]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - security/keys/keyring.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-artful-kernel.git] / security / keys / keyring.c
1 /* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24
25 /*
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
28 */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30
31 /*
32 * We keep all named keyrings in a hash to speed looking them up.
33 */
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
35
36 /*
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
39 */
40 #define KEYRING_PTR_SUBTYPE 0x2UL
41
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
56 }
57
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 unsigned bucket = 0;
64
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
67
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70
71 /*
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
75 */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 char __user *buffer, size_t buflen);
85
86 struct key_type key_type_keyring = {
87 .name = "keyring",
88 .def_datalen = 0,
89 .preparse = keyring_preparse,
90 .free_preparse = keyring_free_preparse,
91 .instantiate = keyring_instantiate,
92 .revoke = keyring_revoke,
93 .destroy = keyring_destroy,
94 .describe = keyring_describe,
95 .read = keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98
99 /*
100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
101 * introducing a cycle.
102 */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104
105 /*
106 * Publish the name of a keyring so that it can be found by name (if it has
107 * one).
108 */
109 static void keyring_publish_name(struct key *keyring)
110 {
111 int bucket;
112
113 if (keyring->description) {
114 bucket = keyring_hash(keyring->description);
115
116 write_lock(&keyring_name_lock);
117
118 if (!keyring_name_hash[bucket].next)
119 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120
121 list_add_tail(&keyring->name_link,
122 &keyring_name_hash[bucket]);
123
124 write_unlock(&keyring_name_lock);
125 }
126 }
127
128 /*
129 * Preparse a keyring payload
130 */
131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 return prep->datalen != 0 ? -EINVAL : 0;
134 }
135
136 /*
137 * Free a preparse of a user defined key payload
138 */
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142
143 /*
144 * Initialise a keyring.
145 *
146 * Returns 0 on success, -EINVAL if given any data.
147 */
148 static int keyring_instantiate(struct key *keyring,
149 struct key_preparsed_payload *prep)
150 {
151 assoc_array_init(&keyring->keys);
152 /* make the keyring available by name if it has one */
153 keyring_publish_name(keyring);
154 return 0;
155 }
156
157 /*
158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
159 * fold the carry back too, but that requires inline asm.
160 */
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 u64 hi = (u64)(u32)(x >> 32) * y;
164 u64 lo = (u64)(u32)(x) * y;
165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167
168 /*
169 * Hash a key type and description.
170 */
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 const char *description = index_key->description;
176 unsigned long hash, type;
177 u32 piece;
178 u64 acc;
179 int n, desc_len = index_key->desc_len;
180
181 type = (unsigned long)index_key->type;
182
183 acc = mult_64x32_and_fold(type, desc_len + 13);
184 acc = mult_64x32_and_fold(acc, 9207);
185 for (;;) {
186 n = desc_len;
187 if (n <= 0)
188 break;
189 if (n > 4)
190 n = 4;
191 piece = 0;
192 memcpy(&piece, description, n);
193 description += n;
194 desc_len -= n;
195 acc = mult_64x32_and_fold(acc, piece);
196 acc = mult_64x32_and_fold(acc, 9207);
197 }
198
199 /* Fold the hash down to 32 bits if need be. */
200 hash = acc;
201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 hash ^= acc >> 32;
203
204 /* Squidge all the keyrings into a separate part of the tree to
205 * ordinary keys by making sure the lowest level segment in the hash is
206 * zero for keyrings and non-zero otherwise.
207 */
208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 return (hash + (hash << level_shift)) & ~fan_mask;
212 return hash;
213 }
214
215 /*
216 * Build the next index key chunk.
217 *
218 * On 32-bit systems the index key is laid out as:
219 *
220 * 0 4 5 9...
221 * hash desclen typeptr desc[]
222 *
223 * On 64-bit systems:
224 *
225 * 0 8 9 17...
226 * hash desclen typeptr desc[]
227 *
228 * We return it one word-sized chunk at a time.
229 */
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 const struct keyring_index_key *index_key = data;
233 unsigned long chunk = 0;
234 long offset = 0;
235 int desc_len = index_key->desc_len, n = sizeof(chunk);
236
237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 switch (level) {
239 case 0:
240 return hash_key_type_and_desc(index_key);
241 case 1:
242 return ((unsigned long)index_key->type << 8) | desc_len;
243 case 2:
244 if (desc_len == 0)
245 return (u8)((unsigned long)index_key->type >>
246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 n--;
248 offset = 1;
249 default:
250 offset += sizeof(chunk) - 1;
251 offset += (level - 3) * sizeof(chunk);
252 if (offset >= desc_len)
253 return 0;
254 desc_len -= offset;
255 if (desc_len > n)
256 desc_len = n;
257 offset += desc_len;
258 do {
259 chunk <<= 8;
260 chunk |= ((u8*)index_key->description)[--offset];
261 } while (--desc_len > 0);
262
263 if (level == 2) {
264 chunk <<= 8;
265 chunk |= (u8)((unsigned long)index_key->type >>
266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 }
268 return chunk;
269 }
270 }
271
272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 const struct key *key = keyring_ptr_to_key(object);
275 return keyring_get_key_chunk(&key->index_key, level);
276 }
277
278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 const struct keyring_index_key *index_key = data;
281 const struct key *key = keyring_ptr_to_key(object);
282
283 return key->index_key.type == index_key->type &&
284 key->index_key.desc_len == index_key->desc_len &&
285 memcmp(key->index_key.description, index_key->description,
286 index_key->desc_len) == 0;
287 }
288
289 /*
290 * Compare the index keys of a pair of objects and determine the bit position
291 * at which they differ - if they differ.
292 */
293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 const struct key *key_a = keyring_ptr_to_key(object);
296 const struct keyring_index_key *a = &key_a->index_key;
297 const struct keyring_index_key *b = data;
298 unsigned long seg_a, seg_b;
299 int level, i;
300
301 level = 0;
302 seg_a = hash_key_type_and_desc(a);
303 seg_b = hash_key_type_and_desc(b);
304 if ((seg_a ^ seg_b) != 0)
305 goto differ;
306
307 /* The number of bits contributed by the hash is controlled by a
308 * constant in the assoc_array headers. Everything else thereafter we
309 * can deal with as being machine word-size dependent.
310 */
311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 seg_a = a->desc_len;
313 seg_b = b->desc_len;
314 if ((seg_a ^ seg_b) != 0)
315 goto differ;
316
317 /* The next bit may not work on big endian */
318 level++;
319 seg_a = (unsigned long)a->type;
320 seg_b = (unsigned long)b->type;
321 if ((seg_a ^ seg_b) != 0)
322 goto differ;
323
324 level += sizeof(unsigned long);
325 if (a->desc_len == 0)
326 goto same;
327
328 i = 0;
329 if (((unsigned long)a->description | (unsigned long)b->description) &
330 (sizeof(unsigned long) - 1)) {
331 do {
332 seg_a = *(unsigned long *)(a->description + i);
333 seg_b = *(unsigned long *)(b->description + i);
334 if ((seg_a ^ seg_b) != 0)
335 goto differ_plus_i;
336 i += sizeof(unsigned long);
337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 }
339
340 for (; i < a->desc_len; i++) {
341 seg_a = *(unsigned char *)(a->description + i);
342 seg_b = *(unsigned char *)(b->description + i);
343 if ((seg_a ^ seg_b) != 0)
344 goto differ_plus_i;
345 }
346
347 same:
348 return -1;
349
350 differ_plus_i:
351 level += i;
352 differ:
353 i = level * 8 + __ffs(seg_a ^ seg_b);
354 return i;
355 }
356
357 /*
358 * Free an object after stripping the keyring flag off of the pointer.
359 */
360 static void keyring_free_object(void *object)
361 {
362 key_put(keyring_ptr_to_key(object));
363 }
364
365 /*
366 * Operations for keyring management by the index-tree routines.
367 */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 .get_key_chunk = keyring_get_key_chunk,
370 .get_object_key_chunk = keyring_get_object_key_chunk,
371 .compare_object = keyring_compare_object,
372 .diff_objects = keyring_diff_objects,
373 .free_object = keyring_free_object,
374 };
375
376 /*
377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
378 * and dispose of its data.
379 *
380 * The garbage collector detects the final key_put(), removes the keyring from
381 * the serial number tree and then does RCU synchronisation before coming here,
382 * so we shouldn't need to worry about code poking around here with the RCU
383 * readlock held by this time.
384 */
385 static void keyring_destroy(struct key *keyring)
386 {
387 if (keyring->description) {
388 write_lock(&keyring_name_lock);
389
390 if (keyring->name_link.next != NULL &&
391 !list_empty(&keyring->name_link))
392 list_del(&keyring->name_link);
393
394 write_unlock(&keyring_name_lock);
395 }
396
397 if (keyring->restrict_link) {
398 struct key_restriction *keyres = keyring->restrict_link;
399
400 key_put(keyres->key);
401 kfree(keyres);
402 }
403
404 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
405 }
406
407 /*
408 * Describe a keyring for /proc.
409 */
410 static void keyring_describe(const struct key *keyring, struct seq_file *m)
411 {
412 if (keyring->description)
413 seq_puts(m, keyring->description);
414 else
415 seq_puts(m, "[anon]");
416
417 if (key_is_instantiated(keyring)) {
418 if (keyring->keys.nr_leaves_on_tree != 0)
419 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
420 else
421 seq_puts(m, ": empty");
422 }
423 }
424
425 struct keyring_read_iterator_context {
426 size_t qty;
427 size_t count;
428 key_serial_t __user *buffer;
429 };
430
431 static int keyring_read_iterator(const void *object, void *data)
432 {
433 struct keyring_read_iterator_context *ctx = data;
434 const struct key *key = keyring_ptr_to_key(object);
435 int ret;
436
437 kenter("{%s,%d},,{%zu/%zu}",
438 key->type->name, key->serial, ctx->count, ctx->qty);
439
440 if (ctx->count >= ctx->qty)
441 return 1;
442
443 ret = put_user(key->serial, ctx->buffer);
444 if (ret < 0)
445 return ret;
446 ctx->buffer++;
447 ctx->count += sizeof(key->serial);
448 return 0;
449 }
450
451 /*
452 * Read a list of key IDs from the keyring's contents in binary form
453 *
454 * The keyring's semaphore is read-locked by the caller. This prevents someone
455 * from modifying it under us - which could cause us to read key IDs multiple
456 * times.
457 */
458 static long keyring_read(const struct key *keyring,
459 char __user *buffer, size_t buflen)
460 {
461 struct keyring_read_iterator_context ctx;
462 unsigned long nr_keys;
463 int ret;
464
465 kenter("{%d},,%zu", key_serial(keyring), buflen);
466
467 if (buflen & (sizeof(key_serial_t) - 1))
468 return -EINVAL;
469
470 nr_keys = keyring->keys.nr_leaves_on_tree;
471 if (nr_keys == 0)
472 return 0;
473
474 /* Calculate how much data we could return */
475 ctx.qty = nr_keys * sizeof(key_serial_t);
476
477 if (!buffer || !buflen)
478 return ctx.qty;
479
480 if (buflen > ctx.qty)
481 ctx.qty = buflen;
482
483 /* Copy the IDs of the subscribed keys into the buffer */
484 ctx.buffer = (key_serial_t __user *)buffer;
485 ctx.count = 0;
486 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
487 if (ret < 0) {
488 kleave(" = %d [iterate]", ret);
489 return ret;
490 }
491
492 kleave(" = %zu [ok]", ctx.count);
493 return ctx.count;
494 }
495
496 /*
497 * Allocate a keyring and link into the destination keyring.
498 */
499 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
500 const struct cred *cred, key_perm_t perm,
501 unsigned long flags,
502 struct key_restriction *restrict_link,
503 struct key *dest)
504 {
505 struct key *keyring;
506 int ret;
507
508 keyring = key_alloc(&key_type_keyring, description,
509 uid, gid, cred, perm, flags, restrict_link);
510 if (!IS_ERR(keyring)) {
511 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
512 if (ret < 0) {
513 key_put(keyring);
514 keyring = ERR_PTR(ret);
515 }
516 }
517
518 return keyring;
519 }
520 EXPORT_SYMBOL(keyring_alloc);
521
522 /**
523 * restrict_link_reject - Give -EPERM to restrict link
524 * @keyring: The keyring being added to.
525 * @type: The type of key being added.
526 * @payload: The payload of the key intended to be added.
527 * @data: Additional data for evaluating restriction.
528 *
529 * Reject the addition of any links to a keyring. It can be overridden by
530 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
531 * adding a key to a keyring.
532 *
533 * This is meant to be stored in a key_restriction structure which is passed
534 * in the restrict_link parameter to keyring_alloc().
535 */
536 int restrict_link_reject(struct key *keyring,
537 const struct key_type *type,
538 const union key_payload *payload,
539 struct key *restriction_key)
540 {
541 return -EPERM;
542 }
543
544 /*
545 * By default, we keys found by getting an exact match on their descriptions.
546 */
547 bool key_default_cmp(const struct key *key,
548 const struct key_match_data *match_data)
549 {
550 return strcmp(key->description, match_data->raw_data) == 0;
551 }
552
553 /*
554 * Iteration function to consider each key found.
555 */
556 static int keyring_search_iterator(const void *object, void *iterator_data)
557 {
558 struct keyring_search_context *ctx = iterator_data;
559 const struct key *key = keyring_ptr_to_key(object);
560 unsigned long kflags = key->flags;
561
562 kenter("{%d}", key->serial);
563
564 /* ignore keys not of this type */
565 if (key->type != ctx->index_key.type) {
566 kleave(" = 0 [!type]");
567 return 0;
568 }
569
570 /* skip invalidated, revoked and expired keys */
571 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
572 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
573 (1 << KEY_FLAG_REVOKED))) {
574 ctx->result = ERR_PTR(-EKEYREVOKED);
575 kleave(" = %d [invrev]", ctx->skipped_ret);
576 goto skipped;
577 }
578
579 if (key->expiry && ctx->now.tv_sec >= key->expiry) {
580 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
581 ctx->result = ERR_PTR(-EKEYEXPIRED);
582 kleave(" = %d [expire]", ctx->skipped_ret);
583 goto skipped;
584 }
585 }
586
587 /* keys that don't match */
588 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
589 kleave(" = 0 [!match]");
590 return 0;
591 }
592
593 /* key must have search permissions */
594 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
595 key_task_permission(make_key_ref(key, ctx->possessed),
596 ctx->cred, KEY_NEED_SEARCH) < 0) {
597 ctx->result = ERR_PTR(-EACCES);
598 kleave(" = %d [!perm]", ctx->skipped_ret);
599 goto skipped;
600 }
601
602 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
603 /* we set a different error code if we pass a negative key */
604 if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
605 smp_rmb();
606 ctx->result = ERR_PTR(key->reject_error);
607 kleave(" = %d [neg]", ctx->skipped_ret);
608 goto skipped;
609 }
610 }
611
612 /* Found */
613 ctx->result = make_key_ref(key, ctx->possessed);
614 kleave(" = 1 [found]");
615 return 1;
616
617 skipped:
618 return ctx->skipped_ret;
619 }
620
621 /*
622 * Search inside a keyring for a key. We can search by walking to it
623 * directly based on its index-key or we can iterate over the entire
624 * tree looking for it, based on the match function.
625 */
626 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
627 {
628 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
629 const void *object;
630
631 object = assoc_array_find(&keyring->keys,
632 &keyring_assoc_array_ops,
633 &ctx->index_key);
634 return object ? ctx->iterator(object, ctx) : 0;
635 }
636 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
637 }
638
639 /*
640 * Search a tree of keyrings that point to other keyrings up to the maximum
641 * depth.
642 */
643 static bool search_nested_keyrings(struct key *keyring,
644 struct keyring_search_context *ctx)
645 {
646 struct {
647 struct key *keyring;
648 struct assoc_array_node *node;
649 int slot;
650 } stack[KEYRING_SEARCH_MAX_DEPTH];
651
652 struct assoc_array_shortcut *shortcut;
653 struct assoc_array_node *node;
654 struct assoc_array_ptr *ptr;
655 struct key *key;
656 int sp = 0, slot;
657
658 kenter("{%d},{%s,%s}",
659 keyring->serial,
660 ctx->index_key.type->name,
661 ctx->index_key.description);
662
663 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
664 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
665 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
666
667 if (ctx->index_key.description)
668 ctx->index_key.desc_len = strlen(ctx->index_key.description);
669
670 /* Check to see if this top-level keyring is what we are looking for
671 * and whether it is valid or not.
672 */
673 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
674 keyring_compare_object(keyring, &ctx->index_key)) {
675 ctx->skipped_ret = 2;
676 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
677 case 1:
678 goto found;
679 case 2:
680 return false;
681 default:
682 break;
683 }
684 }
685
686 ctx->skipped_ret = 0;
687
688 /* Start processing a new keyring */
689 descend_to_keyring:
690 kdebug("descend to %d", keyring->serial);
691 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
692 (1 << KEY_FLAG_REVOKED)))
693 goto not_this_keyring;
694
695 /* Search through the keys in this keyring before its searching its
696 * subtrees.
697 */
698 if (search_keyring(keyring, ctx))
699 goto found;
700
701 /* Then manually iterate through the keyrings nested in this one.
702 *
703 * Start from the root node of the index tree. Because of the way the
704 * hash function has been set up, keyrings cluster on the leftmost
705 * branch of the root node (root slot 0) or in the root node itself.
706 * Non-keyrings avoid the leftmost branch of the root entirely (root
707 * slots 1-15).
708 */
709 ptr = READ_ONCE(keyring->keys.root);
710 if (!ptr)
711 goto not_this_keyring;
712
713 if (assoc_array_ptr_is_shortcut(ptr)) {
714 /* If the root is a shortcut, either the keyring only contains
715 * keyring pointers (everything clusters behind root slot 0) or
716 * doesn't contain any keyring pointers.
717 */
718 shortcut = assoc_array_ptr_to_shortcut(ptr);
719 smp_read_barrier_depends();
720 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
721 goto not_this_keyring;
722
723 ptr = READ_ONCE(shortcut->next_node);
724 node = assoc_array_ptr_to_node(ptr);
725 goto begin_node;
726 }
727
728 node = assoc_array_ptr_to_node(ptr);
729 smp_read_barrier_depends();
730
731 ptr = node->slots[0];
732 if (!assoc_array_ptr_is_meta(ptr))
733 goto begin_node;
734
735 descend_to_node:
736 /* Descend to a more distal node in this keyring's content tree and go
737 * through that.
738 */
739 kdebug("descend");
740 if (assoc_array_ptr_is_shortcut(ptr)) {
741 shortcut = assoc_array_ptr_to_shortcut(ptr);
742 smp_read_barrier_depends();
743 ptr = READ_ONCE(shortcut->next_node);
744 BUG_ON(!assoc_array_ptr_is_node(ptr));
745 }
746 node = assoc_array_ptr_to_node(ptr);
747
748 begin_node:
749 kdebug("begin_node");
750 smp_read_barrier_depends();
751 slot = 0;
752 ascend_to_node:
753 /* Go through the slots in a node */
754 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
755 ptr = READ_ONCE(node->slots[slot]);
756
757 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
758 goto descend_to_node;
759
760 if (!keyring_ptr_is_keyring(ptr))
761 continue;
762
763 key = keyring_ptr_to_key(ptr);
764
765 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
766 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
767 ctx->result = ERR_PTR(-ELOOP);
768 return false;
769 }
770 goto not_this_keyring;
771 }
772
773 /* Search a nested keyring */
774 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
775 key_task_permission(make_key_ref(key, ctx->possessed),
776 ctx->cred, KEY_NEED_SEARCH) < 0)
777 continue;
778
779 /* stack the current position */
780 stack[sp].keyring = keyring;
781 stack[sp].node = node;
782 stack[sp].slot = slot;
783 sp++;
784
785 /* begin again with the new keyring */
786 keyring = key;
787 goto descend_to_keyring;
788 }
789
790 /* We've dealt with all the slots in the current node, so now we need
791 * to ascend to the parent and continue processing there.
792 */
793 ptr = READ_ONCE(node->back_pointer);
794 slot = node->parent_slot;
795
796 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
797 shortcut = assoc_array_ptr_to_shortcut(ptr);
798 smp_read_barrier_depends();
799 ptr = READ_ONCE(shortcut->back_pointer);
800 slot = shortcut->parent_slot;
801 }
802 if (!ptr)
803 goto not_this_keyring;
804 node = assoc_array_ptr_to_node(ptr);
805 smp_read_barrier_depends();
806 slot++;
807
808 /* If we've ascended to the root (zero backpointer), we must have just
809 * finished processing the leftmost branch rather than the root slots -
810 * so there can't be any more keyrings for us to find.
811 */
812 if (node->back_pointer) {
813 kdebug("ascend %d", slot);
814 goto ascend_to_node;
815 }
816
817 /* The keyring we're looking at was disqualified or didn't contain a
818 * matching key.
819 */
820 not_this_keyring:
821 kdebug("not_this_keyring %d", sp);
822 if (sp <= 0) {
823 kleave(" = false");
824 return false;
825 }
826
827 /* Resume the processing of a keyring higher up in the tree */
828 sp--;
829 keyring = stack[sp].keyring;
830 node = stack[sp].node;
831 slot = stack[sp].slot + 1;
832 kdebug("ascend to %d [%d]", keyring->serial, slot);
833 goto ascend_to_node;
834
835 /* We found a viable match */
836 found:
837 key = key_ref_to_ptr(ctx->result);
838 key_check(key);
839 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
840 key->last_used_at = ctx->now.tv_sec;
841 keyring->last_used_at = ctx->now.tv_sec;
842 while (sp > 0)
843 stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
844 }
845 kleave(" = true");
846 return true;
847 }
848
849 /**
850 * keyring_search_aux - Search a keyring tree for a key matching some criteria
851 * @keyring_ref: A pointer to the keyring with possession indicator.
852 * @ctx: The keyring search context.
853 *
854 * Search the supplied keyring tree for a key that matches the criteria given.
855 * The root keyring and any linked keyrings must grant Search permission to the
856 * caller to be searchable and keys can only be found if they too grant Search
857 * to the caller. The possession flag on the root keyring pointer controls use
858 * of the possessor bits in permissions checking of the entire tree. In
859 * addition, the LSM gets to forbid keyring searches and key matches.
860 *
861 * The search is performed as a breadth-then-depth search up to the prescribed
862 * limit (KEYRING_SEARCH_MAX_DEPTH).
863 *
864 * Keys are matched to the type provided and are then filtered by the match
865 * function, which is given the description to use in any way it sees fit. The
866 * match function may use any attributes of a key that it wishes to to
867 * determine the match. Normally the match function from the key type would be
868 * used.
869 *
870 * RCU can be used to prevent the keyring key lists from disappearing without
871 * the need to take lots of locks.
872 *
873 * Returns a pointer to the found key and increments the key usage count if
874 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
875 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
876 * specified keyring wasn't a keyring.
877 *
878 * In the case of a successful return, the possession attribute from
879 * @keyring_ref is propagated to the returned key reference.
880 */
881 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
882 struct keyring_search_context *ctx)
883 {
884 struct key *keyring;
885 long err;
886
887 ctx->iterator = keyring_search_iterator;
888 ctx->possessed = is_key_possessed(keyring_ref);
889 ctx->result = ERR_PTR(-EAGAIN);
890
891 keyring = key_ref_to_ptr(keyring_ref);
892 key_check(keyring);
893
894 if (keyring->type != &key_type_keyring)
895 return ERR_PTR(-ENOTDIR);
896
897 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
898 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
899 if (err < 0)
900 return ERR_PTR(err);
901 }
902
903 rcu_read_lock();
904 ctx->now = current_kernel_time();
905 if (search_nested_keyrings(keyring, ctx))
906 __key_get(key_ref_to_ptr(ctx->result));
907 rcu_read_unlock();
908 return ctx->result;
909 }
910
911 /**
912 * keyring_search - Search the supplied keyring tree for a matching key
913 * @keyring: The root of the keyring tree to be searched.
914 * @type: The type of keyring we want to find.
915 * @description: The name of the keyring we want to find.
916 *
917 * As keyring_search_aux() above, but using the current task's credentials and
918 * type's default matching function and preferred search method.
919 */
920 key_ref_t keyring_search(key_ref_t keyring,
921 struct key_type *type,
922 const char *description)
923 {
924 struct keyring_search_context ctx = {
925 .index_key.type = type,
926 .index_key.description = description,
927 .cred = current_cred(),
928 .match_data.cmp = key_default_cmp,
929 .match_data.raw_data = description,
930 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
931 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
932 };
933 key_ref_t key;
934 int ret;
935
936 if (type->match_preparse) {
937 ret = type->match_preparse(&ctx.match_data);
938 if (ret < 0)
939 return ERR_PTR(ret);
940 }
941
942 key = keyring_search_aux(keyring, &ctx);
943
944 if (type->match_free)
945 type->match_free(&ctx.match_data);
946 return key;
947 }
948 EXPORT_SYMBOL(keyring_search);
949
950 static struct key_restriction *keyring_restriction_alloc(
951 key_restrict_link_func_t check)
952 {
953 struct key_restriction *keyres =
954 kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
955
956 if (!keyres)
957 return ERR_PTR(-ENOMEM);
958
959 keyres->check = check;
960
961 return keyres;
962 }
963
964 /*
965 * Semaphore to serialise restriction setup to prevent reference count
966 * cycles through restriction key pointers.
967 */
968 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
969
970 /*
971 * Check for restriction cycles that would prevent keyring garbage collection.
972 * keyring_serialise_restrict_sem must be held.
973 */
974 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
975 struct key_restriction *keyres)
976 {
977 while (keyres && keyres->key &&
978 keyres->key->type == &key_type_keyring) {
979 if (keyres->key == dest_keyring)
980 return true;
981
982 keyres = keyres->key->restrict_link;
983 }
984
985 return false;
986 }
987
988 /**
989 * keyring_restrict - Look up and apply a restriction to a keyring
990 *
991 * @keyring: The keyring to be restricted
992 * @restriction: The restriction options to apply to the keyring
993 */
994 int keyring_restrict(key_ref_t keyring_ref, const char *type,
995 const char *restriction)
996 {
997 struct key *keyring;
998 struct key_type *restrict_type = NULL;
999 struct key_restriction *restrict_link;
1000 int ret = 0;
1001
1002 keyring = key_ref_to_ptr(keyring_ref);
1003 key_check(keyring);
1004
1005 if (keyring->type != &key_type_keyring)
1006 return -ENOTDIR;
1007
1008 if (!type) {
1009 restrict_link = keyring_restriction_alloc(restrict_link_reject);
1010 } else {
1011 restrict_type = key_type_lookup(type);
1012
1013 if (IS_ERR(restrict_type))
1014 return PTR_ERR(restrict_type);
1015
1016 if (!restrict_type->lookup_restriction) {
1017 ret = -ENOENT;
1018 goto error;
1019 }
1020
1021 restrict_link = restrict_type->lookup_restriction(restriction);
1022 }
1023
1024 if (IS_ERR(restrict_link)) {
1025 ret = PTR_ERR(restrict_link);
1026 goto error;
1027 }
1028
1029 down_write(&keyring->sem);
1030 down_write(&keyring_serialise_restrict_sem);
1031
1032 if (keyring->restrict_link)
1033 ret = -EEXIST;
1034 else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1035 ret = -EDEADLK;
1036 else
1037 keyring->restrict_link = restrict_link;
1038
1039 up_write(&keyring_serialise_restrict_sem);
1040 up_write(&keyring->sem);
1041
1042 if (ret < 0) {
1043 key_put(restrict_link->key);
1044 kfree(restrict_link);
1045 }
1046
1047 error:
1048 if (restrict_type)
1049 key_type_put(restrict_type);
1050
1051 return ret;
1052 }
1053 EXPORT_SYMBOL(keyring_restrict);
1054
1055 /*
1056 * Search the given keyring for a key that might be updated.
1057 *
1058 * The caller must guarantee that the keyring is a keyring and that the
1059 * permission is granted to modify the keyring as no check is made here. The
1060 * caller must also hold a lock on the keyring semaphore.
1061 *
1062 * Returns a pointer to the found key with usage count incremented if
1063 * successful and returns NULL if not found. Revoked and invalidated keys are
1064 * skipped over.
1065 *
1066 * If successful, the possession indicator is propagated from the keyring ref
1067 * to the returned key reference.
1068 */
1069 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1070 const struct keyring_index_key *index_key)
1071 {
1072 struct key *keyring, *key;
1073 const void *object;
1074
1075 keyring = key_ref_to_ptr(keyring_ref);
1076
1077 kenter("{%d},{%s,%s}",
1078 keyring->serial, index_key->type->name, index_key->description);
1079
1080 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1081 index_key);
1082
1083 if (object)
1084 goto found;
1085
1086 kleave(" = NULL");
1087 return NULL;
1088
1089 found:
1090 key = keyring_ptr_to_key(object);
1091 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1092 (1 << KEY_FLAG_REVOKED))) {
1093 kleave(" = NULL [x]");
1094 return NULL;
1095 }
1096 __key_get(key);
1097 kleave(" = {%d}", key->serial);
1098 return make_key_ref(key, is_key_possessed(keyring_ref));
1099 }
1100
1101 /*
1102 * Find a keyring with the specified name.
1103 *
1104 * All named keyrings in the current user namespace are searched, provided they
1105 * grant Search permission directly to the caller (unless this check is
1106 * skipped). Keyrings whose usage points have reached zero or who have been
1107 * revoked are skipped.
1108 *
1109 * Returns a pointer to the keyring with the keyring's refcount having being
1110 * incremented on success. -ENOKEY is returned if a key could not be found.
1111 */
1112 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
1113 {
1114 struct key *keyring;
1115 int bucket;
1116
1117 if (!name)
1118 return ERR_PTR(-EINVAL);
1119
1120 bucket = keyring_hash(name);
1121
1122 read_lock(&keyring_name_lock);
1123
1124 if (keyring_name_hash[bucket].next) {
1125 /* search this hash bucket for a keyring with a matching name
1126 * that's readable and that hasn't been revoked */
1127 list_for_each_entry(keyring,
1128 &keyring_name_hash[bucket],
1129 name_link
1130 ) {
1131 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1132 continue;
1133
1134 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1135 continue;
1136
1137 if (strcmp(keyring->description, name) != 0)
1138 continue;
1139
1140 if (!skip_perm_check &&
1141 key_permission(make_key_ref(keyring, 0),
1142 KEY_NEED_SEARCH) < 0)
1143 continue;
1144
1145 /* we've got a match but we might end up racing with
1146 * key_cleanup() if the keyring is currently 'dead'
1147 * (ie. it has a zero usage count) */
1148 if (!refcount_inc_not_zero(&keyring->usage))
1149 continue;
1150 keyring->last_used_at = current_kernel_time().tv_sec;
1151 goto out;
1152 }
1153 }
1154
1155 keyring = ERR_PTR(-ENOKEY);
1156 out:
1157 read_unlock(&keyring_name_lock);
1158 return keyring;
1159 }
1160
1161 static int keyring_detect_cycle_iterator(const void *object,
1162 void *iterator_data)
1163 {
1164 struct keyring_search_context *ctx = iterator_data;
1165 const struct key *key = keyring_ptr_to_key(object);
1166
1167 kenter("{%d}", key->serial);
1168
1169 /* We might get a keyring with matching index-key that is nonetheless a
1170 * different keyring. */
1171 if (key != ctx->match_data.raw_data)
1172 return 0;
1173
1174 ctx->result = ERR_PTR(-EDEADLK);
1175 return 1;
1176 }
1177
1178 /*
1179 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1180 * tree A at the topmost level (ie: as a direct child of A).
1181 *
1182 * Since we are adding B to A at the top level, checking for cycles should just
1183 * be a matter of seeing if node A is somewhere in tree B.
1184 */
1185 static int keyring_detect_cycle(struct key *A, struct key *B)
1186 {
1187 struct keyring_search_context ctx = {
1188 .index_key = A->index_key,
1189 .match_data.raw_data = A,
1190 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1191 .iterator = keyring_detect_cycle_iterator,
1192 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1193 KEYRING_SEARCH_NO_UPDATE_TIME |
1194 KEYRING_SEARCH_NO_CHECK_PERM |
1195 KEYRING_SEARCH_DETECT_TOO_DEEP),
1196 };
1197
1198 rcu_read_lock();
1199 search_nested_keyrings(B, &ctx);
1200 rcu_read_unlock();
1201 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1202 }
1203
1204 /*
1205 * Preallocate memory so that a key can be linked into to a keyring.
1206 */
1207 int __key_link_begin(struct key *keyring,
1208 const struct keyring_index_key *index_key,
1209 struct assoc_array_edit **_edit)
1210 __acquires(&keyring->sem)
1211 __acquires(&keyring_serialise_link_sem)
1212 {
1213 struct assoc_array_edit *edit;
1214 int ret;
1215
1216 kenter("%d,%s,%s,",
1217 keyring->serial, index_key->type->name, index_key->description);
1218
1219 BUG_ON(index_key->desc_len == 0);
1220
1221 if (keyring->type != &key_type_keyring)
1222 return -ENOTDIR;
1223
1224 down_write(&keyring->sem);
1225
1226 ret = -EKEYREVOKED;
1227 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1228 goto error_krsem;
1229
1230 /* serialise link/link calls to prevent parallel calls causing a cycle
1231 * when linking two keyring in opposite orders */
1232 if (index_key->type == &key_type_keyring)
1233 down_write(&keyring_serialise_link_sem);
1234
1235 /* Create an edit script that will insert/replace the key in the
1236 * keyring tree.
1237 */
1238 edit = assoc_array_insert(&keyring->keys,
1239 &keyring_assoc_array_ops,
1240 index_key,
1241 NULL);
1242 if (IS_ERR(edit)) {
1243 ret = PTR_ERR(edit);
1244 goto error_sem;
1245 }
1246
1247 /* If we're not replacing a link in-place then we're going to need some
1248 * extra quota.
1249 */
1250 if (!edit->dead_leaf) {
1251 ret = key_payload_reserve(keyring,
1252 keyring->datalen + KEYQUOTA_LINK_BYTES);
1253 if (ret < 0)
1254 goto error_cancel;
1255 }
1256
1257 *_edit = edit;
1258 kleave(" = 0");
1259 return 0;
1260
1261 error_cancel:
1262 assoc_array_cancel_edit(edit);
1263 error_sem:
1264 if (index_key->type == &key_type_keyring)
1265 up_write(&keyring_serialise_link_sem);
1266 error_krsem:
1267 up_write(&keyring->sem);
1268 kleave(" = %d", ret);
1269 return ret;
1270 }
1271
1272 /*
1273 * Check already instantiated keys aren't going to be a problem.
1274 *
1275 * The caller must have called __key_link_begin(). Don't need to call this for
1276 * keys that were created since __key_link_begin() was called.
1277 */
1278 int __key_link_check_live_key(struct key *keyring, struct key *key)
1279 {
1280 if (key->type == &key_type_keyring)
1281 /* check that we aren't going to create a cycle by linking one
1282 * keyring to another */
1283 return keyring_detect_cycle(keyring, key);
1284 return 0;
1285 }
1286
1287 /*
1288 * Link a key into to a keyring.
1289 *
1290 * Must be called with __key_link_begin() having being called. Discards any
1291 * already extant link to matching key if there is one, so that each keyring
1292 * holds at most one link to any given key of a particular type+description
1293 * combination.
1294 */
1295 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1296 {
1297 __key_get(key);
1298 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1299 assoc_array_apply_edit(*_edit);
1300 *_edit = NULL;
1301 }
1302
1303 /*
1304 * Finish linking a key into to a keyring.
1305 *
1306 * Must be called with __key_link_begin() having being called.
1307 */
1308 void __key_link_end(struct key *keyring,
1309 const struct keyring_index_key *index_key,
1310 struct assoc_array_edit *edit)
1311 __releases(&keyring->sem)
1312 __releases(&keyring_serialise_link_sem)
1313 {
1314 BUG_ON(index_key->type == NULL);
1315 kenter("%d,%s,", keyring->serial, index_key->type->name);
1316
1317 if (index_key->type == &key_type_keyring)
1318 up_write(&keyring_serialise_link_sem);
1319
1320 if (edit) {
1321 if (!edit->dead_leaf) {
1322 key_payload_reserve(keyring,
1323 keyring->datalen - KEYQUOTA_LINK_BYTES);
1324 }
1325 assoc_array_cancel_edit(edit);
1326 }
1327 up_write(&keyring->sem);
1328 }
1329
1330 /*
1331 * Check addition of keys to restricted keyrings.
1332 */
1333 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1334 {
1335 if (!keyring->restrict_link || !keyring->restrict_link->check)
1336 return 0;
1337 return keyring->restrict_link->check(keyring, key->type, &key->payload,
1338 keyring->restrict_link->key);
1339 }
1340
1341 /**
1342 * key_link - Link a key to a keyring
1343 * @keyring: The keyring to make the link in.
1344 * @key: The key to link to.
1345 *
1346 * Make a link in a keyring to a key, such that the keyring holds a reference
1347 * on that key and the key can potentially be found by searching that keyring.
1348 *
1349 * This function will write-lock the keyring's semaphore and will consume some
1350 * of the user's key data quota to hold the link.
1351 *
1352 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1353 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1354 * full, -EDQUOT if there is insufficient key data quota remaining to add
1355 * another link or -ENOMEM if there's insufficient memory.
1356 *
1357 * It is assumed that the caller has checked that it is permitted for a link to
1358 * be made (the keyring should have Write permission and the key Link
1359 * permission).
1360 */
1361 int key_link(struct key *keyring, struct key *key)
1362 {
1363 struct assoc_array_edit *edit;
1364 int ret;
1365
1366 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1367
1368 key_check(keyring);
1369 key_check(key);
1370
1371 ret = __key_link_begin(keyring, &key->index_key, &edit);
1372 if (ret == 0) {
1373 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1374 ret = __key_link_check_restriction(keyring, key);
1375 if (ret == 0)
1376 ret = __key_link_check_live_key(keyring, key);
1377 if (ret == 0)
1378 __key_link(key, &edit);
1379 __key_link_end(keyring, &key->index_key, edit);
1380 }
1381
1382 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1383 return ret;
1384 }
1385 EXPORT_SYMBOL(key_link);
1386
1387 /**
1388 * key_unlink - Unlink the first link to a key from a keyring.
1389 * @keyring: The keyring to remove the link from.
1390 * @key: The key the link is to.
1391 *
1392 * Remove a link from a keyring to a key.
1393 *
1394 * This function will write-lock the keyring's semaphore.
1395 *
1396 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1397 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1398 * memory.
1399 *
1400 * It is assumed that the caller has checked that it is permitted for a link to
1401 * be removed (the keyring should have Write permission; no permissions are
1402 * required on the key).
1403 */
1404 int key_unlink(struct key *keyring, struct key *key)
1405 {
1406 struct assoc_array_edit *edit;
1407 int ret;
1408
1409 key_check(keyring);
1410 key_check(key);
1411
1412 if (keyring->type != &key_type_keyring)
1413 return -ENOTDIR;
1414
1415 down_write(&keyring->sem);
1416
1417 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1418 &key->index_key);
1419 if (IS_ERR(edit)) {
1420 ret = PTR_ERR(edit);
1421 goto error;
1422 }
1423 ret = -ENOENT;
1424 if (edit == NULL)
1425 goto error;
1426
1427 assoc_array_apply_edit(edit);
1428 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1429 ret = 0;
1430
1431 error:
1432 up_write(&keyring->sem);
1433 return ret;
1434 }
1435 EXPORT_SYMBOL(key_unlink);
1436
1437 /**
1438 * keyring_clear - Clear a keyring
1439 * @keyring: The keyring to clear.
1440 *
1441 * Clear the contents of the specified keyring.
1442 *
1443 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1444 */
1445 int keyring_clear(struct key *keyring)
1446 {
1447 struct assoc_array_edit *edit;
1448 int ret;
1449
1450 if (keyring->type != &key_type_keyring)
1451 return -ENOTDIR;
1452
1453 down_write(&keyring->sem);
1454
1455 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1456 if (IS_ERR(edit)) {
1457 ret = PTR_ERR(edit);
1458 } else {
1459 if (edit)
1460 assoc_array_apply_edit(edit);
1461 key_payload_reserve(keyring, 0);
1462 ret = 0;
1463 }
1464
1465 up_write(&keyring->sem);
1466 return ret;
1467 }
1468 EXPORT_SYMBOL(keyring_clear);
1469
1470 /*
1471 * Dispose of the links from a revoked keyring.
1472 *
1473 * This is called with the key sem write-locked.
1474 */
1475 static void keyring_revoke(struct key *keyring)
1476 {
1477 struct assoc_array_edit *edit;
1478
1479 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1480 if (!IS_ERR(edit)) {
1481 if (edit)
1482 assoc_array_apply_edit(edit);
1483 key_payload_reserve(keyring, 0);
1484 }
1485 }
1486
1487 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1488 {
1489 struct key *key = keyring_ptr_to_key(object);
1490 time_t *limit = iterator_data;
1491
1492 if (key_is_dead(key, *limit))
1493 return false;
1494 key_get(key);
1495 return true;
1496 }
1497
1498 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1499 {
1500 const struct key *key = keyring_ptr_to_key(object);
1501 time_t *limit = iterator_data;
1502
1503 key_check(key);
1504 return key_is_dead(key, *limit);
1505 }
1506
1507 /*
1508 * Garbage collect pointers from a keyring.
1509 *
1510 * Not called with any locks held. The keyring's key struct will not be
1511 * deallocated under us as only our caller may deallocate it.
1512 */
1513 void keyring_gc(struct key *keyring, time_t limit)
1514 {
1515 int result;
1516
1517 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1518
1519 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1520 (1 << KEY_FLAG_REVOKED)))
1521 goto dont_gc;
1522
1523 /* scan the keyring looking for dead keys */
1524 rcu_read_lock();
1525 result = assoc_array_iterate(&keyring->keys,
1526 keyring_gc_check_iterator, &limit);
1527 rcu_read_unlock();
1528 if (result == true)
1529 goto do_gc;
1530
1531 dont_gc:
1532 kleave(" [no gc]");
1533 return;
1534
1535 do_gc:
1536 down_write(&keyring->sem);
1537 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1538 keyring_gc_select_iterator, &limit);
1539 up_write(&keyring->sem);
1540 kleave(" [gc]");
1541 }
1542
1543 /*
1544 * Garbage collect restriction pointers from a keyring.
1545 *
1546 * Keyring restrictions are associated with a key type, and must be cleaned
1547 * up if the key type is unregistered. The restriction is altered to always
1548 * reject additional keys so a keyring cannot be opened up by unregistering
1549 * a key type.
1550 *
1551 * Not called with any keyring locks held. The keyring's key struct will not
1552 * be deallocated under us as only our caller may deallocate it.
1553 *
1554 * The caller is required to hold key_types_sem and dead_type->sem. This is
1555 * fulfilled by key_gc_keytype() holding the locks on behalf of
1556 * key_garbage_collector(), which it invokes on a workqueue.
1557 */
1558 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1559 {
1560 struct key_restriction *keyres;
1561
1562 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1563
1564 /*
1565 * keyring->restrict_link is only assigned at key allocation time
1566 * or with the key type locked, so the only values that could be
1567 * concurrently assigned to keyring->restrict_link are for key
1568 * types other than dead_type. Given this, it's ok to check
1569 * the key type before acquiring keyring->sem.
1570 */
1571 if (!dead_type || !keyring->restrict_link ||
1572 keyring->restrict_link->keytype != dead_type) {
1573 kleave(" [no restriction gc]");
1574 return;
1575 }
1576
1577 /* Lock the keyring to ensure that a link is not in progress */
1578 down_write(&keyring->sem);
1579
1580 keyres = keyring->restrict_link;
1581
1582 keyres->check = restrict_link_reject;
1583
1584 key_put(keyres->key);
1585 keyres->key = NULL;
1586 keyres->keytype = NULL;
1587
1588 up_write(&keyring->sem);
1589
1590 kleave(" [restriction gc]");
1591 }