]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/security.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[mirror_ubuntu-bionic-kernel.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30 .name = "default",
31 };
32
33 static inline int __init verify(struct security_operations *ops)
34 {
35 /* verify the security_operations structure exists */
36 if (!ops)
37 return -EINVAL;
38 security_fixup_ops(ops);
39 return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44 initcall_t *call;
45 call = __security_initcall_start;
46 while (call < __security_initcall_end) {
47 (*call) ();
48 call++;
49 }
50 }
51
52 /**
53 * security_init - initializes the security framework
54 *
55 * This should be called early in the kernel initialization sequence.
56 */
57 int __init security_init(void)
58 {
59 printk(KERN_INFO "Security Framework initialized\n");
60
61 security_fixup_ops(&default_security_ops);
62 security_ops = &default_security_ops;
63 do_security_initcalls();
64
65 return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70 security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77 return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82 * security_module_enable - Load given security module on boot ?
83 * @ops: a pointer to the struct security_operations that is to be checked.
84 *
85 * Each LSM must pass this method before registering its own operations
86 * to avoid security registration races. This method may also be used
87 * to check if your LSM is currently loaded during kernel initialization.
88 *
89 * Return true if:
90 * -The passed LSM is the one chosen by user at boot time,
91 * -or the passed LSM is configured as the default and the user did not
92 * choose an alternate LSM at boot time.
93 * Otherwise, return false.
94 */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97 return !strcmp(ops->name, chosen_lsm);
98 }
99
100 /**
101 * register_security - registers a security framework with the kernel
102 * @ops: a pointer to the struct security_options that is to be registered
103 *
104 * This function allows a security module to register itself with the
105 * kernel security subsystem. Some rudimentary checking is done on the @ops
106 * value passed to this function. You'll need to check first if your LSM
107 * is allowed to register its @ops by calling security_module_enable(@ops).
108 *
109 * If there is already a security module registered with the kernel,
110 * an error will be returned. Otherwise %0 is returned on success.
111 */
112 int __init register_security(struct security_operations *ops)
113 {
114 if (verify(ops)) {
115 printk(KERN_DEBUG "%s could not verify "
116 "security_operations structure.\n", __func__);
117 return -EINVAL;
118 }
119
120 if (security_ops != &default_security_ops)
121 return -EAGAIN;
122
123 security_ops = ops;
124
125 return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132 return security_ops->ptrace_access_check(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141 kernel_cap_t *effective,
142 kernel_cap_t *inheritable,
143 kernel_cap_t *permitted)
144 {
145 return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149 const kernel_cap_t *effective,
150 const kernel_cap_t *inheritable,
151 const kernel_cap_t *permitted)
152 {
153 return security_ops->capset(new, old,
154 effective, inheritable, permitted);
155 }
156
157 int security_capable(int cap)
158 {
159 return security_ops->capable(current, current_cred(), cap,
160 SECURITY_CAP_AUDIT);
161 }
162
163 int security_real_capable(struct task_struct *tsk, int cap)
164 {
165 const struct cred *cred;
166 int ret;
167
168 cred = get_task_cred(tsk);
169 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
170 put_cred(cred);
171 return ret;
172 }
173
174 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
175 {
176 const struct cred *cred;
177 int ret;
178
179 cred = get_task_cred(tsk);
180 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
181 put_cred(cred);
182 return ret;
183 }
184
185 int security_sysctl(struct ctl_table *table, int op)
186 {
187 return security_ops->sysctl(table, op);
188 }
189
190 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
191 {
192 return security_ops->quotactl(cmds, type, id, sb);
193 }
194
195 int security_quota_on(struct dentry *dentry)
196 {
197 return security_ops->quota_on(dentry);
198 }
199
200 int security_syslog(int type)
201 {
202 return security_ops->syslog(type);
203 }
204
205 int security_settime(struct timespec *ts, struct timezone *tz)
206 {
207 return security_ops->settime(ts, tz);
208 }
209
210 int security_vm_enough_memory(long pages)
211 {
212 WARN_ON(current->mm == NULL);
213 return security_ops->vm_enough_memory(current->mm, pages);
214 }
215
216 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
217 {
218 WARN_ON(mm == NULL);
219 return security_ops->vm_enough_memory(mm, pages);
220 }
221
222 int security_vm_enough_memory_kern(long pages)
223 {
224 /* If current->mm is a kernel thread then we will pass NULL,
225 for this specific case that is fine */
226 return security_ops->vm_enough_memory(current->mm, pages);
227 }
228
229 int security_bprm_set_creds(struct linux_binprm *bprm)
230 {
231 return security_ops->bprm_set_creds(bprm);
232 }
233
234 int security_bprm_check(struct linux_binprm *bprm)
235 {
236 int ret;
237
238 ret = security_ops->bprm_check_security(bprm);
239 if (ret)
240 return ret;
241 return ima_bprm_check(bprm);
242 }
243
244 void security_bprm_committing_creds(struct linux_binprm *bprm)
245 {
246 security_ops->bprm_committing_creds(bprm);
247 }
248
249 void security_bprm_committed_creds(struct linux_binprm *bprm)
250 {
251 security_ops->bprm_committed_creds(bprm);
252 }
253
254 int security_bprm_secureexec(struct linux_binprm *bprm)
255 {
256 return security_ops->bprm_secureexec(bprm);
257 }
258
259 int security_sb_alloc(struct super_block *sb)
260 {
261 return security_ops->sb_alloc_security(sb);
262 }
263
264 void security_sb_free(struct super_block *sb)
265 {
266 security_ops->sb_free_security(sb);
267 }
268
269 int security_sb_copy_data(char *orig, char *copy)
270 {
271 return security_ops->sb_copy_data(orig, copy);
272 }
273 EXPORT_SYMBOL(security_sb_copy_data);
274
275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
276 {
277 return security_ops->sb_kern_mount(sb, flags, data);
278 }
279
280 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
281 {
282 return security_ops->sb_show_options(m, sb);
283 }
284
285 int security_sb_statfs(struct dentry *dentry)
286 {
287 return security_ops->sb_statfs(dentry);
288 }
289
290 int security_sb_mount(char *dev_name, struct path *path,
291 char *type, unsigned long flags, void *data)
292 {
293 return security_ops->sb_mount(dev_name, path, type, flags, data);
294 }
295
296 int security_sb_umount(struct vfsmount *mnt, int flags)
297 {
298 return security_ops->sb_umount(mnt, flags);
299 }
300
301 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
302 {
303 return security_ops->sb_pivotroot(old_path, new_path);
304 }
305
306 int security_sb_set_mnt_opts(struct super_block *sb,
307 struct security_mnt_opts *opts)
308 {
309 return security_ops->sb_set_mnt_opts(sb, opts);
310 }
311 EXPORT_SYMBOL(security_sb_set_mnt_opts);
312
313 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
314 struct super_block *newsb)
315 {
316 security_ops->sb_clone_mnt_opts(oldsb, newsb);
317 }
318 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
319
320 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
321 {
322 return security_ops->sb_parse_opts_str(options, opts);
323 }
324 EXPORT_SYMBOL(security_sb_parse_opts_str);
325
326 int security_inode_alloc(struct inode *inode)
327 {
328 inode->i_security = NULL;
329 return security_ops->inode_alloc_security(inode);
330 }
331
332 void security_inode_free(struct inode *inode)
333 {
334 ima_inode_free(inode);
335 security_ops->inode_free_security(inode);
336 }
337
338 int security_inode_init_security(struct inode *inode, struct inode *dir,
339 char **name, void **value, size_t *len)
340 {
341 if (unlikely(IS_PRIVATE(inode)))
342 return -EOPNOTSUPP;
343 return security_ops->inode_init_security(inode, dir, name, value, len);
344 }
345 EXPORT_SYMBOL(security_inode_init_security);
346
347 #ifdef CONFIG_SECURITY_PATH
348 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
349 unsigned int dev)
350 {
351 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
352 return 0;
353 return security_ops->path_mknod(dir, dentry, mode, dev);
354 }
355 EXPORT_SYMBOL(security_path_mknod);
356
357 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
358 {
359 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
360 return 0;
361 return security_ops->path_mkdir(dir, dentry, mode);
362 }
363
364 int security_path_rmdir(struct path *dir, struct dentry *dentry)
365 {
366 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
367 return 0;
368 return security_ops->path_rmdir(dir, dentry);
369 }
370
371 int security_path_unlink(struct path *dir, struct dentry *dentry)
372 {
373 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
374 return 0;
375 return security_ops->path_unlink(dir, dentry);
376 }
377
378 int security_path_symlink(struct path *dir, struct dentry *dentry,
379 const char *old_name)
380 {
381 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
382 return 0;
383 return security_ops->path_symlink(dir, dentry, old_name);
384 }
385
386 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
387 struct dentry *new_dentry)
388 {
389 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
390 return 0;
391 return security_ops->path_link(old_dentry, new_dir, new_dentry);
392 }
393
394 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
395 struct path *new_dir, struct dentry *new_dentry)
396 {
397 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
398 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
399 return 0;
400 return security_ops->path_rename(old_dir, old_dentry, new_dir,
401 new_dentry);
402 }
403
404 int security_path_truncate(struct path *path)
405 {
406 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
407 return 0;
408 return security_ops->path_truncate(path);
409 }
410
411 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
412 mode_t mode)
413 {
414 if (unlikely(IS_PRIVATE(dentry->d_inode)))
415 return 0;
416 return security_ops->path_chmod(dentry, mnt, mode);
417 }
418
419 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
420 {
421 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
422 return 0;
423 return security_ops->path_chown(path, uid, gid);
424 }
425
426 int security_path_chroot(struct path *path)
427 {
428 return security_ops->path_chroot(path);
429 }
430 #endif
431
432 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
433 {
434 if (unlikely(IS_PRIVATE(dir)))
435 return 0;
436 return security_ops->inode_create(dir, dentry, mode);
437 }
438 EXPORT_SYMBOL_GPL(security_inode_create);
439
440 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
441 struct dentry *new_dentry)
442 {
443 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
444 return 0;
445 return security_ops->inode_link(old_dentry, dir, new_dentry);
446 }
447
448 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
449 {
450 if (unlikely(IS_PRIVATE(dentry->d_inode)))
451 return 0;
452 return security_ops->inode_unlink(dir, dentry);
453 }
454
455 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
456 const char *old_name)
457 {
458 if (unlikely(IS_PRIVATE(dir)))
459 return 0;
460 return security_ops->inode_symlink(dir, dentry, old_name);
461 }
462
463 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
464 {
465 if (unlikely(IS_PRIVATE(dir)))
466 return 0;
467 return security_ops->inode_mkdir(dir, dentry, mode);
468 }
469 EXPORT_SYMBOL_GPL(security_inode_mkdir);
470
471 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
472 {
473 if (unlikely(IS_PRIVATE(dentry->d_inode)))
474 return 0;
475 return security_ops->inode_rmdir(dir, dentry);
476 }
477
478 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
479 {
480 if (unlikely(IS_PRIVATE(dir)))
481 return 0;
482 return security_ops->inode_mknod(dir, dentry, mode, dev);
483 }
484
485 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
486 struct inode *new_dir, struct dentry *new_dentry)
487 {
488 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
489 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
490 return 0;
491 return security_ops->inode_rename(old_dir, old_dentry,
492 new_dir, new_dentry);
493 }
494
495 int security_inode_readlink(struct dentry *dentry)
496 {
497 if (unlikely(IS_PRIVATE(dentry->d_inode)))
498 return 0;
499 return security_ops->inode_readlink(dentry);
500 }
501
502 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
503 {
504 if (unlikely(IS_PRIVATE(dentry->d_inode)))
505 return 0;
506 return security_ops->inode_follow_link(dentry, nd);
507 }
508
509 int security_inode_permission(struct inode *inode, int mask)
510 {
511 if (unlikely(IS_PRIVATE(inode)))
512 return 0;
513 return security_ops->inode_permission(inode, mask);
514 }
515
516 int security_inode_exec_permission(struct inode *inode, unsigned int flags)
517 {
518 if (unlikely(IS_PRIVATE(inode)))
519 return 0;
520 if (flags)
521 return -ECHILD;
522 return security_ops->inode_permission(inode, MAY_EXEC);
523 }
524
525 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
526 {
527 if (unlikely(IS_PRIVATE(dentry->d_inode)))
528 return 0;
529 return security_ops->inode_setattr(dentry, attr);
530 }
531 EXPORT_SYMBOL_GPL(security_inode_setattr);
532
533 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
534 {
535 if (unlikely(IS_PRIVATE(dentry->d_inode)))
536 return 0;
537 return security_ops->inode_getattr(mnt, dentry);
538 }
539
540 int security_inode_setxattr(struct dentry *dentry, const char *name,
541 const void *value, size_t size, int flags)
542 {
543 if (unlikely(IS_PRIVATE(dentry->d_inode)))
544 return 0;
545 return security_ops->inode_setxattr(dentry, name, value, size, flags);
546 }
547
548 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
549 const void *value, size_t size, int flags)
550 {
551 if (unlikely(IS_PRIVATE(dentry->d_inode)))
552 return;
553 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
554 }
555
556 int security_inode_getxattr(struct dentry *dentry, const char *name)
557 {
558 if (unlikely(IS_PRIVATE(dentry->d_inode)))
559 return 0;
560 return security_ops->inode_getxattr(dentry, name);
561 }
562
563 int security_inode_listxattr(struct dentry *dentry)
564 {
565 if (unlikely(IS_PRIVATE(dentry->d_inode)))
566 return 0;
567 return security_ops->inode_listxattr(dentry);
568 }
569
570 int security_inode_removexattr(struct dentry *dentry, const char *name)
571 {
572 if (unlikely(IS_PRIVATE(dentry->d_inode)))
573 return 0;
574 return security_ops->inode_removexattr(dentry, name);
575 }
576
577 int security_inode_need_killpriv(struct dentry *dentry)
578 {
579 return security_ops->inode_need_killpriv(dentry);
580 }
581
582 int security_inode_killpriv(struct dentry *dentry)
583 {
584 return security_ops->inode_killpriv(dentry);
585 }
586
587 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
588 {
589 if (unlikely(IS_PRIVATE(inode)))
590 return -EOPNOTSUPP;
591 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
592 }
593
594 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
595 {
596 if (unlikely(IS_PRIVATE(inode)))
597 return -EOPNOTSUPP;
598 return security_ops->inode_setsecurity(inode, name, value, size, flags);
599 }
600
601 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
602 {
603 if (unlikely(IS_PRIVATE(inode)))
604 return 0;
605 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
606 }
607
608 void security_inode_getsecid(const struct inode *inode, u32 *secid)
609 {
610 security_ops->inode_getsecid(inode, secid);
611 }
612
613 int security_file_permission(struct file *file, int mask)
614 {
615 int ret;
616
617 ret = security_ops->file_permission(file, mask);
618 if (ret)
619 return ret;
620
621 return fsnotify_perm(file, mask);
622 }
623
624 int security_file_alloc(struct file *file)
625 {
626 return security_ops->file_alloc_security(file);
627 }
628
629 void security_file_free(struct file *file)
630 {
631 security_ops->file_free_security(file);
632 }
633
634 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
635 {
636 return security_ops->file_ioctl(file, cmd, arg);
637 }
638
639 int security_file_mmap(struct file *file, unsigned long reqprot,
640 unsigned long prot, unsigned long flags,
641 unsigned long addr, unsigned long addr_only)
642 {
643 int ret;
644
645 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
646 if (ret)
647 return ret;
648 return ima_file_mmap(file, prot);
649 }
650
651 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
652 unsigned long prot)
653 {
654 return security_ops->file_mprotect(vma, reqprot, prot);
655 }
656
657 int security_file_lock(struct file *file, unsigned int cmd)
658 {
659 return security_ops->file_lock(file, cmd);
660 }
661
662 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
663 {
664 return security_ops->file_fcntl(file, cmd, arg);
665 }
666
667 int security_file_set_fowner(struct file *file)
668 {
669 return security_ops->file_set_fowner(file);
670 }
671
672 int security_file_send_sigiotask(struct task_struct *tsk,
673 struct fown_struct *fown, int sig)
674 {
675 return security_ops->file_send_sigiotask(tsk, fown, sig);
676 }
677
678 int security_file_receive(struct file *file)
679 {
680 return security_ops->file_receive(file);
681 }
682
683 int security_dentry_open(struct file *file, const struct cred *cred)
684 {
685 int ret;
686
687 ret = security_ops->dentry_open(file, cred);
688 if (ret)
689 return ret;
690
691 return fsnotify_perm(file, MAY_OPEN);
692 }
693
694 int security_task_create(unsigned long clone_flags)
695 {
696 return security_ops->task_create(clone_flags);
697 }
698
699 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
700 {
701 return security_ops->cred_alloc_blank(cred, gfp);
702 }
703
704 void security_cred_free(struct cred *cred)
705 {
706 security_ops->cred_free(cred);
707 }
708
709 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
710 {
711 return security_ops->cred_prepare(new, old, gfp);
712 }
713
714 void security_transfer_creds(struct cred *new, const struct cred *old)
715 {
716 security_ops->cred_transfer(new, old);
717 }
718
719 int security_kernel_act_as(struct cred *new, u32 secid)
720 {
721 return security_ops->kernel_act_as(new, secid);
722 }
723
724 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
725 {
726 return security_ops->kernel_create_files_as(new, inode);
727 }
728
729 int security_kernel_module_request(char *kmod_name)
730 {
731 return security_ops->kernel_module_request(kmod_name);
732 }
733
734 int security_task_fix_setuid(struct cred *new, const struct cred *old,
735 int flags)
736 {
737 return security_ops->task_fix_setuid(new, old, flags);
738 }
739
740 int security_task_setpgid(struct task_struct *p, pid_t pgid)
741 {
742 return security_ops->task_setpgid(p, pgid);
743 }
744
745 int security_task_getpgid(struct task_struct *p)
746 {
747 return security_ops->task_getpgid(p);
748 }
749
750 int security_task_getsid(struct task_struct *p)
751 {
752 return security_ops->task_getsid(p);
753 }
754
755 void security_task_getsecid(struct task_struct *p, u32 *secid)
756 {
757 security_ops->task_getsecid(p, secid);
758 }
759 EXPORT_SYMBOL(security_task_getsecid);
760
761 int security_task_setnice(struct task_struct *p, int nice)
762 {
763 return security_ops->task_setnice(p, nice);
764 }
765
766 int security_task_setioprio(struct task_struct *p, int ioprio)
767 {
768 return security_ops->task_setioprio(p, ioprio);
769 }
770
771 int security_task_getioprio(struct task_struct *p)
772 {
773 return security_ops->task_getioprio(p);
774 }
775
776 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
777 struct rlimit *new_rlim)
778 {
779 return security_ops->task_setrlimit(p, resource, new_rlim);
780 }
781
782 int security_task_setscheduler(struct task_struct *p)
783 {
784 return security_ops->task_setscheduler(p);
785 }
786
787 int security_task_getscheduler(struct task_struct *p)
788 {
789 return security_ops->task_getscheduler(p);
790 }
791
792 int security_task_movememory(struct task_struct *p)
793 {
794 return security_ops->task_movememory(p);
795 }
796
797 int security_task_kill(struct task_struct *p, struct siginfo *info,
798 int sig, u32 secid)
799 {
800 return security_ops->task_kill(p, info, sig, secid);
801 }
802
803 int security_task_wait(struct task_struct *p)
804 {
805 return security_ops->task_wait(p);
806 }
807
808 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
809 unsigned long arg4, unsigned long arg5)
810 {
811 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
812 }
813
814 void security_task_to_inode(struct task_struct *p, struct inode *inode)
815 {
816 security_ops->task_to_inode(p, inode);
817 }
818
819 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
820 {
821 return security_ops->ipc_permission(ipcp, flag);
822 }
823
824 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
825 {
826 security_ops->ipc_getsecid(ipcp, secid);
827 }
828
829 int security_msg_msg_alloc(struct msg_msg *msg)
830 {
831 return security_ops->msg_msg_alloc_security(msg);
832 }
833
834 void security_msg_msg_free(struct msg_msg *msg)
835 {
836 security_ops->msg_msg_free_security(msg);
837 }
838
839 int security_msg_queue_alloc(struct msg_queue *msq)
840 {
841 return security_ops->msg_queue_alloc_security(msq);
842 }
843
844 void security_msg_queue_free(struct msg_queue *msq)
845 {
846 security_ops->msg_queue_free_security(msq);
847 }
848
849 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
850 {
851 return security_ops->msg_queue_associate(msq, msqflg);
852 }
853
854 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
855 {
856 return security_ops->msg_queue_msgctl(msq, cmd);
857 }
858
859 int security_msg_queue_msgsnd(struct msg_queue *msq,
860 struct msg_msg *msg, int msqflg)
861 {
862 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
863 }
864
865 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
866 struct task_struct *target, long type, int mode)
867 {
868 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
869 }
870
871 int security_shm_alloc(struct shmid_kernel *shp)
872 {
873 return security_ops->shm_alloc_security(shp);
874 }
875
876 void security_shm_free(struct shmid_kernel *shp)
877 {
878 security_ops->shm_free_security(shp);
879 }
880
881 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
882 {
883 return security_ops->shm_associate(shp, shmflg);
884 }
885
886 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
887 {
888 return security_ops->shm_shmctl(shp, cmd);
889 }
890
891 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
892 {
893 return security_ops->shm_shmat(shp, shmaddr, shmflg);
894 }
895
896 int security_sem_alloc(struct sem_array *sma)
897 {
898 return security_ops->sem_alloc_security(sma);
899 }
900
901 void security_sem_free(struct sem_array *sma)
902 {
903 security_ops->sem_free_security(sma);
904 }
905
906 int security_sem_associate(struct sem_array *sma, int semflg)
907 {
908 return security_ops->sem_associate(sma, semflg);
909 }
910
911 int security_sem_semctl(struct sem_array *sma, int cmd)
912 {
913 return security_ops->sem_semctl(sma, cmd);
914 }
915
916 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
917 unsigned nsops, int alter)
918 {
919 return security_ops->sem_semop(sma, sops, nsops, alter);
920 }
921
922 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
923 {
924 if (unlikely(inode && IS_PRIVATE(inode)))
925 return;
926 security_ops->d_instantiate(dentry, inode);
927 }
928 EXPORT_SYMBOL(security_d_instantiate);
929
930 int security_getprocattr(struct task_struct *p, char *name, char **value)
931 {
932 return security_ops->getprocattr(p, name, value);
933 }
934
935 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
936 {
937 return security_ops->setprocattr(p, name, value, size);
938 }
939
940 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
941 {
942 return security_ops->netlink_send(sk, skb);
943 }
944
945 int security_netlink_recv(struct sk_buff *skb, int cap)
946 {
947 return security_ops->netlink_recv(skb, cap);
948 }
949 EXPORT_SYMBOL(security_netlink_recv);
950
951 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
952 {
953 return security_ops->secid_to_secctx(secid, secdata, seclen);
954 }
955 EXPORT_SYMBOL(security_secid_to_secctx);
956
957 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
958 {
959 return security_ops->secctx_to_secid(secdata, seclen, secid);
960 }
961 EXPORT_SYMBOL(security_secctx_to_secid);
962
963 void security_release_secctx(char *secdata, u32 seclen)
964 {
965 security_ops->release_secctx(secdata, seclen);
966 }
967 EXPORT_SYMBOL(security_release_secctx);
968
969 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
970 {
971 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
972 }
973 EXPORT_SYMBOL(security_inode_notifysecctx);
974
975 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
976 {
977 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
978 }
979 EXPORT_SYMBOL(security_inode_setsecctx);
980
981 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
982 {
983 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
984 }
985 EXPORT_SYMBOL(security_inode_getsecctx);
986
987 #ifdef CONFIG_SECURITY_NETWORK
988
989 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
990 {
991 return security_ops->unix_stream_connect(sock, other, newsk);
992 }
993 EXPORT_SYMBOL(security_unix_stream_connect);
994
995 int security_unix_may_send(struct socket *sock, struct socket *other)
996 {
997 return security_ops->unix_may_send(sock, other);
998 }
999 EXPORT_SYMBOL(security_unix_may_send);
1000
1001 int security_socket_create(int family, int type, int protocol, int kern)
1002 {
1003 return security_ops->socket_create(family, type, protocol, kern);
1004 }
1005
1006 int security_socket_post_create(struct socket *sock, int family,
1007 int type, int protocol, int kern)
1008 {
1009 return security_ops->socket_post_create(sock, family, type,
1010 protocol, kern);
1011 }
1012
1013 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1014 {
1015 return security_ops->socket_bind(sock, address, addrlen);
1016 }
1017
1018 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1019 {
1020 return security_ops->socket_connect(sock, address, addrlen);
1021 }
1022
1023 int security_socket_listen(struct socket *sock, int backlog)
1024 {
1025 return security_ops->socket_listen(sock, backlog);
1026 }
1027
1028 int security_socket_accept(struct socket *sock, struct socket *newsock)
1029 {
1030 return security_ops->socket_accept(sock, newsock);
1031 }
1032
1033 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1034 {
1035 return security_ops->socket_sendmsg(sock, msg, size);
1036 }
1037
1038 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1039 int size, int flags)
1040 {
1041 return security_ops->socket_recvmsg(sock, msg, size, flags);
1042 }
1043
1044 int security_socket_getsockname(struct socket *sock)
1045 {
1046 return security_ops->socket_getsockname(sock);
1047 }
1048
1049 int security_socket_getpeername(struct socket *sock)
1050 {
1051 return security_ops->socket_getpeername(sock);
1052 }
1053
1054 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1055 {
1056 return security_ops->socket_getsockopt(sock, level, optname);
1057 }
1058
1059 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1060 {
1061 return security_ops->socket_setsockopt(sock, level, optname);
1062 }
1063
1064 int security_socket_shutdown(struct socket *sock, int how)
1065 {
1066 return security_ops->socket_shutdown(sock, how);
1067 }
1068
1069 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1070 {
1071 return security_ops->socket_sock_rcv_skb(sk, skb);
1072 }
1073 EXPORT_SYMBOL(security_sock_rcv_skb);
1074
1075 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1076 int __user *optlen, unsigned len)
1077 {
1078 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1079 }
1080
1081 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1082 {
1083 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1084 }
1085 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1086
1087 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1088 {
1089 return security_ops->sk_alloc_security(sk, family, priority);
1090 }
1091
1092 void security_sk_free(struct sock *sk)
1093 {
1094 security_ops->sk_free_security(sk);
1095 }
1096
1097 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1098 {
1099 security_ops->sk_clone_security(sk, newsk);
1100 }
1101
1102 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1103 {
1104 security_ops->sk_getsecid(sk, &fl->secid);
1105 }
1106 EXPORT_SYMBOL(security_sk_classify_flow);
1107
1108 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1109 {
1110 security_ops->req_classify_flow(req, fl);
1111 }
1112 EXPORT_SYMBOL(security_req_classify_flow);
1113
1114 void security_sock_graft(struct sock *sk, struct socket *parent)
1115 {
1116 security_ops->sock_graft(sk, parent);
1117 }
1118 EXPORT_SYMBOL(security_sock_graft);
1119
1120 int security_inet_conn_request(struct sock *sk,
1121 struct sk_buff *skb, struct request_sock *req)
1122 {
1123 return security_ops->inet_conn_request(sk, skb, req);
1124 }
1125 EXPORT_SYMBOL(security_inet_conn_request);
1126
1127 void security_inet_csk_clone(struct sock *newsk,
1128 const struct request_sock *req)
1129 {
1130 security_ops->inet_csk_clone(newsk, req);
1131 }
1132
1133 void security_inet_conn_established(struct sock *sk,
1134 struct sk_buff *skb)
1135 {
1136 security_ops->inet_conn_established(sk, skb);
1137 }
1138
1139 int security_secmark_relabel_packet(u32 secid)
1140 {
1141 return security_ops->secmark_relabel_packet(secid);
1142 }
1143 EXPORT_SYMBOL(security_secmark_relabel_packet);
1144
1145 void security_secmark_refcount_inc(void)
1146 {
1147 security_ops->secmark_refcount_inc();
1148 }
1149 EXPORT_SYMBOL(security_secmark_refcount_inc);
1150
1151 void security_secmark_refcount_dec(void)
1152 {
1153 security_ops->secmark_refcount_dec();
1154 }
1155 EXPORT_SYMBOL(security_secmark_refcount_dec);
1156
1157 int security_tun_dev_create(void)
1158 {
1159 return security_ops->tun_dev_create();
1160 }
1161 EXPORT_SYMBOL(security_tun_dev_create);
1162
1163 void security_tun_dev_post_create(struct sock *sk)
1164 {
1165 return security_ops->tun_dev_post_create(sk);
1166 }
1167 EXPORT_SYMBOL(security_tun_dev_post_create);
1168
1169 int security_tun_dev_attach(struct sock *sk)
1170 {
1171 return security_ops->tun_dev_attach(sk);
1172 }
1173 EXPORT_SYMBOL(security_tun_dev_attach);
1174
1175 #endif /* CONFIG_SECURITY_NETWORK */
1176
1177 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1178
1179 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1180 {
1181 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1182 }
1183 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1184
1185 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1186 struct xfrm_sec_ctx **new_ctxp)
1187 {
1188 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1189 }
1190
1191 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1192 {
1193 security_ops->xfrm_policy_free_security(ctx);
1194 }
1195 EXPORT_SYMBOL(security_xfrm_policy_free);
1196
1197 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1198 {
1199 return security_ops->xfrm_policy_delete_security(ctx);
1200 }
1201
1202 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1203 {
1204 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1205 }
1206 EXPORT_SYMBOL(security_xfrm_state_alloc);
1207
1208 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1209 struct xfrm_sec_ctx *polsec, u32 secid)
1210 {
1211 if (!polsec)
1212 return 0;
1213 /*
1214 * We want the context to be taken from secid which is usually
1215 * from the sock.
1216 */
1217 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1218 }
1219
1220 int security_xfrm_state_delete(struct xfrm_state *x)
1221 {
1222 return security_ops->xfrm_state_delete_security(x);
1223 }
1224 EXPORT_SYMBOL(security_xfrm_state_delete);
1225
1226 void security_xfrm_state_free(struct xfrm_state *x)
1227 {
1228 security_ops->xfrm_state_free_security(x);
1229 }
1230
1231 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1232 {
1233 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1234 }
1235
1236 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1237 struct xfrm_policy *xp, struct flowi *fl)
1238 {
1239 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1240 }
1241
1242 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1243 {
1244 return security_ops->xfrm_decode_session(skb, secid, 1);
1245 }
1246
1247 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1248 {
1249 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1250
1251 BUG_ON(rc);
1252 }
1253 EXPORT_SYMBOL(security_skb_classify_flow);
1254
1255 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1256
1257 #ifdef CONFIG_KEYS
1258
1259 int security_key_alloc(struct key *key, const struct cred *cred,
1260 unsigned long flags)
1261 {
1262 return security_ops->key_alloc(key, cred, flags);
1263 }
1264
1265 void security_key_free(struct key *key)
1266 {
1267 security_ops->key_free(key);
1268 }
1269
1270 int security_key_permission(key_ref_t key_ref,
1271 const struct cred *cred, key_perm_t perm)
1272 {
1273 return security_ops->key_permission(key_ref, cred, perm);
1274 }
1275
1276 int security_key_getsecurity(struct key *key, char **_buffer)
1277 {
1278 return security_ops->key_getsecurity(key, _buffer);
1279 }
1280
1281 #endif /* CONFIG_KEYS */
1282
1283 #ifdef CONFIG_AUDIT
1284
1285 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1286 {
1287 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1288 }
1289
1290 int security_audit_rule_known(struct audit_krule *krule)
1291 {
1292 return security_ops->audit_rule_known(krule);
1293 }
1294
1295 void security_audit_rule_free(void *lsmrule)
1296 {
1297 security_ops->audit_rule_free(lsmrule);
1298 }
1299
1300 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1301 struct audit_context *actx)
1302 {
1303 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1304 }
1305
1306 #endif /* CONFIG_AUDIT */