->last_used_at = ktime_get_real_seconds();
1145 goto out;
1146 }
1147 }
1148
1149 keyring = ERR_PTR(-ENOKEY);
1150 out:
1151 read_unlock(&keyring_name_lock);
1152 return keyring;
1153 }
1154
1155 static int keyring_detect_cycle_iterator(const void *object,
1156 void *iterator_data)
1157 {
1158 struct keyring_search_context *ctx = iterator_data;
1159 const struct key *key = keyring_ptr_to_key(object);
1160
1161 kenter("{%d}", key->serial);
1162
1163 /* We might get a keyring with matching index-key that is nonetheless a
1164 * different keyring. */
1165 if (key != ctx->match_data.raw_data)
1166 return 0;
1167
1168 ctx->result = ERR_PTR(-EDEADLK);
1169 return 1;
1170 }
1171
1172 /*
1173 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1174 * tree A at the topmost level (ie: as a direct child of A).
1175 *
1176 * Since we are adding B to A at the top level, checking for cycles should just
1177 * be a matter of seeing if node A is somewhere in tree B.
1178 */
1179 static int keyring_detect_cycle(struct key *A, struct key *B)
1180 {
1181 struct keyring_search_context ctx = {
1182 .index_key = A->index_key,
1183 .match_data.raw_data = A,
1184 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1185 .iterator = keyring_detect_cycle_iterator,
1186 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1187 KEYRING_SEARCH_NO_UPDATE_TIME |
1188 KEYRING_SEARCH_NO_CHECK_PERM |
1189 KEYRING_SEARCH_DETECT_TOO_DEEP),
1190 };
1191
1192 rcu_read_lock();
1193 search_nested_keyrings(B, &ctx);
1194 rcu_read_unlock();
1195 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1196 }
1197
1198 /*
1199 * Preallocate memory so that a key can be linked into to a keyring.
1200 */
1201 int __key_link_begin(struct key *keyring,
1202 const struct keyring_index_key *index_key,
1203 struct assoc_array_edit **_edit)
1204 __acquires(&keyring->sem)
1205 __acquires(&keyring_serialise_link_sem)
1206 {
1207 struct assoc_array_edit *edit;
1208 int ret;
1209
1210 kenter("%d,%s,%s,",
1211 keyring->serial, index_key->type->name, index_key->description);
1212
1213 BUG_ON(index_key->desc_len == 0);
1214
1215 if (keyring->type != &key_type_keyring)
1216 return -ENOTDIR;
1217
1218 down_write(&keyring->sem);
1219
1220 ret = -EKEYREVOKED;
1221 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1222 goto error_krsem;
1223
1224 /* serialise link/link calls to prevent parallel calls causing a cycle
1225 * when linking two keyring in opposite orders */
1226 if (index_key->type == &key_type_keyring)
1227 down_write(&keyring_serialise_link_sem);
1228
1229 /* Create an edit script that will insert/replace the key in the
1230 * keyring tree.
1231 */
1232 edit = assoc_array_insert(&keyring->keys,
1233 &keyring_assoc_array_ops,
1234 index_key,
1235 NULL);
1236 if (IS_ERR(edit)) {
1237 ret = PTR_ERR(edit);
1238 goto error_sem;
1239 }
1240
1241 /* If we're not replacing a link in-place then we're going to need some
1242 * extra quota.
1243 */
1244 if (!edit->dead_leaf) {
1245 ret = key_payload_reserve(keyring,
1246 keyring->datalen + KEYQUOTA_LINK_BYTES);
1247 if (ret < 0)
1248 goto error_cancel;
1249 }
1250
1251 *_edit = edit;
1252 kleave(" = 0");
1253 return 0;
1254
1255 error_cancel:
1256 assoc_array_cancel_edit(edit);
1257 error_sem:
1258 if (index_key->type == &key_type_keyring)
1259 up_write(&keyring_serialise_link_sem);
1260 error_krsem:
1261 up_write(&keyring->sem);
1262 kleave(" = %d", ret);
1263 return ret;
1264 }
1265
1266 /*
1267 * Check already instantiated keys aren't going to be a problem.
1268 *
1269 * The caller must have called __key_link_begin(). Don't need to call this for
1270 * keys that were created since __key_link_begin() was called.
1271 */
1272 int __key_link_check_live_key(struct key *keyring, struct key *key)
1273 {
1274 if (key->type == &key_type_keyring)
1275 /* check that we aren't going to create a cycle by linking one
1276 * keyring to another */
1277 return keyring_detect_cycle(keyring, key);
1278 return 0;
1279 }
1280
1281 /*
1282 * Link a key into to a keyring.
1283 *
1284 * Must be called with __key_link_begin() having being called. Discards any
1285 * already extant link to matching key if there is one, so that each keyring
1286 * holds at most one link to any given key of a particular type+description
1287 * combination.
1288 */
1289 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1290 {
1291 __key_get(key);
1292 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1293 assoc_array_apply_edit(*_edit);
1294 *_edit = NULL;
1295 }
1296
1297 /*
1298 * Finish linking a key into to a keyring.
1299 *
1300 * Must be called with __key_link_begin() having being called.
1301 */
1302 void __key_link_end(struct key *keyring,
1303 const struct keyring_index_key *index_key,
1304 struct assoc_array_edit *edit)
1305 __releases(&keyring->sem)
1306 __releases(&keyring_serialise_link_sem)
1307 {
1308 BUG_ON(index_key->type == NULL);
1309 kenter("%d,%s,", keyring->serial, index_key->type->name);
1310
1311 if (index_key->type == &key_type_keyring)
1312 up_write(&keyring_serialise_link_sem);
1313
1314 if (edit) {
1315 if (!edit->dead_leaf) {
1316 key_payload_reserve(keyring,
1317 keyring->datalen - KEYQUOTA_LINK_BYTES);
1318 }
1319 assoc_array_cancel_edit(edit);
1320 }
1321 up_write(&keyring->sem);
1322 }
1323
1324 /*
1325 * Check addition of keys to restricted keyrings.
1326 */
1327 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1328 {
1329 if (!keyring->restrict_link || !keyring->restrict_link->check)
1330 return 0;
1331 return keyring->restrict_link->check(keyring, key->type, &key->payload,
1332 keyring->restrict_link->key);
1333 }
1334
1335 /**
1336 * key_link - Link a key to a keyring
1337 * @keyring: The keyring to make the link in.
1338 * @key: The key to link to.
1339 *
1340 * Make a link in a keyring to a key, such that the keyring holds a reference
1341 * on that key and the key can potentially be found by searching that keyring.
1342 *
1343 * This function will write-lock the keyring's semaphore and will consume some
1344 * of the user's key data quota to hold the link.
1345 *
1346 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1347 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1348 * full, -EDQUOT if there is insufficient key data quota remaining to add
1349 * another link or -ENOMEM if there's insufficient memory.
1350 *
1351 * It is assumed that the caller has checked that it is permitted for a link to
1352 * be made (the keyring should have Write permission and the key Link
1353 * permission).
1354 */
1355 int key_link(struct key *keyring, struct key *key)
1356 {
1357 struct assoc_array_edit *edit;
1358 int ret;
1359
1360 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1361
1362 key_check(keyring);
1363 key_check(key);
1364
1365 ret = __key_link_begin(keyring, &key->index_key, &edit);
1366 if (ret == 0) {
1367 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1368 ret = __key_link_check_restriction(keyring, key);
1369 if (ret == 0)
1370 ret = __key_link_check_live_key(keyring, key);
1371 if (ret == 0)
1372 __key_link(key, &edit);
1373 __key_link_end(keyring, &key->index_key, edit);
1374 }
1375
1376 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1377 return ret;
1378 }
1379 EXPORT_SYMBOL(key_link);
1380
1381 /**
1382 * key_unlink - Unlink the first link to a key from a keyring.
1383 * @keyring: The keyring to remove the link from.
1384 * @key: The key the link is to.
1385 *
1386 * Remove a link from a keyring to a key.
1387 *
1388 * This function will write-lock the keyring's semaphore.
1389 *
1390 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1391 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1392 * memory.
1393 *
1394 * It is assumed that the caller has checked that it is permitted for a link to
1395 * be removed (the keyring should have Write permission; no permissions are
1396 * required on the key).
1397 */
1398 int key_unlink(struct key *keyring, struct key *key)
1399 {
1400 struct assoc_array_edit *edit;
1401 int ret;
1402
1403 key_check(keyring);
1404 key_check(key);
1405
1406 if (keyring->type != &key_type_keyring)
1407 return -ENOTDIR;
1408
1409 down_write(&keyring->sem);
1410
1411 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1412 &key->index_key);
1413 if (IS_ERR(edit)) {
1414 ret = PTR_ERR(edit);
1415 goto error;
1416 }
1417 ret = -ENOENT;
1418 if (edit == NULL)
1419 goto error;
1420
1421 assoc_array_apply_edit(edit);
1422 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1423 ret = 0;
1424
1425 error:
1426 up_write(&keyring->sem);
1427 return ret;
1428 }
1429 EXPORT_SYMBOL(key_unlink);
1430
1431 /**
1432 * keyring_clear - Clear a keyring
1433 * @keyring: The keyring to clear.
1434 *
1435 * Clear the contents of the specified keyring.
1436 *
1437 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1438 */
1439 int keyring_clear(struct key *keyring)
1440 {
1441 struct assoc_array_edit *edit;
1442 int ret;
1443
1444 if (keyring->type != &key_type_keyring)
1445 return -ENOTDIR;
1446
1447 down_write(&keyring->sem);
1448
1449 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1450 if (IS_ERR(edit)) {
1451 ret = PTR_ERR(edit);
1452 } else {
1453 if (edit)
1454 assoc_array_apply_edit(edit);
1455 key_payload_reserve(keyring, 0);
1456 ret = 0;
1457 }
1458
1459 up_write(&keyring->sem);
1460 return ret;
1461 }
1462 EXPORT_SYMBOL(keyring_clear);
1463
1464 /*
1465 * Dispose of the links from a revoked keyring.
1466 *
1467 * This is called with the key sem write-locked.
1468 */
1469 static void keyring_revoke(struct key *keyring)
1470 {
1471 struct assoc_array_edit *edit;
1472
1473 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1474 if (!IS_ERR(edit)) {
1475 if (edit)
1476 assoc_array_apply_edit(edit);
1477 key_payload_reserve(keyring, 0);
1478 }
1479 }
1480
1481 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1482 {
1483 struct key *key = keyring_ptr_to_key(object);
1484 time64_t *limit = iterator_data;
1485
1486 if (key_is_dead(key, *limit))
1487 return false;
1488 key_get(key);
1489 return true;
1490 }
1491
1492 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1493 {
1494 const struct key *key = keyring_ptr_to_key(object);
1495 time64_t *limit = iterator_data;
1496
1497 key_check(key);
1498 return key_is_dead(key, *limit);
1499 }
1500
1501 /*
1502 * Garbage collect pointers from a keyring.
1503 *
1504 * Not called with any locks held. The keyring's key struct will not be
1505 * deallocated under us as only our caller may deallocate it.
1506 */
1507 void keyring_gc(struct key *keyring, time64_t limit)
1508 {
1509 int result;
1510
1511 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1512
1513 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1514 (1 << KEY_FLAG_REVOKED)))
1515 goto dont_gc;
1516
1517 /* scan the keyring looking for dead keys */
1518 rcu_read_lock();
1519 result = assoc_array_iterate(&keyring->keys,
1520 keyring_gc_check_iterator, &limit);
1521 rcu_read_unlock();
1522 if (result == true)
1523 goto do_gc;
1524
1525 dont_gc:
1526 kleave(" [no gc]");
1527 return;
1528
1529 do_gc:
1530 down_write(&keyring->sem);
1531 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1532 keyring_gc_select_iterator, &limit);
1533 up_write(&keyring->sem);
1534 kleave(" [gc]");
1535 }
1536
1537 /*
1538 * Garbage collect restriction pointers from a keyring.
1539 *
1540 * Keyring restrictions are associated with a key type, and must be cleaned
1541 * up if the key type is unregistered. The restriction is altered to always
1542 * reject additional keys so a keyring cannot be opened up by unregistering
1543 * a key type.
1544 *
1545 * Not called with any keyring locks held. The keyring's key struct will not
1546 * be deallocated under us as only our caller may deallocate it.
1547 *
1548 * The caller is required to hold key_types_sem and dead_type->sem. This is
1549 * fulfilled by key_gc_keytype() holding the locks on behalf of
1550 * key_garbage_collector(), which it invokes on a workqueue.
1551 */
1552 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1553 {
1554 struct key_restriction *keyres;
1555
1556 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1557
1558 /*
1559 * keyring->restrict_link is only assigned at key allocation time
1560 * or with the key type locked, so the only values that could be
1561 * concurrently assigned to keyring->restrict_link are for key
1562 * types other than dead_type. Given this, it's ok to check
1563 * the key type before acquiring keyring->sem.
1564 */
1565 if (!dead_type || !keyring->restrict_link ||
1566 keyring->restrict_link->keytype != dead_type) {
1567 kleave(" [no restriction gc]");
1568 return;
1569 }
1570
1571 /* Lock the keyring to ensure that a link is not in progress */
1572 down_write(&keyring->sem);
1573
1574 keyres = keyring->restrict_link;
1575
1576 keyres->check = restrict_link_reject;
1577
1578 key_put(keyres->key);
1579 keyres->key = NULL;
1580 keyres->keytype = NULL;
1581
1582 up_write(&keyring->sem);
1583
1584 kleave(" [restriction gc]");
1585 }