]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - security/security.c
UBUNTU: SAUCE: LSM: Use lsmblob in security_audit_rule_match
[mirror_ubuntu-jammy-kernel.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32 #include <net/sock.h>
33
34 #define MAX_LSM_EVM_XATTR 2
35
36 /* How many LSMs were built into the kernel? */
37 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
38
39 /*
40 * These are descriptions of the reasons that can be passed to the
41 * security_locked_down() LSM hook. Placing this array here allows
42 * all security modules to use the same descriptions for auditing
43 * purposes.
44 */
45 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
46 [LOCKDOWN_NONE] = "none",
47 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
48 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
49 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
50 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
51 [LOCKDOWN_HIBERNATION] = "hibernation",
52 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
53 [LOCKDOWN_IOPORT] = "raw io port access",
54 [LOCKDOWN_MSR] = "raw MSR access",
55 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
56 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
57 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
58 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
59 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
60 [LOCKDOWN_DEBUGFS] = "debugfs access",
61 [LOCKDOWN_XMON_WR] = "xmon write access",
62 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
63 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
64 [LOCKDOWN_KCORE] = "/proc/kcore access",
65 [LOCKDOWN_KPROBES] = "use of kprobes",
66 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
67 [LOCKDOWN_PERF] = "unsafe use of perf",
68 [LOCKDOWN_TRACEFS] = "use of tracefs",
69 [LOCKDOWN_XMON_RW] = "xmon read and write access",
70 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
71 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
72 };
73
74 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
75 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
76
77 static struct kmem_cache *lsm_file_cache;
78 static struct kmem_cache *lsm_inode_cache;
79
80 char *lsm_names;
81 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
82
83 /* Boot-time LSM user choice */
84 static __initdata const char *chosen_lsm_order;
85 static __initdata const char *chosen_major_lsm;
86
87 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
88
89 /* Ordered list of LSMs to initialize. */
90 static __initdata struct lsm_info **ordered_lsms;
91 static __initdata struct lsm_info *exclusive;
92
93 static __initdata bool debug;
94 #define init_debug(...) \
95 do { \
96 if (debug) \
97 pr_info(__VA_ARGS__); \
98 } while (0)
99
100 static bool __init is_enabled(struct lsm_info *lsm)
101 {
102 if (!lsm->enabled)
103 return false;
104
105 return *lsm->enabled;
106 }
107
108 /* Mark an LSM's enabled flag. */
109 static int lsm_enabled_true __initdata = 1;
110 static int lsm_enabled_false __initdata = 0;
111 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
112 {
113 /*
114 * When an LSM hasn't configured an enable variable, we can use
115 * a hard-coded location for storing the default enabled state.
116 */
117 if (!lsm->enabled) {
118 if (enabled)
119 lsm->enabled = &lsm_enabled_true;
120 else
121 lsm->enabled = &lsm_enabled_false;
122 } else if (lsm->enabled == &lsm_enabled_true) {
123 if (!enabled)
124 lsm->enabled = &lsm_enabled_false;
125 } else if (lsm->enabled == &lsm_enabled_false) {
126 if (enabled)
127 lsm->enabled = &lsm_enabled_true;
128 } else {
129 *lsm->enabled = enabled;
130 }
131 }
132
133 /* Is an LSM already listed in the ordered LSMs list? */
134 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
135 {
136 struct lsm_info **check;
137
138 for (check = ordered_lsms; *check; check++)
139 if (*check == lsm)
140 return true;
141
142 return false;
143 }
144
145 /* Append an LSM to the list of ordered LSMs to initialize. */
146 static int last_lsm __initdata;
147 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
148 {
149 /* Ignore duplicate selections. */
150 if (exists_ordered_lsm(lsm))
151 return;
152
153 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
154 return;
155
156 /* Enable this LSM, if it is not already set. */
157 if (!lsm->enabled)
158 lsm->enabled = &lsm_enabled_true;
159 ordered_lsms[last_lsm++] = lsm;
160
161 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
162 is_enabled(lsm) ? "en" : "dis");
163 }
164
165 /* Is an LSM allowed to be initialized? */
166 static bool __init lsm_allowed(struct lsm_info *lsm)
167 {
168 /* Skip if the LSM is disabled. */
169 if (!is_enabled(lsm))
170 return false;
171
172 /* Not allowed if another exclusive LSM already initialized. */
173 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
174 init_debug("exclusive disabled: %s\n", lsm->name);
175 return false;
176 }
177
178 return true;
179 }
180
181 static void __init lsm_set_blob_size(int *need, int *lbs)
182 {
183 int offset;
184
185 if (*need > 0) {
186 offset = *lbs;
187 *lbs += *need;
188 *need = offset;
189 }
190 }
191
192 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
193 {
194 if (!needed)
195 return;
196
197 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
198 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
199 /*
200 * The inode blob gets an rcu_head in addition to
201 * what the modules might need.
202 */
203 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
204 blob_sizes.lbs_inode = sizeof(struct rcu_head);
205 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
206 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
207 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
208 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
209 lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
210 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
211 }
212
213 /* Prepare LSM for initialization. */
214 static void __init prepare_lsm(struct lsm_info *lsm)
215 {
216 int enabled = lsm_allowed(lsm);
217
218 /* Record enablement (to handle any following exclusive LSMs). */
219 set_enabled(lsm, enabled);
220
221 /* If enabled, do pre-initialization work. */
222 if (enabled) {
223 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
224 exclusive = lsm;
225 init_debug("exclusive chosen: %s\n", lsm->name);
226 }
227
228 lsm_set_blob_sizes(lsm->blobs);
229 }
230 }
231
232 /* Initialize a given LSM, if it is enabled. */
233 static void __init initialize_lsm(struct lsm_info *lsm)
234 {
235 if (is_enabled(lsm)) {
236 int ret;
237
238 init_debug("initializing %s\n", lsm->name);
239 ret = lsm->init();
240 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
241 }
242 }
243
244 /* Populate ordered LSMs list from comma-separated LSM name list. */
245 static void __init ordered_lsm_parse(const char *order, const char *origin)
246 {
247 struct lsm_info *lsm;
248 char *sep, *name, *next;
249
250 /* LSM_ORDER_FIRST is always first. */
251 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
252 if (lsm->order == LSM_ORDER_FIRST)
253 append_ordered_lsm(lsm, "first");
254 }
255
256 /* Process "security=", if given. */
257 if (chosen_major_lsm) {
258 struct lsm_info *major;
259
260 /*
261 * To match the original "security=" behavior, this
262 * explicitly does NOT fallback to another Legacy Major
263 * if the selected one was separately disabled: disable
264 * all non-matching Legacy Major LSMs.
265 */
266 for (major = __start_lsm_info; major < __end_lsm_info;
267 major++) {
268 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
269 strcmp(major->name, chosen_major_lsm) != 0) {
270 set_enabled(major, false);
271 init_debug("security=%s disabled: %s\n",
272 chosen_major_lsm, major->name);
273 }
274 }
275 }
276
277 sep = kstrdup(order, GFP_KERNEL);
278 next = sep;
279 /* Walk the list, looking for matching LSMs. */
280 while ((name = strsep(&next, ",")) != NULL) {
281 bool found = false;
282
283 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
284 if (lsm->order == LSM_ORDER_MUTABLE &&
285 strcmp(lsm->name, name) == 0) {
286 append_ordered_lsm(lsm, origin);
287 found = true;
288 }
289 }
290
291 if (!found)
292 init_debug("%s ignored: %s\n", origin, name);
293 }
294
295 /* Process "security=", if given. */
296 if (chosen_major_lsm) {
297 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
298 if (exists_ordered_lsm(lsm))
299 continue;
300 if (strcmp(lsm->name, chosen_major_lsm) == 0)
301 append_ordered_lsm(lsm, "security=");
302 }
303 }
304
305 /* Disable all LSMs not in the ordered list. */
306 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
307 if (exists_ordered_lsm(lsm))
308 continue;
309 set_enabled(lsm, false);
310 init_debug("%s disabled: %s\n", origin, lsm->name);
311 }
312
313 kfree(sep);
314 }
315
316 static void __init lsm_early_cred(struct cred *cred);
317 static void __init lsm_early_task(struct task_struct *task);
318
319 static int lsm_append(const char *new, char **result);
320
321 static void __init ordered_lsm_init(void)
322 {
323 struct lsm_info **lsm;
324
325 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
326 GFP_KERNEL);
327
328 if (chosen_lsm_order) {
329 if (chosen_major_lsm) {
330 pr_info("security= is ignored because it is superseded by lsm=\n");
331 chosen_major_lsm = NULL;
332 }
333 ordered_lsm_parse(chosen_lsm_order, "cmdline");
334 } else
335 ordered_lsm_parse(builtin_lsm_order, "builtin");
336
337 for (lsm = ordered_lsms; *lsm; lsm++)
338 prepare_lsm(*lsm);
339
340 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
341 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
342 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
343 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
344 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
345 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
346 init_debug("sock blob size = %d\n", blob_sizes.lbs_sock);
347 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
348 init_debug("lsmblob size = %zu\n", sizeof(struct lsmblob));
349
350 /*
351 * Create any kmem_caches needed for blobs
352 */
353 if (blob_sizes.lbs_file)
354 lsm_file_cache = kmem_cache_create("lsm_file_cache",
355 blob_sizes.lbs_file, 0,
356 SLAB_PANIC, NULL);
357 if (blob_sizes.lbs_inode)
358 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
359 blob_sizes.lbs_inode, 0,
360 SLAB_PANIC, NULL);
361
362 lsm_early_cred((struct cred *) current->cred);
363 lsm_early_task(current);
364 for (lsm = ordered_lsms; *lsm; lsm++)
365 initialize_lsm(*lsm);
366
367 kfree(ordered_lsms);
368 }
369
370 int __init early_security_init(void)
371 {
372 int i;
373 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
374 struct lsm_info *lsm;
375
376 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
377 i++)
378 INIT_HLIST_HEAD(&list[i]);
379
380 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
381 if (!lsm->enabled)
382 lsm->enabled = &lsm_enabled_true;
383 prepare_lsm(lsm);
384 initialize_lsm(lsm);
385 }
386
387 return 0;
388 }
389
390 /**
391 * security_init - initializes the security framework
392 *
393 * This should be called early in the kernel initialization sequence.
394 */
395 int __init security_init(void)
396 {
397 struct lsm_info *lsm;
398
399 pr_info("Security Framework initializing\n");
400
401 /*
402 * Append the names of the early LSM modules now that kmalloc() is
403 * available
404 */
405 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
406 if (lsm->enabled)
407 lsm_append(lsm->name, &lsm_names);
408 }
409
410 /* Load LSMs in specified order. */
411 ordered_lsm_init();
412
413 return 0;
414 }
415
416 /* Save user chosen LSM */
417 static int __init choose_major_lsm(char *str)
418 {
419 chosen_major_lsm = str;
420 return 1;
421 }
422 __setup("security=", choose_major_lsm);
423
424 /* Explicitly choose LSM initialization order. */
425 static int __init choose_lsm_order(char *str)
426 {
427 chosen_lsm_order = str;
428 return 1;
429 }
430 __setup("lsm=", choose_lsm_order);
431
432 /* Enable LSM order debugging. */
433 static int __init enable_debug(char *str)
434 {
435 debug = true;
436 return 1;
437 }
438 __setup("lsm.debug", enable_debug);
439
440 static bool match_last_lsm(const char *list, const char *lsm)
441 {
442 const char *last;
443
444 if (WARN_ON(!list || !lsm))
445 return false;
446 last = strrchr(list, ',');
447 if (last)
448 /* Pass the comma, strcmp() will check for '\0' */
449 last++;
450 else
451 last = list;
452 return !strcmp(last, lsm);
453 }
454
455 static int lsm_append(const char *new, char **result)
456 {
457 char *cp;
458
459 if (*result == NULL) {
460 *result = kstrdup(new, GFP_KERNEL);
461 if (*result == NULL)
462 return -ENOMEM;
463 } else {
464 /* Check if it is the last registered name */
465 if (match_last_lsm(*result, new))
466 return 0;
467 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
468 if (cp == NULL)
469 return -ENOMEM;
470 kfree(*result);
471 *result = cp;
472 }
473 return 0;
474 }
475
476 /*
477 * Current index to use while initializing the lsmblob secid list.
478 */
479 static int lsm_slot __lsm_ro_after_init;
480
481 /**
482 * security_add_hooks - Add a modules hooks to the hook lists.
483 * @hooks: the hooks to add
484 * @count: the number of hooks to add
485 * @lsmid: the the identification information for the security module
486 *
487 * Each LSM has to register its hooks with the infrastructure.
488 * If the LSM is using hooks that export secids allocate a slot
489 * for it in the lsmblob.
490 */
491 void __init security_add_hooks(struct security_hook_list *hooks, int count,
492 struct lsm_id *lsmid)
493 {
494 int i;
495
496 if (lsmid->slot == LSMBLOB_NEEDED) {
497 if (lsm_slot >= LSMBLOB_ENTRIES)
498 panic("%s Too many LSMs registered.\n", __func__);
499 lsmid->slot = lsm_slot++;
500 init_debug("%s assigned lsmblob slot %d\n", lsmid->lsm,
501 lsmid->slot);
502 }
503
504 for (i = 0; i < count; i++) {
505 hooks[i].lsmid = lsmid;
506 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
507 }
508
509 /*
510 * Don't try to append during early_security_init(), we'll come back
511 * and fix this up afterwards.
512 */
513 if (slab_is_available()) {
514 if (lsm_append(lsmid->lsm, &lsm_names) < 0)
515 panic("%s - Cannot get early memory.\n", __func__);
516 }
517 }
518
519 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
520 {
521 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
522 event, data);
523 }
524 EXPORT_SYMBOL(call_blocking_lsm_notifier);
525
526 int register_blocking_lsm_notifier(struct notifier_block *nb)
527 {
528 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
529 nb);
530 }
531 EXPORT_SYMBOL(register_blocking_lsm_notifier);
532
533 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
534 {
535 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
536 nb);
537 }
538 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
539
540 /**
541 * lsm_cred_alloc - allocate a composite cred blob
542 * @cred: the cred that needs a blob
543 * @gfp: allocation type
544 *
545 * Allocate the cred blob for all the modules
546 *
547 * Returns 0, or -ENOMEM if memory can't be allocated.
548 */
549 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
550 {
551 if (blob_sizes.lbs_cred == 0) {
552 cred->security = NULL;
553 return 0;
554 }
555
556 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
557 if (cred->security == NULL)
558 return -ENOMEM;
559 return 0;
560 }
561
562 /**
563 * lsm_early_cred - during initialization allocate a composite cred blob
564 * @cred: the cred that needs a blob
565 *
566 * Allocate the cred blob for all the modules
567 */
568 static void __init lsm_early_cred(struct cred *cred)
569 {
570 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
571
572 if (rc)
573 panic("%s: Early cred alloc failed.\n", __func__);
574 }
575
576 /**
577 * lsm_file_alloc - allocate a composite file blob
578 * @file: the file that needs a blob
579 *
580 * Allocate the file blob for all the modules
581 *
582 * Returns 0, or -ENOMEM if memory can't be allocated.
583 */
584 static int lsm_file_alloc(struct file *file)
585 {
586 if (!lsm_file_cache) {
587 file->f_security = NULL;
588 return 0;
589 }
590
591 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
592 if (file->f_security == NULL)
593 return -ENOMEM;
594 return 0;
595 }
596
597 /**
598 * lsm_inode_alloc - allocate a composite inode blob
599 * @inode: the inode that needs a blob
600 *
601 * Allocate the inode blob for all the modules
602 *
603 * Returns 0, or -ENOMEM if memory can't be allocated.
604 */
605 int lsm_inode_alloc(struct inode *inode)
606 {
607 if (!lsm_inode_cache) {
608 inode->i_security = NULL;
609 return 0;
610 }
611
612 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
613 if (inode->i_security == NULL)
614 return -ENOMEM;
615 return 0;
616 }
617
618 /**
619 * lsm_task_alloc - allocate a composite task blob
620 * @task: the task that needs a blob
621 *
622 * Allocate the task blob for all the modules
623 *
624 * Returns 0, or -ENOMEM if memory can't be allocated.
625 */
626 static int lsm_task_alloc(struct task_struct *task)
627 {
628 if (blob_sizes.lbs_task == 0) {
629 task->security = NULL;
630 return 0;
631 }
632
633 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
634 if (task->security == NULL)
635 return -ENOMEM;
636 return 0;
637 }
638
639 /**
640 * lsm_ipc_alloc - allocate a composite ipc blob
641 * @kip: the ipc that needs a blob
642 *
643 * Allocate the ipc blob for all the modules
644 *
645 * Returns 0, or -ENOMEM if memory can't be allocated.
646 */
647 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
648 {
649 if (blob_sizes.lbs_ipc == 0) {
650 kip->security = NULL;
651 return 0;
652 }
653
654 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
655 if (kip->security == NULL)
656 return -ENOMEM;
657 return 0;
658 }
659
660 /**
661 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
662 * @mp: the msg_msg that needs a blob
663 *
664 * Allocate the ipc blob for all the modules
665 *
666 * Returns 0, or -ENOMEM if memory can't be allocated.
667 */
668 static int lsm_msg_msg_alloc(struct msg_msg *mp)
669 {
670 if (blob_sizes.lbs_msg_msg == 0) {
671 mp->security = NULL;
672 return 0;
673 }
674
675 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
676 if (mp->security == NULL)
677 return -ENOMEM;
678 return 0;
679 }
680
681 /**
682 * lsm_sock_alloc - allocate a composite sock blob
683 * @sock: the sock that needs a blob
684 * @priority: allocation mode
685 *
686 * Allocate the sock blob for all the modules
687 *
688 * Returns 0, or -ENOMEM if memory can't be allocated.
689 */
690 static int lsm_sock_alloc(struct sock *sock, gfp_t priority)
691 {
692 if (blob_sizes.lbs_sock == 0) {
693 sock->sk_security = NULL;
694 return 0;
695 }
696
697 sock->sk_security = kzalloc(blob_sizes.lbs_sock, priority);
698 if (sock->sk_security == NULL)
699 return -ENOMEM;
700 return 0;
701 }
702
703 /**
704 * lsm_early_task - during initialization allocate a composite task blob
705 * @task: the task that needs a blob
706 *
707 * Allocate the task blob for all the modules
708 */
709 static void __init lsm_early_task(struct task_struct *task)
710 {
711 int rc = lsm_task_alloc(task);
712
713 if (rc)
714 panic("%s: Early task alloc failed.\n", __func__);
715 }
716
717 /**
718 * lsm_superblock_alloc - allocate a composite superblock blob
719 * @sb: the superblock that needs a blob
720 *
721 * Allocate the superblock blob for all the modules
722 *
723 * Returns 0, or -ENOMEM if memory can't be allocated.
724 */
725 static int lsm_superblock_alloc(struct super_block *sb)
726 {
727 if (blob_sizes.lbs_superblock == 0) {
728 sb->s_security = NULL;
729 return 0;
730 }
731
732 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
733 if (sb->s_security == NULL)
734 return -ENOMEM;
735 return 0;
736 }
737
738 /*
739 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
740 * can be accessed with:
741 *
742 * LSM_RET_DEFAULT(<hook_name>)
743 *
744 * The macros below define static constants for the default value of each
745 * LSM hook.
746 */
747 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
748 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
749 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
750 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
751 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
752 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
753
754 #include <linux/lsm_hook_defs.h>
755 #undef LSM_HOOK
756
757 /*
758 * Hook list operation macros.
759 *
760 * call_void_hook:
761 * This is a hook that does not return a value.
762 *
763 * call_int_hook:
764 * This is a hook that returns a value.
765 */
766
767 #define call_void_hook(FUNC, ...) \
768 do { \
769 struct security_hook_list *P; \
770 \
771 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
772 P->hook.FUNC(__VA_ARGS__); \
773 } while (0)
774
775 #define call_int_hook(FUNC, IRC, ...) ({ \
776 int RC = IRC; \
777 do { \
778 struct security_hook_list *P; \
779 \
780 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
781 RC = P->hook.FUNC(__VA_ARGS__); \
782 if (RC != 0) \
783 break; \
784 } \
785 } while (0); \
786 RC; \
787 })
788
789 /* Security operations */
790
791 int security_binder_set_context_mgr(struct task_struct *mgr)
792 {
793 return call_int_hook(binder_set_context_mgr, 0, mgr);
794 }
795 EXPORT_SYMBOL(security_binder_set_context_mgr);
796
797 int security_binder_transaction(struct task_struct *from,
798 struct task_struct *to)
799 {
800 return call_int_hook(binder_transaction, 0, from, to);
801 }
802 EXPORT_SYMBOL(security_binder_transaction);
803
804 int security_binder_transfer_binder(struct task_struct *from,
805 struct task_struct *to)
806 {
807 return call_int_hook(binder_transfer_binder, 0, from, to);
808 }
809 EXPORT_SYMBOL(security_binder_transfer_binder);
810
811 int security_binder_transfer_file(struct task_struct *from,
812 struct task_struct *to, struct file *file)
813 {
814 return call_int_hook(binder_transfer_file, 0, from, to, file);
815 }
816 EXPORT_SYMBOL(security_binder_transfer_file);
817
818 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
819 {
820 return call_int_hook(ptrace_access_check, 0, child, mode);
821 }
822
823 int security_ptrace_traceme(struct task_struct *parent)
824 {
825 return call_int_hook(ptrace_traceme, 0, parent);
826 }
827
828 int security_capget(struct task_struct *target,
829 kernel_cap_t *effective,
830 kernel_cap_t *inheritable,
831 kernel_cap_t *permitted)
832 {
833 return call_int_hook(capget, 0, target,
834 effective, inheritable, permitted);
835 }
836
837 int security_capset(struct cred *new, const struct cred *old,
838 const kernel_cap_t *effective,
839 const kernel_cap_t *inheritable,
840 const kernel_cap_t *permitted)
841 {
842 return call_int_hook(capset, 0, new, old,
843 effective, inheritable, permitted);
844 }
845
846 int security_capable(const struct cred *cred,
847 struct user_namespace *ns,
848 int cap,
849 unsigned int opts)
850 {
851 return call_int_hook(capable, 0, cred, ns, cap, opts);
852 }
853
854 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
855 {
856 return call_int_hook(quotactl, 0, cmds, type, id, sb);
857 }
858
859 int security_quota_on(struct dentry *dentry)
860 {
861 return call_int_hook(quota_on, 0, dentry);
862 }
863
864 int security_syslog(int type)
865 {
866 return call_int_hook(syslog, 0, type);
867 }
868
869 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
870 {
871 return call_int_hook(settime, 0, ts, tz);
872 }
873
874 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
875 {
876 struct security_hook_list *hp;
877 int cap_sys_admin = 1;
878 int rc;
879
880 /*
881 * The module will respond with a positive value if
882 * it thinks the __vm_enough_memory() call should be
883 * made with the cap_sys_admin set. If all of the modules
884 * agree that it should be set it will. If any module
885 * thinks it should not be set it won't.
886 */
887 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
888 rc = hp->hook.vm_enough_memory(mm, pages);
889 if (rc <= 0) {
890 cap_sys_admin = 0;
891 break;
892 }
893 }
894 return __vm_enough_memory(mm, pages, cap_sys_admin);
895 }
896
897 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
898 {
899 return call_int_hook(bprm_creds_for_exec, 0, bprm);
900 }
901
902 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
903 {
904 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
905 }
906
907 int security_bprm_check(struct linux_binprm *bprm)
908 {
909 int ret;
910
911 ret = call_int_hook(bprm_check_security, 0, bprm);
912 if (ret)
913 return ret;
914 return ima_bprm_check(bprm);
915 }
916
917 void security_bprm_committing_creds(struct linux_binprm *bprm)
918 {
919 call_void_hook(bprm_committing_creds, bprm);
920 }
921
922 void security_bprm_committed_creds(struct linux_binprm *bprm)
923 {
924 call_void_hook(bprm_committed_creds, bprm);
925 }
926
927 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
928 {
929 return call_int_hook(fs_context_dup, 0, fc, src_fc);
930 }
931
932 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
933 {
934 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
935 }
936
937 int security_sb_alloc(struct super_block *sb)
938 {
939 int rc = lsm_superblock_alloc(sb);
940
941 if (unlikely(rc))
942 return rc;
943 rc = call_int_hook(sb_alloc_security, 0, sb);
944 if (unlikely(rc))
945 security_sb_free(sb);
946 return rc;
947 }
948
949 void security_sb_delete(struct super_block *sb)
950 {
951 call_void_hook(sb_delete, sb);
952 }
953
954 void security_sb_free(struct super_block *sb)
955 {
956 call_void_hook(sb_free_security, sb);
957 kfree(sb->s_security);
958 sb->s_security = NULL;
959 }
960
961 void security_free_mnt_opts(void **mnt_opts)
962 {
963 if (!*mnt_opts)
964 return;
965 call_void_hook(sb_free_mnt_opts, *mnt_opts);
966 *mnt_opts = NULL;
967 }
968 EXPORT_SYMBOL(security_free_mnt_opts);
969
970 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
971 {
972 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
973 }
974 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
975
976 int security_sb_mnt_opts_compat(struct super_block *sb,
977 void *mnt_opts)
978 {
979 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
980 }
981 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
982
983 int security_sb_remount(struct super_block *sb,
984 void *mnt_opts)
985 {
986 return call_int_hook(sb_remount, 0, sb, mnt_opts);
987 }
988 EXPORT_SYMBOL(security_sb_remount);
989
990 int security_sb_kern_mount(struct super_block *sb)
991 {
992 return call_int_hook(sb_kern_mount, 0, sb);
993 }
994
995 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
996 {
997 return call_int_hook(sb_show_options, 0, m, sb);
998 }
999
1000 int security_sb_statfs(struct dentry *dentry)
1001 {
1002 return call_int_hook(sb_statfs, 0, dentry);
1003 }
1004
1005 int security_sb_mount(const char *dev_name, const struct path *path,
1006 const char *type, unsigned long flags, void *data)
1007 {
1008 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
1009 }
1010
1011 int security_sb_umount(struct vfsmount *mnt, int flags)
1012 {
1013 return call_int_hook(sb_umount, 0, mnt, flags);
1014 }
1015
1016 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
1017 {
1018 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
1019 }
1020
1021 int security_sb_set_mnt_opts(struct super_block *sb,
1022 void *mnt_opts,
1023 unsigned long kern_flags,
1024 unsigned long *set_kern_flags)
1025 {
1026 return call_int_hook(sb_set_mnt_opts,
1027 mnt_opts ? -EOPNOTSUPP : 0, sb,
1028 mnt_opts, kern_flags, set_kern_flags);
1029 }
1030 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1031
1032 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1033 struct super_block *newsb,
1034 unsigned long kern_flags,
1035 unsigned long *set_kern_flags)
1036 {
1037 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1038 kern_flags, set_kern_flags);
1039 }
1040 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1041
1042 int security_add_mnt_opt(const char *option, const char *val, int len,
1043 void **mnt_opts)
1044 {
1045 return call_int_hook(sb_add_mnt_opt, -EINVAL,
1046 option, val, len, mnt_opts);
1047 }
1048 EXPORT_SYMBOL(security_add_mnt_opt);
1049
1050 int security_move_mount(const struct path *from_path, const struct path *to_path)
1051 {
1052 return call_int_hook(move_mount, 0, from_path, to_path);
1053 }
1054
1055 int security_path_notify(const struct path *path, u64 mask,
1056 unsigned int obj_type)
1057 {
1058 return call_int_hook(path_notify, 0, path, mask, obj_type);
1059 }
1060
1061 int security_inode_alloc(struct inode *inode)
1062 {
1063 int rc = lsm_inode_alloc(inode);
1064
1065 if (unlikely(rc))
1066 return rc;
1067 rc = call_int_hook(inode_alloc_security, 0, inode);
1068 if (unlikely(rc))
1069 security_inode_free(inode);
1070 return rc;
1071 }
1072
1073 static void inode_free_by_rcu(struct rcu_head *head)
1074 {
1075 /*
1076 * The rcu head is at the start of the inode blob
1077 */
1078 kmem_cache_free(lsm_inode_cache, head);
1079 }
1080
1081 void security_inode_free(struct inode *inode)
1082 {
1083 integrity_inode_free(inode);
1084 call_void_hook(inode_free_security, inode);
1085 /*
1086 * The inode may still be referenced in a path walk and
1087 * a call to security_inode_permission() can be made
1088 * after inode_free_security() is called. Ideally, the VFS
1089 * wouldn't do this, but fixing that is a much harder
1090 * job. For now, simply free the i_security via RCU, and
1091 * leave the current inode->i_security pointer intact.
1092 * The inode will be freed after the RCU grace period too.
1093 */
1094 if (inode->i_security)
1095 call_rcu((struct rcu_head *)inode->i_security,
1096 inode_free_by_rcu);
1097 }
1098
1099 int security_dentry_init_security(struct dentry *dentry, int mode,
1100 const struct qstr *name, void **ctx,
1101 u32 *ctxlen)
1102 {
1103 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1104 name, ctx, ctxlen);
1105 }
1106 EXPORT_SYMBOL(security_dentry_init_security);
1107
1108 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1109 struct qstr *name,
1110 const struct cred *old, struct cred *new)
1111 {
1112 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1113 name, old, new);
1114 }
1115 EXPORT_SYMBOL(security_dentry_create_files_as);
1116
1117 int security_inode_init_security(struct inode *inode, struct inode *dir,
1118 const struct qstr *qstr,
1119 const initxattrs initxattrs, void *fs_data)
1120 {
1121 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1122 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1123 int ret;
1124
1125 if (unlikely(IS_PRIVATE(inode)))
1126 return 0;
1127
1128 if (!initxattrs)
1129 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1130 dir, qstr, NULL, NULL, NULL);
1131 memset(new_xattrs, 0, sizeof(new_xattrs));
1132 lsm_xattr = new_xattrs;
1133 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1134 &lsm_xattr->name,
1135 &lsm_xattr->value,
1136 &lsm_xattr->value_len);
1137 if (ret)
1138 goto out;
1139
1140 evm_xattr = lsm_xattr + 1;
1141 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1142 if (ret)
1143 goto out;
1144 ret = initxattrs(inode, new_xattrs, fs_data);
1145 out:
1146 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1147 kfree(xattr->value);
1148 return (ret == -EOPNOTSUPP) ? 0 : ret;
1149 }
1150 EXPORT_SYMBOL(security_inode_init_security);
1151
1152 int security_inode_init_security_anon(struct inode *inode,
1153 const struct qstr *name,
1154 const struct inode *context_inode)
1155 {
1156 return call_int_hook(inode_init_security_anon, 0, inode, name,
1157 context_inode);
1158 }
1159
1160 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1161 const struct qstr *qstr, const char **name,
1162 void **value, size_t *len)
1163 {
1164 if (unlikely(IS_PRIVATE(inode)))
1165 return -EOPNOTSUPP;
1166 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1167 qstr, name, value, len);
1168 }
1169 EXPORT_SYMBOL(security_old_inode_init_security);
1170
1171 #ifdef CONFIG_SECURITY_PATH
1172 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1173 unsigned int dev)
1174 {
1175 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1176 return 0;
1177 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1178 }
1179 EXPORT_SYMBOL(security_path_mknod);
1180
1181 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1182 {
1183 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1184 return 0;
1185 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1186 }
1187 EXPORT_SYMBOL(security_path_mkdir);
1188
1189 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1190 {
1191 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1192 return 0;
1193 return call_int_hook(path_rmdir, 0, dir, dentry);
1194 }
1195
1196 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1197 {
1198 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1199 return 0;
1200 return call_int_hook(path_unlink, 0, dir, dentry);
1201 }
1202 EXPORT_SYMBOL(security_path_unlink);
1203
1204 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1205 const char *old_name)
1206 {
1207 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1208 return 0;
1209 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1210 }
1211
1212 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1213 struct dentry *new_dentry)
1214 {
1215 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1216 return 0;
1217 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1218 }
1219
1220 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1221 const struct path *new_dir, struct dentry *new_dentry,
1222 unsigned int flags)
1223 {
1224 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1225 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1226 return 0;
1227
1228 if (flags & RENAME_EXCHANGE) {
1229 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1230 old_dir, old_dentry);
1231 if (err)
1232 return err;
1233 }
1234
1235 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1236 new_dentry);
1237 }
1238 EXPORT_SYMBOL(security_path_rename);
1239
1240 int security_path_truncate(const struct path *path)
1241 {
1242 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1243 return 0;
1244 return call_int_hook(path_truncate, 0, path);
1245 }
1246
1247 int security_path_chmod(const struct path *path, umode_t mode)
1248 {
1249 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1250 return 0;
1251 return call_int_hook(path_chmod, 0, path, mode);
1252 }
1253
1254 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1255 {
1256 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1257 return 0;
1258 return call_int_hook(path_chown, 0, path, uid, gid);
1259 }
1260
1261 int security_path_chroot(const struct path *path)
1262 {
1263 return call_int_hook(path_chroot, 0, path);
1264 }
1265 #endif
1266
1267 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1268 {
1269 if (unlikely(IS_PRIVATE(dir)))
1270 return 0;
1271 return call_int_hook(inode_create, 0, dir, dentry, mode);
1272 }
1273 EXPORT_SYMBOL_GPL(security_inode_create);
1274
1275 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1276 struct dentry *new_dentry)
1277 {
1278 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1279 return 0;
1280 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1281 }
1282
1283 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1284 {
1285 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1286 return 0;
1287 return call_int_hook(inode_unlink, 0, dir, dentry);
1288 }
1289
1290 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1291 const char *old_name)
1292 {
1293 if (unlikely(IS_PRIVATE(dir)))
1294 return 0;
1295 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1296 }
1297
1298 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1299 {
1300 if (unlikely(IS_PRIVATE(dir)))
1301 return 0;
1302 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1303 }
1304 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1305
1306 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1307 {
1308 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1309 return 0;
1310 return call_int_hook(inode_rmdir, 0, dir, dentry);
1311 }
1312
1313 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1314 {
1315 if (unlikely(IS_PRIVATE(dir)))
1316 return 0;
1317 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1318 }
1319
1320 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1321 struct inode *new_dir, struct dentry *new_dentry,
1322 unsigned int flags)
1323 {
1324 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1325 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1326 return 0;
1327
1328 if (flags & RENAME_EXCHANGE) {
1329 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1330 old_dir, old_dentry);
1331 if (err)
1332 return err;
1333 }
1334
1335 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1336 new_dir, new_dentry);
1337 }
1338
1339 int security_inode_readlink(struct dentry *dentry)
1340 {
1341 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1342 return 0;
1343 return call_int_hook(inode_readlink, 0, dentry);
1344 }
1345
1346 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1347 bool rcu)
1348 {
1349 if (unlikely(IS_PRIVATE(inode)))
1350 return 0;
1351 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1352 }
1353
1354 int security_inode_permission(struct inode *inode, int mask)
1355 {
1356 if (unlikely(IS_PRIVATE(inode)))
1357 return 0;
1358 return call_int_hook(inode_permission, 0, inode, mask);
1359 }
1360
1361 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1362 {
1363 int ret;
1364
1365 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1366 return 0;
1367 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1368 if (ret)
1369 return ret;
1370 return evm_inode_setattr(dentry, attr);
1371 }
1372 EXPORT_SYMBOL_GPL(security_inode_setattr);
1373
1374 int security_inode_getattr(const struct path *path)
1375 {
1376 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1377 return 0;
1378 return call_int_hook(inode_getattr, 0, path);
1379 }
1380
1381 int security_inode_setxattr(struct user_namespace *mnt_userns,
1382 struct dentry *dentry, const char *name,
1383 const void *value, size_t size, int flags)
1384 {
1385 int ret;
1386
1387 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1388 return 0;
1389 /*
1390 * SELinux and Smack integrate the cap call,
1391 * so assume that all LSMs supplying this call do so.
1392 */
1393 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1394 size, flags);
1395
1396 if (ret == 1)
1397 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1398 if (ret)
1399 return ret;
1400 ret = ima_inode_setxattr(dentry, name, value, size);
1401 if (ret)
1402 return ret;
1403 return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1404 }
1405
1406 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1407 const void *value, size_t size, int flags)
1408 {
1409 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1410 return;
1411 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1412 evm_inode_post_setxattr(dentry, name, value, size);
1413 }
1414
1415 int security_inode_getxattr(struct dentry *dentry, const char *name)
1416 {
1417 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1418 return 0;
1419 return call_int_hook(inode_getxattr, 0, dentry, name);
1420 }
1421
1422 int security_inode_listxattr(struct dentry *dentry)
1423 {
1424 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1425 return 0;
1426 return call_int_hook(inode_listxattr, 0, dentry);
1427 }
1428
1429 int security_inode_removexattr(struct user_namespace *mnt_userns,
1430 struct dentry *dentry, const char *name)
1431 {
1432 int ret;
1433
1434 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1435 return 0;
1436 /*
1437 * SELinux and Smack integrate the cap call,
1438 * so assume that all LSMs supplying this call do so.
1439 */
1440 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1441 if (ret == 1)
1442 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1443 if (ret)
1444 return ret;
1445 ret = ima_inode_removexattr(dentry, name);
1446 if (ret)
1447 return ret;
1448 return evm_inode_removexattr(mnt_userns, dentry, name);
1449 }
1450
1451 int security_inode_need_killpriv(struct dentry *dentry)
1452 {
1453 return call_int_hook(inode_need_killpriv, 0, dentry);
1454 }
1455
1456 int security_inode_killpriv(struct user_namespace *mnt_userns,
1457 struct dentry *dentry)
1458 {
1459 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1460 }
1461
1462 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1463 struct inode *inode, const char *name,
1464 void **buffer, bool alloc)
1465 {
1466 struct security_hook_list *hp;
1467 int rc;
1468
1469 if (unlikely(IS_PRIVATE(inode)))
1470 return LSM_RET_DEFAULT(inode_getsecurity);
1471 /*
1472 * Only one module will provide an attribute with a given name.
1473 */
1474 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1475 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1476 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1477 return rc;
1478 }
1479 return LSM_RET_DEFAULT(inode_getsecurity);
1480 }
1481
1482 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1483 {
1484 struct security_hook_list *hp;
1485 int rc;
1486
1487 if (unlikely(IS_PRIVATE(inode)))
1488 return LSM_RET_DEFAULT(inode_setsecurity);
1489 /*
1490 * Only one module will provide an attribute with a given name.
1491 */
1492 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1493 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1494 flags);
1495 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1496 return rc;
1497 }
1498 return LSM_RET_DEFAULT(inode_setsecurity);
1499 }
1500
1501 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1502 {
1503 if (unlikely(IS_PRIVATE(inode)))
1504 return 0;
1505 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1506 }
1507 EXPORT_SYMBOL(security_inode_listsecurity);
1508
1509 void security_inode_getsecid(struct inode *inode, u32 *secid)
1510 {
1511 call_void_hook(inode_getsecid, inode, secid);
1512 }
1513
1514 int security_inode_copy_up(struct dentry *src, struct cred **new)
1515 {
1516 return call_int_hook(inode_copy_up, 0, src, new);
1517 }
1518 EXPORT_SYMBOL(security_inode_copy_up);
1519
1520 int security_inode_copy_up_xattr(const char *name)
1521 {
1522 struct security_hook_list *hp;
1523 int rc;
1524
1525 /*
1526 * The implementation can return 0 (accept the xattr), 1 (discard the
1527 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1528 * any other error code incase of an error.
1529 */
1530 hlist_for_each_entry(hp,
1531 &security_hook_heads.inode_copy_up_xattr, list) {
1532 rc = hp->hook.inode_copy_up_xattr(name);
1533 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1534 return rc;
1535 }
1536
1537 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1538 }
1539 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1540
1541 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1542 struct kernfs_node *kn)
1543 {
1544 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1545 }
1546
1547 int security_file_permission(struct file *file, int mask)
1548 {
1549 int ret;
1550
1551 ret = call_int_hook(file_permission, 0, file, mask);
1552 if (ret)
1553 return ret;
1554
1555 return fsnotify_perm(file, mask);
1556 }
1557
1558 int security_file_alloc(struct file *file)
1559 {
1560 int rc = lsm_file_alloc(file);
1561
1562 if (rc)
1563 return rc;
1564 rc = call_int_hook(file_alloc_security, 0, file);
1565 if (unlikely(rc))
1566 security_file_free(file);
1567 return rc;
1568 }
1569
1570 void security_file_free(struct file *file)
1571 {
1572 void *blob;
1573
1574 call_void_hook(file_free_security, file);
1575
1576 blob = file->f_security;
1577 if (blob) {
1578 file->f_security = NULL;
1579 kmem_cache_free(lsm_file_cache, blob);
1580 }
1581 }
1582
1583 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1584 {
1585 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1586 }
1587 EXPORT_SYMBOL_GPL(security_file_ioctl);
1588
1589 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1590 {
1591 /*
1592 * Does we have PROT_READ and does the application expect
1593 * it to imply PROT_EXEC? If not, nothing to talk about...
1594 */
1595 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1596 return prot;
1597 if (!(current->personality & READ_IMPLIES_EXEC))
1598 return prot;
1599 /*
1600 * if that's an anonymous mapping, let it.
1601 */
1602 if (!file)
1603 return prot | PROT_EXEC;
1604 /*
1605 * ditto if it's not on noexec mount, except that on !MMU we need
1606 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1607 */
1608 if (!path_noexec(&file->f_path)) {
1609 #ifndef CONFIG_MMU
1610 if (file->f_op->mmap_capabilities) {
1611 unsigned caps = file->f_op->mmap_capabilities(file);
1612 if (!(caps & NOMMU_MAP_EXEC))
1613 return prot;
1614 }
1615 #endif
1616 return prot | PROT_EXEC;
1617 }
1618 /* anything on noexec mount won't get PROT_EXEC */
1619 return prot;
1620 }
1621
1622 int security_mmap_file(struct file *file, unsigned long prot,
1623 unsigned long flags)
1624 {
1625 int ret;
1626 ret = call_int_hook(mmap_file, 0, file, prot,
1627 mmap_prot(file, prot), flags);
1628 if (ret)
1629 return ret;
1630 return ima_file_mmap(file, prot);
1631 }
1632
1633 int security_mmap_addr(unsigned long addr)
1634 {
1635 return call_int_hook(mmap_addr, 0, addr);
1636 }
1637
1638 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1639 unsigned long prot)
1640 {
1641 int ret;
1642
1643 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1644 if (ret)
1645 return ret;
1646 return ima_file_mprotect(vma, prot);
1647 }
1648
1649 int security_file_lock(struct file *file, unsigned int cmd)
1650 {
1651 return call_int_hook(file_lock, 0, file, cmd);
1652 }
1653
1654 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1655 {
1656 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1657 }
1658
1659 void security_file_set_fowner(struct file *file)
1660 {
1661 call_void_hook(file_set_fowner, file);
1662 }
1663
1664 int security_file_send_sigiotask(struct task_struct *tsk,
1665 struct fown_struct *fown, int sig)
1666 {
1667 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1668 }
1669
1670 int security_file_receive(struct file *file)
1671 {
1672 return call_int_hook(file_receive, 0, file);
1673 }
1674
1675 int security_file_open(struct file *file)
1676 {
1677 int ret;
1678
1679 ret = call_int_hook(file_open, 0, file);
1680 if (ret)
1681 return ret;
1682
1683 return fsnotify_perm(file, MAY_OPEN);
1684 }
1685
1686 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1687 {
1688 int rc = lsm_task_alloc(task);
1689
1690 if (rc)
1691 return rc;
1692 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1693 if (unlikely(rc))
1694 security_task_free(task);
1695 return rc;
1696 }
1697
1698 void security_task_free(struct task_struct *task)
1699 {
1700 call_void_hook(task_free, task);
1701
1702 kfree(task->security);
1703 task->security = NULL;
1704 }
1705
1706 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1707 {
1708 int rc = lsm_cred_alloc(cred, gfp);
1709
1710 if (rc)
1711 return rc;
1712
1713 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1714 if (unlikely(rc))
1715 security_cred_free(cred);
1716 return rc;
1717 }
1718
1719 void security_cred_free(struct cred *cred)
1720 {
1721 /*
1722 * There is a failure case in prepare_creds() that
1723 * may result in a call here with ->security being NULL.
1724 */
1725 if (unlikely(cred->security == NULL))
1726 return;
1727
1728 call_void_hook(cred_free, cred);
1729
1730 kfree(cred->security);
1731 cred->security = NULL;
1732 }
1733
1734 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1735 {
1736 int rc = lsm_cred_alloc(new, gfp);
1737
1738 if (rc)
1739 return rc;
1740
1741 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1742 if (unlikely(rc))
1743 security_cred_free(new);
1744 return rc;
1745 }
1746
1747 void security_transfer_creds(struct cred *new, const struct cred *old)
1748 {
1749 call_void_hook(cred_transfer, new, old);
1750 }
1751
1752 void security_cred_getsecid(const struct cred *c, u32 *secid)
1753 {
1754 *secid = 0;
1755 call_void_hook(cred_getsecid, c, secid);
1756 }
1757 EXPORT_SYMBOL(security_cred_getsecid);
1758
1759 int security_kernel_act_as(struct cred *new, u32 secid)
1760 {
1761 return call_int_hook(kernel_act_as, 0, new, secid);
1762 }
1763
1764 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1765 {
1766 return call_int_hook(kernel_create_files_as, 0, new, inode);
1767 }
1768
1769 int security_kernel_module_request(char *kmod_name)
1770 {
1771 int ret;
1772
1773 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1774 if (ret)
1775 return ret;
1776 return integrity_kernel_module_request(kmod_name);
1777 }
1778
1779 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1780 bool contents)
1781 {
1782 int ret;
1783
1784 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1785 if (ret)
1786 return ret;
1787 return ima_read_file(file, id, contents);
1788 }
1789 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1790
1791 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1792 enum kernel_read_file_id id)
1793 {
1794 int ret;
1795
1796 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1797 if (ret)
1798 return ret;
1799 return ima_post_read_file(file, buf, size, id);
1800 }
1801 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1802
1803 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1804 {
1805 int ret;
1806
1807 ret = call_int_hook(kernel_load_data, 0, id, contents);
1808 if (ret)
1809 return ret;
1810 return ima_load_data(id, contents);
1811 }
1812 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1813
1814 int security_kernel_post_load_data(char *buf, loff_t size,
1815 enum kernel_load_data_id id,
1816 char *description)
1817 {
1818 int ret;
1819
1820 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1821 description);
1822 if (ret)
1823 return ret;
1824 return ima_post_load_data(buf, size, id, description);
1825 }
1826 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1827
1828 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1829 int flags)
1830 {
1831 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1832 }
1833
1834 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1835 int flags)
1836 {
1837 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1838 }
1839
1840 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1841 {
1842 return call_int_hook(task_setpgid, 0, p, pgid);
1843 }
1844
1845 int security_task_getpgid(struct task_struct *p)
1846 {
1847 return call_int_hook(task_getpgid, 0, p);
1848 }
1849
1850 int security_task_getsid(struct task_struct *p)
1851 {
1852 return call_int_hook(task_getsid, 0, p);
1853 }
1854
1855 void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1856 {
1857 *secid = 0;
1858 call_void_hook(task_getsecid_subj, p, secid);
1859 }
1860 EXPORT_SYMBOL(security_task_getsecid_subj);
1861
1862 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1863 {
1864 *secid = 0;
1865 call_void_hook(task_getsecid_obj, p, secid);
1866 }
1867 EXPORT_SYMBOL(security_task_getsecid_obj);
1868
1869 int security_task_setnice(struct task_struct *p, int nice)
1870 {
1871 return call_int_hook(task_setnice, 0, p, nice);
1872 }
1873
1874 int security_task_setioprio(struct task_struct *p, int ioprio)
1875 {
1876 return call_int_hook(task_setioprio, 0, p, ioprio);
1877 }
1878
1879 int security_task_getioprio(struct task_struct *p)
1880 {
1881 return call_int_hook(task_getioprio, 0, p);
1882 }
1883
1884 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1885 unsigned int flags)
1886 {
1887 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1888 }
1889
1890 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1891 struct rlimit *new_rlim)
1892 {
1893 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1894 }
1895
1896 int security_task_setscheduler(struct task_struct *p)
1897 {
1898 return call_int_hook(task_setscheduler, 0, p);
1899 }
1900
1901 int security_task_getscheduler(struct task_struct *p)
1902 {
1903 return call_int_hook(task_getscheduler, 0, p);
1904 }
1905
1906 int security_task_movememory(struct task_struct *p)
1907 {
1908 return call_int_hook(task_movememory, 0, p);
1909 }
1910
1911 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1912 int sig, const struct cred *cred)
1913 {
1914 return call_int_hook(task_kill, 0, p, info, sig, cred);
1915 }
1916
1917 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1918 unsigned long arg4, unsigned long arg5)
1919 {
1920 int thisrc;
1921 int rc = LSM_RET_DEFAULT(task_prctl);
1922 struct security_hook_list *hp;
1923
1924 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1925 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1926 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1927 rc = thisrc;
1928 if (thisrc != 0)
1929 break;
1930 }
1931 }
1932 return rc;
1933 }
1934
1935 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1936 {
1937 call_void_hook(task_to_inode, p, inode);
1938 }
1939
1940 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1941 {
1942 return call_int_hook(ipc_permission, 0, ipcp, flag);
1943 }
1944
1945 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1946 {
1947 *secid = 0;
1948 call_void_hook(ipc_getsecid, ipcp, secid);
1949 }
1950
1951 int security_msg_msg_alloc(struct msg_msg *msg)
1952 {
1953 int rc = lsm_msg_msg_alloc(msg);
1954
1955 if (unlikely(rc))
1956 return rc;
1957 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1958 if (unlikely(rc))
1959 security_msg_msg_free(msg);
1960 return rc;
1961 }
1962
1963 void security_msg_msg_free(struct msg_msg *msg)
1964 {
1965 call_void_hook(msg_msg_free_security, msg);
1966 kfree(msg->security);
1967 msg->security = NULL;
1968 }
1969
1970 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1971 {
1972 int rc = lsm_ipc_alloc(msq);
1973
1974 if (unlikely(rc))
1975 return rc;
1976 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1977 if (unlikely(rc))
1978 security_msg_queue_free(msq);
1979 return rc;
1980 }
1981
1982 void security_msg_queue_free(struct kern_ipc_perm *msq)
1983 {
1984 call_void_hook(msg_queue_free_security, msq);
1985 kfree(msq->security);
1986 msq->security = NULL;
1987 }
1988
1989 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1990 {
1991 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1992 }
1993
1994 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1995 {
1996 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1997 }
1998
1999 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
2000 struct msg_msg *msg, int msqflg)
2001 {
2002 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
2003 }
2004
2005 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
2006 struct task_struct *target, long type, int mode)
2007 {
2008 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
2009 }
2010
2011 int security_shm_alloc(struct kern_ipc_perm *shp)
2012 {
2013 int rc = lsm_ipc_alloc(shp);
2014
2015 if (unlikely(rc))
2016 return rc;
2017 rc = call_int_hook(shm_alloc_security, 0, shp);
2018 if (unlikely(rc))
2019 security_shm_free(shp);
2020 return rc;
2021 }
2022
2023 void security_shm_free(struct kern_ipc_perm *shp)
2024 {
2025 call_void_hook(shm_free_security, shp);
2026 kfree(shp->security);
2027 shp->security = NULL;
2028 }
2029
2030 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2031 {
2032 return call_int_hook(shm_associate, 0, shp, shmflg);
2033 }
2034
2035 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2036 {
2037 return call_int_hook(shm_shmctl, 0, shp, cmd);
2038 }
2039
2040 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2041 {
2042 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2043 }
2044
2045 int security_sem_alloc(struct kern_ipc_perm *sma)
2046 {
2047 int rc = lsm_ipc_alloc(sma);
2048
2049 if (unlikely(rc))
2050 return rc;
2051 rc = call_int_hook(sem_alloc_security, 0, sma);
2052 if (unlikely(rc))
2053 security_sem_free(sma);
2054 return rc;
2055 }
2056
2057 void security_sem_free(struct kern_ipc_perm *sma)
2058 {
2059 call_void_hook(sem_free_security, sma);
2060 kfree(sma->security);
2061 sma->security = NULL;
2062 }
2063
2064 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2065 {
2066 return call_int_hook(sem_associate, 0, sma, semflg);
2067 }
2068
2069 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2070 {
2071 return call_int_hook(sem_semctl, 0, sma, cmd);
2072 }
2073
2074 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2075 unsigned nsops, int alter)
2076 {
2077 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2078 }
2079
2080 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2081 {
2082 if (unlikely(inode && IS_PRIVATE(inode)))
2083 return;
2084 call_void_hook(d_instantiate, dentry, inode);
2085 }
2086 EXPORT_SYMBOL(security_d_instantiate);
2087
2088 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2089 char **value)
2090 {
2091 struct security_hook_list *hp;
2092
2093 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2094 if (lsm != NULL && strcmp(lsm, hp->lsmid->lsm))
2095 continue;
2096 return hp->hook.getprocattr(p, name, value);
2097 }
2098 return LSM_RET_DEFAULT(getprocattr);
2099 }
2100
2101 int security_setprocattr(const char *lsm, const char *name, void *value,
2102 size_t size)
2103 {
2104 struct security_hook_list *hp;
2105
2106 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2107 if (lsm != NULL && strcmp(lsm, hp->lsmid->lsm))
2108 continue;
2109 return hp->hook.setprocattr(name, value, size);
2110 }
2111 return LSM_RET_DEFAULT(setprocattr);
2112 }
2113
2114 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2115 {
2116 return call_int_hook(netlink_send, 0, sk, skb);
2117 }
2118
2119 int security_ismaclabel(const char *name)
2120 {
2121 return call_int_hook(ismaclabel, 0, name);
2122 }
2123 EXPORT_SYMBOL(security_ismaclabel);
2124
2125 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2126 {
2127 struct security_hook_list *hp;
2128 int rc;
2129
2130 /*
2131 * Currently, only one LSM can implement secid_to_secctx (i.e this
2132 * LSM hook is not "stackable").
2133 */
2134 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2135 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2136 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2137 return rc;
2138 }
2139
2140 return LSM_RET_DEFAULT(secid_to_secctx);
2141 }
2142 EXPORT_SYMBOL(security_secid_to_secctx);
2143
2144 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2145 {
2146 *secid = 0;
2147 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2148 }
2149 EXPORT_SYMBOL(security_secctx_to_secid);
2150
2151 void security_release_secctx(char *secdata, u32 seclen)
2152 {
2153 call_void_hook(release_secctx, secdata, seclen);
2154 }
2155 EXPORT_SYMBOL(security_release_secctx);
2156
2157 void security_inode_invalidate_secctx(struct inode *inode)
2158 {
2159 call_void_hook(inode_invalidate_secctx, inode);
2160 }
2161 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2162
2163 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2164 {
2165 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2166 }
2167 EXPORT_SYMBOL(security_inode_notifysecctx);
2168
2169 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2170 {
2171 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2172 }
2173 EXPORT_SYMBOL(security_inode_setsecctx);
2174
2175 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2176 {
2177 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2178 }
2179 EXPORT_SYMBOL(security_inode_getsecctx);
2180
2181 #ifdef CONFIG_WATCH_QUEUE
2182 int security_post_notification(const struct cred *w_cred,
2183 const struct cred *cred,
2184 struct watch_notification *n)
2185 {
2186 return call_int_hook(post_notification, 0, w_cred, cred, n);
2187 }
2188 #endif /* CONFIG_WATCH_QUEUE */
2189
2190 #ifdef CONFIG_KEY_NOTIFICATIONS
2191 int security_watch_key(struct key *key)
2192 {
2193 return call_int_hook(watch_key, 0, key);
2194 }
2195 #endif
2196
2197 #ifdef CONFIG_SECURITY_NETWORK
2198
2199 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2200 {
2201 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2202 }
2203 EXPORT_SYMBOL(security_unix_stream_connect);
2204
2205 int security_unix_may_send(struct socket *sock, struct socket *other)
2206 {
2207 return call_int_hook(unix_may_send, 0, sock, other);
2208 }
2209 EXPORT_SYMBOL(security_unix_may_send);
2210
2211 int security_socket_create(int family, int type, int protocol, int kern)
2212 {
2213 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2214 }
2215
2216 int security_socket_post_create(struct socket *sock, int family,
2217 int type, int protocol, int kern)
2218 {
2219 return call_int_hook(socket_post_create, 0, sock, family, type,
2220 protocol, kern);
2221 }
2222
2223 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2224 {
2225 return call_int_hook(socket_socketpair, 0, socka, sockb);
2226 }
2227 EXPORT_SYMBOL(security_socket_socketpair);
2228
2229 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2230 {
2231 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2232 }
2233
2234 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2235 {
2236 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2237 }
2238
2239 int security_socket_listen(struct socket *sock, int backlog)
2240 {
2241 return call_int_hook(socket_listen, 0, sock, backlog);
2242 }
2243
2244 int security_socket_accept(struct socket *sock, struct socket *newsock)
2245 {
2246 return call_int_hook(socket_accept, 0, sock, newsock);
2247 }
2248
2249 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2250 {
2251 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2252 }
2253
2254 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2255 int size, int flags)
2256 {
2257 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2258 }
2259
2260 int security_socket_getsockname(struct socket *sock)
2261 {
2262 return call_int_hook(socket_getsockname, 0, sock);
2263 }
2264
2265 int security_socket_getpeername(struct socket *sock)
2266 {
2267 return call_int_hook(socket_getpeername, 0, sock);
2268 }
2269
2270 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2271 {
2272 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2273 }
2274
2275 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2276 {
2277 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2278 }
2279
2280 int security_socket_shutdown(struct socket *sock, int how)
2281 {
2282 return call_int_hook(socket_shutdown, 0, sock, how);
2283 }
2284
2285 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2286 {
2287 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2288 }
2289 EXPORT_SYMBOL(security_sock_rcv_skb);
2290
2291 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2292 int __user *optlen, unsigned len)
2293 {
2294 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2295 optval, optlen, len);
2296 }
2297
2298 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2299 {
2300 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2301 skb, secid);
2302 }
2303 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2304
2305 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2306 {
2307 int rc = lsm_sock_alloc(sk, priority);
2308
2309 if (unlikely(rc))
2310 return rc;
2311 rc = call_int_hook(sk_alloc_security, 0, sk, family, priority);
2312 if (unlikely(rc))
2313 security_sk_free(sk);
2314 return rc;
2315 }
2316
2317 void security_sk_free(struct sock *sk)
2318 {
2319 call_void_hook(sk_free_security, sk);
2320 kfree(sk->sk_security);
2321 sk->sk_security = NULL;
2322 }
2323
2324 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2325 {
2326 call_void_hook(sk_clone_security, sk, newsk);
2327 }
2328 EXPORT_SYMBOL(security_sk_clone);
2329
2330 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2331 {
2332 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2333 }
2334 EXPORT_SYMBOL(security_sk_classify_flow);
2335
2336 void security_req_classify_flow(const struct request_sock *req,
2337 struct flowi_common *flic)
2338 {
2339 call_void_hook(req_classify_flow, req, flic);
2340 }
2341 EXPORT_SYMBOL(security_req_classify_flow);
2342
2343 void security_sock_graft(struct sock *sk, struct socket *parent)
2344 {
2345 call_void_hook(sock_graft, sk, parent);
2346 }
2347 EXPORT_SYMBOL(security_sock_graft);
2348
2349 int security_inet_conn_request(const struct sock *sk,
2350 struct sk_buff *skb, struct request_sock *req)
2351 {
2352 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2353 }
2354 EXPORT_SYMBOL(security_inet_conn_request);
2355
2356 void security_inet_csk_clone(struct sock *newsk,
2357 const struct request_sock *req)
2358 {
2359 call_void_hook(inet_csk_clone, newsk, req);
2360 }
2361
2362 void security_inet_conn_established(struct sock *sk,
2363 struct sk_buff *skb)
2364 {
2365 call_void_hook(inet_conn_established, sk, skb);
2366 }
2367 EXPORT_SYMBOL(security_inet_conn_established);
2368
2369 int security_secmark_relabel_packet(u32 secid)
2370 {
2371 return call_int_hook(secmark_relabel_packet, 0, secid);
2372 }
2373 EXPORT_SYMBOL(security_secmark_relabel_packet);
2374
2375 void security_secmark_refcount_inc(void)
2376 {
2377 call_void_hook(secmark_refcount_inc);
2378 }
2379 EXPORT_SYMBOL(security_secmark_refcount_inc);
2380
2381 void security_secmark_refcount_dec(void)
2382 {
2383 call_void_hook(secmark_refcount_dec);
2384 }
2385 EXPORT_SYMBOL(security_secmark_refcount_dec);
2386
2387 int security_tun_dev_alloc_security(void **security)
2388 {
2389 return call_int_hook(tun_dev_alloc_security, 0, security);
2390 }
2391 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2392
2393 void security_tun_dev_free_security(void *security)
2394 {
2395 call_void_hook(tun_dev_free_security, security);
2396 }
2397 EXPORT_SYMBOL(security_tun_dev_free_security);
2398
2399 int security_tun_dev_create(void)
2400 {
2401 return call_int_hook(tun_dev_create, 0);
2402 }
2403 EXPORT_SYMBOL(security_tun_dev_create);
2404
2405 int security_tun_dev_attach_queue(void *security)
2406 {
2407 return call_int_hook(tun_dev_attach_queue, 0, security);
2408 }
2409 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2410
2411 int security_tun_dev_attach(struct sock *sk, void *security)
2412 {
2413 return call_int_hook(tun_dev_attach, 0, sk, security);
2414 }
2415 EXPORT_SYMBOL(security_tun_dev_attach);
2416
2417 int security_tun_dev_open(void *security)
2418 {
2419 return call_int_hook(tun_dev_open, 0, security);
2420 }
2421 EXPORT_SYMBOL(security_tun_dev_open);
2422
2423 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2424 {
2425 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2426 }
2427 EXPORT_SYMBOL(security_sctp_assoc_request);
2428
2429 int security_sctp_bind_connect(struct sock *sk, int optname,
2430 struct sockaddr *address, int addrlen)
2431 {
2432 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2433 address, addrlen);
2434 }
2435 EXPORT_SYMBOL(security_sctp_bind_connect);
2436
2437 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2438 struct sock *newsk)
2439 {
2440 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2441 }
2442 EXPORT_SYMBOL(security_sctp_sk_clone);
2443
2444 #endif /* CONFIG_SECURITY_NETWORK */
2445
2446 #ifdef CONFIG_SECURITY_INFINIBAND
2447
2448 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2449 {
2450 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2451 }
2452 EXPORT_SYMBOL(security_ib_pkey_access);
2453
2454 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2455 {
2456 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2457 }
2458 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2459
2460 int security_ib_alloc_security(void **sec)
2461 {
2462 return call_int_hook(ib_alloc_security, 0, sec);
2463 }
2464 EXPORT_SYMBOL(security_ib_alloc_security);
2465
2466 void security_ib_free_security(void *sec)
2467 {
2468 call_void_hook(ib_free_security, sec);
2469 }
2470 EXPORT_SYMBOL(security_ib_free_security);
2471 #endif /* CONFIG_SECURITY_INFINIBAND */
2472
2473 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2474
2475 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2476 struct xfrm_user_sec_ctx *sec_ctx,
2477 gfp_t gfp)
2478 {
2479 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2480 }
2481 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2482
2483 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2484 struct xfrm_sec_ctx **new_ctxp)
2485 {
2486 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2487 }
2488
2489 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2490 {
2491 call_void_hook(xfrm_policy_free_security, ctx);
2492 }
2493 EXPORT_SYMBOL(security_xfrm_policy_free);
2494
2495 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2496 {
2497 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2498 }
2499
2500 int security_xfrm_state_alloc(struct xfrm_state *x,
2501 struct xfrm_user_sec_ctx *sec_ctx)
2502 {
2503 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2504 }
2505 EXPORT_SYMBOL(security_xfrm_state_alloc);
2506
2507 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2508 struct xfrm_sec_ctx *polsec, u32 secid)
2509 {
2510 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2511 }
2512
2513 int security_xfrm_state_delete(struct xfrm_state *x)
2514 {
2515 return call_int_hook(xfrm_state_delete_security, 0, x);
2516 }
2517 EXPORT_SYMBOL(security_xfrm_state_delete);
2518
2519 void security_xfrm_state_free(struct xfrm_state *x)
2520 {
2521 call_void_hook(xfrm_state_free_security, x);
2522 }
2523
2524 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2525 {
2526 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2527 }
2528
2529 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2530 struct xfrm_policy *xp,
2531 const struct flowi_common *flic)
2532 {
2533 struct security_hook_list *hp;
2534 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2535
2536 /*
2537 * Since this function is expected to return 0 or 1, the judgment
2538 * becomes difficult if multiple LSMs supply this call. Fortunately,
2539 * we can use the first LSM's judgment because currently only SELinux
2540 * supplies this call.
2541 *
2542 * For speed optimization, we explicitly break the loop rather than
2543 * using the macro
2544 */
2545 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2546 list) {
2547 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2548 break;
2549 }
2550 return rc;
2551 }
2552
2553 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2554 {
2555 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2556 }
2557
2558 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2559 {
2560 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2561 0);
2562
2563 BUG_ON(rc);
2564 }
2565 EXPORT_SYMBOL(security_skb_classify_flow);
2566
2567 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2568
2569 #ifdef CONFIG_KEYS
2570
2571 int security_key_alloc(struct key *key, const struct cred *cred,
2572 unsigned long flags)
2573 {
2574 return call_int_hook(key_alloc, 0, key, cred, flags);
2575 }
2576
2577 void security_key_free(struct key *key)
2578 {
2579 call_void_hook(key_free, key);
2580 }
2581
2582 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2583 enum key_need_perm need_perm)
2584 {
2585 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2586 }
2587
2588 int security_key_getsecurity(struct key *key, char **_buffer)
2589 {
2590 *_buffer = NULL;
2591 return call_int_hook(key_getsecurity, 0, key, _buffer);
2592 }
2593
2594 #endif /* CONFIG_KEYS */
2595
2596 #ifdef CONFIG_AUDIT
2597
2598 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2599 {
2600 struct security_hook_list *hp;
2601 bool one_is_good = false;
2602 int rc = 0;
2603 int trc;
2604
2605 hlist_for_each_entry(hp, &security_hook_heads.audit_rule_init, list) {
2606 if (WARN_ON(hp->lsmid->slot < 0 || hp->lsmid->slot >= lsm_slot))
2607 continue;
2608 trc = hp->hook.audit_rule_init(field, op, rulestr,
2609 &lsmrule[hp->lsmid->slot]);
2610 if (trc == 0)
2611 one_is_good = true;
2612 else
2613 rc = trc;
2614 }
2615 if (one_is_good)
2616 return 0;
2617 return rc;
2618 }
2619
2620 int security_audit_rule_known(struct audit_krule *krule)
2621 {
2622 return call_int_hook(audit_rule_known, 0, krule);
2623 }
2624
2625 void security_audit_rule_free(void **lsmrule)
2626 {
2627 struct security_hook_list *hp;
2628
2629 hlist_for_each_entry(hp, &security_hook_heads.audit_rule_free, list) {
2630 if (WARN_ON(hp->lsmid->slot < 0 || hp->lsmid->slot >= lsm_slot))
2631 continue;
2632 if (lsmrule[hp->lsmid->slot] == NULL)
2633 continue;
2634 hp->hook.audit_rule_free(lsmrule[hp->lsmid->slot]);
2635 }
2636 }
2637
2638 int security_audit_rule_match(struct lsmblob *blob, u32 field, u32 op,
2639 void **lsmrule)
2640 {
2641 struct security_hook_list *hp;
2642 int rc;
2643
2644 hlist_for_each_entry(hp, &security_hook_heads.audit_rule_match, list) {
2645 if (WARN_ON(hp->lsmid->slot < 0 || hp->lsmid->slot >= lsm_slot))
2646 continue;
2647 if (lsmrule[hp->lsmid->slot] == NULL)
2648 continue;
2649 rc = hp->hook.audit_rule_match(blob->secid[hp->lsmid->slot],
2650 field, op,
2651 &lsmrule[hp->lsmid->slot]);
2652 if (rc)
2653 return rc;
2654 }
2655 return 0;
2656 }
2657 #endif /* CONFIG_AUDIT */
2658
2659 #ifdef CONFIG_BPF_SYSCALL
2660 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2661 {
2662 return call_int_hook(bpf, 0, cmd, attr, size);
2663 }
2664 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2665 {
2666 return call_int_hook(bpf_map, 0, map, fmode);
2667 }
2668 int security_bpf_prog(struct bpf_prog *prog)
2669 {
2670 return call_int_hook(bpf_prog, 0, prog);
2671 }
2672 int security_bpf_map_alloc(struct bpf_map *map)
2673 {
2674 return call_int_hook(bpf_map_alloc_security, 0, map);
2675 }
2676 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2677 {
2678 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2679 }
2680 void security_bpf_map_free(struct bpf_map *map)
2681 {
2682 call_void_hook(bpf_map_free_security, map);
2683 }
2684 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2685 {
2686 call_void_hook(bpf_prog_free_security, aux);
2687 }
2688 #endif /* CONFIG_BPF_SYSCALL */
2689
2690 int security_locked_down(enum lockdown_reason what)
2691 {
2692 return call_int_hook(locked_down, 0, what);
2693 }
2694 EXPORT_SYMBOL(security_locked_down);
2695
2696 #ifdef CONFIG_PERF_EVENTS
2697 int security_perf_event_open(struct perf_event_attr *attr, int type)
2698 {
2699 return call_int_hook(perf_event_open, 0, attr, type);
2700 }
2701
2702 int security_perf_event_alloc(struct perf_event *event)
2703 {
2704 return call_int_hook(perf_event_alloc, 0, event);
2705 }
2706
2707 void security_perf_event_free(struct perf_event *event)
2708 {
2709 call_void_hook(perf_event_free, event);
2710 }
2711
2712 int security_perf_event_read(struct perf_event *event)
2713 {
2714 return call_int_hook(perf_event_read, 0, event);
2715 }
2716
2717 int security_perf_event_write(struct perf_event *event)
2718 {
2719 return call_int_hook(perf_event_write, 0, event);
2720 }
2721 #endif /* CONFIG_PERF_EVENTS */