]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - security/keys/trusted.c
Merge branches 'for-4.4/upstream-fixes', 'for-4.5/async-suspend', 'for-4.5/container...
[mirror_ubuntu-artful-kernel.git] / security / keys / trusted.c
1 /*
2 * Copyright (C) 2010 IBM Corporation
3 *
4 * Author:
5 * David Safford <safford@us.ibm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, version 2 of the License.
10 *
11 * See Documentation/security/keys-trusted-encrypted.txt
12 */
13
14 #include <linux/uaccess.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/parser.h>
19 #include <linux/string.h>
20 #include <linux/err.h>
21 #include <keys/user-type.h>
22 #include <keys/trusted-type.h>
23 #include <linux/key-type.h>
24 #include <linux/rcupdate.h>
25 #include <linux/crypto.h>
26 #include <crypto/hash.h>
27 #include <crypto/sha.h>
28 #include <linux/capability.h>
29 #include <linux/tpm.h>
30 #include <linux/tpm_command.h>
31
32 #include "trusted.h"
33
34 static const char hmac_alg[] = "hmac(sha1)";
35 static const char hash_alg[] = "sha1";
36
37 struct sdesc {
38 struct shash_desc shash;
39 char ctx[];
40 };
41
42 static struct crypto_shash *hashalg;
43 static struct crypto_shash *hmacalg;
44
45 static struct sdesc *init_sdesc(struct crypto_shash *alg)
46 {
47 struct sdesc *sdesc;
48 int size;
49
50 size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
51 sdesc = kmalloc(size, GFP_KERNEL);
52 if (!sdesc)
53 return ERR_PTR(-ENOMEM);
54 sdesc->shash.tfm = alg;
55 sdesc->shash.flags = 0x0;
56 return sdesc;
57 }
58
59 static int TSS_sha1(const unsigned char *data, unsigned int datalen,
60 unsigned char *digest)
61 {
62 struct sdesc *sdesc;
63 int ret;
64
65 sdesc = init_sdesc(hashalg);
66 if (IS_ERR(sdesc)) {
67 pr_info("trusted_key: can't alloc %s\n", hash_alg);
68 return PTR_ERR(sdesc);
69 }
70
71 ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
72 kfree(sdesc);
73 return ret;
74 }
75
76 static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
77 unsigned int keylen, ...)
78 {
79 struct sdesc *sdesc;
80 va_list argp;
81 unsigned int dlen;
82 unsigned char *data;
83 int ret;
84
85 sdesc = init_sdesc(hmacalg);
86 if (IS_ERR(sdesc)) {
87 pr_info("trusted_key: can't alloc %s\n", hmac_alg);
88 return PTR_ERR(sdesc);
89 }
90
91 ret = crypto_shash_setkey(hmacalg, key, keylen);
92 if (ret < 0)
93 goto out;
94 ret = crypto_shash_init(&sdesc->shash);
95 if (ret < 0)
96 goto out;
97
98 va_start(argp, keylen);
99 for (;;) {
100 dlen = va_arg(argp, unsigned int);
101 if (dlen == 0)
102 break;
103 data = va_arg(argp, unsigned char *);
104 if (data == NULL) {
105 ret = -EINVAL;
106 break;
107 }
108 ret = crypto_shash_update(&sdesc->shash, data, dlen);
109 if (ret < 0)
110 break;
111 }
112 va_end(argp);
113 if (!ret)
114 ret = crypto_shash_final(&sdesc->shash, digest);
115 out:
116 kfree(sdesc);
117 return ret;
118 }
119
120 /*
121 * calculate authorization info fields to send to TPM
122 */
123 static int TSS_authhmac(unsigned char *digest, const unsigned char *key,
124 unsigned int keylen, unsigned char *h1,
125 unsigned char *h2, unsigned char h3, ...)
126 {
127 unsigned char paramdigest[SHA1_DIGEST_SIZE];
128 struct sdesc *sdesc;
129 unsigned int dlen;
130 unsigned char *data;
131 unsigned char c;
132 int ret;
133 va_list argp;
134
135 sdesc = init_sdesc(hashalg);
136 if (IS_ERR(sdesc)) {
137 pr_info("trusted_key: can't alloc %s\n", hash_alg);
138 return PTR_ERR(sdesc);
139 }
140
141 c = h3;
142 ret = crypto_shash_init(&sdesc->shash);
143 if (ret < 0)
144 goto out;
145 va_start(argp, h3);
146 for (;;) {
147 dlen = va_arg(argp, unsigned int);
148 if (dlen == 0)
149 break;
150 data = va_arg(argp, unsigned char *);
151 if (!data) {
152 ret = -EINVAL;
153 break;
154 }
155 ret = crypto_shash_update(&sdesc->shash, data, dlen);
156 if (ret < 0)
157 break;
158 }
159 va_end(argp);
160 if (!ret)
161 ret = crypto_shash_final(&sdesc->shash, paramdigest);
162 if (!ret)
163 ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
164 paramdigest, TPM_NONCE_SIZE, h1,
165 TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
166 out:
167 kfree(sdesc);
168 return ret;
169 }
170
171 /*
172 * verify the AUTH1_COMMAND (Seal) result from TPM
173 */
174 static int TSS_checkhmac1(unsigned char *buffer,
175 const uint32_t command,
176 const unsigned char *ononce,
177 const unsigned char *key,
178 unsigned int keylen, ...)
179 {
180 uint32_t bufsize;
181 uint16_t tag;
182 uint32_t ordinal;
183 uint32_t result;
184 unsigned char *enonce;
185 unsigned char *continueflag;
186 unsigned char *authdata;
187 unsigned char testhmac[SHA1_DIGEST_SIZE];
188 unsigned char paramdigest[SHA1_DIGEST_SIZE];
189 struct sdesc *sdesc;
190 unsigned int dlen;
191 unsigned int dpos;
192 va_list argp;
193 int ret;
194
195 bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
196 tag = LOAD16(buffer, 0);
197 ordinal = command;
198 result = LOAD32N(buffer, TPM_RETURN_OFFSET);
199 if (tag == TPM_TAG_RSP_COMMAND)
200 return 0;
201 if (tag != TPM_TAG_RSP_AUTH1_COMMAND)
202 return -EINVAL;
203 authdata = buffer + bufsize - SHA1_DIGEST_SIZE;
204 continueflag = authdata - 1;
205 enonce = continueflag - TPM_NONCE_SIZE;
206
207 sdesc = init_sdesc(hashalg);
208 if (IS_ERR(sdesc)) {
209 pr_info("trusted_key: can't alloc %s\n", hash_alg);
210 return PTR_ERR(sdesc);
211 }
212 ret = crypto_shash_init(&sdesc->shash);
213 if (ret < 0)
214 goto out;
215 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
216 sizeof result);
217 if (ret < 0)
218 goto out;
219 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
220 sizeof ordinal);
221 if (ret < 0)
222 goto out;
223 va_start(argp, keylen);
224 for (;;) {
225 dlen = va_arg(argp, unsigned int);
226 if (dlen == 0)
227 break;
228 dpos = va_arg(argp, unsigned int);
229 ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
230 if (ret < 0)
231 break;
232 }
233 va_end(argp);
234 if (!ret)
235 ret = crypto_shash_final(&sdesc->shash, paramdigest);
236 if (ret < 0)
237 goto out;
238
239 ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest,
240 TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce,
241 1, continueflag, 0, 0);
242 if (ret < 0)
243 goto out;
244
245 if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE))
246 ret = -EINVAL;
247 out:
248 kfree(sdesc);
249 return ret;
250 }
251
252 /*
253 * verify the AUTH2_COMMAND (unseal) result from TPM
254 */
255 static int TSS_checkhmac2(unsigned char *buffer,
256 const uint32_t command,
257 const unsigned char *ononce,
258 const unsigned char *key1,
259 unsigned int keylen1,
260 const unsigned char *key2,
261 unsigned int keylen2, ...)
262 {
263 uint32_t bufsize;
264 uint16_t tag;
265 uint32_t ordinal;
266 uint32_t result;
267 unsigned char *enonce1;
268 unsigned char *continueflag1;
269 unsigned char *authdata1;
270 unsigned char *enonce2;
271 unsigned char *continueflag2;
272 unsigned char *authdata2;
273 unsigned char testhmac1[SHA1_DIGEST_SIZE];
274 unsigned char testhmac2[SHA1_DIGEST_SIZE];
275 unsigned char paramdigest[SHA1_DIGEST_SIZE];
276 struct sdesc *sdesc;
277 unsigned int dlen;
278 unsigned int dpos;
279 va_list argp;
280 int ret;
281
282 bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
283 tag = LOAD16(buffer, 0);
284 ordinal = command;
285 result = LOAD32N(buffer, TPM_RETURN_OFFSET);
286
287 if (tag == TPM_TAG_RSP_COMMAND)
288 return 0;
289 if (tag != TPM_TAG_RSP_AUTH2_COMMAND)
290 return -EINVAL;
291 authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1
292 + SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE);
293 authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE);
294 continueflag1 = authdata1 - 1;
295 continueflag2 = authdata2 - 1;
296 enonce1 = continueflag1 - TPM_NONCE_SIZE;
297 enonce2 = continueflag2 - TPM_NONCE_SIZE;
298
299 sdesc = init_sdesc(hashalg);
300 if (IS_ERR(sdesc)) {
301 pr_info("trusted_key: can't alloc %s\n", hash_alg);
302 return PTR_ERR(sdesc);
303 }
304 ret = crypto_shash_init(&sdesc->shash);
305 if (ret < 0)
306 goto out;
307 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
308 sizeof result);
309 if (ret < 0)
310 goto out;
311 ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
312 sizeof ordinal);
313 if (ret < 0)
314 goto out;
315
316 va_start(argp, keylen2);
317 for (;;) {
318 dlen = va_arg(argp, unsigned int);
319 if (dlen == 0)
320 break;
321 dpos = va_arg(argp, unsigned int);
322 ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
323 if (ret < 0)
324 break;
325 }
326 va_end(argp);
327 if (!ret)
328 ret = crypto_shash_final(&sdesc->shash, paramdigest);
329 if (ret < 0)
330 goto out;
331
332 ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE,
333 paramdigest, TPM_NONCE_SIZE, enonce1,
334 TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0);
335 if (ret < 0)
336 goto out;
337 if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) {
338 ret = -EINVAL;
339 goto out;
340 }
341 ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE,
342 paramdigest, TPM_NONCE_SIZE, enonce2,
343 TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0);
344 if (ret < 0)
345 goto out;
346 if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE))
347 ret = -EINVAL;
348 out:
349 kfree(sdesc);
350 return ret;
351 }
352
353 /*
354 * For key specific tpm requests, we will generate and send our
355 * own TPM command packets using the drivers send function.
356 */
357 static int trusted_tpm_send(const u32 chip_num, unsigned char *cmd,
358 size_t buflen)
359 {
360 int rc;
361
362 dump_tpm_buf(cmd);
363 rc = tpm_send(chip_num, cmd, buflen);
364 dump_tpm_buf(cmd);
365 if (rc > 0)
366 /* Can't return positive return codes values to keyctl */
367 rc = -EPERM;
368 return rc;
369 }
370
371 /*
372 * Lock a trusted key, by extending a selected PCR.
373 *
374 * Prevents a trusted key that is sealed to PCRs from being accessed.
375 * This uses the tpm driver's extend function.
376 */
377 static int pcrlock(const int pcrnum)
378 {
379 unsigned char hash[SHA1_DIGEST_SIZE];
380 int ret;
381
382 if (!capable(CAP_SYS_ADMIN))
383 return -EPERM;
384 ret = tpm_get_random(TPM_ANY_NUM, hash, SHA1_DIGEST_SIZE);
385 if (ret != SHA1_DIGEST_SIZE)
386 return ret;
387 return tpm_pcr_extend(TPM_ANY_NUM, pcrnum, hash) ? -EINVAL : 0;
388 }
389
390 /*
391 * Create an object specific authorisation protocol (OSAP) session
392 */
393 static int osap(struct tpm_buf *tb, struct osapsess *s,
394 const unsigned char *key, uint16_t type, uint32_t handle)
395 {
396 unsigned char enonce[TPM_NONCE_SIZE];
397 unsigned char ononce[TPM_NONCE_SIZE];
398 int ret;
399
400 ret = tpm_get_random(TPM_ANY_NUM, ononce, TPM_NONCE_SIZE);
401 if (ret != TPM_NONCE_SIZE)
402 return ret;
403
404 INIT_BUF(tb);
405 store16(tb, TPM_TAG_RQU_COMMAND);
406 store32(tb, TPM_OSAP_SIZE);
407 store32(tb, TPM_ORD_OSAP);
408 store16(tb, type);
409 store32(tb, handle);
410 storebytes(tb, ononce, TPM_NONCE_SIZE);
411
412 ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
413 if (ret < 0)
414 return ret;
415
416 s->handle = LOAD32(tb->data, TPM_DATA_OFFSET);
417 memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]),
418 TPM_NONCE_SIZE);
419 memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) +
420 TPM_NONCE_SIZE]), TPM_NONCE_SIZE);
421 return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE,
422 enonce, TPM_NONCE_SIZE, ononce, 0, 0);
423 }
424
425 /*
426 * Create an object independent authorisation protocol (oiap) session
427 */
428 static int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
429 {
430 int ret;
431
432 INIT_BUF(tb);
433 store16(tb, TPM_TAG_RQU_COMMAND);
434 store32(tb, TPM_OIAP_SIZE);
435 store32(tb, TPM_ORD_OIAP);
436 ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
437 if (ret < 0)
438 return ret;
439
440 *handle = LOAD32(tb->data, TPM_DATA_OFFSET);
441 memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)],
442 TPM_NONCE_SIZE);
443 return 0;
444 }
445
446 struct tpm_digests {
447 unsigned char encauth[SHA1_DIGEST_SIZE];
448 unsigned char pubauth[SHA1_DIGEST_SIZE];
449 unsigned char xorwork[SHA1_DIGEST_SIZE * 2];
450 unsigned char xorhash[SHA1_DIGEST_SIZE];
451 unsigned char nonceodd[TPM_NONCE_SIZE];
452 };
453
454 /*
455 * Have the TPM seal(encrypt) the trusted key, possibly based on
456 * Platform Configuration Registers (PCRs). AUTH1 for sealing key.
457 */
458 static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
459 uint32_t keyhandle, const unsigned char *keyauth,
460 const unsigned char *data, uint32_t datalen,
461 unsigned char *blob, uint32_t *bloblen,
462 const unsigned char *blobauth,
463 const unsigned char *pcrinfo, uint32_t pcrinfosize)
464 {
465 struct osapsess sess;
466 struct tpm_digests *td;
467 unsigned char cont;
468 uint32_t ordinal;
469 uint32_t pcrsize;
470 uint32_t datsize;
471 int sealinfosize;
472 int encdatasize;
473 int storedsize;
474 int ret;
475 int i;
476
477 /* alloc some work space for all the hashes */
478 td = kmalloc(sizeof *td, GFP_KERNEL);
479 if (!td)
480 return -ENOMEM;
481
482 /* get session for sealing key */
483 ret = osap(tb, &sess, keyauth, keytype, keyhandle);
484 if (ret < 0)
485 goto out;
486 dump_sess(&sess);
487
488 /* calculate encrypted authorization value */
489 memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE);
490 memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE);
491 ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash);
492 if (ret < 0)
493 goto out;
494
495 ret = tpm_get_random(TPM_ANY_NUM, td->nonceodd, TPM_NONCE_SIZE);
496 if (ret != TPM_NONCE_SIZE)
497 goto out;
498 ordinal = htonl(TPM_ORD_SEAL);
499 datsize = htonl(datalen);
500 pcrsize = htonl(pcrinfosize);
501 cont = 0;
502
503 /* encrypt data authorization key */
504 for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
505 td->encauth[i] = td->xorhash[i] ^ blobauth[i];
506
507 /* calculate authorization HMAC value */
508 if (pcrinfosize == 0) {
509 /* no pcr info specified */
510 ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
511 sess.enonce, td->nonceodd, cont,
512 sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
513 td->encauth, sizeof(uint32_t), &pcrsize,
514 sizeof(uint32_t), &datsize, datalen, data, 0,
515 0);
516 } else {
517 /* pcr info specified */
518 ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
519 sess.enonce, td->nonceodd, cont,
520 sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
521 td->encauth, sizeof(uint32_t), &pcrsize,
522 pcrinfosize, pcrinfo, sizeof(uint32_t),
523 &datsize, datalen, data, 0, 0);
524 }
525 if (ret < 0)
526 goto out;
527
528 /* build and send the TPM request packet */
529 INIT_BUF(tb);
530 store16(tb, TPM_TAG_RQU_AUTH1_COMMAND);
531 store32(tb, TPM_SEAL_SIZE + pcrinfosize + datalen);
532 store32(tb, TPM_ORD_SEAL);
533 store32(tb, keyhandle);
534 storebytes(tb, td->encauth, SHA1_DIGEST_SIZE);
535 store32(tb, pcrinfosize);
536 storebytes(tb, pcrinfo, pcrinfosize);
537 store32(tb, datalen);
538 storebytes(tb, data, datalen);
539 store32(tb, sess.handle);
540 storebytes(tb, td->nonceodd, TPM_NONCE_SIZE);
541 store8(tb, cont);
542 storebytes(tb, td->pubauth, SHA1_DIGEST_SIZE);
543
544 ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
545 if (ret < 0)
546 goto out;
547
548 /* calculate the size of the returned Blob */
549 sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t));
550 encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) +
551 sizeof(uint32_t) + sealinfosize);
552 storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize +
553 sizeof(uint32_t) + encdatasize;
554
555 /* check the HMAC in the response */
556 ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret,
557 SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0,
558 0);
559
560 /* copy the returned blob to caller */
561 if (!ret) {
562 memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize);
563 *bloblen = storedsize;
564 }
565 out:
566 kfree(td);
567 return ret;
568 }
569
570 /*
571 * use the AUTH2_COMMAND form of unseal, to authorize both key and blob
572 */
573 static int tpm_unseal(struct tpm_buf *tb,
574 uint32_t keyhandle, const unsigned char *keyauth,
575 const unsigned char *blob, int bloblen,
576 const unsigned char *blobauth,
577 unsigned char *data, unsigned int *datalen)
578 {
579 unsigned char nonceodd[TPM_NONCE_SIZE];
580 unsigned char enonce1[TPM_NONCE_SIZE];
581 unsigned char enonce2[TPM_NONCE_SIZE];
582 unsigned char authdata1[SHA1_DIGEST_SIZE];
583 unsigned char authdata2[SHA1_DIGEST_SIZE];
584 uint32_t authhandle1 = 0;
585 uint32_t authhandle2 = 0;
586 unsigned char cont = 0;
587 uint32_t ordinal;
588 uint32_t keyhndl;
589 int ret;
590
591 /* sessions for unsealing key and data */
592 ret = oiap(tb, &authhandle1, enonce1);
593 if (ret < 0) {
594 pr_info("trusted_key: oiap failed (%d)\n", ret);
595 return ret;
596 }
597 ret = oiap(tb, &authhandle2, enonce2);
598 if (ret < 0) {
599 pr_info("trusted_key: oiap failed (%d)\n", ret);
600 return ret;
601 }
602
603 ordinal = htonl(TPM_ORD_UNSEAL);
604 keyhndl = htonl(SRKHANDLE);
605 ret = tpm_get_random(TPM_ANY_NUM, nonceodd, TPM_NONCE_SIZE);
606 if (ret != TPM_NONCE_SIZE) {
607 pr_info("trusted_key: tpm_get_random failed (%d)\n", ret);
608 return ret;
609 }
610 ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE,
611 enonce1, nonceodd, cont, sizeof(uint32_t),
612 &ordinal, bloblen, blob, 0, 0);
613 if (ret < 0)
614 return ret;
615 ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE,
616 enonce2, nonceodd, cont, sizeof(uint32_t),
617 &ordinal, bloblen, blob, 0, 0);
618 if (ret < 0)
619 return ret;
620
621 /* build and send TPM request packet */
622 INIT_BUF(tb);
623 store16(tb, TPM_TAG_RQU_AUTH2_COMMAND);
624 store32(tb, TPM_UNSEAL_SIZE + bloblen);
625 store32(tb, TPM_ORD_UNSEAL);
626 store32(tb, keyhandle);
627 storebytes(tb, blob, bloblen);
628 store32(tb, authhandle1);
629 storebytes(tb, nonceodd, TPM_NONCE_SIZE);
630 store8(tb, cont);
631 storebytes(tb, authdata1, SHA1_DIGEST_SIZE);
632 store32(tb, authhandle2);
633 storebytes(tb, nonceodd, TPM_NONCE_SIZE);
634 store8(tb, cont);
635 storebytes(tb, authdata2, SHA1_DIGEST_SIZE);
636
637 ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
638 if (ret < 0) {
639 pr_info("trusted_key: authhmac failed (%d)\n", ret);
640 return ret;
641 }
642
643 *datalen = LOAD32(tb->data, TPM_DATA_OFFSET);
644 ret = TSS_checkhmac2(tb->data, ordinal, nonceodd,
645 keyauth, SHA1_DIGEST_SIZE,
646 blobauth, SHA1_DIGEST_SIZE,
647 sizeof(uint32_t), TPM_DATA_OFFSET,
648 *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0,
649 0);
650 if (ret < 0) {
651 pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret);
652 return ret;
653 }
654 memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen);
655 return 0;
656 }
657
658 /*
659 * Have the TPM seal(encrypt) the symmetric key
660 */
661 static int key_seal(struct trusted_key_payload *p,
662 struct trusted_key_options *o)
663 {
664 struct tpm_buf *tb;
665 int ret;
666
667 tb = kzalloc(sizeof *tb, GFP_KERNEL);
668 if (!tb)
669 return -ENOMEM;
670
671 /* include migratable flag at end of sealed key */
672 p->key[p->key_len] = p->migratable;
673
674 ret = tpm_seal(tb, o->keytype, o->keyhandle, o->keyauth,
675 p->key, p->key_len + 1, p->blob, &p->blob_len,
676 o->blobauth, o->pcrinfo, o->pcrinfo_len);
677 if (ret < 0)
678 pr_info("trusted_key: srkseal failed (%d)\n", ret);
679
680 kfree(tb);
681 return ret;
682 }
683
684 /*
685 * Have the TPM unseal(decrypt) the symmetric key
686 */
687 static int key_unseal(struct trusted_key_payload *p,
688 struct trusted_key_options *o)
689 {
690 struct tpm_buf *tb;
691 int ret;
692
693 tb = kzalloc(sizeof *tb, GFP_KERNEL);
694 if (!tb)
695 return -ENOMEM;
696
697 ret = tpm_unseal(tb, o->keyhandle, o->keyauth, p->blob, p->blob_len,
698 o->blobauth, p->key, &p->key_len);
699 if (ret < 0)
700 pr_info("trusted_key: srkunseal failed (%d)\n", ret);
701 else
702 /* pull migratable flag out of sealed key */
703 p->migratable = p->key[--p->key_len];
704
705 kfree(tb);
706 return ret;
707 }
708
709 enum {
710 Opt_err = -1,
711 Opt_new, Opt_load, Opt_update,
712 Opt_keyhandle, Opt_keyauth, Opt_blobauth,
713 Opt_pcrinfo, Opt_pcrlock, Opt_migratable
714 };
715
716 static const match_table_t key_tokens = {
717 {Opt_new, "new"},
718 {Opt_load, "load"},
719 {Opt_update, "update"},
720 {Opt_keyhandle, "keyhandle=%s"},
721 {Opt_keyauth, "keyauth=%s"},
722 {Opt_blobauth, "blobauth=%s"},
723 {Opt_pcrinfo, "pcrinfo=%s"},
724 {Opt_pcrlock, "pcrlock=%s"},
725 {Opt_migratable, "migratable=%s"},
726 {Opt_err, NULL}
727 };
728
729 /* can have zero or more token= options */
730 static int getoptions(char *c, struct trusted_key_payload *pay,
731 struct trusted_key_options *opt)
732 {
733 substring_t args[MAX_OPT_ARGS];
734 char *p = c;
735 int token;
736 int res;
737 unsigned long handle;
738 unsigned long lock;
739
740 while ((p = strsep(&c, " \t"))) {
741 if (*p == '\0' || *p == ' ' || *p == '\t')
742 continue;
743 token = match_token(p, key_tokens, args);
744
745 switch (token) {
746 case Opt_pcrinfo:
747 opt->pcrinfo_len = strlen(args[0].from) / 2;
748 if (opt->pcrinfo_len > MAX_PCRINFO_SIZE)
749 return -EINVAL;
750 res = hex2bin(opt->pcrinfo, args[0].from,
751 opt->pcrinfo_len);
752 if (res < 0)
753 return -EINVAL;
754 break;
755 case Opt_keyhandle:
756 res = kstrtoul(args[0].from, 16, &handle);
757 if (res < 0)
758 return -EINVAL;
759 opt->keytype = SEAL_keytype;
760 opt->keyhandle = handle;
761 break;
762 case Opt_keyauth:
763 if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
764 return -EINVAL;
765 res = hex2bin(opt->keyauth, args[0].from,
766 SHA1_DIGEST_SIZE);
767 if (res < 0)
768 return -EINVAL;
769 break;
770 case Opt_blobauth:
771 if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
772 return -EINVAL;
773 res = hex2bin(opt->blobauth, args[0].from,
774 SHA1_DIGEST_SIZE);
775 if (res < 0)
776 return -EINVAL;
777 break;
778 case Opt_migratable:
779 if (*args[0].from == '0')
780 pay->migratable = 0;
781 else
782 return -EINVAL;
783 break;
784 case Opt_pcrlock:
785 res = kstrtoul(args[0].from, 10, &lock);
786 if (res < 0)
787 return -EINVAL;
788 opt->pcrlock = lock;
789 break;
790 default:
791 return -EINVAL;
792 }
793 }
794 return 0;
795 }
796
797 /*
798 * datablob_parse - parse the keyctl data and fill in the
799 * payload and options structures
800 *
801 * On success returns 0, otherwise -EINVAL.
802 */
803 static int datablob_parse(char *datablob, struct trusted_key_payload *p,
804 struct trusted_key_options *o)
805 {
806 substring_t args[MAX_OPT_ARGS];
807 long keylen;
808 int ret = -EINVAL;
809 int key_cmd;
810 char *c;
811
812 /* main command */
813 c = strsep(&datablob, " \t");
814 if (!c)
815 return -EINVAL;
816 key_cmd = match_token(c, key_tokens, args);
817 switch (key_cmd) {
818 case Opt_new:
819 /* first argument is key size */
820 c = strsep(&datablob, " \t");
821 if (!c)
822 return -EINVAL;
823 ret = kstrtol(c, 10, &keylen);
824 if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
825 return -EINVAL;
826 p->key_len = keylen;
827 ret = getoptions(datablob, p, o);
828 if (ret < 0)
829 return ret;
830 ret = Opt_new;
831 break;
832 case Opt_load:
833 /* first argument is sealed blob */
834 c = strsep(&datablob, " \t");
835 if (!c)
836 return -EINVAL;
837 p->blob_len = strlen(c) / 2;
838 if (p->blob_len > MAX_BLOB_SIZE)
839 return -EINVAL;
840 ret = hex2bin(p->blob, c, p->blob_len);
841 if (ret < 0)
842 return -EINVAL;
843 ret = getoptions(datablob, p, o);
844 if (ret < 0)
845 return ret;
846 ret = Opt_load;
847 break;
848 case Opt_update:
849 /* all arguments are options */
850 ret = getoptions(datablob, p, o);
851 if (ret < 0)
852 return ret;
853 ret = Opt_update;
854 break;
855 case Opt_err:
856 return -EINVAL;
857 break;
858 }
859 return ret;
860 }
861
862 static struct trusted_key_options *trusted_options_alloc(void)
863 {
864 struct trusted_key_options *options;
865 int tpm2;
866
867 tpm2 = tpm_is_tpm2(TPM_ANY_NUM);
868 if (tpm2 < 0)
869 return NULL;
870
871 options = kzalloc(sizeof *options, GFP_KERNEL);
872 if (options) {
873 /* set any non-zero defaults */
874 options->keytype = SRK_keytype;
875
876 if (!tpm2)
877 options->keyhandle = SRKHANDLE;
878 }
879 return options;
880 }
881
882 static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
883 {
884 struct trusted_key_payload *p = NULL;
885 int ret;
886
887 ret = key_payload_reserve(key, sizeof *p);
888 if (ret < 0)
889 return p;
890 p = kzalloc(sizeof *p, GFP_KERNEL);
891 if (p)
892 p->migratable = 1; /* migratable by default */
893 return p;
894 }
895
896 /*
897 * trusted_instantiate - create a new trusted key
898 *
899 * Unseal an existing trusted blob or, for a new key, get a
900 * random key, then seal and create a trusted key-type key,
901 * adding it to the specified keyring.
902 *
903 * On success, return 0. Otherwise return errno.
904 */
905 static int trusted_instantiate(struct key *key,
906 struct key_preparsed_payload *prep)
907 {
908 struct trusted_key_payload *payload = NULL;
909 struct trusted_key_options *options = NULL;
910 size_t datalen = prep->datalen;
911 char *datablob;
912 int ret = 0;
913 int key_cmd;
914 size_t key_len;
915 int tpm2;
916
917 tpm2 = tpm_is_tpm2(TPM_ANY_NUM);
918 if (tpm2 < 0)
919 return tpm2;
920
921 if (datalen <= 0 || datalen > 32767 || !prep->data)
922 return -EINVAL;
923
924 datablob = kmalloc(datalen + 1, GFP_KERNEL);
925 if (!datablob)
926 return -ENOMEM;
927 memcpy(datablob, prep->data, datalen);
928 datablob[datalen] = '\0';
929
930 options = trusted_options_alloc();
931 if (!options) {
932 ret = -ENOMEM;
933 goto out;
934 }
935 payload = trusted_payload_alloc(key);
936 if (!payload) {
937 ret = -ENOMEM;
938 goto out;
939 }
940
941 key_cmd = datablob_parse(datablob, payload, options);
942 if (key_cmd < 0) {
943 ret = key_cmd;
944 goto out;
945 }
946
947 if (!options->keyhandle) {
948 ret = -EINVAL;
949 goto out;
950 }
951
952 dump_payload(payload);
953 dump_options(options);
954
955 switch (key_cmd) {
956 case Opt_load:
957 if (tpm2)
958 ret = tpm_unseal_trusted(TPM_ANY_NUM, payload, options);
959 else
960 ret = key_unseal(payload, options);
961 dump_payload(payload);
962 dump_options(options);
963 if (ret < 0)
964 pr_info("trusted_key: key_unseal failed (%d)\n", ret);
965 break;
966 case Opt_new:
967 key_len = payload->key_len;
968 ret = tpm_get_random(TPM_ANY_NUM, payload->key, key_len);
969 if (ret != key_len) {
970 pr_info("trusted_key: key_create failed (%d)\n", ret);
971 goto out;
972 }
973 if (tpm2)
974 ret = tpm_seal_trusted(TPM_ANY_NUM, payload, options);
975 else
976 ret = key_seal(payload, options);
977 if (ret < 0)
978 pr_info("trusted_key: key_seal failed (%d)\n", ret);
979 break;
980 default:
981 ret = -EINVAL;
982 goto out;
983 }
984 if (!ret && options->pcrlock)
985 ret = pcrlock(options->pcrlock);
986 out:
987 kfree(datablob);
988 kfree(options);
989 if (!ret)
990 rcu_assign_keypointer(key, payload);
991 else
992 kfree(payload);
993 return ret;
994 }
995
996 static void trusted_rcu_free(struct rcu_head *rcu)
997 {
998 struct trusted_key_payload *p;
999
1000 p = container_of(rcu, struct trusted_key_payload, rcu);
1001 memset(p->key, 0, p->key_len);
1002 kfree(p);
1003 }
1004
1005 /*
1006 * trusted_update - reseal an existing key with new PCR values
1007 */
1008 static int trusted_update(struct key *key, struct key_preparsed_payload *prep)
1009 {
1010 struct trusted_key_payload *p;
1011 struct trusted_key_payload *new_p;
1012 struct trusted_key_options *new_o;
1013 size_t datalen = prep->datalen;
1014 char *datablob;
1015 int ret = 0;
1016
1017 if (test_bit(KEY_FLAG_NEGATIVE, &key->flags))
1018 return -ENOKEY;
1019 p = key->payload.data[0];
1020 if (!p->migratable)
1021 return -EPERM;
1022 if (datalen <= 0 || datalen > 32767 || !prep->data)
1023 return -EINVAL;
1024
1025 datablob = kmalloc(datalen + 1, GFP_KERNEL);
1026 if (!datablob)
1027 return -ENOMEM;
1028 new_o = trusted_options_alloc();
1029 if (!new_o) {
1030 ret = -ENOMEM;
1031 goto out;
1032 }
1033 new_p = trusted_payload_alloc(key);
1034 if (!new_p) {
1035 ret = -ENOMEM;
1036 goto out;
1037 }
1038
1039 memcpy(datablob, prep->data, datalen);
1040 datablob[datalen] = '\0';
1041 ret = datablob_parse(datablob, new_p, new_o);
1042 if (ret != Opt_update) {
1043 ret = -EINVAL;
1044 kfree(new_p);
1045 goto out;
1046 }
1047
1048 if (!new_o->keyhandle) {
1049 ret = -EINVAL;
1050 kfree(new_p);
1051 goto out;
1052 }
1053
1054 /* copy old key values, and reseal with new pcrs */
1055 new_p->migratable = p->migratable;
1056 new_p->key_len = p->key_len;
1057 memcpy(new_p->key, p->key, p->key_len);
1058 dump_payload(p);
1059 dump_payload(new_p);
1060
1061 ret = key_seal(new_p, new_o);
1062 if (ret < 0) {
1063 pr_info("trusted_key: key_seal failed (%d)\n", ret);
1064 kfree(new_p);
1065 goto out;
1066 }
1067 if (new_o->pcrlock) {
1068 ret = pcrlock(new_o->pcrlock);
1069 if (ret < 0) {
1070 pr_info("trusted_key: pcrlock failed (%d)\n", ret);
1071 kfree(new_p);
1072 goto out;
1073 }
1074 }
1075 rcu_assign_keypointer(key, new_p);
1076 call_rcu(&p->rcu, trusted_rcu_free);
1077 out:
1078 kfree(datablob);
1079 kfree(new_o);
1080 return ret;
1081 }
1082
1083 /*
1084 * trusted_read - copy the sealed blob data to userspace in hex.
1085 * On success, return to userspace the trusted key datablob size.
1086 */
1087 static long trusted_read(const struct key *key, char __user *buffer,
1088 size_t buflen)
1089 {
1090 struct trusted_key_payload *p;
1091 char *ascii_buf;
1092 char *bufp;
1093 int i;
1094
1095 p = rcu_dereference_key(key);
1096 if (!p)
1097 return -EINVAL;
1098 if (!buffer || buflen <= 0)
1099 return 2 * p->blob_len;
1100 ascii_buf = kmalloc(2 * p->blob_len, GFP_KERNEL);
1101 if (!ascii_buf)
1102 return -ENOMEM;
1103
1104 bufp = ascii_buf;
1105 for (i = 0; i < p->blob_len; i++)
1106 bufp = hex_byte_pack(bufp, p->blob[i]);
1107 if ((copy_to_user(buffer, ascii_buf, 2 * p->blob_len)) != 0) {
1108 kfree(ascii_buf);
1109 return -EFAULT;
1110 }
1111 kfree(ascii_buf);
1112 return 2 * p->blob_len;
1113 }
1114
1115 /*
1116 * trusted_destroy - before freeing the key, clear the decrypted data
1117 */
1118 static void trusted_destroy(struct key *key)
1119 {
1120 struct trusted_key_payload *p = key->payload.data[0];
1121
1122 if (!p)
1123 return;
1124 memset(p->key, 0, p->key_len);
1125 kfree(key->payload.data[0]);
1126 }
1127
1128 struct key_type key_type_trusted = {
1129 .name = "trusted",
1130 .instantiate = trusted_instantiate,
1131 .update = trusted_update,
1132 .destroy = trusted_destroy,
1133 .describe = user_describe,
1134 .read = trusted_read,
1135 };
1136
1137 EXPORT_SYMBOL_GPL(key_type_trusted);
1138
1139 static void trusted_shash_release(void)
1140 {
1141 if (hashalg)
1142 crypto_free_shash(hashalg);
1143 if (hmacalg)
1144 crypto_free_shash(hmacalg);
1145 }
1146
1147 static int __init trusted_shash_alloc(void)
1148 {
1149 int ret;
1150
1151 hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
1152 if (IS_ERR(hmacalg)) {
1153 pr_info("trusted_key: could not allocate crypto %s\n",
1154 hmac_alg);
1155 return PTR_ERR(hmacalg);
1156 }
1157
1158 hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1159 if (IS_ERR(hashalg)) {
1160 pr_info("trusted_key: could not allocate crypto %s\n",
1161 hash_alg);
1162 ret = PTR_ERR(hashalg);
1163 goto hashalg_fail;
1164 }
1165
1166 return 0;
1167
1168 hashalg_fail:
1169 crypto_free_shash(hmacalg);
1170 return ret;
1171 }
1172
1173 static int __init init_trusted(void)
1174 {
1175 int ret;
1176
1177 ret = trusted_shash_alloc();
1178 if (ret < 0)
1179 return ret;
1180 ret = register_key_type(&key_type_trusted);
1181 if (ret < 0)
1182 trusted_shash_release();
1183 return ret;
1184 }
1185
1186 static void __exit cleanup_trusted(void)
1187 {
1188 trusted_shash_release();
1189 unregister_key_type(&key_type_trusted);
1190 }
1191
1192 late_initcall(init_trusted);
1193 module_exit(cleanup_trusted);
1194
1195 MODULE_LICENSE("GPL");