]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - security/keys/request_key.c
Merge branch 'next' of git://git.infradead.org/users/pcmoore/selinux into next
[mirror_ubuntu-zesty-kernel.git] / security / keys / request_key.c
1 /* Request a key from userspace
2 *
3 * Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * See Documentation/security/keys-request-key.txt
12 */
13
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kmod.h>
17 #include <linux/err.h>
18 #include <linux/keyctl.h>
19 #include <linux/slab.h>
20 #include "internal.h"
21
22 #define key_negative_timeout 60 /* default timeout on a negative key's existence */
23
24 /*
25 * wait_on_bit() sleep function for uninterruptible waiting
26 */
27 static int key_wait_bit(void *flags)
28 {
29 schedule();
30 return 0;
31 }
32
33 /*
34 * wait_on_bit() sleep function for interruptible waiting
35 */
36 static int key_wait_bit_intr(void *flags)
37 {
38 schedule();
39 return signal_pending(current) ? -ERESTARTSYS : 0;
40 }
41
42 /**
43 * complete_request_key - Complete the construction of a key.
44 * @cons: The key construction record.
45 * @error: The success or failute of the construction.
46 *
47 * Complete the attempt to construct a key. The key will be negated
48 * if an error is indicated. The authorisation key will be revoked
49 * unconditionally.
50 */
51 void complete_request_key(struct key_construction *cons, int error)
52 {
53 kenter("{%d,%d},%d", cons->key->serial, cons->authkey->serial, error);
54
55 if (error < 0)
56 key_negate_and_link(cons->key, key_negative_timeout, NULL,
57 cons->authkey);
58 else
59 key_revoke(cons->authkey);
60
61 key_put(cons->key);
62 key_put(cons->authkey);
63 kfree(cons);
64 }
65 EXPORT_SYMBOL(complete_request_key);
66
67 /*
68 * Initialise a usermode helper that is going to have a specific session
69 * keyring.
70 *
71 * This is called in context of freshly forked kthread before kernel_execve(),
72 * so we can simply install the desired session_keyring at this point.
73 */
74 static int umh_keys_init(struct subprocess_info *info, struct cred *cred)
75 {
76 struct key *keyring = info->data;
77
78 return install_session_keyring_to_cred(cred, keyring);
79 }
80
81 /*
82 * Clean up a usermode helper with session keyring.
83 */
84 static void umh_keys_cleanup(struct subprocess_info *info)
85 {
86 struct key *keyring = info->data;
87 key_put(keyring);
88 }
89
90 /*
91 * Call a usermode helper with a specific session keyring.
92 */
93 static int call_usermodehelper_keys(char *path, char **argv, char **envp,
94 struct key *session_keyring, int wait)
95 {
96 struct subprocess_info *info;
97
98 info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL,
99 umh_keys_init, umh_keys_cleanup,
100 session_keyring);
101 if (!info)
102 return -ENOMEM;
103
104 key_get(session_keyring);
105 return call_usermodehelper_exec(info, wait);
106 }
107
108 /*
109 * Request userspace finish the construction of a key
110 * - execute "/sbin/request-key <op> <key> <uid> <gid> <keyring> <keyring> <keyring>"
111 */
112 static int call_sbin_request_key(struct key_construction *cons,
113 const char *op,
114 void *aux)
115 {
116 const struct cred *cred = current_cred();
117 key_serial_t prkey, sskey;
118 struct key *key = cons->key, *authkey = cons->authkey, *keyring,
119 *session;
120 char *argv[9], *envp[3], uid_str[12], gid_str[12];
121 char key_str[12], keyring_str[3][12];
122 char desc[20];
123 int ret, i;
124
125 kenter("{%d},{%d},%s", key->serial, authkey->serial, op);
126
127 ret = install_user_keyrings();
128 if (ret < 0)
129 goto error_alloc;
130
131 /* allocate a new session keyring */
132 sprintf(desc, "_req.%u", key->serial);
133
134 cred = get_current_cred();
135 keyring = keyring_alloc(desc, cred->fsuid, cred->fsgid, cred,
136 KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ,
137 KEY_ALLOC_QUOTA_OVERRUN, NULL);
138 put_cred(cred);
139 if (IS_ERR(keyring)) {
140 ret = PTR_ERR(keyring);
141 goto error_alloc;
142 }
143
144 /* attach the auth key to the session keyring */
145 ret = key_link(keyring, authkey);
146 if (ret < 0)
147 goto error_link;
148
149 /* record the UID and GID */
150 sprintf(uid_str, "%d", from_kuid(&init_user_ns, cred->fsuid));
151 sprintf(gid_str, "%d", from_kgid(&init_user_ns, cred->fsgid));
152
153 /* we say which key is under construction */
154 sprintf(key_str, "%d", key->serial);
155
156 /* we specify the process's default keyrings */
157 sprintf(keyring_str[0], "%d",
158 cred->thread_keyring ? cred->thread_keyring->serial : 0);
159
160 prkey = 0;
161 if (cred->process_keyring)
162 prkey = cred->process_keyring->serial;
163 sprintf(keyring_str[1], "%d", prkey);
164
165 rcu_read_lock();
166 session = rcu_dereference(cred->session_keyring);
167 if (!session)
168 session = cred->user->session_keyring;
169 sskey = session->serial;
170 rcu_read_unlock();
171
172 sprintf(keyring_str[2], "%d", sskey);
173
174 /* set up a minimal environment */
175 i = 0;
176 envp[i++] = "HOME=/";
177 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
178 envp[i] = NULL;
179
180 /* set up the argument list */
181 i = 0;
182 argv[i++] = "/sbin/request-key";
183 argv[i++] = (char *) op;
184 argv[i++] = key_str;
185 argv[i++] = uid_str;
186 argv[i++] = gid_str;
187 argv[i++] = keyring_str[0];
188 argv[i++] = keyring_str[1];
189 argv[i++] = keyring_str[2];
190 argv[i] = NULL;
191
192 /* do it */
193 ret = call_usermodehelper_keys(argv[0], argv, envp, keyring,
194 UMH_WAIT_PROC);
195 kdebug("usermode -> 0x%x", ret);
196 if (ret >= 0) {
197 /* ret is the exit/wait code */
198 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags) ||
199 key_validate(key) < 0)
200 ret = -ENOKEY;
201 else
202 /* ignore any errors from userspace if the key was
203 * instantiated */
204 ret = 0;
205 }
206
207 error_link:
208 key_put(keyring);
209
210 error_alloc:
211 complete_request_key(cons, ret);
212 kleave(" = %d", ret);
213 return ret;
214 }
215
216 /*
217 * Call out to userspace for key construction.
218 *
219 * Program failure is ignored in favour of key status.
220 */
221 static int construct_key(struct key *key, const void *callout_info,
222 size_t callout_len, void *aux,
223 struct key *dest_keyring)
224 {
225 struct key_construction *cons;
226 request_key_actor_t actor;
227 struct key *authkey;
228 int ret;
229
230 kenter("%d,%p,%zu,%p", key->serial, callout_info, callout_len, aux);
231
232 cons = kmalloc(sizeof(*cons), GFP_KERNEL);
233 if (!cons)
234 return -ENOMEM;
235
236 /* allocate an authorisation key */
237 authkey = request_key_auth_new(key, callout_info, callout_len,
238 dest_keyring);
239 if (IS_ERR(authkey)) {
240 kfree(cons);
241 ret = PTR_ERR(authkey);
242 authkey = NULL;
243 } else {
244 cons->authkey = key_get(authkey);
245 cons->key = key_get(key);
246
247 /* make the call */
248 actor = call_sbin_request_key;
249 if (key->type->request_key)
250 actor = key->type->request_key;
251
252 ret = actor(cons, "create", aux);
253
254 /* check that the actor called complete_request_key() prior to
255 * returning an error */
256 WARN_ON(ret < 0 &&
257 !test_bit(KEY_FLAG_REVOKED, &authkey->flags));
258 key_put(authkey);
259 }
260
261 kleave(" = %d", ret);
262 return ret;
263 }
264
265 /*
266 * Get the appropriate destination keyring for the request.
267 *
268 * The keyring selected is returned with an extra reference upon it which the
269 * caller must release.
270 */
271 static void construct_get_dest_keyring(struct key **_dest_keyring)
272 {
273 struct request_key_auth *rka;
274 const struct cred *cred = current_cred();
275 struct key *dest_keyring = *_dest_keyring, *authkey;
276
277 kenter("%p", dest_keyring);
278
279 /* find the appropriate keyring */
280 if (dest_keyring) {
281 /* the caller supplied one */
282 key_get(dest_keyring);
283 } else {
284 /* use a default keyring; falling through the cases until we
285 * find one that we actually have */
286 switch (cred->jit_keyring) {
287 case KEY_REQKEY_DEFL_DEFAULT:
288 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
289 if (cred->request_key_auth) {
290 authkey = cred->request_key_auth;
291 down_read(&authkey->sem);
292 rka = authkey->payload.data;
293 if (!test_bit(KEY_FLAG_REVOKED,
294 &authkey->flags))
295 dest_keyring =
296 key_get(rka->dest_keyring);
297 up_read(&authkey->sem);
298 if (dest_keyring)
299 break;
300 }
301
302 case KEY_REQKEY_DEFL_THREAD_KEYRING:
303 dest_keyring = key_get(cred->thread_keyring);
304 if (dest_keyring)
305 break;
306
307 case KEY_REQKEY_DEFL_PROCESS_KEYRING:
308 dest_keyring = key_get(cred->process_keyring);
309 if (dest_keyring)
310 break;
311
312 case KEY_REQKEY_DEFL_SESSION_KEYRING:
313 rcu_read_lock();
314 dest_keyring = key_get(
315 rcu_dereference(cred->session_keyring));
316 rcu_read_unlock();
317
318 if (dest_keyring)
319 break;
320
321 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
322 dest_keyring =
323 key_get(cred->user->session_keyring);
324 break;
325
326 case KEY_REQKEY_DEFL_USER_KEYRING:
327 dest_keyring = key_get(cred->user->uid_keyring);
328 break;
329
330 case KEY_REQKEY_DEFL_GROUP_KEYRING:
331 default:
332 BUG();
333 }
334 }
335
336 *_dest_keyring = dest_keyring;
337 kleave(" [dk %d]", key_serial(dest_keyring));
338 return;
339 }
340
341 /*
342 * Allocate a new key in under-construction state and attempt to link it in to
343 * the requested keyring.
344 *
345 * May return a key that's already under construction instead if there was a
346 * race between two thread calling request_key().
347 */
348 static int construct_alloc_key(struct keyring_search_context *ctx,
349 struct key *dest_keyring,
350 unsigned long flags,
351 struct key_user *user,
352 struct key **_key)
353 {
354 struct assoc_array_edit *edit;
355 struct key *key;
356 key_perm_t perm;
357 key_ref_t key_ref;
358 int ret;
359
360 kenter("%s,%s,,,",
361 ctx->index_key.type->name, ctx->index_key.description);
362
363 *_key = NULL;
364 mutex_lock(&user->cons_lock);
365
366 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
367 perm |= KEY_USR_VIEW;
368 if (ctx->index_key.type->read)
369 perm |= KEY_POS_READ;
370 if (ctx->index_key.type == &key_type_keyring ||
371 ctx->index_key.type->update)
372 perm |= KEY_POS_WRITE;
373
374 key = key_alloc(ctx->index_key.type, ctx->index_key.description,
375 ctx->cred->fsuid, ctx->cred->fsgid, ctx->cred,
376 perm, flags);
377 if (IS_ERR(key))
378 goto alloc_failed;
379
380 set_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags);
381
382 if (dest_keyring) {
383 ret = __key_link_begin(dest_keyring, &ctx->index_key, &edit);
384 if (ret < 0)
385 goto link_prealloc_failed;
386 }
387
388 /* attach the key to the destination keyring under lock, but we do need
389 * to do another check just in case someone beat us to it whilst we
390 * waited for locks */
391 mutex_lock(&key_construction_mutex);
392
393 key_ref = search_process_keyrings(ctx);
394 if (!IS_ERR(key_ref))
395 goto key_already_present;
396
397 if (dest_keyring)
398 __key_link(key, &edit);
399
400 mutex_unlock(&key_construction_mutex);
401 if (dest_keyring)
402 __key_link_end(dest_keyring, &ctx->index_key, edit);
403 mutex_unlock(&user->cons_lock);
404 *_key = key;
405 kleave(" = 0 [%d]", key_serial(key));
406 return 0;
407
408 /* the key is now present - we tell the caller that we found it by
409 * returning -EINPROGRESS */
410 key_already_present:
411 key_put(key);
412 mutex_unlock(&key_construction_mutex);
413 key = key_ref_to_ptr(key_ref);
414 if (dest_keyring) {
415 ret = __key_link_check_live_key(dest_keyring, key);
416 if (ret == 0)
417 __key_link(key, &edit);
418 __key_link_end(dest_keyring, &ctx->index_key, edit);
419 if (ret < 0)
420 goto link_check_failed;
421 }
422 mutex_unlock(&user->cons_lock);
423 *_key = key;
424 kleave(" = -EINPROGRESS [%d]", key_serial(key));
425 return -EINPROGRESS;
426
427 link_check_failed:
428 mutex_unlock(&user->cons_lock);
429 key_put(key);
430 kleave(" = %d [linkcheck]", ret);
431 return ret;
432
433 link_prealloc_failed:
434 mutex_unlock(&user->cons_lock);
435 kleave(" = %d [prelink]", ret);
436 return ret;
437
438 alloc_failed:
439 mutex_unlock(&user->cons_lock);
440 kleave(" = %ld", PTR_ERR(key));
441 return PTR_ERR(key);
442 }
443
444 /*
445 * Commence key construction.
446 */
447 static struct key *construct_key_and_link(struct keyring_search_context *ctx,
448 const char *callout_info,
449 size_t callout_len,
450 void *aux,
451 struct key *dest_keyring,
452 unsigned long flags)
453 {
454 struct key_user *user;
455 struct key *key;
456 int ret;
457
458 kenter("");
459
460 user = key_user_lookup(current_fsuid());
461 if (!user)
462 return ERR_PTR(-ENOMEM);
463
464 construct_get_dest_keyring(&dest_keyring);
465
466 ret = construct_alloc_key(ctx, dest_keyring, flags, user, &key);
467 key_user_put(user);
468
469 if (ret == 0) {
470 ret = construct_key(key, callout_info, callout_len, aux,
471 dest_keyring);
472 if (ret < 0) {
473 kdebug("cons failed");
474 goto construction_failed;
475 }
476 } else if (ret == -EINPROGRESS) {
477 ret = 0;
478 } else {
479 goto couldnt_alloc_key;
480 }
481
482 key_put(dest_keyring);
483 kleave(" = key %d", key_serial(key));
484 return key;
485
486 construction_failed:
487 key_negate_and_link(key, key_negative_timeout, NULL, NULL);
488 key_put(key);
489 couldnt_alloc_key:
490 key_put(dest_keyring);
491 kleave(" = %d", ret);
492 return ERR_PTR(ret);
493 }
494
495 /**
496 * request_key_and_link - Request a key and cache it in a keyring.
497 * @type: The type of key we want.
498 * @description: The searchable description of the key.
499 * @callout_info: The data to pass to the instantiation upcall (or NULL).
500 * @callout_len: The length of callout_info.
501 * @aux: Auxiliary data for the upcall.
502 * @dest_keyring: Where to cache the key.
503 * @flags: Flags to key_alloc().
504 *
505 * A key matching the specified criteria is searched for in the process's
506 * keyrings and returned with its usage count incremented if found. Otherwise,
507 * if callout_info is not NULL, a key will be allocated and some service
508 * (probably in userspace) will be asked to instantiate it.
509 *
510 * If successfully found or created, the key will be linked to the destination
511 * keyring if one is provided.
512 *
513 * Returns a pointer to the key if successful; -EACCES, -ENOKEY, -EKEYREVOKED
514 * or -EKEYEXPIRED if an inaccessible, negative, revoked or expired key was
515 * found; -ENOKEY if no key was found and no @callout_info was given; -EDQUOT
516 * if insufficient key quota was available to create a new key; or -ENOMEM if
517 * insufficient memory was available.
518 *
519 * If the returned key was created, then it may still be under construction,
520 * and wait_for_key_construction() should be used to wait for that to complete.
521 */
522 struct key *request_key_and_link(struct key_type *type,
523 const char *description,
524 const void *callout_info,
525 size_t callout_len,
526 void *aux,
527 struct key *dest_keyring,
528 unsigned long flags)
529 {
530 struct keyring_search_context ctx = {
531 .index_key.type = type,
532 .index_key.description = description,
533 .cred = current_cred(),
534 .match_data.cmp = key_default_cmp,
535 .match_data.raw_data = description,
536 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
537 };
538 struct key *key;
539 key_ref_t key_ref;
540 int ret;
541
542 kenter("%s,%s,%p,%zu,%p,%p,%lx",
543 ctx.index_key.type->name, ctx.index_key.description,
544 callout_info, callout_len, aux, dest_keyring, flags);
545
546 if (type->match_preparse) {
547 ret = type->match_preparse(&ctx.match_data);
548 if (ret < 0) {
549 key = ERR_PTR(ret);
550 goto error;
551 }
552 }
553
554 /* search all the process keyrings for a key */
555 key_ref = search_process_keyrings(&ctx);
556
557 if (!IS_ERR(key_ref)) {
558 key = key_ref_to_ptr(key_ref);
559 if (dest_keyring) {
560 construct_get_dest_keyring(&dest_keyring);
561 ret = key_link(dest_keyring, key);
562 key_put(dest_keyring);
563 if (ret < 0) {
564 key_put(key);
565 key = ERR_PTR(ret);
566 goto error_free;
567 }
568 }
569 } else if (PTR_ERR(key_ref) != -EAGAIN) {
570 key = ERR_CAST(key_ref);
571 } else {
572 /* the search failed, but the keyrings were searchable, so we
573 * should consult userspace if we can */
574 key = ERR_PTR(-ENOKEY);
575 if (!callout_info)
576 goto error_free;
577
578 key = construct_key_and_link(&ctx, callout_info, callout_len,
579 aux, dest_keyring, flags);
580 }
581
582 error_free:
583 if (type->match_free)
584 type->match_free(&ctx.match_data);
585 error:
586 kleave(" = %p", key);
587 return key;
588 }
589
590 /**
591 * wait_for_key_construction - Wait for construction of a key to complete
592 * @key: The key being waited for.
593 * @intr: Whether to wait interruptibly.
594 *
595 * Wait for a key to finish being constructed.
596 *
597 * Returns 0 if successful; -ERESTARTSYS if the wait was interrupted; -ENOKEY
598 * if the key was negated; or -EKEYREVOKED or -EKEYEXPIRED if the key was
599 * revoked or expired.
600 */
601 int wait_for_key_construction(struct key *key, bool intr)
602 {
603 int ret;
604
605 ret = wait_on_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT,
606 intr ? key_wait_bit_intr : key_wait_bit,
607 intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
608 if (ret < 0)
609 return ret;
610 if (test_bit(KEY_FLAG_NEGATIVE, &key->flags)) {
611 smp_rmb();
612 return key->type_data.reject_error;
613 }
614 return key_validate(key);
615 }
616 EXPORT_SYMBOL(wait_for_key_construction);
617
618 /**
619 * request_key - Request a key and wait for construction
620 * @type: Type of key.
621 * @description: The searchable description of the key.
622 * @callout_info: The data to pass to the instantiation upcall (or NULL).
623 *
624 * As for request_key_and_link() except that it does not add the returned key
625 * to a keyring if found, new keys are always allocated in the user's quota,
626 * the callout_info must be a NUL-terminated string and no auxiliary data can
627 * be passed.
628 *
629 * Furthermore, it then works as wait_for_key_construction() to wait for the
630 * completion of keys undergoing construction with a non-interruptible wait.
631 */
632 struct key *request_key(struct key_type *type,
633 const char *description,
634 const char *callout_info)
635 {
636 struct key *key;
637 size_t callout_len = 0;
638 int ret;
639
640 if (callout_info)
641 callout_len = strlen(callout_info);
642 key = request_key_and_link(type, description, callout_info, callout_len,
643 NULL, NULL, KEY_ALLOC_IN_QUOTA);
644 if (!IS_ERR(key)) {
645 ret = wait_for_key_construction(key, false);
646 if (ret < 0) {
647 key_put(key);
648 return ERR_PTR(ret);
649 }
650 }
651 return key;
652 }
653 EXPORT_SYMBOL(request_key);
654
655 /**
656 * request_key_with_auxdata - Request a key with auxiliary data for the upcaller
657 * @type: The type of key we want.
658 * @description: The searchable description of the key.
659 * @callout_info: The data to pass to the instantiation upcall (or NULL).
660 * @callout_len: The length of callout_info.
661 * @aux: Auxiliary data for the upcall.
662 *
663 * As for request_key_and_link() except that it does not add the returned key
664 * to a keyring if found and new keys are always allocated in the user's quota.
665 *
666 * Furthermore, it then works as wait_for_key_construction() to wait for the
667 * completion of keys undergoing construction with a non-interruptible wait.
668 */
669 struct key *request_key_with_auxdata(struct key_type *type,
670 const char *description,
671 const void *callout_info,
672 size_t callout_len,
673 void *aux)
674 {
675 struct key *key;
676 int ret;
677
678 key = request_key_and_link(type, description, callout_info, callout_len,
679 aux, NULL, KEY_ALLOC_IN_QUOTA);
680 if (!IS_ERR(key)) {
681 ret = wait_for_key_construction(key, false);
682 if (ret < 0) {
683 key_put(key);
684 return ERR_PTR(ret);
685 }
686 }
687 return key;
688 }
689 EXPORT_SYMBOL(request_key_with_auxdata);
690
691 /*
692 * request_key_async - Request a key (allow async construction)
693 * @type: Type of key.
694 * @description: The searchable description of the key.
695 * @callout_info: The data to pass to the instantiation upcall (or NULL).
696 * @callout_len: The length of callout_info.
697 *
698 * As for request_key_and_link() except that it does not add the returned key
699 * to a keyring if found, new keys are always allocated in the user's quota and
700 * no auxiliary data can be passed.
701 *
702 * The caller should call wait_for_key_construction() to wait for the
703 * completion of the returned key if it is still undergoing construction.
704 */
705 struct key *request_key_async(struct key_type *type,
706 const char *description,
707 const void *callout_info,
708 size_t callout_len)
709 {
710 return request_key_and_link(type, description, callout_info,
711 callout_len, NULL, NULL,
712 KEY_ALLOC_IN_QUOTA);
713 }
714 EXPORT_SYMBOL(request_key_async);
715
716 /*
717 * request a key with auxiliary data for the upcaller (allow async construction)
718 * @type: Type of key.
719 * @description: The searchable description of the key.
720 * @callout_info: The data to pass to the instantiation upcall (or NULL).
721 * @callout_len: The length of callout_info.
722 * @aux: Auxiliary data for the upcall.
723 *
724 * As for request_key_and_link() except that it does not add the returned key
725 * to a keyring if found and new keys are always allocated in the user's quota.
726 *
727 * The caller should call wait_for_key_construction() to wait for the
728 * completion of the returned key if it is still undergoing construction.
729 */
730 struct key *request_key_async_with_auxdata(struct key_type *type,
731 const char *description,
732 const void *callout_info,
733 size_t callout_len,
734 void *aux)
735 {
736 return request_key_and_link(type, description, callout_info,
737 callout_len, aux, NULL, KEY_ALLOC_IN_QUOTA);
738 }
739 EXPORT_SYMBOL(request_key_async_with_auxdata);