]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - security/security.c
exec: Always set cap_ambient in cap_bprm_set_creds
[mirror_ubuntu-hirsute-kernel.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31
32 #define MAX_LSM_EVM_XATTR 2
33
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36
37 /*
38 * These are descriptions of the reasons that can be passed to the
39 * security_locked_down() LSM hook. Placing this array here allows
40 * all security modules to use the same descriptions for auditing
41 * purposes.
42 */
43 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
44 [LOCKDOWN_NONE] = "none",
45 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
46 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
47 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
48 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
49 [LOCKDOWN_HIBERNATION] = "hibernation",
50 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
51 [LOCKDOWN_IOPORT] = "raw io port access",
52 [LOCKDOWN_MSR] = "raw MSR access",
53 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
54 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
55 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
56 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
57 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
58 [LOCKDOWN_DEBUGFS] = "debugfs access",
59 [LOCKDOWN_XMON_WR] = "xmon write access",
60 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
61 [LOCKDOWN_KCORE] = "/proc/kcore access",
62 [LOCKDOWN_KPROBES] = "use of kprobes",
63 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
64 [LOCKDOWN_PERF] = "unsafe use of perf",
65 [LOCKDOWN_TRACEFS] = "use of tracefs",
66 [LOCKDOWN_XMON_RW] = "xmon read and write access",
67 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
68 };
69
70 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
71 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
72
73 static struct kmem_cache *lsm_file_cache;
74 static struct kmem_cache *lsm_inode_cache;
75
76 char *lsm_names;
77 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
78
79 /* Boot-time LSM user choice */
80 static __initdata const char *chosen_lsm_order;
81 static __initdata const char *chosen_major_lsm;
82
83 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
84
85 /* Ordered list of LSMs to initialize. */
86 static __initdata struct lsm_info **ordered_lsms;
87 static __initdata struct lsm_info *exclusive;
88
89 static __initdata bool debug;
90 #define init_debug(...) \
91 do { \
92 if (debug) \
93 pr_info(__VA_ARGS__); \
94 } while (0)
95
96 static bool __init is_enabled(struct lsm_info *lsm)
97 {
98 if (!lsm->enabled)
99 return false;
100
101 return *lsm->enabled;
102 }
103
104 /* Mark an LSM's enabled flag. */
105 static int lsm_enabled_true __initdata = 1;
106 static int lsm_enabled_false __initdata = 0;
107 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
108 {
109 /*
110 * When an LSM hasn't configured an enable variable, we can use
111 * a hard-coded location for storing the default enabled state.
112 */
113 if (!lsm->enabled) {
114 if (enabled)
115 lsm->enabled = &lsm_enabled_true;
116 else
117 lsm->enabled = &lsm_enabled_false;
118 } else if (lsm->enabled == &lsm_enabled_true) {
119 if (!enabled)
120 lsm->enabled = &lsm_enabled_false;
121 } else if (lsm->enabled == &lsm_enabled_false) {
122 if (enabled)
123 lsm->enabled = &lsm_enabled_true;
124 } else {
125 *lsm->enabled = enabled;
126 }
127 }
128
129 /* Is an LSM already listed in the ordered LSMs list? */
130 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
131 {
132 struct lsm_info **check;
133
134 for (check = ordered_lsms; *check; check++)
135 if (*check == lsm)
136 return true;
137
138 return false;
139 }
140
141 /* Append an LSM to the list of ordered LSMs to initialize. */
142 static int last_lsm __initdata;
143 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
144 {
145 /* Ignore duplicate selections. */
146 if (exists_ordered_lsm(lsm))
147 return;
148
149 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
150 return;
151
152 /* Enable this LSM, if it is not already set. */
153 if (!lsm->enabled)
154 lsm->enabled = &lsm_enabled_true;
155 ordered_lsms[last_lsm++] = lsm;
156
157 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
158 is_enabled(lsm) ? "en" : "dis");
159 }
160
161 /* Is an LSM allowed to be initialized? */
162 static bool __init lsm_allowed(struct lsm_info *lsm)
163 {
164 /* Skip if the LSM is disabled. */
165 if (!is_enabled(lsm))
166 return false;
167
168 /* Not allowed if another exclusive LSM already initialized. */
169 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
170 init_debug("exclusive disabled: %s\n", lsm->name);
171 return false;
172 }
173
174 return true;
175 }
176
177 static void __init lsm_set_blob_size(int *need, int *lbs)
178 {
179 int offset;
180
181 if (*need > 0) {
182 offset = *lbs;
183 *lbs += *need;
184 *need = offset;
185 }
186 }
187
188 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
189 {
190 if (!needed)
191 return;
192
193 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
194 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
195 /*
196 * The inode blob gets an rcu_head in addition to
197 * what the modules might need.
198 */
199 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
200 blob_sizes.lbs_inode = sizeof(struct rcu_head);
201 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
202 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
203 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
204 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
205 }
206
207 /* Prepare LSM for initialization. */
208 static void __init prepare_lsm(struct lsm_info *lsm)
209 {
210 int enabled = lsm_allowed(lsm);
211
212 /* Record enablement (to handle any following exclusive LSMs). */
213 set_enabled(lsm, enabled);
214
215 /* If enabled, do pre-initialization work. */
216 if (enabled) {
217 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
218 exclusive = lsm;
219 init_debug("exclusive chosen: %s\n", lsm->name);
220 }
221
222 lsm_set_blob_sizes(lsm->blobs);
223 }
224 }
225
226 /* Initialize a given LSM, if it is enabled. */
227 static void __init initialize_lsm(struct lsm_info *lsm)
228 {
229 if (is_enabled(lsm)) {
230 int ret;
231
232 init_debug("initializing %s\n", lsm->name);
233 ret = lsm->init();
234 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
235 }
236 }
237
238 /* Populate ordered LSMs list from comma-separated LSM name list. */
239 static void __init ordered_lsm_parse(const char *order, const char *origin)
240 {
241 struct lsm_info *lsm;
242 char *sep, *name, *next;
243
244 /* LSM_ORDER_FIRST is always first. */
245 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246 if (lsm->order == LSM_ORDER_FIRST)
247 append_ordered_lsm(lsm, "first");
248 }
249
250 /* Process "security=", if given. */
251 if (chosen_major_lsm) {
252 struct lsm_info *major;
253
254 /*
255 * To match the original "security=" behavior, this
256 * explicitly does NOT fallback to another Legacy Major
257 * if the selected one was separately disabled: disable
258 * all non-matching Legacy Major LSMs.
259 */
260 for (major = __start_lsm_info; major < __end_lsm_info;
261 major++) {
262 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
263 strcmp(major->name, chosen_major_lsm) != 0) {
264 set_enabled(major, false);
265 init_debug("security=%s disabled: %s\n",
266 chosen_major_lsm, major->name);
267 }
268 }
269 }
270
271 sep = kstrdup(order, GFP_KERNEL);
272 next = sep;
273 /* Walk the list, looking for matching LSMs. */
274 while ((name = strsep(&next, ",")) != NULL) {
275 bool found = false;
276
277 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
278 if (lsm->order == LSM_ORDER_MUTABLE &&
279 strcmp(lsm->name, name) == 0) {
280 append_ordered_lsm(lsm, origin);
281 found = true;
282 }
283 }
284
285 if (!found)
286 init_debug("%s ignored: %s\n", origin, name);
287 }
288
289 /* Process "security=", if given. */
290 if (chosen_major_lsm) {
291 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
292 if (exists_ordered_lsm(lsm))
293 continue;
294 if (strcmp(lsm->name, chosen_major_lsm) == 0)
295 append_ordered_lsm(lsm, "security=");
296 }
297 }
298
299 /* Disable all LSMs not in the ordered list. */
300 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
301 if (exists_ordered_lsm(lsm))
302 continue;
303 set_enabled(lsm, false);
304 init_debug("%s disabled: %s\n", origin, lsm->name);
305 }
306
307 kfree(sep);
308 }
309
310 static void __init lsm_early_cred(struct cred *cred);
311 static void __init lsm_early_task(struct task_struct *task);
312
313 static int lsm_append(const char *new, char **result);
314
315 static void __init ordered_lsm_init(void)
316 {
317 struct lsm_info **lsm;
318
319 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
320 GFP_KERNEL);
321
322 if (chosen_lsm_order) {
323 if (chosen_major_lsm) {
324 pr_info("security= is ignored because it is superseded by lsm=\n");
325 chosen_major_lsm = NULL;
326 }
327 ordered_lsm_parse(chosen_lsm_order, "cmdline");
328 } else
329 ordered_lsm_parse(builtin_lsm_order, "builtin");
330
331 for (lsm = ordered_lsms; *lsm; lsm++)
332 prepare_lsm(*lsm);
333
334 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
335 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
336 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
337 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
338 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
339 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
340
341 /*
342 * Create any kmem_caches needed for blobs
343 */
344 if (blob_sizes.lbs_file)
345 lsm_file_cache = kmem_cache_create("lsm_file_cache",
346 blob_sizes.lbs_file, 0,
347 SLAB_PANIC, NULL);
348 if (blob_sizes.lbs_inode)
349 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
350 blob_sizes.lbs_inode, 0,
351 SLAB_PANIC, NULL);
352
353 lsm_early_cred((struct cred *) current->cred);
354 lsm_early_task(current);
355 for (lsm = ordered_lsms; *lsm; lsm++)
356 initialize_lsm(*lsm);
357
358 kfree(ordered_lsms);
359 }
360
361 int __init early_security_init(void)
362 {
363 int i;
364 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
365 struct lsm_info *lsm;
366
367 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
368 i++)
369 INIT_HLIST_HEAD(&list[i]);
370
371 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
372 if (!lsm->enabled)
373 lsm->enabled = &lsm_enabled_true;
374 prepare_lsm(lsm);
375 initialize_lsm(lsm);
376 }
377
378 return 0;
379 }
380
381 /**
382 * security_init - initializes the security framework
383 *
384 * This should be called early in the kernel initialization sequence.
385 */
386 int __init security_init(void)
387 {
388 struct lsm_info *lsm;
389
390 pr_info("Security Framework initializing\n");
391
392 /*
393 * Append the names of the early LSM modules now that kmalloc() is
394 * available
395 */
396 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
397 if (lsm->enabled)
398 lsm_append(lsm->name, &lsm_names);
399 }
400
401 /* Load LSMs in specified order. */
402 ordered_lsm_init();
403
404 return 0;
405 }
406
407 /* Save user chosen LSM */
408 static int __init choose_major_lsm(char *str)
409 {
410 chosen_major_lsm = str;
411 return 1;
412 }
413 __setup("security=", choose_major_lsm);
414
415 /* Explicitly choose LSM initialization order. */
416 static int __init choose_lsm_order(char *str)
417 {
418 chosen_lsm_order = str;
419 return 1;
420 }
421 __setup("lsm=", choose_lsm_order);
422
423 /* Enable LSM order debugging. */
424 static int __init enable_debug(char *str)
425 {
426 debug = true;
427 return 1;
428 }
429 __setup("lsm.debug", enable_debug);
430
431 static bool match_last_lsm(const char *list, const char *lsm)
432 {
433 const char *last;
434
435 if (WARN_ON(!list || !lsm))
436 return false;
437 last = strrchr(list, ',');
438 if (last)
439 /* Pass the comma, strcmp() will check for '\0' */
440 last++;
441 else
442 last = list;
443 return !strcmp(last, lsm);
444 }
445
446 static int lsm_append(const char *new, char **result)
447 {
448 char *cp;
449
450 if (*result == NULL) {
451 *result = kstrdup(new, GFP_KERNEL);
452 if (*result == NULL)
453 return -ENOMEM;
454 } else {
455 /* Check if it is the last registered name */
456 if (match_last_lsm(*result, new))
457 return 0;
458 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
459 if (cp == NULL)
460 return -ENOMEM;
461 kfree(*result);
462 *result = cp;
463 }
464 return 0;
465 }
466
467 /**
468 * security_add_hooks - Add a modules hooks to the hook lists.
469 * @hooks: the hooks to add
470 * @count: the number of hooks to add
471 * @lsm: the name of the security module
472 *
473 * Each LSM has to register its hooks with the infrastructure.
474 */
475 void __init security_add_hooks(struct security_hook_list *hooks, int count,
476 char *lsm)
477 {
478 int i;
479
480 for (i = 0; i < count; i++) {
481 hooks[i].lsm = lsm;
482 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
483 }
484
485 /*
486 * Don't try to append during early_security_init(), we'll come back
487 * and fix this up afterwards.
488 */
489 if (slab_is_available()) {
490 if (lsm_append(lsm, &lsm_names) < 0)
491 panic("%s - Cannot get early memory.\n", __func__);
492 }
493 }
494
495 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
496 {
497 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
498 event, data);
499 }
500 EXPORT_SYMBOL(call_blocking_lsm_notifier);
501
502 int register_blocking_lsm_notifier(struct notifier_block *nb)
503 {
504 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
505 nb);
506 }
507 EXPORT_SYMBOL(register_blocking_lsm_notifier);
508
509 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
510 {
511 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
512 nb);
513 }
514 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
515
516 /**
517 * lsm_cred_alloc - allocate a composite cred blob
518 * @cred: the cred that needs a blob
519 * @gfp: allocation type
520 *
521 * Allocate the cred blob for all the modules
522 *
523 * Returns 0, or -ENOMEM if memory can't be allocated.
524 */
525 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
526 {
527 if (blob_sizes.lbs_cred == 0) {
528 cred->security = NULL;
529 return 0;
530 }
531
532 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
533 if (cred->security == NULL)
534 return -ENOMEM;
535 return 0;
536 }
537
538 /**
539 * lsm_early_cred - during initialization allocate a composite cred blob
540 * @cred: the cred that needs a blob
541 *
542 * Allocate the cred blob for all the modules
543 */
544 static void __init lsm_early_cred(struct cred *cred)
545 {
546 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
547
548 if (rc)
549 panic("%s: Early cred alloc failed.\n", __func__);
550 }
551
552 /**
553 * lsm_file_alloc - allocate a composite file blob
554 * @file: the file that needs a blob
555 *
556 * Allocate the file blob for all the modules
557 *
558 * Returns 0, or -ENOMEM if memory can't be allocated.
559 */
560 static int lsm_file_alloc(struct file *file)
561 {
562 if (!lsm_file_cache) {
563 file->f_security = NULL;
564 return 0;
565 }
566
567 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
568 if (file->f_security == NULL)
569 return -ENOMEM;
570 return 0;
571 }
572
573 /**
574 * lsm_inode_alloc - allocate a composite inode blob
575 * @inode: the inode that needs a blob
576 *
577 * Allocate the inode blob for all the modules
578 *
579 * Returns 0, or -ENOMEM if memory can't be allocated.
580 */
581 int lsm_inode_alloc(struct inode *inode)
582 {
583 if (!lsm_inode_cache) {
584 inode->i_security = NULL;
585 return 0;
586 }
587
588 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
589 if (inode->i_security == NULL)
590 return -ENOMEM;
591 return 0;
592 }
593
594 /**
595 * lsm_task_alloc - allocate a composite task blob
596 * @task: the task that needs a blob
597 *
598 * Allocate the task blob for all the modules
599 *
600 * Returns 0, or -ENOMEM if memory can't be allocated.
601 */
602 static int lsm_task_alloc(struct task_struct *task)
603 {
604 if (blob_sizes.lbs_task == 0) {
605 task->security = NULL;
606 return 0;
607 }
608
609 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
610 if (task->security == NULL)
611 return -ENOMEM;
612 return 0;
613 }
614
615 /**
616 * lsm_ipc_alloc - allocate a composite ipc blob
617 * @kip: the ipc that needs a blob
618 *
619 * Allocate the ipc blob for all the modules
620 *
621 * Returns 0, or -ENOMEM if memory can't be allocated.
622 */
623 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
624 {
625 if (blob_sizes.lbs_ipc == 0) {
626 kip->security = NULL;
627 return 0;
628 }
629
630 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
631 if (kip->security == NULL)
632 return -ENOMEM;
633 return 0;
634 }
635
636 /**
637 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
638 * @mp: the msg_msg that needs a blob
639 *
640 * Allocate the ipc blob for all the modules
641 *
642 * Returns 0, or -ENOMEM if memory can't be allocated.
643 */
644 static int lsm_msg_msg_alloc(struct msg_msg *mp)
645 {
646 if (blob_sizes.lbs_msg_msg == 0) {
647 mp->security = NULL;
648 return 0;
649 }
650
651 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
652 if (mp->security == NULL)
653 return -ENOMEM;
654 return 0;
655 }
656
657 /**
658 * lsm_early_task - during initialization allocate a composite task blob
659 * @task: the task that needs a blob
660 *
661 * Allocate the task blob for all the modules
662 */
663 static void __init lsm_early_task(struct task_struct *task)
664 {
665 int rc = lsm_task_alloc(task);
666
667 if (rc)
668 panic("%s: Early task alloc failed.\n", __func__);
669 }
670
671 /*
672 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
673 * can be accessed with:
674 *
675 * LSM_RET_DEFAULT(<hook_name>)
676 *
677 * The macros below define static constants for the default value of each
678 * LSM hook.
679 */
680 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
681 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
682 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
683 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
684 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
685 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
686
687 #include <linux/lsm_hook_defs.h>
688 #undef LSM_HOOK
689
690 /*
691 * Hook list operation macros.
692 *
693 * call_void_hook:
694 * This is a hook that does not return a value.
695 *
696 * call_int_hook:
697 * This is a hook that returns a value.
698 */
699
700 #define call_void_hook(FUNC, ...) \
701 do { \
702 struct security_hook_list *P; \
703 \
704 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
705 P->hook.FUNC(__VA_ARGS__); \
706 } while (0)
707
708 #define call_int_hook(FUNC, IRC, ...) ({ \
709 int RC = IRC; \
710 do { \
711 struct security_hook_list *P; \
712 \
713 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
714 RC = P->hook.FUNC(__VA_ARGS__); \
715 if (RC != 0) \
716 break; \
717 } \
718 } while (0); \
719 RC; \
720 })
721
722 /* Security operations */
723
724 int security_binder_set_context_mgr(struct task_struct *mgr)
725 {
726 return call_int_hook(binder_set_context_mgr, 0, mgr);
727 }
728
729 int security_binder_transaction(struct task_struct *from,
730 struct task_struct *to)
731 {
732 return call_int_hook(binder_transaction, 0, from, to);
733 }
734
735 int security_binder_transfer_binder(struct task_struct *from,
736 struct task_struct *to)
737 {
738 return call_int_hook(binder_transfer_binder, 0, from, to);
739 }
740
741 int security_binder_transfer_file(struct task_struct *from,
742 struct task_struct *to, struct file *file)
743 {
744 return call_int_hook(binder_transfer_file, 0, from, to, file);
745 }
746
747 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
748 {
749 return call_int_hook(ptrace_access_check, 0, child, mode);
750 }
751
752 int security_ptrace_traceme(struct task_struct *parent)
753 {
754 return call_int_hook(ptrace_traceme, 0, parent);
755 }
756
757 int security_capget(struct task_struct *target,
758 kernel_cap_t *effective,
759 kernel_cap_t *inheritable,
760 kernel_cap_t *permitted)
761 {
762 return call_int_hook(capget, 0, target,
763 effective, inheritable, permitted);
764 }
765
766 int security_capset(struct cred *new, const struct cred *old,
767 const kernel_cap_t *effective,
768 const kernel_cap_t *inheritable,
769 const kernel_cap_t *permitted)
770 {
771 return call_int_hook(capset, 0, new, old,
772 effective, inheritable, permitted);
773 }
774
775 int security_capable(const struct cred *cred,
776 struct user_namespace *ns,
777 int cap,
778 unsigned int opts)
779 {
780 return call_int_hook(capable, 0, cred, ns, cap, opts);
781 }
782
783 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
784 {
785 return call_int_hook(quotactl, 0, cmds, type, id, sb);
786 }
787
788 int security_quota_on(struct dentry *dentry)
789 {
790 return call_int_hook(quota_on, 0, dentry);
791 }
792
793 int security_syslog(int type)
794 {
795 return call_int_hook(syslog, 0, type);
796 }
797
798 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
799 {
800 return call_int_hook(settime, 0, ts, tz);
801 }
802
803 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
804 {
805 struct security_hook_list *hp;
806 int cap_sys_admin = 1;
807 int rc;
808
809 /*
810 * The module will respond with a positive value if
811 * it thinks the __vm_enough_memory() call should be
812 * made with the cap_sys_admin set. If all of the modules
813 * agree that it should be set it will. If any module
814 * thinks it should not be set it won't.
815 */
816 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
817 rc = hp->hook.vm_enough_memory(mm, pages);
818 if (rc <= 0) {
819 cap_sys_admin = 0;
820 break;
821 }
822 }
823 return __vm_enough_memory(mm, pages, cap_sys_admin);
824 }
825
826 int security_bprm_set_creds(struct linux_binprm *bprm)
827 {
828 return call_int_hook(bprm_set_creds, 0, bprm);
829 }
830
831 int security_bprm_check(struct linux_binprm *bprm)
832 {
833 int ret;
834
835 ret = call_int_hook(bprm_check_security, 0, bprm);
836 if (ret)
837 return ret;
838 return ima_bprm_check(bprm);
839 }
840
841 void security_bprm_committing_creds(struct linux_binprm *bprm)
842 {
843 call_void_hook(bprm_committing_creds, bprm);
844 }
845
846 void security_bprm_committed_creds(struct linux_binprm *bprm)
847 {
848 call_void_hook(bprm_committed_creds, bprm);
849 }
850
851 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
852 {
853 return call_int_hook(fs_context_dup, 0, fc, src_fc);
854 }
855
856 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
857 {
858 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
859 }
860
861 int security_sb_alloc(struct super_block *sb)
862 {
863 return call_int_hook(sb_alloc_security, 0, sb);
864 }
865
866 void security_sb_free(struct super_block *sb)
867 {
868 call_void_hook(sb_free_security, sb);
869 }
870
871 void security_free_mnt_opts(void **mnt_opts)
872 {
873 if (!*mnt_opts)
874 return;
875 call_void_hook(sb_free_mnt_opts, *mnt_opts);
876 *mnt_opts = NULL;
877 }
878 EXPORT_SYMBOL(security_free_mnt_opts);
879
880 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
881 {
882 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
883 }
884 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
885
886 int security_sb_remount(struct super_block *sb,
887 void *mnt_opts)
888 {
889 return call_int_hook(sb_remount, 0, sb, mnt_opts);
890 }
891 EXPORT_SYMBOL(security_sb_remount);
892
893 int security_sb_kern_mount(struct super_block *sb)
894 {
895 return call_int_hook(sb_kern_mount, 0, sb);
896 }
897
898 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
899 {
900 return call_int_hook(sb_show_options, 0, m, sb);
901 }
902
903 int security_sb_statfs(struct dentry *dentry)
904 {
905 return call_int_hook(sb_statfs, 0, dentry);
906 }
907
908 int security_sb_mount(const char *dev_name, const struct path *path,
909 const char *type, unsigned long flags, void *data)
910 {
911 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
912 }
913
914 int security_sb_umount(struct vfsmount *mnt, int flags)
915 {
916 return call_int_hook(sb_umount, 0, mnt, flags);
917 }
918
919 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
920 {
921 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
922 }
923
924 int security_sb_set_mnt_opts(struct super_block *sb,
925 void *mnt_opts,
926 unsigned long kern_flags,
927 unsigned long *set_kern_flags)
928 {
929 return call_int_hook(sb_set_mnt_opts,
930 mnt_opts ? -EOPNOTSUPP : 0, sb,
931 mnt_opts, kern_flags, set_kern_flags);
932 }
933 EXPORT_SYMBOL(security_sb_set_mnt_opts);
934
935 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
936 struct super_block *newsb,
937 unsigned long kern_flags,
938 unsigned long *set_kern_flags)
939 {
940 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
941 kern_flags, set_kern_flags);
942 }
943 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
944
945 int security_add_mnt_opt(const char *option, const char *val, int len,
946 void **mnt_opts)
947 {
948 return call_int_hook(sb_add_mnt_opt, -EINVAL,
949 option, val, len, mnt_opts);
950 }
951 EXPORT_SYMBOL(security_add_mnt_opt);
952
953 int security_move_mount(const struct path *from_path, const struct path *to_path)
954 {
955 return call_int_hook(move_mount, 0, from_path, to_path);
956 }
957
958 int security_path_notify(const struct path *path, u64 mask,
959 unsigned int obj_type)
960 {
961 return call_int_hook(path_notify, 0, path, mask, obj_type);
962 }
963
964 int security_inode_alloc(struct inode *inode)
965 {
966 int rc = lsm_inode_alloc(inode);
967
968 if (unlikely(rc))
969 return rc;
970 rc = call_int_hook(inode_alloc_security, 0, inode);
971 if (unlikely(rc))
972 security_inode_free(inode);
973 return rc;
974 }
975
976 static void inode_free_by_rcu(struct rcu_head *head)
977 {
978 /*
979 * The rcu head is at the start of the inode blob
980 */
981 kmem_cache_free(lsm_inode_cache, head);
982 }
983
984 void security_inode_free(struct inode *inode)
985 {
986 integrity_inode_free(inode);
987 call_void_hook(inode_free_security, inode);
988 /*
989 * The inode may still be referenced in a path walk and
990 * a call to security_inode_permission() can be made
991 * after inode_free_security() is called. Ideally, the VFS
992 * wouldn't do this, but fixing that is a much harder
993 * job. For now, simply free the i_security via RCU, and
994 * leave the current inode->i_security pointer intact.
995 * The inode will be freed after the RCU grace period too.
996 */
997 if (inode->i_security)
998 call_rcu((struct rcu_head *)inode->i_security,
999 inode_free_by_rcu);
1000 }
1001
1002 int security_dentry_init_security(struct dentry *dentry, int mode,
1003 const struct qstr *name, void **ctx,
1004 u32 *ctxlen)
1005 {
1006 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1007 name, ctx, ctxlen);
1008 }
1009 EXPORT_SYMBOL(security_dentry_init_security);
1010
1011 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1012 struct qstr *name,
1013 const struct cred *old, struct cred *new)
1014 {
1015 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1016 name, old, new);
1017 }
1018 EXPORT_SYMBOL(security_dentry_create_files_as);
1019
1020 int security_inode_init_security(struct inode *inode, struct inode *dir,
1021 const struct qstr *qstr,
1022 const initxattrs initxattrs, void *fs_data)
1023 {
1024 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1025 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1026 int ret;
1027
1028 if (unlikely(IS_PRIVATE(inode)))
1029 return 0;
1030
1031 if (!initxattrs)
1032 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1033 dir, qstr, NULL, NULL, NULL);
1034 memset(new_xattrs, 0, sizeof(new_xattrs));
1035 lsm_xattr = new_xattrs;
1036 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1037 &lsm_xattr->name,
1038 &lsm_xattr->value,
1039 &lsm_xattr->value_len);
1040 if (ret)
1041 goto out;
1042
1043 evm_xattr = lsm_xattr + 1;
1044 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1045 if (ret)
1046 goto out;
1047 ret = initxattrs(inode, new_xattrs, fs_data);
1048 out:
1049 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1050 kfree(xattr->value);
1051 return (ret == -EOPNOTSUPP) ? 0 : ret;
1052 }
1053 EXPORT_SYMBOL(security_inode_init_security);
1054
1055 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1056 const struct qstr *qstr, const char **name,
1057 void **value, size_t *len)
1058 {
1059 if (unlikely(IS_PRIVATE(inode)))
1060 return -EOPNOTSUPP;
1061 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1062 qstr, name, value, len);
1063 }
1064 EXPORT_SYMBOL(security_old_inode_init_security);
1065
1066 #ifdef CONFIG_SECURITY_PATH
1067 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1068 unsigned int dev)
1069 {
1070 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1071 return 0;
1072 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1073 }
1074 EXPORT_SYMBOL(security_path_mknod);
1075
1076 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1077 {
1078 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1079 return 0;
1080 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1081 }
1082 EXPORT_SYMBOL(security_path_mkdir);
1083
1084 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1085 {
1086 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1087 return 0;
1088 return call_int_hook(path_rmdir, 0, dir, dentry);
1089 }
1090
1091 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1092 {
1093 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1094 return 0;
1095 return call_int_hook(path_unlink, 0, dir, dentry);
1096 }
1097 EXPORT_SYMBOL(security_path_unlink);
1098
1099 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1100 const char *old_name)
1101 {
1102 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1103 return 0;
1104 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1105 }
1106
1107 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1108 struct dentry *new_dentry)
1109 {
1110 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1111 return 0;
1112 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1113 }
1114
1115 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1116 const struct path *new_dir, struct dentry *new_dentry,
1117 unsigned int flags)
1118 {
1119 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1120 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1121 return 0;
1122
1123 if (flags & RENAME_EXCHANGE) {
1124 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1125 old_dir, old_dentry);
1126 if (err)
1127 return err;
1128 }
1129
1130 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1131 new_dentry);
1132 }
1133 EXPORT_SYMBOL(security_path_rename);
1134
1135 int security_path_truncate(const struct path *path)
1136 {
1137 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1138 return 0;
1139 return call_int_hook(path_truncate, 0, path);
1140 }
1141
1142 int security_path_chmod(const struct path *path, umode_t mode)
1143 {
1144 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1145 return 0;
1146 return call_int_hook(path_chmod, 0, path, mode);
1147 }
1148
1149 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1150 {
1151 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1152 return 0;
1153 return call_int_hook(path_chown, 0, path, uid, gid);
1154 }
1155
1156 int security_path_chroot(const struct path *path)
1157 {
1158 return call_int_hook(path_chroot, 0, path);
1159 }
1160 #endif
1161
1162 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1163 {
1164 if (unlikely(IS_PRIVATE(dir)))
1165 return 0;
1166 return call_int_hook(inode_create, 0, dir, dentry, mode);
1167 }
1168 EXPORT_SYMBOL_GPL(security_inode_create);
1169
1170 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1171 struct dentry *new_dentry)
1172 {
1173 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1174 return 0;
1175 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1176 }
1177
1178 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1179 {
1180 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1181 return 0;
1182 return call_int_hook(inode_unlink, 0, dir, dentry);
1183 }
1184
1185 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1186 const char *old_name)
1187 {
1188 if (unlikely(IS_PRIVATE(dir)))
1189 return 0;
1190 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1191 }
1192
1193 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1194 {
1195 if (unlikely(IS_PRIVATE(dir)))
1196 return 0;
1197 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1198 }
1199 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1200
1201 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1202 {
1203 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1204 return 0;
1205 return call_int_hook(inode_rmdir, 0, dir, dentry);
1206 }
1207
1208 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1209 {
1210 if (unlikely(IS_PRIVATE(dir)))
1211 return 0;
1212 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1213 }
1214
1215 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1216 struct inode *new_dir, struct dentry *new_dentry,
1217 unsigned int flags)
1218 {
1219 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1220 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1221 return 0;
1222
1223 if (flags & RENAME_EXCHANGE) {
1224 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1225 old_dir, old_dentry);
1226 if (err)
1227 return err;
1228 }
1229
1230 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1231 new_dir, new_dentry);
1232 }
1233
1234 int security_inode_readlink(struct dentry *dentry)
1235 {
1236 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1237 return 0;
1238 return call_int_hook(inode_readlink, 0, dentry);
1239 }
1240
1241 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1242 bool rcu)
1243 {
1244 if (unlikely(IS_PRIVATE(inode)))
1245 return 0;
1246 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1247 }
1248
1249 int security_inode_permission(struct inode *inode, int mask)
1250 {
1251 if (unlikely(IS_PRIVATE(inode)))
1252 return 0;
1253 return call_int_hook(inode_permission, 0, inode, mask);
1254 }
1255
1256 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1257 {
1258 int ret;
1259
1260 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1261 return 0;
1262 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1263 if (ret)
1264 return ret;
1265 return evm_inode_setattr(dentry, attr);
1266 }
1267 EXPORT_SYMBOL_GPL(security_inode_setattr);
1268
1269 int security_inode_getattr(const struct path *path)
1270 {
1271 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1272 return 0;
1273 return call_int_hook(inode_getattr, 0, path);
1274 }
1275
1276 int security_inode_setxattr(struct dentry *dentry, const char *name,
1277 const void *value, size_t size, int flags)
1278 {
1279 int ret;
1280
1281 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1282 return 0;
1283 /*
1284 * SELinux and Smack integrate the cap call,
1285 * so assume that all LSMs supplying this call do so.
1286 */
1287 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1288 flags);
1289
1290 if (ret == 1)
1291 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1292 if (ret)
1293 return ret;
1294 ret = ima_inode_setxattr(dentry, name, value, size);
1295 if (ret)
1296 return ret;
1297 return evm_inode_setxattr(dentry, name, value, size);
1298 }
1299
1300 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1301 const void *value, size_t size, int flags)
1302 {
1303 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1304 return;
1305 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1306 evm_inode_post_setxattr(dentry, name, value, size);
1307 }
1308
1309 int security_inode_getxattr(struct dentry *dentry, const char *name)
1310 {
1311 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1312 return 0;
1313 return call_int_hook(inode_getxattr, 0, dentry, name);
1314 }
1315
1316 int security_inode_listxattr(struct dentry *dentry)
1317 {
1318 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1319 return 0;
1320 return call_int_hook(inode_listxattr, 0, dentry);
1321 }
1322
1323 int security_inode_removexattr(struct dentry *dentry, const char *name)
1324 {
1325 int ret;
1326
1327 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1328 return 0;
1329 /*
1330 * SELinux and Smack integrate the cap call,
1331 * so assume that all LSMs supplying this call do so.
1332 */
1333 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1334 if (ret == 1)
1335 ret = cap_inode_removexattr(dentry, name);
1336 if (ret)
1337 return ret;
1338 ret = ima_inode_removexattr(dentry, name);
1339 if (ret)
1340 return ret;
1341 return evm_inode_removexattr(dentry, name);
1342 }
1343
1344 int security_inode_need_killpriv(struct dentry *dentry)
1345 {
1346 return call_int_hook(inode_need_killpriv, 0, dentry);
1347 }
1348
1349 int security_inode_killpriv(struct dentry *dentry)
1350 {
1351 return call_int_hook(inode_killpriv, 0, dentry);
1352 }
1353
1354 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1355 {
1356 struct security_hook_list *hp;
1357 int rc;
1358
1359 if (unlikely(IS_PRIVATE(inode)))
1360 return LSM_RET_DEFAULT(inode_getsecurity);
1361 /*
1362 * Only one module will provide an attribute with a given name.
1363 */
1364 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1365 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1366 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1367 return rc;
1368 }
1369 return LSM_RET_DEFAULT(inode_getsecurity);
1370 }
1371
1372 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1373 {
1374 struct security_hook_list *hp;
1375 int rc;
1376
1377 if (unlikely(IS_PRIVATE(inode)))
1378 return LSM_RET_DEFAULT(inode_setsecurity);
1379 /*
1380 * Only one module will provide an attribute with a given name.
1381 */
1382 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1383 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1384 flags);
1385 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1386 return rc;
1387 }
1388 return LSM_RET_DEFAULT(inode_setsecurity);
1389 }
1390
1391 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1392 {
1393 if (unlikely(IS_PRIVATE(inode)))
1394 return 0;
1395 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1396 }
1397 EXPORT_SYMBOL(security_inode_listsecurity);
1398
1399 void security_inode_getsecid(struct inode *inode, u32 *secid)
1400 {
1401 call_void_hook(inode_getsecid, inode, secid);
1402 }
1403
1404 int security_inode_copy_up(struct dentry *src, struct cred **new)
1405 {
1406 return call_int_hook(inode_copy_up, 0, src, new);
1407 }
1408 EXPORT_SYMBOL(security_inode_copy_up);
1409
1410 int security_inode_copy_up_xattr(const char *name)
1411 {
1412 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1413 }
1414 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1415
1416 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1417 struct kernfs_node *kn)
1418 {
1419 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1420 }
1421
1422 int security_file_permission(struct file *file, int mask)
1423 {
1424 int ret;
1425
1426 ret = call_int_hook(file_permission, 0, file, mask);
1427 if (ret)
1428 return ret;
1429
1430 return fsnotify_perm(file, mask);
1431 }
1432
1433 int security_file_alloc(struct file *file)
1434 {
1435 int rc = lsm_file_alloc(file);
1436
1437 if (rc)
1438 return rc;
1439 rc = call_int_hook(file_alloc_security, 0, file);
1440 if (unlikely(rc))
1441 security_file_free(file);
1442 return rc;
1443 }
1444
1445 void security_file_free(struct file *file)
1446 {
1447 void *blob;
1448
1449 call_void_hook(file_free_security, file);
1450
1451 blob = file->f_security;
1452 if (blob) {
1453 file->f_security = NULL;
1454 kmem_cache_free(lsm_file_cache, blob);
1455 }
1456 }
1457
1458 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1459 {
1460 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1461 }
1462
1463 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1464 {
1465 /*
1466 * Does we have PROT_READ and does the application expect
1467 * it to imply PROT_EXEC? If not, nothing to talk about...
1468 */
1469 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1470 return prot;
1471 if (!(current->personality & READ_IMPLIES_EXEC))
1472 return prot;
1473 /*
1474 * if that's an anonymous mapping, let it.
1475 */
1476 if (!file)
1477 return prot | PROT_EXEC;
1478 /*
1479 * ditto if it's not on noexec mount, except that on !MMU we need
1480 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1481 */
1482 if (!path_noexec(&file->f_path)) {
1483 #ifndef CONFIG_MMU
1484 if (file->f_op->mmap_capabilities) {
1485 unsigned caps = file->f_op->mmap_capabilities(file);
1486 if (!(caps & NOMMU_MAP_EXEC))
1487 return prot;
1488 }
1489 #endif
1490 return prot | PROT_EXEC;
1491 }
1492 /* anything on noexec mount won't get PROT_EXEC */
1493 return prot;
1494 }
1495
1496 int security_mmap_file(struct file *file, unsigned long prot,
1497 unsigned long flags)
1498 {
1499 int ret;
1500 ret = call_int_hook(mmap_file, 0, file, prot,
1501 mmap_prot(file, prot), flags);
1502 if (ret)
1503 return ret;
1504 return ima_file_mmap(file, prot);
1505 }
1506
1507 int security_mmap_addr(unsigned long addr)
1508 {
1509 return call_int_hook(mmap_addr, 0, addr);
1510 }
1511
1512 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1513 unsigned long prot)
1514 {
1515 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1516 }
1517
1518 int security_file_lock(struct file *file, unsigned int cmd)
1519 {
1520 return call_int_hook(file_lock, 0, file, cmd);
1521 }
1522
1523 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1524 {
1525 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1526 }
1527
1528 void security_file_set_fowner(struct file *file)
1529 {
1530 call_void_hook(file_set_fowner, file);
1531 }
1532
1533 int security_file_send_sigiotask(struct task_struct *tsk,
1534 struct fown_struct *fown, int sig)
1535 {
1536 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1537 }
1538
1539 int security_file_receive(struct file *file)
1540 {
1541 return call_int_hook(file_receive, 0, file);
1542 }
1543
1544 int security_file_open(struct file *file)
1545 {
1546 int ret;
1547
1548 ret = call_int_hook(file_open, 0, file);
1549 if (ret)
1550 return ret;
1551
1552 return fsnotify_perm(file, MAY_OPEN);
1553 }
1554
1555 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1556 {
1557 int rc = lsm_task_alloc(task);
1558
1559 if (rc)
1560 return rc;
1561 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1562 if (unlikely(rc))
1563 security_task_free(task);
1564 return rc;
1565 }
1566
1567 void security_task_free(struct task_struct *task)
1568 {
1569 call_void_hook(task_free, task);
1570
1571 kfree(task->security);
1572 task->security = NULL;
1573 }
1574
1575 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1576 {
1577 int rc = lsm_cred_alloc(cred, gfp);
1578
1579 if (rc)
1580 return rc;
1581
1582 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1583 if (unlikely(rc))
1584 security_cred_free(cred);
1585 return rc;
1586 }
1587
1588 void security_cred_free(struct cred *cred)
1589 {
1590 /*
1591 * There is a failure case in prepare_creds() that
1592 * may result in a call here with ->security being NULL.
1593 */
1594 if (unlikely(cred->security == NULL))
1595 return;
1596
1597 call_void_hook(cred_free, cred);
1598
1599 kfree(cred->security);
1600 cred->security = NULL;
1601 }
1602
1603 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1604 {
1605 int rc = lsm_cred_alloc(new, gfp);
1606
1607 if (rc)
1608 return rc;
1609
1610 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1611 if (unlikely(rc))
1612 security_cred_free(new);
1613 return rc;
1614 }
1615
1616 void security_transfer_creds(struct cred *new, const struct cred *old)
1617 {
1618 call_void_hook(cred_transfer, new, old);
1619 }
1620
1621 void security_cred_getsecid(const struct cred *c, u32 *secid)
1622 {
1623 *secid = 0;
1624 call_void_hook(cred_getsecid, c, secid);
1625 }
1626 EXPORT_SYMBOL(security_cred_getsecid);
1627
1628 int security_kernel_act_as(struct cred *new, u32 secid)
1629 {
1630 return call_int_hook(kernel_act_as, 0, new, secid);
1631 }
1632
1633 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1634 {
1635 return call_int_hook(kernel_create_files_as, 0, new, inode);
1636 }
1637
1638 int security_kernel_module_request(char *kmod_name)
1639 {
1640 int ret;
1641
1642 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1643 if (ret)
1644 return ret;
1645 return integrity_kernel_module_request(kmod_name);
1646 }
1647
1648 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1649 {
1650 int ret;
1651
1652 ret = call_int_hook(kernel_read_file, 0, file, id);
1653 if (ret)
1654 return ret;
1655 return ima_read_file(file, id);
1656 }
1657 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1658
1659 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1660 enum kernel_read_file_id id)
1661 {
1662 int ret;
1663
1664 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1665 if (ret)
1666 return ret;
1667 return ima_post_read_file(file, buf, size, id);
1668 }
1669 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1670
1671 int security_kernel_load_data(enum kernel_load_data_id id)
1672 {
1673 int ret;
1674
1675 ret = call_int_hook(kernel_load_data, 0, id);
1676 if (ret)
1677 return ret;
1678 return ima_load_data(id);
1679 }
1680 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1681
1682 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1683 int flags)
1684 {
1685 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1686 }
1687
1688 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1689 {
1690 return call_int_hook(task_setpgid, 0, p, pgid);
1691 }
1692
1693 int security_task_getpgid(struct task_struct *p)
1694 {
1695 return call_int_hook(task_getpgid, 0, p);
1696 }
1697
1698 int security_task_getsid(struct task_struct *p)
1699 {
1700 return call_int_hook(task_getsid, 0, p);
1701 }
1702
1703 void security_task_getsecid(struct task_struct *p, u32 *secid)
1704 {
1705 *secid = 0;
1706 call_void_hook(task_getsecid, p, secid);
1707 }
1708 EXPORT_SYMBOL(security_task_getsecid);
1709
1710 int security_task_setnice(struct task_struct *p, int nice)
1711 {
1712 return call_int_hook(task_setnice, 0, p, nice);
1713 }
1714
1715 int security_task_setioprio(struct task_struct *p, int ioprio)
1716 {
1717 return call_int_hook(task_setioprio, 0, p, ioprio);
1718 }
1719
1720 int security_task_getioprio(struct task_struct *p)
1721 {
1722 return call_int_hook(task_getioprio, 0, p);
1723 }
1724
1725 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1726 unsigned int flags)
1727 {
1728 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1729 }
1730
1731 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1732 struct rlimit *new_rlim)
1733 {
1734 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1735 }
1736
1737 int security_task_setscheduler(struct task_struct *p)
1738 {
1739 return call_int_hook(task_setscheduler, 0, p);
1740 }
1741
1742 int security_task_getscheduler(struct task_struct *p)
1743 {
1744 return call_int_hook(task_getscheduler, 0, p);
1745 }
1746
1747 int security_task_movememory(struct task_struct *p)
1748 {
1749 return call_int_hook(task_movememory, 0, p);
1750 }
1751
1752 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1753 int sig, const struct cred *cred)
1754 {
1755 return call_int_hook(task_kill, 0, p, info, sig, cred);
1756 }
1757
1758 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1759 unsigned long arg4, unsigned long arg5)
1760 {
1761 int thisrc;
1762 int rc = LSM_RET_DEFAULT(task_prctl);
1763 struct security_hook_list *hp;
1764
1765 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1766 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1767 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1768 rc = thisrc;
1769 if (thisrc != 0)
1770 break;
1771 }
1772 }
1773 return rc;
1774 }
1775
1776 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1777 {
1778 call_void_hook(task_to_inode, p, inode);
1779 }
1780
1781 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1782 {
1783 return call_int_hook(ipc_permission, 0, ipcp, flag);
1784 }
1785
1786 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1787 {
1788 *secid = 0;
1789 call_void_hook(ipc_getsecid, ipcp, secid);
1790 }
1791
1792 int security_msg_msg_alloc(struct msg_msg *msg)
1793 {
1794 int rc = lsm_msg_msg_alloc(msg);
1795
1796 if (unlikely(rc))
1797 return rc;
1798 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1799 if (unlikely(rc))
1800 security_msg_msg_free(msg);
1801 return rc;
1802 }
1803
1804 void security_msg_msg_free(struct msg_msg *msg)
1805 {
1806 call_void_hook(msg_msg_free_security, msg);
1807 kfree(msg->security);
1808 msg->security = NULL;
1809 }
1810
1811 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1812 {
1813 int rc = lsm_ipc_alloc(msq);
1814
1815 if (unlikely(rc))
1816 return rc;
1817 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1818 if (unlikely(rc))
1819 security_msg_queue_free(msq);
1820 return rc;
1821 }
1822
1823 void security_msg_queue_free(struct kern_ipc_perm *msq)
1824 {
1825 call_void_hook(msg_queue_free_security, msq);
1826 kfree(msq->security);
1827 msq->security = NULL;
1828 }
1829
1830 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1831 {
1832 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1833 }
1834
1835 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1836 {
1837 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1838 }
1839
1840 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1841 struct msg_msg *msg, int msqflg)
1842 {
1843 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1844 }
1845
1846 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1847 struct task_struct *target, long type, int mode)
1848 {
1849 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1850 }
1851
1852 int security_shm_alloc(struct kern_ipc_perm *shp)
1853 {
1854 int rc = lsm_ipc_alloc(shp);
1855
1856 if (unlikely(rc))
1857 return rc;
1858 rc = call_int_hook(shm_alloc_security, 0, shp);
1859 if (unlikely(rc))
1860 security_shm_free(shp);
1861 return rc;
1862 }
1863
1864 void security_shm_free(struct kern_ipc_perm *shp)
1865 {
1866 call_void_hook(shm_free_security, shp);
1867 kfree(shp->security);
1868 shp->security = NULL;
1869 }
1870
1871 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1872 {
1873 return call_int_hook(shm_associate, 0, shp, shmflg);
1874 }
1875
1876 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1877 {
1878 return call_int_hook(shm_shmctl, 0, shp, cmd);
1879 }
1880
1881 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1882 {
1883 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1884 }
1885
1886 int security_sem_alloc(struct kern_ipc_perm *sma)
1887 {
1888 int rc = lsm_ipc_alloc(sma);
1889
1890 if (unlikely(rc))
1891 return rc;
1892 rc = call_int_hook(sem_alloc_security, 0, sma);
1893 if (unlikely(rc))
1894 security_sem_free(sma);
1895 return rc;
1896 }
1897
1898 void security_sem_free(struct kern_ipc_perm *sma)
1899 {
1900 call_void_hook(sem_free_security, sma);
1901 kfree(sma->security);
1902 sma->security = NULL;
1903 }
1904
1905 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1906 {
1907 return call_int_hook(sem_associate, 0, sma, semflg);
1908 }
1909
1910 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1911 {
1912 return call_int_hook(sem_semctl, 0, sma, cmd);
1913 }
1914
1915 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1916 unsigned nsops, int alter)
1917 {
1918 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1919 }
1920
1921 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1922 {
1923 if (unlikely(inode && IS_PRIVATE(inode)))
1924 return;
1925 call_void_hook(d_instantiate, dentry, inode);
1926 }
1927 EXPORT_SYMBOL(security_d_instantiate);
1928
1929 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1930 char **value)
1931 {
1932 struct security_hook_list *hp;
1933
1934 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1935 if (lsm != NULL && strcmp(lsm, hp->lsm))
1936 continue;
1937 return hp->hook.getprocattr(p, name, value);
1938 }
1939 return LSM_RET_DEFAULT(getprocattr);
1940 }
1941
1942 int security_setprocattr(const char *lsm, const char *name, void *value,
1943 size_t size)
1944 {
1945 struct security_hook_list *hp;
1946
1947 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1948 if (lsm != NULL && strcmp(lsm, hp->lsm))
1949 continue;
1950 return hp->hook.setprocattr(name, value, size);
1951 }
1952 return LSM_RET_DEFAULT(setprocattr);
1953 }
1954
1955 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1956 {
1957 return call_int_hook(netlink_send, 0, sk, skb);
1958 }
1959
1960 int security_ismaclabel(const char *name)
1961 {
1962 return call_int_hook(ismaclabel, 0, name);
1963 }
1964 EXPORT_SYMBOL(security_ismaclabel);
1965
1966 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1967 {
1968 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1969 seclen);
1970 }
1971 EXPORT_SYMBOL(security_secid_to_secctx);
1972
1973 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1974 {
1975 *secid = 0;
1976 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1977 }
1978 EXPORT_SYMBOL(security_secctx_to_secid);
1979
1980 void security_release_secctx(char *secdata, u32 seclen)
1981 {
1982 call_void_hook(release_secctx, secdata, seclen);
1983 }
1984 EXPORT_SYMBOL(security_release_secctx);
1985
1986 void security_inode_invalidate_secctx(struct inode *inode)
1987 {
1988 call_void_hook(inode_invalidate_secctx, inode);
1989 }
1990 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1991
1992 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1993 {
1994 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1995 }
1996 EXPORT_SYMBOL(security_inode_notifysecctx);
1997
1998 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1999 {
2000 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2001 }
2002 EXPORT_SYMBOL(security_inode_setsecctx);
2003
2004 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2005 {
2006 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2007 }
2008 EXPORT_SYMBOL(security_inode_getsecctx);
2009
2010 #ifdef CONFIG_SECURITY_NETWORK
2011
2012 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2013 {
2014 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2015 }
2016 EXPORT_SYMBOL(security_unix_stream_connect);
2017
2018 int security_unix_may_send(struct socket *sock, struct socket *other)
2019 {
2020 return call_int_hook(unix_may_send, 0, sock, other);
2021 }
2022 EXPORT_SYMBOL(security_unix_may_send);
2023
2024 int security_socket_create(int family, int type, int protocol, int kern)
2025 {
2026 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2027 }
2028
2029 int security_socket_post_create(struct socket *sock, int family,
2030 int type, int protocol, int kern)
2031 {
2032 return call_int_hook(socket_post_create, 0, sock, family, type,
2033 protocol, kern);
2034 }
2035
2036 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2037 {
2038 return call_int_hook(socket_socketpair, 0, socka, sockb);
2039 }
2040 EXPORT_SYMBOL(security_socket_socketpair);
2041
2042 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2043 {
2044 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2045 }
2046
2047 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2048 {
2049 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2050 }
2051
2052 int security_socket_listen(struct socket *sock, int backlog)
2053 {
2054 return call_int_hook(socket_listen, 0, sock, backlog);
2055 }
2056
2057 int security_socket_accept(struct socket *sock, struct socket *newsock)
2058 {
2059 return call_int_hook(socket_accept, 0, sock, newsock);
2060 }
2061
2062 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2063 {
2064 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2065 }
2066
2067 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2068 int size, int flags)
2069 {
2070 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2071 }
2072
2073 int security_socket_getsockname(struct socket *sock)
2074 {
2075 return call_int_hook(socket_getsockname, 0, sock);
2076 }
2077
2078 int security_socket_getpeername(struct socket *sock)
2079 {
2080 return call_int_hook(socket_getpeername, 0, sock);
2081 }
2082
2083 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2084 {
2085 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2086 }
2087
2088 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2089 {
2090 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2091 }
2092
2093 int security_socket_shutdown(struct socket *sock, int how)
2094 {
2095 return call_int_hook(socket_shutdown, 0, sock, how);
2096 }
2097
2098 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2099 {
2100 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2101 }
2102 EXPORT_SYMBOL(security_sock_rcv_skb);
2103
2104 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2105 int __user *optlen, unsigned len)
2106 {
2107 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2108 optval, optlen, len);
2109 }
2110
2111 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2112 {
2113 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2114 skb, secid);
2115 }
2116 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2117
2118 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2119 {
2120 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2121 }
2122
2123 void security_sk_free(struct sock *sk)
2124 {
2125 call_void_hook(sk_free_security, sk);
2126 }
2127
2128 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2129 {
2130 call_void_hook(sk_clone_security, sk, newsk);
2131 }
2132 EXPORT_SYMBOL(security_sk_clone);
2133
2134 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2135 {
2136 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2137 }
2138 EXPORT_SYMBOL(security_sk_classify_flow);
2139
2140 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2141 {
2142 call_void_hook(req_classify_flow, req, fl);
2143 }
2144 EXPORT_SYMBOL(security_req_classify_flow);
2145
2146 void security_sock_graft(struct sock *sk, struct socket *parent)
2147 {
2148 call_void_hook(sock_graft, sk, parent);
2149 }
2150 EXPORT_SYMBOL(security_sock_graft);
2151
2152 int security_inet_conn_request(struct sock *sk,
2153 struct sk_buff *skb, struct request_sock *req)
2154 {
2155 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2156 }
2157 EXPORT_SYMBOL(security_inet_conn_request);
2158
2159 void security_inet_csk_clone(struct sock *newsk,
2160 const struct request_sock *req)
2161 {
2162 call_void_hook(inet_csk_clone, newsk, req);
2163 }
2164
2165 void security_inet_conn_established(struct sock *sk,
2166 struct sk_buff *skb)
2167 {
2168 call_void_hook(inet_conn_established, sk, skb);
2169 }
2170 EXPORT_SYMBOL(security_inet_conn_established);
2171
2172 int security_secmark_relabel_packet(u32 secid)
2173 {
2174 return call_int_hook(secmark_relabel_packet, 0, secid);
2175 }
2176 EXPORT_SYMBOL(security_secmark_relabel_packet);
2177
2178 void security_secmark_refcount_inc(void)
2179 {
2180 call_void_hook(secmark_refcount_inc);
2181 }
2182 EXPORT_SYMBOL(security_secmark_refcount_inc);
2183
2184 void security_secmark_refcount_dec(void)
2185 {
2186 call_void_hook(secmark_refcount_dec);
2187 }
2188 EXPORT_SYMBOL(security_secmark_refcount_dec);
2189
2190 int security_tun_dev_alloc_security(void **security)
2191 {
2192 return call_int_hook(tun_dev_alloc_security, 0, security);
2193 }
2194 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2195
2196 void security_tun_dev_free_security(void *security)
2197 {
2198 call_void_hook(tun_dev_free_security, security);
2199 }
2200 EXPORT_SYMBOL(security_tun_dev_free_security);
2201
2202 int security_tun_dev_create(void)
2203 {
2204 return call_int_hook(tun_dev_create, 0);
2205 }
2206 EXPORT_SYMBOL(security_tun_dev_create);
2207
2208 int security_tun_dev_attach_queue(void *security)
2209 {
2210 return call_int_hook(tun_dev_attach_queue, 0, security);
2211 }
2212 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2213
2214 int security_tun_dev_attach(struct sock *sk, void *security)
2215 {
2216 return call_int_hook(tun_dev_attach, 0, sk, security);
2217 }
2218 EXPORT_SYMBOL(security_tun_dev_attach);
2219
2220 int security_tun_dev_open(void *security)
2221 {
2222 return call_int_hook(tun_dev_open, 0, security);
2223 }
2224 EXPORT_SYMBOL(security_tun_dev_open);
2225
2226 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2227 {
2228 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2229 }
2230 EXPORT_SYMBOL(security_sctp_assoc_request);
2231
2232 int security_sctp_bind_connect(struct sock *sk, int optname,
2233 struct sockaddr *address, int addrlen)
2234 {
2235 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2236 address, addrlen);
2237 }
2238 EXPORT_SYMBOL(security_sctp_bind_connect);
2239
2240 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2241 struct sock *newsk)
2242 {
2243 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2244 }
2245 EXPORT_SYMBOL(security_sctp_sk_clone);
2246
2247 #endif /* CONFIG_SECURITY_NETWORK */
2248
2249 #ifdef CONFIG_SECURITY_INFINIBAND
2250
2251 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2252 {
2253 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2254 }
2255 EXPORT_SYMBOL(security_ib_pkey_access);
2256
2257 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2258 {
2259 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2260 }
2261 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2262
2263 int security_ib_alloc_security(void **sec)
2264 {
2265 return call_int_hook(ib_alloc_security, 0, sec);
2266 }
2267 EXPORT_SYMBOL(security_ib_alloc_security);
2268
2269 void security_ib_free_security(void *sec)
2270 {
2271 call_void_hook(ib_free_security, sec);
2272 }
2273 EXPORT_SYMBOL(security_ib_free_security);
2274 #endif /* CONFIG_SECURITY_INFINIBAND */
2275
2276 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2277
2278 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2279 struct xfrm_user_sec_ctx *sec_ctx,
2280 gfp_t gfp)
2281 {
2282 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2283 }
2284 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2285
2286 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2287 struct xfrm_sec_ctx **new_ctxp)
2288 {
2289 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2290 }
2291
2292 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2293 {
2294 call_void_hook(xfrm_policy_free_security, ctx);
2295 }
2296 EXPORT_SYMBOL(security_xfrm_policy_free);
2297
2298 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2299 {
2300 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2301 }
2302
2303 int security_xfrm_state_alloc(struct xfrm_state *x,
2304 struct xfrm_user_sec_ctx *sec_ctx)
2305 {
2306 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2307 }
2308 EXPORT_SYMBOL(security_xfrm_state_alloc);
2309
2310 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2311 struct xfrm_sec_ctx *polsec, u32 secid)
2312 {
2313 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2314 }
2315
2316 int security_xfrm_state_delete(struct xfrm_state *x)
2317 {
2318 return call_int_hook(xfrm_state_delete_security, 0, x);
2319 }
2320 EXPORT_SYMBOL(security_xfrm_state_delete);
2321
2322 void security_xfrm_state_free(struct xfrm_state *x)
2323 {
2324 call_void_hook(xfrm_state_free_security, x);
2325 }
2326
2327 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2328 {
2329 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2330 }
2331
2332 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2333 struct xfrm_policy *xp,
2334 const struct flowi *fl)
2335 {
2336 struct security_hook_list *hp;
2337 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2338
2339 /*
2340 * Since this function is expected to return 0 or 1, the judgment
2341 * becomes difficult if multiple LSMs supply this call. Fortunately,
2342 * we can use the first LSM's judgment because currently only SELinux
2343 * supplies this call.
2344 *
2345 * For speed optimization, we explicitly break the loop rather than
2346 * using the macro
2347 */
2348 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2349 list) {
2350 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2351 break;
2352 }
2353 return rc;
2354 }
2355
2356 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2357 {
2358 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2359 }
2360
2361 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2362 {
2363 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2364 0);
2365
2366 BUG_ON(rc);
2367 }
2368 EXPORT_SYMBOL(security_skb_classify_flow);
2369
2370 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2371
2372 #ifdef CONFIG_KEYS
2373
2374 int security_key_alloc(struct key *key, const struct cred *cred,
2375 unsigned long flags)
2376 {
2377 return call_int_hook(key_alloc, 0, key, cred, flags);
2378 }
2379
2380 void security_key_free(struct key *key)
2381 {
2382 call_void_hook(key_free, key);
2383 }
2384
2385 int security_key_permission(key_ref_t key_ref,
2386 const struct cred *cred, unsigned perm)
2387 {
2388 return call_int_hook(key_permission, 0, key_ref, cred, perm);
2389 }
2390
2391 int security_key_getsecurity(struct key *key, char **_buffer)
2392 {
2393 *_buffer = NULL;
2394 return call_int_hook(key_getsecurity, 0, key, _buffer);
2395 }
2396
2397 #endif /* CONFIG_KEYS */
2398
2399 #ifdef CONFIG_AUDIT
2400
2401 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2402 {
2403 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2404 }
2405
2406 int security_audit_rule_known(struct audit_krule *krule)
2407 {
2408 return call_int_hook(audit_rule_known, 0, krule);
2409 }
2410
2411 void security_audit_rule_free(void *lsmrule)
2412 {
2413 call_void_hook(audit_rule_free, lsmrule);
2414 }
2415
2416 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2417 {
2418 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2419 }
2420 #endif /* CONFIG_AUDIT */
2421
2422 #ifdef CONFIG_BPF_SYSCALL
2423 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2424 {
2425 return call_int_hook(bpf, 0, cmd, attr, size);
2426 }
2427 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2428 {
2429 return call_int_hook(bpf_map, 0, map, fmode);
2430 }
2431 int security_bpf_prog(struct bpf_prog *prog)
2432 {
2433 return call_int_hook(bpf_prog, 0, prog);
2434 }
2435 int security_bpf_map_alloc(struct bpf_map *map)
2436 {
2437 return call_int_hook(bpf_map_alloc_security, 0, map);
2438 }
2439 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2440 {
2441 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2442 }
2443 void security_bpf_map_free(struct bpf_map *map)
2444 {
2445 call_void_hook(bpf_map_free_security, map);
2446 }
2447 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2448 {
2449 call_void_hook(bpf_prog_free_security, aux);
2450 }
2451 #endif /* CONFIG_BPF_SYSCALL */
2452
2453 int security_locked_down(enum lockdown_reason what)
2454 {
2455 return call_int_hook(locked_down, 0, what);
2456 }
2457 EXPORT_SYMBOL(security_locked_down);
2458
2459 #ifdef CONFIG_PERF_EVENTS
2460 int security_perf_event_open(struct perf_event_attr *attr, int type)
2461 {
2462 return call_int_hook(perf_event_open, 0, attr, type);
2463 }
2464
2465 int security_perf_event_alloc(struct perf_event *event)
2466 {
2467 return call_int_hook(perf_event_alloc, 0, event);
2468 }
2469
2470 void security_perf_event_free(struct perf_event *event)
2471 {
2472 call_void_hook(perf_event_free, event);
2473 }
2474
2475 int security_perf_event_read(struct perf_event *event)
2476 {
2477 return call_int_hook(perf_event_read, 0, event);
2478 }
2479
2480 int security_perf_event_write(struct perf_event *event)
2481 {
2482 return call_int_hook(perf_event_write, 0, event);
2483 }
2484 #endif /* CONFIG_PERF_EVENTS */