]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - security/security.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[mirror_ubuntu-artful-kernel.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20
21 /* things that live in dummy.c */
22 extern struct security_operations dummy_security_ops;
23 extern void security_fixup_ops(struct security_operations *ops);
24
25 struct security_operations *security_ops; /* Initialized to NULL */
26 unsigned long mmap_min_addr; /* 0 means no protection */
27
28 static inline int verify(struct security_operations *ops)
29 {
30 /* verify the security_operations structure exists */
31 if (!ops)
32 return -EINVAL;
33 security_fixup_ops(ops);
34 return 0;
35 }
36
37 static void __init do_security_initcalls(void)
38 {
39 initcall_t *call;
40 call = __security_initcall_start;
41 while (call < __security_initcall_end) {
42 (*call) ();
43 call++;
44 }
45 }
46
47 /**
48 * security_init - initializes the security framework
49 *
50 * This should be called early in the kernel initialization sequence.
51 */
52 int __init security_init(void)
53 {
54 printk(KERN_INFO "Security Framework initialized\n");
55
56 if (verify(&dummy_security_ops)) {
57 printk(KERN_ERR "%s could not verify "
58 "dummy_security_ops structure.\n", __FUNCTION__);
59 return -EIO;
60 }
61
62 security_ops = &dummy_security_ops;
63 do_security_initcalls();
64
65 return 0;
66 }
67
68 /**
69 * register_security - registers a security framework with the kernel
70 * @ops: a pointer to the struct security_options that is to be registered
71 *
72 * This function is to allow a security module to register itself with the
73 * kernel security subsystem. Some rudimentary checking is done on the @ops
74 * value passed to this function.
75 *
76 * If there is already a security module registered with the kernel,
77 * an error will be returned. Otherwise 0 is returned on success.
78 */
79 int register_security(struct security_operations *ops)
80 {
81 if (verify(ops)) {
82 printk(KERN_DEBUG "%s could not verify "
83 "security_operations structure.\n", __FUNCTION__);
84 return -EINVAL;
85 }
86
87 if (security_ops != &dummy_security_ops)
88 return -EAGAIN;
89
90 security_ops = ops;
91
92 return 0;
93 }
94
95 /**
96 * mod_reg_security - allows security modules to be "stacked"
97 * @name: a pointer to a string with the name of the security_options to be registered
98 * @ops: a pointer to the struct security_options that is to be registered
99 *
100 * This function allows security modules to be stacked if the currently loaded
101 * security module allows this to happen. It passes the @name and @ops to the
102 * register_security function of the currently loaded security module.
103 *
104 * The return value depends on the currently loaded security module, with 0 as
105 * success.
106 */
107 int mod_reg_security(const char *name, struct security_operations *ops)
108 {
109 if (verify(ops)) {
110 printk(KERN_INFO "%s could not verify "
111 "security operations.\n", __FUNCTION__);
112 return -EINVAL;
113 }
114
115 if (ops == security_ops) {
116 printk(KERN_INFO "%s security operations "
117 "already registered.\n", __FUNCTION__);
118 return -EINVAL;
119 }
120
121 return security_ops->register_security(name, ops);
122 }
123
124 /* Security operations */
125
126 int security_ptrace(struct task_struct *parent, struct task_struct *child)
127 {
128 return security_ops->ptrace(parent, child);
129 }
130
131 int security_capget(struct task_struct *target,
132 kernel_cap_t *effective,
133 kernel_cap_t *inheritable,
134 kernel_cap_t *permitted)
135 {
136 return security_ops->capget(target, effective, inheritable, permitted);
137 }
138
139 int security_capset_check(struct task_struct *target,
140 kernel_cap_t *effective,
141 kernel_cap_t *inheritable,
142 kernel_cap_t *permitted)
143 {
144 return security_ops->capset_check(target, effective, inheritable, permitted);
145 }
146
147 void security_capset_set(struct task_struct *target,
148 kernel_cap_t *effective,
149 kernel_cap_t *inheritable,
150 kernel_cap_t *permitted)
151 {
152 security_ops->capset_set(target, effective, inheritable, permitted);
153 }
154
155 int security_capable(struct task_struct *tsk, int cap)
156 {
157 return security_ops->capable(tsk, cap);
158 }
159
160 int security_acct(struct file *file)
161 {
162 return security_ops->acct(file);
163 }
164
165 int security_sysctl(struct ctl_table *table, int op)
166 {
167 return security_ops->sysctl(table, op);
168 }
169
170 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
171 {
172 return security_ops->quotactl(cmds, type, id, sb);
173 }
174
175 int security_quota_on(struct dentry *dentry)
176 {
177 return security_ops->quota_on(dentry);
178 }
179
180 int security_syslog(int type)
181 {
182 return security_ops->syslog(type);
183 }
184
185 int security_settime(struct timespec *ts, struct timezone *tz)
186 {
187 return security_ops->settime(ts, tz);
188 }
189
190 int security_vm_enough_memory(long pages)
191 {
192 return security_ops->vm_enough_memory(current->mm, pages);
193 }
194
195 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
196 {
197 return security_ops->vm_enough_memory(mm, pages);
198 }
199
200 int security_bprm_alloc(struct linux_binprm *bprm)
201 {
202 return security_ops->bprm_alloc_security(bprm);
203 }
204
205 void security_bprm_free(struct linux_binprm *bprm)
206 {
207 security_ops->bprm_free_security(bprm);
208 }
209
210 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
211 {
212 security_ops->bprm_apply_creds(bprm, unsafe);
213 }
214
215 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
216 {
217 security_ops->bprm_post_apply_creds(bprm);
218 }
219
220 int security_bprm_set(struct linux_binprm *bprm)
221 {
222 return security_ops->bprm_set_security(bprm);
223 }
224
225 int security_bprm_check(struct linux_binprm *bprm)
226 {
227 return security_ops->bprm_check_security(bprm);
228 }
229
230 int security_bprm_secureexec(struct linux_binprm *bprm)
231 {
232 return security_ops->bprm_secureexec(bprm);
233 }
234
235 int security_sb_alloc(struct super_block *sb)
236 {
237 return security_ops->sb_alloc_security(sb);
238 }
239
240 void security_sb_free(struct super_block *sb)
241 {
242 security_ops->sb_free_security(sb);
243 }
244
245 int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
246 {
247 return security_ops->sb_copy_data(type, orig, copy);
248 }
249
250 int security_sb_kern_mount(struct super_block *sb, void *data)
251 {
252 return security_ops->sb_kern_mount(sb, data);
253 }
254
255 int security_sb_statfs(struct dentry *dentry)
256 {
257 return security_ops->sb_statfs(dentry);
258 }
259
260 int security_sb_mount(char *dev_name, struct nameidata *nd,
261 char *type, unsigned long flags, void *data)
262 {
263 return security_ops->sb_mount(dev_name, nd, type, flags, data);
264 }
265
266 int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
267 {
268 return security_ops->sb_check_sb(mnt, nd);
269 }
270
271 int security_sb_umount(struct vfsmount *mnt, int flags)
272 {
273 return security_ops->sb_umount(mnt, flags);
274 }
275
276 void security_sb_umount_close(struct vfsmount *mnt)
277 {
278 security_ops->sb_umount_close(mnt);
279 }
280
281 void security_sb_umount_busy(struct vfsmount *mnt)
282 {
283 security_ops->sb_umount_busy(mnt);
284 }
285
286 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
287 {
288 security_ops->sb_post_remount(mnt, flags, data);
289 }
290
291 void security_sb_post_mountroot(void)
292 {
293 security_ops->sb_post_mountroot();
294 }
295
296 void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
297 {
298 security_ops->sb_post_addmount(mnt, mountpoint_nd);
299 }
300
301 int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
302 {
303 return security_ops->sb_pivotroot(old_nd, new_nd);
304 }
305
306 void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
307 {
308 security_ops->sb_post_pivotroot(old_nd, new_nd);
309 }
310
311 int security_inode_alloc(struct inode *inode)
312 {
313 inode->i_security = NULL;
314 return security_ops->inode_alloc_security(inode);
315 }
316
317 void security_inode_free(struct inode *inode)
318 {
319 security_ops->inode_free_security(inode);
320 }
321
322 int security_inode_init_security(struct inode *inode, struct inode *dir,
323 char **name, void **value, size_t *len)
324 {
325 if (unlikely(IS_PRIVATE(inode)))
326 return -EOPNOTSUPP;
327 return security_ops->inode_init_security(inode, dir, name, value, len);
328 }
329 EXPORT_SYMBOL(security_inode_init_security);
330
331 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
332 {
333 if (unlikely(IS_PRIVATE(dir)))
334 return 0;
335 return security_ops->inode_create(dir, dentry, mode);
336 }
337
338 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
339 struct dentry *new_dentry)
340 {
341 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
342 return 0;
343 return security_ops->inode_link(old_dentry, dir, new_dentry);
344 }
345
346 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
347 {
348 if (unlikely(IS_PRIVATE(dentry->d_inode)))
349 return 0;
350 return security_ops->inode_unlink(dir, dentry);
351 }
352
353 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
354 const char *old_name)
355 {
356 if (unlikely(IS_PRIVATE(dir)))
357 return 0;
358 return security_ops->inode_symlink(dir, dentry, old_name);
359 }
360
361 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
362 {
363 if (unlikely(IS_PRIVATE(dir)))
364 return 0;
365 return security_ops->inode_mkdir(dir, dentry, mode);
366 }
367
368 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
369 {
370 if (unlikely(IS_PRIVATE(dentry->d_inode)))
371 return 0;
372 return security_ops->inode_rmdir(dir, dentry);
373 }
374
375 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
376 {
377 if (unlikely(IS_PRIVATE(dir)))
378 return 0;
379 return security_ops->inode_mknod(dir, dentry, mode, dev);
380 }
381
382 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
383 struct inode *new_dir, struct dentry *new_dentry)
384 {
385 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
386 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
387 return 0;
388 return security_ops->inode_rename(old_dir, old_dentry,
389 new_dir, new_dentry);
390 }
391
392 int security_inode_readlink(struct dentry *dentry)
393 {
394 if (unlikely(IS_PRIVATE(dentry->d_inode)))
395 return 0;
396 return security_ops->inode_readlink(dentry);
397 }
398
399 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
400 {
401 if (unlikely(IS_PRIVATE(dentry->d_inode)))
402 return 0;
403 return security_ops->inode_follow_link(dentry, nd);
404 }
405
406 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
407 {
408 if (unlikely(IS_PRIVATE(inode)))
409 return 0;
410 return security_ops->inode_permission(inode, mask, nd);
411 }
412
413 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
414 {
415 if (unlikely(IS_PRIVATE(dentry->d_inode)))
416 return 0;
417 return security_ops->inode_setattr(dentry, attr);
418 }
419
420 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
421 {
422 if (unlikely(IS_PRIVATE(dentry->d_inode)))
423 return 0;
424 return security_ops->inode_getattr(mnt, dentry);
425 }
426
427 void security_inode_delete(struct inode *inode)
428 {
429 if (unlikely(IS_PRIVATE(inode)))
430 return;
431 security_ops->inode_delete(inode);
432 }
433
434 int security_inode_setxattr(struct dentry *dentry, char *name,
435 void *value, size_t size, int flags)
436 {
437 if (unlikely(IS_PRIVATE(dentry->d_inode)))
438 return 0;
439 return security_ops->inode_setxattr(dentry, name, value, size, flags);
440 }
441
442 void security_inode_post_setxattr(struct dentry *dentry, char *name,
443 void *value, size_t size, int flags)
444 {
445 if (unlikely(IS_PRIVATE(dentry->d_inode)))
446 return;
447 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
448 }
449
450 int security_inode_getxattr(struct dentry *dentry, char *name)
451 {
452 if (unlikely(IS_PRIVATE(dentry->d_inode)))
453 return 0;
454 return security_ops->inode_getxattr(dentry, name);
455 }
456
457 int security_inode_listxattr(struct dentry *dentry)
458 {
459 if (unlikely(IS_PRIVATE(dentry->d_inode)))
460 return 0;
461 return security_ops->inode_listxattr(dentry);
462 }
463
464 int security_inode_removexattr(struct dentry *dentry, char *name)
465 {
466 if (unlikely(IS_PRIVATE(dentry->d_inode)))
467 return 0;
468 return security_ops->inode_removexattr(dentry, name);
469 }
470
471 int security_inode_need_killpriv(struct dentry *dentry)
472 {
473 return security_ops->inode_need_killpriv(dentry);
474 }
475
476 int security_inode_killpriv(struct dentry *dentry)
477 {
478 return security_ops->inode_killpriv(dentry);
479 }
480
481 int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
482 {
483 if (unlikely(IS_PRIVATE(inode)))
484 return 0;
485 return security_ops->inode_getsecurity(inode, name, buffer, size, err);
486 }
487
488 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
489 {
490 if (unlikely(IS_PRIVATE(inode)))
491 return 0;
492 return security_ops->inode_setsecurity(inode, name, value, size, flags);
493 }
494
495 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
496 {
497 if (unlikely(IS_PRIVATE(inode)))
498 return 0;
499 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
500 }
501
502 int security_file_permission(struct file *file, int mask)
503 {
504 return security_ops->file_permission(file, mask);
505 }
506
507 int security_file_alloc(struct file *file)
508 {
509 return security_ops->file_alloc_security(file);
510 }
511
512 void security_file_free(struct file *file)
513 {
514 security_ops->file_free_security(file);
515 }
516
517 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
518 {
519 return security_ops->file_ioctl(file, cmd, arg);
520 }
521
522 int security_file_mmap(struct file *file, unsigned long reqprot,
523 unsigned long prot, unsigned long flags,
524 unsigned long addr, unsigned long addr_only)
525 {
526 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
527 }
528
529 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
530 unsigned long prot)
531 {
532 return security_ops->file_mprotect(vma, reqprot, prot);
533 }
534
535 int security_file_lock(struct file *file, unsigned int cmd)
536 {
537 return security_ops->file_lock(file, cmd);
538 }
539
540 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
541 {
542 return security_ops->file_fcntl(file, cmd, arg);
543 }
544
545 int security_file_set_fowner(struct file *file)
546 {
547 return security_ops->file_set_fowner(file);
548 }
549
550 int security_file_send_sigiotask(struct task_struct *tsk,
551 struct fown_struct *fown, int sig)
552 {
553 return security_ops->file_send_sigiotask(tsk, fown, sig);
554 }
555
556 int security_file_receive(struct file *file)
557 {
558 return security_ops->file_receive(file);
559 }
560
561 int security_dentry_open(struct file *file)
562 {
563 return security_ops->dentry_open(file);
564 }
565
566 int security_task_create(unsigned long clone_flags)
567 {
568 return security_ops->task_create(clone_flags);
569 }
570
571 int security_task_alloc(struct task_struct *p)
572 {
573 return security_ops->task_alloc_security(p);
574 }
575
576 void security_task_free(struct task_struct *p)
577 {
578 security_ops->task_free_security(p);
579 }
580
581 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
582 {
583 return security_ops->task_setuid(id0, id1, id2, flags);
584 }
585
586 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
587 uid_t old_suid, int flags)
588 {
589 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
590 }
591
592 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
593 {
594 return security_ops->task_setgid(id0, id1, id2, flags);
595 }
596
597 int security_task_setpgid(struct task_struct *p, pid_t pgid)
598 {
599 return security_ops->task_setpgid(p, pgid);
600 }
601
602 int security_task_getpgid(struct task_struct *p)
603 {
604 return security_ops->task_getpgid(p);
605 }
606
607 int security_task_getsid(struct task_struct *p)
608 {
609 return security_ops->task_getsid(p);
610 }
611
612 void security_task_getsecid(struct task_struct *p, u32 *secid)
613 {
614 security_ops->task_getsecid(p, secid);
615 }
616 EXPORT_SYMBOL(security_task_getsecid);
617
618 int security_task_setgroups(struct group_info *group_info)
619 {
620 return security_ops->task_setgroups(group_info);
621 }
622
623 int security_task_setnice(struct task_struct *p, int nice)
624 {
625 return security_ops->task_setnice(p, nice);
626 }
627
628 int security_task_setioprio(struct task_struct *p, int ioprio)
629 {
630 return security_ops->task_setioprio(p, ioprio);
631 }
632
633 int security_task_getioprio(struct task_struct *p)
634 {
635 return security_ops->task_getioprio(p);
636 }
637
638 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
639 {
640 return security_ops->task_setrlimit(resource, new_rlim);
641 }
642
643 int security_task_setscheduler(struct task_struct *p,
644 int policy, struct sched_param *lp)
645 {
646 return security_ops->task_setscheduler(p, policy, lp);
647 }
648
649 int security_task_getscheduler(struct task_struct *p)
650 {
651 return security_ops->task_getscheduler(p);
652 }
653
654 int security_task_movememory(struct task_struct *p)
655 {
656 return security_ops->task_movememory(p);
657 }
658
659 int security_task_kill(struct task_struct *p, struct siginfo *info,
660 int sig, u32 secid)
661 {
662 return security_ops->task_kill(p, info, sig, secid);
663 }
664
665 int security_task_wait(struct task_struct *p)
666 {
667 return security_ops->task_wait(p);
668 }
669
670 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
671 unsigned long arg4, unsigned long arg5)
672 {
673 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
674 }
675
676 void security_task_reparent_to_init(struct task_struct *p)
677 {
678 security_ops->task_reparent_to_init(p);
679 }
680
681 void security_task_to_inode(struct task_struct *p, struct inode *inode)
682 {
683 security_ops->task_to_inode(p, inode);
684 }
685
686 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
687 {
688 return security_ops->ipc_permission(ipcp, flag);
689 }
690
691 int security_msg_msg_alloc(struct msg_msg *msg)
692 {
693 return security_ops->msg_msg_alloc_security(msg);
694 }
695
696 void security_msg_msg_free(struct msg_msg *msg)
697 {
698 security_ops->msg_msg_free_security(msg);
699 }
700
701 int security_msg_queue_alloc(struct msg_queue *msq)
702 {
703 return security_ops->msg_queue_alloc_security(msq);
704 }
705
706 void security_msg_queue_free(struct msg_queue *msq)
707 {
708 security_ops->msg_queue_free_security(msq);
709 }
710
711 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
712 {
713 return security_ops->msg_queue_associate(msq, msqflg);
714 }
715
716 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
717 {
718 return security_ops->msg_queue_msgctl(msq, cmd);
719 }
720
721 int security_msg_queue_msgsnd(struct msg_queue *msq,
722 struct msg_msg *msg, int msqflg)
723 {
724 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
725 }
726
727 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
728 struct task_struct *target, long type, int mode)
729 {
730 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
731 }
732
733 int security_shm_alloc(struct shmid_kernel *shp)
734 {
735 return security_ops->shm_alloc_security(shp);
736 }
737
738 void security_shm_free(struct shmid_kernel *shp)
739 {
740 security_ops->shm_free_security(shp);
741 }
742
743 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
744 {
745 return security_ops->shm_associate(shp, shmflg);
746 }
747
748 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
749 {
750 return security_ops->shm_shmctl(shp, cmd);
751 }
752
753 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
754 {
755 return security_ops->shm_shmat(shp, shmaddr, shmflg);
756 }
757
758 int security_sem_alloc(struct sem_array *sma)
759 {
760 return security_ops->sem_alloc_security(sma);
761 }
762
763 void security_sem_free(struct sem_array *sma)
764 {
765 security_ops->sem_free_security(sma);
766 }
767
768 int security_sem_associate(struct sem_array *sma, int semflg)
769 {
770 return security_ops->sem_associate(sma, semflg);
771 }
772
773 int security_sem_semctl(struct sem_array *sma, int cmd)
774 {
775 return security_ops->sem_semctl(sma, cmd);
776 }
777
778 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
779 unsigned nsops, int alter)
780 {
781 return security_ops->sem_semop(sma, sops, nsops, alter);
782 }
783
784 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
785 {
786 if (unlikely(inode && IS_PRIVATE(inode)))
787 return;
788 security_ops->d_instantiate(dentry, inode);
789 }
790 EXPORT_SYMBOL(security_d_instantiate);
791
792 int security_getprocattr(struct task_struct *p, char *name, char **value)
793 {
794 return security_ops->getprocattr(p, name, value);
795 }
796
797 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
798 {
799 return security_ops->setprocattr(p, name, value, size);
800 }
801
802 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
803 {
804 return security_ops->netlink_send(sk, skb);
805 }
806
807 int security_netlink_recv(struct sk_buff *skb, int cap)
808 {
809 return security_ops->netlink_recv(skb, cap);
810 }
811 EXPORT_SYMBOL(security_netlink_recv);
812
813 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
814 {
815 return security_ops->secid_to_secctx(secid, secdata, seclen);
816 }
817 EXPORT_SYMBOL(security_secid_to_secctx);
818
819 void security_release_secctx(char *secdata, u32 seclen)
820 {
821 return security_ops->release_secctx(secdata, seclen);
822 }
823 EXPORT_SYMBOL(security_release_secctx);
824
825 #ifdef CONFIG_SECURITY_NETWORK
826
827 int security_unix_stream_connect(struct socket *sock, struct socket *other,
828 struct sock *newsk)
829 {
830 return security_ops->unix_stream_connect(sock, other, newsk);
831 }
832 EXPORT_SYMBOL(security_unix_stream_connect);
833
834 int security_unix_may_send(struct socket *sock, struct socket *other)
835 {
836 return security_ops->unix_may_send(sock, other);
837 }
838 EXPORT_SYMBOL(security_unix_may_send);
839
840 int security_socket_create(int family, int type, int protocol, int kern)
841 {
842 return security_ops->socket_create(family, type, protocol, kern);
843 }
844
845 int security_socket_post_create(struct socket *sock, int family,
846 int type, int protocol, int kern)
847 {
848 return security_ops->socket_post_create(sock, family, type,
849 protocol, kern);
850 }
851
852 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
853 {
854 return security_ops->socket_bind(sock, address, addrlen);
855 }
856
857 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
858 {
859 return security_ops->socket_connect(sock, address, addrlen);
860 }
861
862 int security_socket_listen(struct socket *sock, int backlog)
863 {
864 return security_ops->socket_listen(sock, backlog);
865 }
866
867 int security_socket_accept(struct socket *sock, struct socket *newsock)
868 {
869 return security_ops->socket_accept(sock, newsock);
870 }
871
872 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
873 {
874 security_ops->socket_post_accept(sock, newsock);
875 }
876
877 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
878 {
879 return security_ops->socket_sendmsg(sock, msg, size);
880 }
881
882 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
883 int size, int flags)
884 {
885 return security_ops->socket_recvmsg(sock, msg, size, flags);
886 }
887
888 int security_socket_getsockname(struct socket *sock)
889 {
890 return security_ops->socket_getsockname(sock);
891 }
892
893 int security_socket_getpeername(struct socket *sock)
894 {
895 return security_ops->socket_getpeername(sock);
896 }
897
898 int security_socket_getsockopt(struct socket *sock, int level, int optname)
899 {
900 return security_ops->socket_getsockopt(sock, level, optname);
901 }
902
903 int security_socket_setsockopt(struct socket *sock, int level, int optname)
904 {
905 return security_ops->socket_setsockopt(sock, level, optname);
906 }
907
908 int security_socket_shutdown(struct socket *sock, int how)
909 {
910 return security_ops->socket_shutdown(sock, how);
911 }
912
913 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
914 {
915 return security_ops->socket_sock_rcv_skb(sk, skb);
916 }
917 EXPORT_SYMBOL(security_sock_rcv_skb);
918
919 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
920 int __user *optlen, unsigned len)
921 {
922 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
923 }
924
925 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
926 {
927 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
928 }
929 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
930
931 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
932 {
933 return security_ops->sk_alloc_security(sk, family, priority);
934 }
935
936 void security_sk_free(struct sock *sk)
937 {
938 return security_ops->sk_free_security(sk);
939 }
940
941 void security_sk_clone(const struct sock *sk, struct sock *newsk)
942 {
943 return security_ops->sk_clone_security(sk, newsk);
944 }
945
946 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
947 {
948 security_ops->sk_getsecid(sk, &fl->secid);
949 }
950 EXPORT_SYMBOL(security_sk_classify_flow);
951
952 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
953 {
954 security_ops->req_classify_flow(req, fl);
955 }
956 EXPORT_SYMBOL(security_req_classify_flow);
957
958 void security_sock_graft(struct sock *sk, struct socket *parent)
959 {
960 security_ops->sock_graft(sk, parent);
961 }
962 EXPORT_SYMBOL(security_sock_graft);
963
964 int security_inet_conn_request(struct sock *sk,
965 struct sk_buff *skb, struct request_sock *req)
966 {
967 return security_ops->inet_conn_request(sk, skb, req);
968 }
969 EXPORT_SYMBOL(security_inet_conn_request);
970
971 void security_inet_csk_clone(struct sock *newsk,
972 const struct request_sock *req)
973 {
974 security_ops->inet_csk_clone(newsk, req);
975 }
976
977 void security_inet_conn_established(struct sock *sk,
978 struct sk_buff *skb)
979 {
980 security_ops->inet_conn_established(sk, skb);
981 }
982
983 #endif /* CONFIG_SECURITY_NETWORK */
984
985 #ifdef CONFIG_SECURITY_NETWORK_XFRM
986
987 int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
988 {
989 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
990 }
991 EXPORT_SYMBOL(security_xfrm_policy_alloc);
992
993 int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
994 {
995 return security_ops->xfrm_policy_clone_security(old, new);
996 }
997
998 void security_xfrm_policy_free(struct xfrm_policy *xp)
999 {
1000 security_ops->xfrm_policy_free_security(xp);
1001 }
1002 EXPORT_SYMBOL(security_xfrm_policy_free);
1003
1004 int security_xfrm_policy_delete(struct xfrm_policy *xp)
1005 {
1006 return security_ops->xfrm_policy_delete_security(xp);
1007 }
1008
1009 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1010 {
1011 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1012 }
1013 EXPORT_SYMBOL(security_xfrm_state_alloc);
1014
1015 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1016 struct xfrm_sec_ctx *polsec, u32 secid)
1017 {
1018 if (!polsec)
1019 return 0;
1020 /*
1021 * We want the context to be taken from secid which is usually
1022 * from the sock.
1023 */
1024 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1025 }
1026
1027 int security_xfrm_state_delete(struct xfrm_state *x)
1028 {
1029 return security_ops->xfrm_state_delete_security(x);
1030 }
1031 EXPORT_SYMBOL(security_xfrm_state_delete);
1032
1033 void security_xfrm_state_free(struct xfrm_state *x)
1034 {
1035 security_ops->xfrm_state_free_security(x);
1036 }
1037
1038 int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
1039 {
1040 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
1041 }
1042
1043 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1044 struct xfrm_policy *xp, struct flowi *fl)
1045 {
1046 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1047 }
1048
1049 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1050 {
1051 return security_ops->xfrm_decode_session(skb, secid, 1);
1052 }
1053
1054 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1055 {
1056 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1057
1058 BUG_ON(rc);
1059 }
1060 EXPORT_SYMBOL(security_skb_classify_flow);
1061
1062 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1063
1064 #ifdef CONFIG_KEYS
1065
1066 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1067 {
1068 return security_ops->key_alloc(key, tsk, flags);
1069 }
1070
1071 void security_key_free(struct key *key)
1072 {
1073 security_ops->key_free(key);
1074 }
1075
1076 int security_key_permission(key_ref_t key_ref,
1077 struct task_struct *context, key_perm_t perm)
1078 {
1079 return security_ops->key_permission(key_ref, context, perm);
1080 }
1081
1082 #endif /* CONFIG_KEYS */