]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - security/security.c
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31
32 #define MAX_LSM_EVM_XATTR 2
33
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36 #define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
37
38 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
39 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
40
41 static struct kmem_cache *lsm_file_cache;
42 static struct kmem_cache *lsm_inode_cache;
43
44 char *lsm_names;
45 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
46
47 /* Boot-time LSM user choice */
48 static __initdata const char *chosen_lsm_order;
49 static __initdata const char *chosen_major_lsm;
50
51 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
52
53 /* Ordered list of LSMs to initialize. */
54 static __initdata struct lsm_info **ordered_lsms;
55 static __initdata struct lsm_info *exclusive;
56
57 static __initdata bool debug;
58 #define init_debug(...) \
59 do { \
60 if (debug) \
61 pr_info(__VA_ARGS__); \
62 } while (0)
63
64 static bool __init is_enabled(struct lsm_info *lsm)
65 {
66 if (!lsm->enabled)
67 return false;
68
69 return *lsm->enabled;
70 }
71
72 /* Mark an LSM's enabled flag. */
73 static int lsm_enabled_true __initdata = 1;
74 static int lsm_enabled_false __initdata = 0;
75 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
76 {
77 /*
78 * When an LSM hasn't configured an enable variable, we can use
79 * a hard-coded location for storing the default enabled state.
80 */
81 if (!lsm->enabled) {
82 if (enabled)
83 lsm->enabled = &lsm_enabled_true;
84 else
85 lsm->enabled = &lsm_enabled_false;
86 } else if (lsm->enabled == &lsm_enabled_true) {
87 if (!enabled)
88 lsm->enabled = &lsm_enabled_false;
89 } else if (lsm->enabled == &lsm_enabled_false) {
90 if (enabled)
91 lsm->enabled = &lsm_enabled_true;
92 } else {
93 *lsm->enabled = enabled;
94 }
95 }
96
97 /* Is an LSM already listed in the ordered LSMs list? */
98 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
99 {
100 struct lsm_info **check;
101
102 for (check = ordered_lsms; *check; check++)
103 if (*check == lsm)
104 return true;
105
106 return false;
107 }
108
109 /* Append an LSM to the list of ordered LSMs to initialize. */
110 static int last_lsm __initdata;
111 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
112 {
113 /* Ignore duplicate selections. */
114 if (exists_ordered_lsm(lsm))
115 return;
116
117 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
118 return;
119
120 /* Enable this LSM, if it is not already set. */
121 if (!lsm->enabled)
122 lsm->enabled = &lsm_enabled_true;
123 ordered_lsms[last_lsm++] = lsm;
124
125 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
126 is_enabled(lsm) ? "en" : "dis");
127 }
128
129 /* Is an LSM allowed to be initialized? */
130 static bool __init lsm_allowed(struct lsm_info *lsm)
131 {
132 /* Skip if the LSM is disabled. */
133 if (!is_enabled(lsm))
134 return false;
135
136 /* Not allowed if another exclusive LSM already initialized. */
137 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
138 init_debug("exclusive disabled: %s\n", lsm->name);
139 return false;
140 }
141
142 return true;
143 }
144
145 static void __init lsm_set_blob_size(int *need, int *lbs)
146 {
147 int offset;
148
149 if (*need > 0) {
150 offset = *lbs;
151 *lbs += *need;
152 *need = offset;
153 }
154 }
155
156 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
157 {
158 if (!needed)
159 return;
160
161 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
162 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
163 /*
164 * The inode blob gets an rcu_head in addition to
165 * what the modules might need.
166 */
167 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
168 blob_sizes.lbs_inode = sizeof(struct rcu_head);
169 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
170 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
171 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
172 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
173 }
174
175 /* Prepare LSM for initialization. */
176 static void __init prepare_lsm(struct lsm_info *lsm)
177 {
178 int enabled = lsm_allowed(lsm);
179
180 /* Record enablement (to handle any following exclusive LSMs). */
181 set_enabled(lsm, enabled);
182
183 /* If enabled, do pre-initialization work. */
184 if (enabled) {
185 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
186 exclusive = lsm;
187 init_debug("exclusive chosen: %s\n", lsm->name);
188 }
189
190 lsm_set_blob_sizes(lsm->blobs);
191 }
192 }
193
194 /* Initialize a given LSM, if it is enabled. */
195 static void __init initialize_lsm(struct lsm_info *lsm)
196 {
197 if (is_enabled(lsm)) {
198 int ret;
199
200 init_debug("initializing %s\n", lsm->name);
201 ret = lsm->init();
202 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
203 }
204 }
205
206 /* Populate ordered LSMs list from comma-separated LSM name list. */
207 static void __init ordered_lsm_parse(const char *order, const char *origin)
208 {
209 struct lsm_info *lsm;
210 char *sep, *name, *next;
211
212 /* LSM_ORDER_FIRST is always first. */
213 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
214 if (lsm->order == LSM_ORDER_FIRST)
215 append_ordered_lsm(lsm, "first");
216 }
217
218 /* Process "security=", if given. */
219 if (chosen_major_lsm) {
220 struct lsm_info *major;
221
222 /*
223 * To match the original "security=" behavior, this
224 * explicitly does NOT fallback to another Legacy Major
225 * if the selected one was separately disabled: disable
226 * all non-matching Legacy Major LSMs.
227 */
228 for (major = __start_lsm_info; major < __end_lsm_info;
229 major++) {
230 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
231 strcmp(major->name, chosen_major_lsm) != 0) {
232 set_enabled(major, false);
233 init_debug("security=%s disabled: %s\n",
234 chosen_major_lsm, major->name);
235 }
236 }
237 }
238
239 sep = kstrdup(order, GFP_KERNEL);
240 next = sep;
241 /* Walk the list, looking for matching LSMs. */
242 while ((name = strsep(&next, ",")) != NULL) {
243 bool found = false;
244
245 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246 if (lsm->order == LSM_ORDER_MUTABLE &&
247 strcmp(lsm->name, name) == 0) {
248 append_ordered_lsm(lsm, origin);
249 found = true;
250 }
251 }
252
253 if (!found)
254 init_debug("%s ignored: %s\n", origin, name);
255 }
256
257 /* Process "security=", if given. */
258 if (chosen_major_lsm) {
259 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
260 if (exists_ordered_lsm(lsm))
261 continue;
262 if (strcmp(lsm->name, chosen_major_lsm) == 0)
263 append_ordered_lsm(lsm, "security=");
264 }
265 }
266
267 /* Disable all LSMs not in the ordered list. */
268 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
269 if (exists_ordered_lsm(lsm))
270 continue;
271 set_enabled(lsm, false);
272 init_debug("%s disabled: %s\n", origin, lsm->name);
273 }
274
275 kfree(sep);
276 }
277
278 static void __init lsm_early_cred(struct cred *cred);
279 static void __init lsm_early_task(struct task_struct *task);
280
281 static int lsm_append(const char *new, char **result);
282
283 static void __init ordered_lsm_init(void)
284 {
285 struct lsm_info **lsm;
286
287 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
288 GFP_KERNEL);
289
290 if (chosen_lsm_order) {
291 if (chosen_major_lsm) {
292 pr_info("security= is ignored because it is superseded by lsm=\n");
293 chosen_major_lsm = NULL;
294 }
295 ordered_lsm_parse(chosen_lsm_order, "cmdline");
296 } else
297 ordered_lsm_parse(builtin_lsm_order, "builtin");
298
299 for (lsm = ordered_lsms; *lsm; lsm++)
300 prepare_lsm(*lsm);
301
302 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
303 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
304 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
305 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
306 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
307 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
308
309 /*
310 * Create any kmem_caches needed for blobs
311 */
312 if (blob_sizes.lbs_file)
313 lsm_file_cache = kmem_cache_create("lsm_file_cache",
314 blob_sizes.lbs_file, 0,
315 SLAB_PANIC, NULL);
316 if (blob_sizes.lbs_inode)
317 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
318 blob_sizes.lbs_inode, 0,
319 SLAB_PANIC, NULL);
320
321 lsm_early_cred((struct cred *) current->cred);
322 lsm_early_task(current);
323 for (lsm = ordered_lsms; *lsm; lsm++)
324 initialize_lsm(*lsm);
325
326 kfree(ordered_lsms);
327 }
328
329 int __init early_security_init(void)
330 {
331 int i;
332 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
333 struct lsm_info *lsm;
334
335 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
336 i++)
337 INIT_HLIST_HEAD(&list[i]);
338
339 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
340 if (!lsm->enabled)
341 lsm->enabled = &lsm_enabled_true;
342 prepare_lsm(lsm);
343 initialize_lsm(lsm);
344 }
345
346 return 0;
347 }
348
349 /**
350 * security_init - initializes the security framework
351 *
352 * This should be called early in the kernel initialization sequence.
353 */
354 int __init security_init(void)
355 {
356 struct lsm_info *lsm;
357
358 pr_info("Security Framework initializing\n");
359
360 /*
361 * Append the names of the early LSM modules now that kmalloc() is
362 * available
363 */
364 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
365 if (lsm->enabled)
366 lsm_append(lsm->name, &lsm_names);
367 }
368
369 /* Load LSMs in specified order. */
370 ordered_lsm_init();
371
372 return 0;
373 }
374
375 /* Save user chosen LSM */
376 static int __init choose_major_lsm(char *str)
377 {
378 chosen_major_lsm = str;
379 return 1;
380 }
381 __setup("security=", choose_major_lsm);
382
383 /* Explicitly choose LSM initialization order. */
384 static int __init choose_lsm_order(char *str)
385 {
386 chosen_lsm_order = str;
387 return 1;
388 }
389 __setup("lsm=", choose_lsm_order);
390
391 /* Enable LSM order debugging. */
392 static int __init enable_debug(char *str)
393 {
394 debug = true;
395 return 1;
396 }
397 __setup("lsm.debug", enable_debug);
398
399 static bool match_last_lsm(const char *list, const char *lsm)
400 {
401 const char *last;
402
403 if (WARN_ON(!list || !lsm))
404 return false;
405 last = strrchr(list, ',');
406 if (last)
407 /* Pass the comma, strcmp() will check for '\0' */
408 last++;
409 else
410 last = list;
411 return !strcmp(last, lsm);
412 }
413
414 static int lsm_append(const char *new, char **result)
415 {
416 char *cp;
417
418 if (*result == NULL) {
419 *result = kstrdup(new, GFP_KERNEL);
420 if (*result == NULL)
421 return -ENOMEM;
422 } else {
423 /* Check if it is the last registered name */
424 if (match_last_lsm(*result, new))
425 return 0;
426 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
427 if (cp == NULL)
428 return -ENOMEM;
429 kfree(*result);
430 *result = cp;
431 }
432 return 0;
433 }
434
435 /**
436 * security_add_hooks - Add a modules hooks to the hook lists.
437 * @hooks: the hooks to add
438 * @count: the number of hooks to add
439 * @lsm: the name of the security module
440 *
441 * Each LSM has to register its hooks with the infrastructure.
442 */
443 void __init security_add_hooks(struct security_hook_list *hooks, int count,
444 char *lsm)
445 {
446 int i;
447
448 for (i = 0; i < count; i++) {
449 hooks[i].lsm = lsm;
450 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
451 }
452
453 /*
454 * Don't try to append during early_security_init(), we'll come back
455 * and fix this up afterwards.
456 */
457 if (slab_is_available()) {
458 if (lsm_append(lsm, &lsm_names) < 0)
459 panic("%s - Cannot get early memory.\n", __func__);
460 }
461 }
462
463 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
464 {
465 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
466 event, data);
467 }
468 EXPORT_SYMBOL(call_blocking_lsm_notifier);
469
470 int register_blocking_lsm_notifier(struct notifier_block *nb)
471 {
472 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
473 nb);
474 }
475 EXPORT_SYMBOL(register_blocking_lsm_notifier);
476
477 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
478 {
479 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
480 nb);
481 }
482 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
483
484 /**
485 * lsm_cred_alloc - allocate a composite cred blob
486 * @cred: the cred that needs a blob
487 * @gfp: allocation type
488 *
489 * Allocate the cred blob for all the modules
490 *
491 * Returns 0, or -ENOMEM if memory can't be allocated.
492 */
493 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
494 {
495 if (blob_sizes.lbs_cred == 0) {
496 cred->security = NULL;
497 return 0;
498 }
499
500 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
501 if (cred->security == NULL)
502 return -ENOMEM;
503 return 0;
504 }
505
506 /**
507 * lsm_early_cred - during initialization allocate a composite cred blob
508 * @cred: the cred that needs a blob
509 *
510 * Allocate the cred blob for all the modules
511 */
512 static void __init lsm_early_cred(struct cred *cred)
513 {
514 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
515
516 if (rc)
517 panic("%s: Early cred alloc failed.\n", __func__);
518 }
519
520 /**
521 * lsm_file_alloc - allocate a composite file blob
522 * @file: the file that needs a blob
523 *
524 * Allocate the file blob for all the modules
525 *
526 * Returns 0, or -ENOMEM if memory can't be allocated.
527 */
528 static int lsm_file_alloc(struct file *file)
529 {
530 if (!lsm_file_cache) {
531 file->f_security = NULL;
532 return 0;
533 }
534
535 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
536 if (file->f_security == NULL)
537 return -ENOMEM;
538 return 0;
539 }
540
541 /**
542 * lsm_inode_alloc - allocate a composite inode blob
543 * @inode: the inode that needs a blob
544 *
545 * Allocate the inode blob for all the modules
546 *
547 * Returns 0, or -ENOMEM if memory can't be allocated.
548 */
549 int lsm_inode_alloc(struct inode *inode)
550 {
551 if (!lsm_inode_cache) {
552 inode->i_security = NULL;
553 return 0;
554 }
555
556 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
557 if (inode->i_security == NULL)
558 return -ENOMEM;
559 return 0;
560 }
561
562 /**
563 * lsm_task_alloc - allocate a composite task blob
564 * @task: the task that needs a blob
565 *
566 * Allocate the task blob for all the modules
567 *
568 * Returns 0, or -ENOMEM if memory can't be allocated.
569 */
570 static int lsm_task_alloc(struct task_struct *task)
571 {
572 if (blob_sizes.lbs_task == 0) {
573 task->security = NULL;
574 return 0;
575 }
576
577 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
578 if (task->security == NULL)
579 return -ENOMEM;
580 return 0;
581 }
582
583 /**
584 * lsm_ipc_alloc - allocate a composite ipc blob
585 * @kip: the ipc that needs a blob
586 *
587 * Allocate the ipc blob for all the modules
588 *
589 * Returns 0, or -ENOMEM if memory can't be allocated.
590 */
591 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
592 {
593 if (blob_sizes.lbs_ipc == 0) {
594 kip->security = NULL;
595 return 0;
596 }
597
598 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
599 if (kip->security == NULL)
600 return -ENOMEM;
601 return 0;
602 }
603
604 /**
605 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
606 * @mp: the msg_msg that needs a blob
607 *
608 * Allocate the ipc blob for all the modules
609 *
610 * Returns 0, or -ENOMEM if memory can't be allocated.
611 */
612 static int lsm_msg_msg_alloc(struct msg_msg *mp)
613 {
614 if (blob_sizes.lbs_msg_msg == 0) {
615 mp->security = NULL;
616 return 0;
617 }
618
619 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
620 if (mp->security == NULL)
621 return -ENOMEM;
622 return 0;
623 }
624
625 /**
626 * lsm_early_task - during initialization allocate a composite task blob
627 * @task: the task that needs a blob
628 *
629 * Allocate the task blob for all the modules
630 */
631 static void __init lsm_early_task(struct task_struct *task)
632 {
633 int rc = lsm_task_alloc(task);
634
635 if (rc)
636 panic("%s: Early task alloc failed.\n", __func__);
637 }
638
639 /*
640 * Hook list operation macros.
641 *
642 * call_void_hook:
643 * This is a hook that does not return a value.
644 *
645 * call_int_hook:
646 * This is a hook that returns a value.
647 */
648
649 #define call_void_hook(FUNC, ...) \
650 do { \
651 struct security_hook_list *P; \
652 \
653 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
654 P->hook.FUNC(__VA_ARGS__); \
655 } while (0)
656
657 #define call_int_hook(FUNC, IRC, ...) ({ \
658 int RC = IRC; \
659 do { \
660 struct security_hook_list *P; \
661 \
662 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
663 RC = P->hook.FUNC(__VA_ARGS__); \
664 if (RC != 0) \
665 break; \
666 } \
667 } while (0); \
668 RC; \
669 })
670
671 /* Security operations */
672
673 int security_binder_set_context_mgr(struct task_struct *mgr)
674 {
675 return call_int_hook(binder_set_context_mgr, 0, mgr);
676 }
677
678 int security_binder_transaction(struct task_struct *from,
679 struct task_struct *to)
680 {
681 return call_int_hook(binder_transaction, 0, from, to);
682 }
683
684 int security_binder_transfer_binder(struct task_struct *from,
685 struct task_struct *to)
686 {
687 return call_int_hook(binder_transfer_binder, 0, from, to);
688 }
689
690 int security_binder_transfer_file(struct task_struct *from,
691 struct task_struct *to, struct file *file)
692 {
693 return call_int_hook(binder_transfer_file, 0, from, to, file);
694 }
695
696 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
697 {
698 return call_int_hook(ptrace_access_check, 0, child, mode);
699 }
700
701 int security_ptrace_traceme(struct task_struct *parent)
702 {
703 return call_int_hook(ptrace_traceme, 0, parent);
704 }
705
706 int security_capget(struct task_struct *target,
707 kernel_cap_t *effective,
708 kernel_cap_t *inheritable,
709 kernel_cap_t *permitted)
710 {
711 return call_int_hook(capget, 0, target,
712 effective, inheritable, permitted);
713 }
714
715 int security_capset(struct cred *new, const struct cred *old,
716 const kernel_cap_t *effective,
717 const kernel_cap_t *inheritable,
718 const kernel_cap_t *permitted)
719 {
720 return call_int_hook(capset, 0, new, old,
721 effective, inheritable, permitted);
722 }
723
724 int security_capable(const struct cred *cred,
725 struct user_namespace *ns,
726 int cap,
727 unsigned int opts)
728 {
729 return call_int_hook(capable, 0, cred, ns, cap, opts);
730 }
731
732 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
733 {
734 return call_int_hook(quotactl, 0, cmds, type, id, sb);
735 }
736
737 int security_quota_on(struct dentry *dentry)
738 {
739 return call_int_hook(quota_on, 0, dentry);
740 }
741
742 int security_syslog(int type)
743 {
744 return call_int_hook(syslog, 0, type);
745 }
746
747 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
748 {
749 return call_int_hook(settime, 0, ts, tz);
750 }
751
752 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
753 {
754 struct security_hook_list *hp;
755 int cap_sys_admin = 1;
756 int rc;
757
758 /*
759 * The module will respond with a positive value if
760 * it thinks the __vm_enough_memory() call should be
761 * made with the cap_sys_admin set. If all of the modules
762 * agree that it should be set it will. If any module
763 * thinks it should not be set it won't.
764 */
765 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
766 rc = hp->hook.vm_enough_memory(mm, pages);
767 if (rc <= 0) {
768 cap_sys_admin = 0;
769 break;
770 }
771 }
772 return __vm_enough_memory(mm, pages, cap_sys_admin);
773 }
774
775 int security_bprm_set_creds(struct linux_binprm *bprm)
776 {
777 return call_int_hook(bprm_set_creds, 0, bprm);
778 }
779
780 int security_bprm_check(struct linux_binprm *bprm)
781 {
782 int ret;
783
784 ret = call_int_hook(bprm_check_security, 0, bprm);
785 if (ret)
786 return ret;
787 return ima_bprm_check(bprm);
788 }
789
790 void security_bprm_committing_creds(struct linux_binprm *bprm)
791 {
792 call_void_hook(bprm_committing_creds, bprm);
793 }
794
795 void security_bprm_committed_creds(struct linux_binprm *bprm)
796 {
797 call_void_hook(bprm_committed_creds, bprm);
798 }
799
800 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
801 {
802 return call_int_hook(fs_context_dup, 0, fc, src_fc);
803 }
804
805 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
806 {
807 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
808 }
809
810 int security_sb_alloc(struct super_block *sb)
811 {
812 return call_int_hook(sb_alloc_security, 0, sb);
813 }
814
815 void security_sb_free(struct super_block *sb)
816 {
817 call_void_hook(sb_free_security, sb);
818 }
819
820 void security_free_mnt_opts(void **mnt_opts)
821 {
822 if (!*mnt_opts)
823 return;
824 call_void_hook(sb_free_mnt_opts, *mnt_opts);
825 *mnt_opts = NULL;
826 }
827 EXPORT_SYMBOL(security_free_mnt_opts);
828
829 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
830 {
831 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
832 }
833 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
834
835 int security_sb_remount(struct super_block *sb,
836 void *mnt_opts)
837 {
838 return call_int_hook(sb_remount, 0, sb, mnt_opts);
839 }
840 EXPORT_SYMBOL(security_sb_remount);
841
842 int security_sb_kern_mount(struct super_block *sb)
843 {
844 return call_int_hook(sb_kern_mount, 0, sb);
845 }
846
847 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
848 {
849 return call_int_hook(sb_show_options, 0, m, sb);
850 }
851
852 int security_sb_statfs(struct dentry *dentry)
853 {
854 return call_int_hook(sb_statfs, 0, dentry);
855 }
856
857 int security_sb_mount(const char *dev_name, const struct path *path,
858 const char *type, unsigned long flags, void *data)
859 {
860 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
861 }
862
863 int security_sb_umount(struct vfsmount *mnt, int flags)
864 {
865 return call_int_hook(sb_umount, 0, mnt, flags);
866 }
867
868 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
869 {
870 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
871 }
872
873 int security_sb_set_mnt_opts(struct super_block *sb,
874 void *mnt_opts,
875 unsigned long kern_flags,
876 unsigned long *set_kern_flags)
877 {
878 return call_int_hook(sb_set_mnt_opts,
879 mnt_opts ? -EOPNOTSUPP : 0, sb,
880 mnt_opts, kern_flags, set_kern_flags);
881 }
882 EXPORT_SYMBOL(security_sb_set_mnt_opts);
883
884 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
885 struct super_block *newsb,
886 unsigned long kern_flags,
887 unsigned long *set_kern_flags)
888 {
889 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
890 kern_flags, set_kern_flags);
891 }
892 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
893
894 int security_add_mnt_opt(const char *option, const char *val, int len,
895 void **mnt_opts)
896 {
897 return call_int_hook(sb_add_mnt_opt, -EINVAL,
898 option, val, len, mnt_opts);
899 }
900 EXPORT_SYMBOL(security_add_mnt_opt);
901
902 int security_move_mount(const struct path *from_path, const struct path *to_path)
903 {
904 return call_int_hook(move_mount, 0, from_path, to_path);
905 }
906
907 int security_path_notify(const struct path *path, u64 mask,
908 unsigned int obj_type)
909 {
910 return call_int_hook(path_notify, 0, path, mask, obj_type);
911 }
912
913 int security_inode_alloc(struct inode *inode)
914 {
915 int rc = lsm_inode_alloc(inode);
916
917 if (unlikely(rc))
918 return rc;
919 rc = call_int_hook(inode_alloc_security, 0, inode);
920 if (unlikely(rc))
921 security_inode_free(inode);
922 return rc;
923 }
924
925 static void inode_free_by_rcu(struct rcu_head *head)
926 {
927 /*
928 * The rcu head is at the start of the inode blob
929 */
930 kmem_cache_free(lsm_inode_cache, head);
931 }
932
933 void security_inode_free(struct inode *inode)
934 {
935 integrity_inode_free(inode);
936 call_void_hook(inode_free_security, inode);
937 /*
938 * The inode may still be referenced in a path walk and
939 * a call to security_inode_permission() can be made
940 * after inode_free_security() is called. Ideally, the VFS
941 * wouldn't do this, but fixing that is a much harder
942 * job. For now, simply free the i_security via RCU, and
943 * leave the current inode->i_security pointer intact.
944 * The inode will be freed after the RCU grace period too.
945 */
946 if (inode->i_security)
947 call_rcu((struct rcu_head *)inode->i_security,
948 inode_free_by_rcu);
949 }
950
951 int security_dentry_init_security(struct dentry *dentry, int mode,
952 const struct qstr *name, void **ctx,
953 u32 *ctxlen)
954 {
955 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
956 name, ctx, ctxlen);
957 }
958 EXPORT_SYMBOL(security_dentry_init_security);
959
960 int security_dentry_create_files_as(struct dentry *dentry, int mode,
961 struct qstr *name,
962 const struct cred *old, struct cred *new)
963 {
964 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
965 name, old, new);
966 }
967 EXPORT_SYMBOL(security_dentry_create_files_as);
968
969 int security_inode_init_security(struct inode *inode, struct inode *dir,
970 const struct qstr *qstr,
971 const initxattrs initxattrs, void *fs_data)
972 {
973 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
974 struct xattr *lsm_xattr, *evm_xattr, *xattr;
975 int ret;
976
977 if (unlikely(IS_PRIVATE(inode)))
978 return 0;
979
980 if (!initxattrs)
981 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
982 dir, qstr, NULL, NULL, NULL);
983 memset(new_xattrs, 0, sizeof(new_xattrs));
984 lsm_xattr = new_xattrs;
985 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
986 &lsm_xattr->name,
987 &lsm_xattr->value,
988 &lsm_xattr->value_len);
989 if (ret)
990 goto out;
991
992 evm_xattr = lsm_xattr + 1;
993 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
994 if (ret)
995 goto out;
996 ret = initxattrs(inode, new_xattrs, fs_data);
997 out:
998 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
999 kfree(xattr->value);
1000 return (ret == -EOPNOTSUPP) ? 0 : ret;
1001 }
1002 EXPORT_SYMBOL(security_inode_init_security);
1003
1004 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1005 const struct qstr *qstr, const char **name,
1006 void **value, size_t *len)
1007 {
1008 if (unlikely(IS_PRIVATE(inode)))
1009 return -EOPNOTSUPP;
1010 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1011 qstr, name, value, len);
1012 }
1013 EXPORT_SYMBOL(security_old_inode_init_security);
1014
1015 #ifdef CONFIG_SECURITY_PATH
1016 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1017 unsigned int dev)
1018 {
1019 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1020 return 0;
1021 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1022 }
1023 EXPORT_SYMBOL(security_path_mknod);
1024
1025 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1026 {
1027 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1028 return 0;
1029 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1030 }
1031 EXPORT_SYMBOL(security_path_mkdir);
1032
1033 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1034 {
1035 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1036 return 0;
1037 return call_int_hook(path_rmdir, 0, dir, dentry);
1038 }
1039
1040 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1041 {
1042 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1043 return 0;
1044 return call_int_hook(path_unlink, 0, dir, dentry);
1045 }
1046 EXPORT_SYMBOL(security_path_unlink);
1047
1048 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1049 const char *old_name)
1050 {
1051 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1052 return 0;
1053 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1054 }
1055
1056 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1057 struct dentry *new_dentry)
1058 {
1059 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1060 return 0;
1061 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1062 }
1063
1064 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1065 const struct path *new_dir, struct dentry *new_dentry,
1066 unsigned int flags)
1067 {
1068 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1069 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1070 return 0;
1071
1072 if (flags & RENAME_EXCHANGE) {
1073 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1074 old_dir, old_dentry);
1075 if (err)
1076 return err;
1077 }
1078
1079 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1080 new_dentry);
1081 }
1082 EXPORT_SYMBOL(security_path_rename);
1083
1084 int security_path_truncate(const struct path *path)
1085 {
1086 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1087 return 0;
1088 return call_int_hook(path_truncate, 0, path);
1089 }
1090
1091 int security_path_chmod(const struct path *path, umode_t mode)
1092 {
1093 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1094 return 0;
1095 return call_int_hook(path_chmod, 0, path, mode);
1096 }
1097
1098 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1099 {
1100 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1101 return 0;
1102 return call_int_hook(path_chown, 0, path, uid, gid);
1103 }
1104
1105 int security_path_chroot(const struct path *path)
1106 {
1107 return call_int_hook(path_chroot, 0, path);
1108 }
1109 #endif
1110
1111 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1112 {
1113 if (unlikely(IS_PRIVATE(dir)))
1114 return 0;
1115 return call_int_hook(inode_create, 0, dir, dentry, mode);
1116 }
1117 EXPORT_SYMBOL_GPL(security_inode_create);
1118
1119 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1120 struct dentry *new_dentry)
1121 {
1122 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1123 return 0;
1124 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1125 }
1126
1127 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1128 {
1129 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1130 return 0;
1131 return call_int_hook(inode_unlink, 0, dir, dentry);
1132 }
1133
1134 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1135 const char *old_name)
1136 {
1137 if (unlikely(IS_PRIVATE(dir)))
1138 return 0;
1139 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1140 }
1141
1142 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1143 {
1144 if (unlikely(IS_PRIVATE(dir)))
1145 return 0;
1146 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1147 }
1148 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1149
1150 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1151 {
1152 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1153 return 0;
1154 return call_int_hook(inode_rmdir, 0, dir, dentry);
1155 }
1156
1157 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1158 {
1159 if (unlikely(IS_PRIVATE(dir)))
1160 return 0;
1161 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1162 }
1163
1164 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1165 struct inode *new_dir, struct dentry *new_dentry,
1166 unsigned int flags)
1167 {
1168 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1169 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1170 return 0;
1171
1172 if (flags & RENAME_EXCHANGE) {
1173 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1174 old_dir, old_dentry);
1175 if (err)
1176 return err;
1177 }
1178
1179 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1180 new_dir, new_dentry);
1181 }
1182
1183 int security_inode_readlink(struct dentry *dentry)
1184 {
1185 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186 return 0;
1187 return call_int_hook(inode_readlink, 0, dentry);
1188 }
1189
1190 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1191 bool rcu)
1192 {
1193 if (unlikely(IS_PRIVATE(inode)))
1194 return 0;
1195 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1196 }
1197
1198 int security_inode_permission(struct inode *inode, int mask)
1199 {
1200 if (unlikely(IS_PRIVATE(inode)))
1201 return 0;
1202 return call_int_hook(inode_permission, 0, inode, mask);
1203 }
1204
1205 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1206 {
1207 int ret;
1208
1209 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210 return 0;
1211 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1212 if (ret)
1213 return ret;
1214 return evm_inode_setattr(dentry, attr);
1215 }
1216 EXPORT_SYMBOL_GPL(security_inode_setattr);
1217
1218 int security_inode_getattr(const struct path *path)
1219 {
1220 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1221 return 0;
1222 return call_int_hook(inode_getattr, 0, path);
1223 }
1224
1225 int security_inode_setxattr(struct dentry *dentry, const char *name,
1226 const void *value, size_t size, int flags)
1227 {
1228 int ret;
1229
1230 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1231 return 0;
1232 /*
1233 * SELinux and Smack integrate the cap call,
1234 * so assume that all LSMs supplying this call do so.
1235 */
1236 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1237 flags);
1238
1239 if (ret == 1)
1240 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1241 if (ret)
1242 return ret;
1243 ret = ima_inode_setxattr(dentry, name, value, size);
1244 if (ret)
1245 return ret;
1246 return evm_inode_setxattr(dentry, name, value, size);
1247 }
1248
1249 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1250 const void *value, size_t size, int flags)
1251 {
1252 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1253 return;
1254 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1255 evm_inode_post_setxattr(dentry, name, value, size);
1256 }
1257
1258 int security_inode_getxattr(struct dentry *dentry, const char *name)
1259 {
1260 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1261 return 0;
1262 return call_int_hook(inode_getxattr, 0, dentry, name);
1263 }
1264
1265 int security_inode_listxattr(struct dentry *dentry)
1266 {
1267 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268 return 0;
1269 return call_int_hook(inode_listxattr, 0, dentry);
1270 }
1271
1272 int security_inode_removexattr(struct dentry *dentry, const char *name)
1273 {
1274 int ret;
1275
1276 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1277 return 0;
1278 /*
1279 * SELinux and Smack integrate the cap call,
1280 * so assume that all LSMs supplying this call do so.
1281 */
1282 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1283 if (ret == 1)
1284 ret = cap_inode_removexattr(dentry, name);
1285 if (ret)
1286 return ret;
1287 ret = ima_inode_removexattr(dentry, name);
1288 if (ret)
1289 return ret;
1290 return evm_inode_removexattr(dentry, name);
1291 }
1292
1293 int security_inode_need_killpriv(struct dentry *dentry)
1294 {
1295 return call_int_hook(inode_need_killpriv, 0, dentry);
1296 }
1297
1298 int security_inode_killpriv(struct dentry *dentry)
1299 {
1300 return call_int_hook(inode_killpriv, 0, dentry);
1301 }
1302
1303 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1304 {
1305 struct security_hook_list *hp;
1306 int rc;
1307
1308 if (unlikely(IS_PRIVATE(inode)))
1309 return -EOPNOTSUPP;
1310 /*
1311 * Only one module will provide an attribute with a given name.
1312 */
1313 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1314 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1315 if (rc != -EOPNOTSUPP)
1316 return rc;
1317 }
1318 return -EOPNOTSUPP;
1319 }
1320
1321 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1322 {
1323 struct security_hook_list *hp;
1324 int rc;
1325
1326 if (unlikely(IS_PRIVATE(inode)))
1327 return -EOPNOTSUPP;
1328 /*
1329 * Only one module will provide an attribute with a given name.
1330 */
1331 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1332 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1333 flags);
1334 if (rc != -EOPNOTSUPP)
1335 return rc;
1336 }
1337 return -EOPNOTSUPP;
1338 }
1339
1340 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1341 {
1342 if (unlikely(IS_PRIVATE(inode)))
1343 return 0;
1344 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1345 }
1346 EXPORT_SYMBOL(security_inode_listsecurity);
1347
1348 void security_inode_getsecid(struct inode *inode, u32 *secid)
1349 {
1350 call_void_hook(inode_getsecid, inode, secid);
1351 }
1352
1353 int security_inode_copy_up(struct dentry *src, struct cred **new)
1354 {
1355 return call_int_hook(inode_copy_up, 0, src, new);
1356 }
1357 EXPORT_SYMBOL(security_inode_copy_up);
1358
1359 int security_inode_copy_up_xattr(const char *name)
1360 {
1361 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1362 }
1363 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1364
1365 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1366 struct kernfs_node *kn)
1367 {
1368 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1369 }
1370
1371 int security_file_permission(struct file *file, int mask)
1372 {
1373 int ret;
1374
1375 ret = call_int_hook(file_permission, 0, file, mask);
1376 if (ret)
1377 return ret;
1378
1379 return fsnotify_perm(file, mask);
1380 }
1381
1382 int security_file_alloc(struct file *file)
1383 {
1384 int rc = lsm_file_alloc(file);
1385
1386 if (rc)
1387 return rc;
1388 rc = call_int_hook(file_alloc_security, 0, file);
1389 if (unlikely(rc))
1390 security_file_free(file);
1391 return rc;
1392 }
1393
1394 void security_file_free(struct file *file)
1395 {
1396 void *blob;
1397
1398 call_void_hook(file_free_security, file);
1399
1400 blob = file->f_security;
1401 if (blob) {
1402 file->f_security = NULL;
1403 kmem_cache_free(lsm_file_cache, blob);
1404 }
1405 }
1406
1407 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1408 {
1409 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1410 }
1411
1412 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1413 {
1414 /*
1415 * Does we have PROT_READ and does the application expect
1416 * it to imply PROT_EXEC? If not, nothing to talk about...
1417 */
1418 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1419 return prot;
1420 if (!(current->personality & READ_IMPLIES_EXEC))
1421 return prot;
1422 /*
1423 * if that's an anonymous mapping, let it.
1424 */
1425 if (!file)
1426 return prot | PROT_EXEC;
1427 /*
1428 * ditto if it's not on noexec mount, except that on !MMU we need
1429 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1430 */
1431 if (!path_noexec(&file->f_path)) {
1432 #ifndef CONFIG_MMU
1433 if (file->f_op->mmap_capabilities) {
1434 unsigned caps = file->f_op->mmap_capabilities(file);
1435 if (!(caps & NOMMU_MAP_EXEC))
1436 return prot;
1437 }
1438 #endif
1439 return prot | PROT_EXEC;
1440 }
1441 /* anything on noexec mount won't get PROT_EXEC */
1442 return prot;
1443 }
1444
1445 int security_mmap_file(struct file *file, unsigned long prot,
1446 unsigned long flags)
1447 {
1448 int ret;
1449 ret = call_int_hook(mmap_file, 0, file, prot,
1450 mmap_prot(file, prot), flags);
1451 if (ret)
1452 return ret;
1453 return ima_file_mmap(file, prot);
1454 }
1455
1456 int security_mmap_addr(unsigned long addr)
1457 {
1458 return call_int_hook(mmap_addr, 0, addr);
1459 }
1460
1461 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1462 unsigned long prot)
1463 {
1464 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1465 }
1466
1467 int security_file_lock(struct file *file, unsigned int cmd)
1468 {
1469 return call_int_hook(file_lock, 0, file, cmd);
1470 }
1471
1472 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1473 {
1474 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1475 }
1476
1477 void security_file_set_fowner(struct file *file)
1478 {
1479 call_void_hook(file_set_fowner, file);
1480 }
1481
1482 int security_file_send_sigiotask(struct task_struct *tsk,
1483 struct fown_struct *fown, int sig)
1484 {
1485 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1486 }
1487
1488 int security_file_receive(struct file *file)
1489 {
1490 return call_int_hook(file_receive, 0, file);
1491 }
1492
1493 int security_file_open(struct file *file)
1494 {
1495 int ret;
1496
1497 ret = call_int_hook(file_open, 0, file);
1498 if (ret)
1499 return ret;
1500
1501 return fsnotify_perm(file, MAY_OPEN);
1502 }
1503
1504 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1505 {
1506 int rc = lsm_task_alloc(task);
1507
1508 if (rc)
1509 return rc;
1510 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1511 if (unlikely(rc))
1512 security_task_free(task);
1513 return rc;
1514 }
1515
1516 void security_task_free(struct task_struct *task)
1517 {
1518 call_void_hook(task_free, task);
1519
1520 kfree(task->security);
1521 task->security = NULL;
1522 }
1523
1524 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1525 {
1526 int rc = lsm_cred_alloc(cred, gfp);
1527
1528 if (rc)
1529 return rc;
1530
1531 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1532 if (unlikely(rc))
1533 security_cred_free(cred);
1534 return rc;
1535 }
1536
1537 void security_cred_free(struct cred *cred)
1538 {
1539 /*
1540 * There is a failure case in prepare_creds() that
1541 * may result in a call here with ->security being NULL.
1542 */
1543 if (unlikely(cred->security == NULL))
1544 return;
1545
1546 call_void_hook(cred_free, cred);
1547
1548 kfree(cred->security);
1549 cred->security = NULL;
1550 }
1551
1552 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1553 {
1554 int rc = lsm_cred_alloc(new, gfp);
1555
1556 if (rc)
1557 return rc;
1558
1559 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1560 if (unlikely(rc))
1561 security_cred_free(new);
1562 return rc;
1563 }
1564
1565 void security_transfer_creds(struct cred *new, const struct cred *old)
1566 {
1567 call_void_hook(cred_transfer, new, old);
1568 }
1569
1570 void security_cred_getsecid(const struct cred *c, u32 *secid)
1571 {
1572 *secid = 0;
1573 call_void_hook(cred_getsecid, c, secid);
1574 }
1575 EXPORT_SYMBOL(security_cred_getsecid);
1576
1577 int security_kernel_act_as(struct cred *new, u32 secid)
1578 {
1579 return call_int_hook(kernel_act_as, 0, new, secid);
1580 }
1581
1582 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1583 {
1584 return call_int_hook(kernel_create_files_as, 0, new, inode);
1585 }
1586
1587 int security_kernel_module_request(char *kmod_name)
1588 {
1589 int ret;
1590
1591 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1592 if (ret)
1593 return ret;
1594 return integrity_kernel_module_request(kmod_name);
1595 }
1596
1597 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1598 {
1599 int ret;
1600
1601 ret = call_int_hook(kernel_read_file, 0, file, id);
1602 if (ret)
1603 return ret;
1604 return ima_read_file(file, id);
1605 }
1606 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1607
1608 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1609 enum kernel_read_file_id id)
1610 {
1611 int ret;
1612
1613 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1614 if (ret)
1615 return ret;
1616 return ima_post_read_file(file, buf, size, id);
1617 }
1618 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1619
1620 int security_kernel_load_data(enum kernel_load_data_id id)
1621 {
1622 int ret;
1623
1624 ret = call_int_hook(kernel_load_data, 0, id);
1625 if (ret)
1626 return ret;
1627 return ima_load_data(id);
1628 }
1629 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1630
1631 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1632 int flags)
1633 {
1634 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1635 }
1636
1637 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1638 {
1639 return call_int_hook(task_setpgid, 0, p, pgid);
1640 }
1641
1642 int security_task_getpgid(struct task_struct *p)
1643 {
1644 return call_int_hook(task_getpgid, 0, p);
1645 }
1646
1647 int security_task_getsid(struct task_struct *p)
1648 {
1649 return call_int_hook(task_getsid, 0, p);
1650 }
1651
1652 void security_task_getsecid(struct task_struct *p, u32 *secid)
1653 {
1654 *secid = 0;
1655 call_void_hook(task_getsecid, p, secid);
1656 }
1657 EXPORT_SYMBOL(security_task_getsecid);
1658
1659 int security_task_setnice(struct task_struct *p, int nice)
1660 {
1661 return call_int_hook(task_setnice, 0, p, nice);
1662 }
1663
1664 int security_task_setioprio(struct task_struct *p, int ioprio)
1665 {
1666 return call_int_hook(task_setioprio, 0, p, ioprio);
1667 }
1668
1669 int security_task_getioprio(struct task_struct *p)
1670 {
1671 return call_int_hook(task_getioprio, 0, p);
1672 }
1673
1674 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1675 unsigned int flags)
1676 {
1677 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1678 }
1679
1680 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1681 struct rlimit *new_rlim)
1682 {
1683 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1684 }
1685
1686 int security_task_setscheduler(struct task_struct *p)
1687 {
1688 return call_int_hook(task_setscheduler, 0, p);
1689 }
1690
1691 int security_task_getscheduler(struct task_struct *p)
1692 {
1693 return call_int_hook(task_getscheduler, 0, p);
1694 }
1695
1696 int security_task_movememory(struct task_struct *p)
1697 {
1698 return call_int_hook(task_movememory, 0, p);
1699 }
1700
1701 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1702 int sig, const struct cred *cred)
1703 {
1704 return call_int_hook(task_kill, 0, p, info, sig, cred);
1705 }
1706
1707 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1708 unsigned long arg4, unsigned long arg5)
1709 {
1710 int thisrc;
1711 int rc = -ENOSYS;
1712 struct security_hook_list *hp;
1713
1714 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1715 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1716 if (thisrc != -ENOSYS) {
1717 rc = thisrc;
1718 if (thisrc != 0)
1719 break;
1720 }
1721 }
1722 return rc;
1723 }
1724
1725 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1726 {
1727 call_void_hook(task_to_inode, p, inode);
1728 }
1729
1730 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1731 {
1732 return call_int_hook(ipc_permission, 0, ipcp, flag);
1733 }
1734
1735 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1736 {
1737 *secid = 0;
1738 call_void_hook(ipc_getsecid, ipcp, secid);
1739 }
1740
1741 int security_msg_msg_alloc(struct msg_msg *msg)
1742 {
1743 int rc = lsm_msg_msg_alloc(msg);
1744
1745 if (unlikely(rc))
1746 return rc;
1747 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1748 if (unlikely(rc))
1749 security_msg_msg_free(msg);
1750 return rc;
1751 }
1752
1753 void security_msg_msg_free(struct msg_msg *msg)
1754 {
1755 call_void_hook(msg_msg_free_security, msg);
1756 kfree(msg->security);
1757 msg->security = NULL;
1758 }
1759
1760 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1761 {
1762 int rc = lsm_ipc_alloc(msq);
1763
1764 if (unlikely(rc))
1765 return rc;
1766 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1767 if (unlikely(rc))
1768 security_msg_queue_free(msq);
1769 return rc;
1770 }
1771
1772 void security_msg_queue_free(struct kern_ipc_perm *msq)
1773 {
1774 call_void_hook(msg_queue_free_security, msq);
1775 kfree(msq->security);
1776 msq->security = NULL;
1777 }
1778
1779 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1780 {
1781 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1782 }
1783
1784 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1785 {
1786 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1787 }
1788
1789 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1790 struct msg_msg *msg, int msqflg)
1791 {
1792 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1793 }
1794
1795 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1796 struct task_struct *target, long type, int mode)
1797 {
1798 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1799 }
1800
1801 int security_shm_alloc(struct kern_ipc_perm *shp)
1802 {
1803 int rc = lsm_ipc_alloc(shp);
1804
1805 if (unlikely(rc))
1806 return rc;
1807 rc = call_int_hook(shm_alloc_security, 0, shp);
1808 if (unlikely(rc))
1809 security_shm_free(shp);
1810 return rc;
1811 }
1812
1813 void security_shm_free(struct kern_ipc_perm *shp)
1814 {
1815 call_void_hook(shm_free_security, shp);
1816 kfree(shp->security);
1817 shp->security = NULL;
1818 }
1819
1820 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1821 {
1822 return call_int_hook(shm_associate, 0, shp, shmflg);
1823 }
1824
1825 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1826 {
1827 return call_int_hook(shm_shmctl, 0, shp, cmd);
1828 }
1829
1830 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1831 {
1832 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1833 }
1834
1835 int security_sem_alloc(struct kern_ipc_perm *sma)
1836 {
1837 int rc = lsm_ipc_alloc(sma);
1838
1839 if (unlikely(rc))
1840 return rc;
1841 rc = call_int_hook(sem_alloc_security, 0, sma);
1842 if (unlikely(rc))
1843 security_sem_free(sma);
1844 return rc;
1845 }
1846
1847 void security_sem_free(struct kern_ipc_perm *sma)
1848 {
1849 call_void_hook(sem_free_security, sma);
1850 kfree(sma->security);
1851 sma->security = NULL;
1852 }
1853
1854 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1855 {
1856 return call_int_hook(sem_associate, 0, sma, semflg);
1857 }
1858
1859 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1860 {
1861 return call_int_hook(sem_semctl, 0, sma, cmd);
1862 }
1863
1864 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1865 unsigned nsops, int alter)
1866 {
1867 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1868 }
1869
1870 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1871 {
1872 if (unlikely(inode && IS_PRIVATE(inode)))
1873 return;
1874 call_void_hook(d_instantiate, dentry, inode);
1875 }
1876 EXPORT_SYMBOL(security_d_instantiate);
1877
1878 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1879 char **value)
1880 {
1881 struct security_hook_list *hp;
1882
1883 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1884 if (lsm != NULL && strcmp(lsm, hp->lsm))
1885 continue;
1886 return hp->hook.getprocattr(p, name, value);
1887 }
1888 return -EINVAL;
1889 }
1890
1891 int security_setprocattr(const char *lsm, const char *name, void *value,
1892 size_t size)
1893 {
1894 struct security_hook_list *hp;
1895
1896 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1897 if (lsm != NULL && strcmp(lsm, hp->lsm))
1898 continue;
1899 return hp->hook.setprocattr(name, value, size);
1900 }
1901 return -EINVAL;
1902 }
1903
1904 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1905 {
1906 return call_int_hook(netlink_send, 0, sk, skb);
1907 }
1908
1909 int security_ismaclabel(const char *name)
1910 {
1911 return call_int_hook(ismaclabel, 0, name);
1912 }
1913 EXPORT_SYMBOL(security_ismaclabel);
1914
1915 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1916 {
1917 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1918 seclen);
1919 }
1920 EXPORT_SYMBOL(security_secid_to_secctx);
1921
1922 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1923 {
1924 *secid = 0;
1925 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1926 }
1927 EXPORT_SYMBOL(security_secctx_to_secid);
1928
1929 void security_release_secctx(char *secdata, u32 seclen)
1930 {
1931 call_void_hook(release_secctx, secdata, seclen);
1932 }
1933 EXPORT_SYMBOL(security_release_secctx);
1934
1935 void security_inode_invalidate_secctx(struct inode *inode)
1936 {
1937 call_void_hook(inode_invalidate_secctx, inode);
1938 }
1939 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1940
1941 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1942 {
1943 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1944 }
1945 EXPORT_SYMBOL(security_inode_notifysecctx);
1946
1947 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1948 {
1949 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1950 }
1951 EXPORT_SYMBOL(security_inode_setsecctx);
1952
1953 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1954 {
1955 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1956 }
1957 EXPORT_SYMBOL(security_inode_getsecctx);
1958
1959 #ifdef CONFIG_SECURITY_NETWORK
1960
1961 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1962 {
1963 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1964 }
1965 EXPORT_SYMBOL(security_unix_stream_connect);
1966
1967 int security_unix_may_send(struct socket *sock, struct socket *other)
1968 {
1969 return call_int_hook(unix_may_send, 0, sock, other);
1970 }
1971 EXPORT_SYMBOL(security_unix_may_send);
1972
1973 int security_socket_create(int family, int type, int protocol, int kern)
1974 {
1975 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1976 }
1977
1978 int security_socket_post_create(struct socket *sock, int family,
1979 int type, int protocol, int kern)
1980 {
1981 return call_int_hook(socket_post_create, 0, sock, family, type,
1982 protocol, kern);
1983 }
1984
1985 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1986 {
1987 return call_int_hook(socket_socketpair, 0, socka, sockb);
1988 }
1989 EXPORT_SYMBOL(security_socket_socketpair);
1990
1991 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1992 {
1993 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1994 }
1995
1996 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1997 {
1998 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1999 }
2000
2001 int security_socket_listen(struct socket *sock, int backlog)
2002 {
2003 return call_int_hook(socket_listen, 0, sock, backlog);
2004 }
2005
2006 int security_socket_accept(struct socket *sock, struct socket *newsock)
2007 {
2008 return call_int_hook(socket_accept, 0, sock, newsock);
2009 }
2010
2011 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2012 {
2013 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2014 }
2015
2016 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2017 int size, int flags)
2018 {
2019 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2020 }
2021
2022 int security_socket_getsockname(struct socket *sock)
2023 {
2024 return call_int_hook(socket_getsockname, 0, sock);
2025 }
2026
2027 int security_socket_getpeername(struct socket *sock)
2028 {
2029 return call_int_hook(socket_getpeername, 0, sock);
2030 }
2031
2032 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2033 {
2034 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2035 }
2036
2037 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2038 {
2039 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2040 }
2041
2042 int security_socket_shutdown(struct socket *sock, int how)
2043 {
2044 return call_int_hook(socket_shutdown, 0, sock, how);
2045 }
2046
2047 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2048 {
2049 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2050 }
2051 EXPORT_SYMBOL(security_sock_rcv_skb);
2052
2053 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2054 int __user *optlen, unsigned len)
2055 {
2056 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2057 optval, optlen, len);
2058 }
2059
2060 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2061 {
2062 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2063 skb, secid);
2064 }
2065 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2066
2067 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2068 {
2069 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2070 }
2071
2072 void security_sk_free(struct sock *sk)
2073 {
2074 call_void_hook(sk_free_security, sk);
2075 }
2076
2077 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2078 {
2079 call_void_hook(sk_clone_security, sk, newsk);
2080 }
2081 EXPORT_SYMBOL(security_sk_clone);
2082
2083 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2084 {
2085 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2086 }
2087 EXPORT_SYMBOL(security_sk_classify_flow);
2088
2089 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2090 {
2091 call_void_hook(req_classify_flow, req, fl);
2092 }
2093 EXPORT_SYMBOL(security_req_classify_flow);
2094
2095 void security_sock_graft(struct sock *sk, struct socket *parent)
2096 {
2097 call_void_hook(sock_graft, sk, parent);
2098 }
2099 EXPORT_SYMBOL(security_sock_graft);
2100
2101 int security_inet_conn_request(struct sock *sk,
2102 struct sk_buff *skb, struct request_sock *req)
2103 {
2104 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2105 }
2106 EXPORT_SYMBOL(security_inet_conn_request);
2107
2108 void security_inet_csk_clone(struct sock *newsk,
2109 const struct request_sock *req)
2110 {
2111 call_void_hook(inet_csk_clone, newsk, req);
2112 }
2113
2114 void security_inet_conn_established(struct sock *sk,
2115 struct sk_buff *skb)
2116 {
2117 call_void_hook(inet_conn_established, sk, skb);
2118 }
2119 EXPORT_SYMBOL(security_inet_conn_established);
2120
2121 int security_secmark_relabel_packet(u32 secid)
2122 {
2123 return call_int_hook(secmark_relabel_packet, 0, secid);
2124 }
2125 EXPORT_SYMBOL(security_secmark_relabel_packet);
2126
2127 void security_secmark_refcount_inc(void)
2128 {
2129 call_void_hook(secmark_refcount_inc);
2130 }
2131 EXPORT_SYMBOL(security_secmark_refcount_inc);
2132
2133 void security_secmark_refcount_dec(void)
2134 {
2135 call_void_hook(secmark_refcount_dec);
2136 }
2137 EXPORT_SYMBOL(security_secmark_refcount_dec);
2138
2139 int security_tun_dev_alloc_security(void **security)
2140 {
2141 return call_int_hook(tun_dev_alloc_security, 0, security);
2142 }
2143 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2144
2145 void security_tun_dev_free_security(void *security)
2146 {
2147 call_void_hook(tun_dev_free_security, security);
2148 }
2149 EXPORT_SYMBOL(security_tun_dev_free_security);
2150
2151 int security_tun_dev_create(void)
2152 {
2153 return call_int_hook(tun_dev_create, 0);
2154 }
2155 EXPORT_SYMBOL(security_tun_dev_create);
2156
2157 int security_tun_dev_attach_queue(void *security)
2158 {
2159 return call_int_hook(tun_dev_attach_queue, 0, security);
2160 }
2161 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2162
2163 int security_tun_dev_attach(struct sock *sk, void *security)
2164 {
2165 return call_int_hook(tun_dev_attach, 0, sk, security);
2166 }
2167 EXPORT_SYMBOL(security_tun_dev_attach);
2168
2169 int security_tun_dev_open(void *security)
2170 {
2171 return call_int_hook(tun_dev_open, 0, security);
2172 }
2173 EXPORT_SYMBOL(security_tun_dev_open);
2174
2175 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2176 {
2177 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2178 }
2179 EXPORT_SYMBOL(security_sctp_assoc_request);
2180
2181 int security_sctp_bind_connect(struct sock *sk, int optname,
2182 struct sockaddr *address, int addrlen)
2183 {
2184 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2185 address, addrlen);
2186 }
2187 EXPORT_SYMBOL(security_sctp_bind_connect);
2188
2189 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2190 struct sock *newsk)
2191 {
2192 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2193 }
2194 EXPORT_SYMBOL(security_sctp_sk_clone);
2195
2196 #endif /* CONFIG_SECURITY_NETWORK */
2197
2198 #ifdef CONFIG_SECURITY_INFINIBAND
2199
2200 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2201 {
2202 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2203 }
2204 EXPORT_SYMBOL(security_ib_pkey_access);
2205
2206 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2207 {
2208 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2209 }
2210 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2211
2212 int security_ib_alloc_security(void **sec)
2213 {
2214 return call_int_hook(ib_alloc_security, 0, sec);
2215 }
2216 EXPORT_SYMBOL(security_ib_alloc_security);
2217
2218 void security_ib_free_security(void *sec)
2219 {
2220 call_void_hook(ib_free_security, sec);
2221 }
2222 EXPORT_SYMBOL(security_ib_free_security);
2223 #endif /* CONFIG_SECURITY_INFINIBAND */
2224
2225 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2226
2227 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2228 struct xfrm_user_sec_ctx *sec_ctx,
2229 gfp_t gfp)
2230 {
2231 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2232 }
2233 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2234
2235 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2236 struct xfrm_sec_ctx **new_ctxp)
2237 {
2238 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2239 }
2240
2241 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2242 {
2243 call_void_hook(xfrm_policy_free_security, ctx);
2244 }
2245 EXPORT_SYMBOL(security_xfrm_policy_free);
2246
2247 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2248 {
2249 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2250 }
2251
2252 int security_xfrm_state_alloc(struct xfrm_state *x,
2253 struct xfrm_user_sec_ctx *sec_ctx)
2254 {
2255 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2256 }
2257 EXPORT_SYMBOL(security_xfrm_state_alloc);
2258
2259 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2260 struct xfrm_sec_ctx *polsec, u32 secid)
2261 {
2262 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2263 }
2264
2265 int security_xfrm_state_delete(struct xfrm_state *x)
2266 {
2267 return call_int_hook(xfrm_state_delete_security, 0, x);
2268 }
2269 EXPORT_SYMBOL(security_xfrm_state_delete);
2270
2271 void security_xfrm_state_free(struct xfrm_state *x)
2272 {
2273 call_void_hook(xfrm_state_free_security, x);
2274 }
2275
2276 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2277 {
2278 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2279 }
2280
2281 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2282 struct xfrm_policy *xp,
2283 const struct flowi *fl)
2284 {
2285 struct security_hook_list *hp;
2286 int rc = 1;
2287
2288 /*
2289 * Since this function is expected to return 0 or 1, the judgment
2290 * becomes difficult if multiple LSMs supply this call. Fortunately,
2291 * we can use the first LSM's judgment because currently only SELinux
2292 * supplies this call.
2293 *
2294 * For speed optimization, we explicitly break the loop rather than
2295 * using the macro
2296 */
2297 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2298 list) {
2299 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2300 break;
2301 }
2302 return rc;
2303 }
2304
2305 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2306 {
2307 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2308 }
2309
2310 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2311 {
2312 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2313 0);
2314
2315 BUG_ON(rc);
2316 }
2317 EXPORT_SYMBOL(security_skb_classify_flow);
2318
2319 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2320
2321 #ifdef CONFIG_KEYS
2322
2323 int security_key_alloc(struct key *key, const struct cred *cred,
2324 unsigned long flags)
2325 {
2326 return call_int_hook(key_alloc, 0, key, cred, flags);
2327 }
2328
2329 void security_key_free(struct key *key)
2330 {
2331 call_void_hook(key_free, key);
2332 }
2333
2334 int security_key_permission(key_ref_t key_ref,
2335 const struct cred *cred, unsigned perm)
2336 {
2337 return call_int_hook(key_permission, 0, key_ref, cred, perm);
2338 }
2339
2340 int security_key_getsecurity(struct key *key, char **_buffer)
2341 {
2342 *_buffer = NULL;
2343 return call_int_hook(key_getsecurity, 0, key, _buffer);
2344 }
2345
2346 #endif /* CONFIG_KEYS */
2347
2348 #ifdef CONFIG_AUDIT
2349
2350 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2351 {
2352 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2353 }
2354
2355 int security_audit_rule_known(struct audit_krule *krule)
2356 {
2357 return call_int_hook(audit_rule_known, 0, krule);
2358 }
2359
2360 void security_audit_rule_free(void *lsmrule)
2361 {
2362 call_void_hook(audit_rule_free, lsmrule);
2363 }
2364
2365 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2366 {
2367 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2368 }
2369 #endif /* CONFIG_AUDIT */
2370
2371 #ifdef CONFIG_BPF_SYSCALL
2372 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2373 {
2374 return call_int_hook(bpf, 0, cmd, attr, size);
2375 }
2376 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2377 {
2378 return call_int_hook(bpf_map, 0, map, fmode);
2379 }
2380 int security_bpf_prog(struct bpf_prog *prog)
2381 {
2382 return call_int_hook(bpf_prog, 0, prog);
2383 }
2384 int security_bpf_map_alloc(struct bpf_map *map)
2385 {
2386 return call_int_hook(bpf_map_alloc_security, 0, map);
2387 }
2388 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2389 {
2390 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2391 }
2392 void security_bpf_map_free(struct bpf_map *map)
2393 {
2394 call_void_hook(bpf_map_free_security, map);
2395 }
2396 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2397 {
2398 call_void_hook(bpf_prog_free_security, aux);
2399 }
2400 #endif /* CONFIG_BPF_SYSCALL */
2401
2402 int security_locked_down(enum lockdown_reason what)
2403 {
2404 return call_int_hook(locked_down, 0, what);
2405 }
2406 EXPORT_SYMBOL(security_locked_down);
2407
2408 #ifdef CONFIG_PERF_EVENTS
2409 int security_perf_event_open(struct perf_event_attr *attr, int type)
2410 {
2411 return call_int_hook(perf_event_open, 0, attr, type);
2412 }
2413
2414 int security_perf_event_alloc(struct perf_event *event)
2415 {
2416 return call_int_hook(perf_event_alloc, 0, event);
2417 }
2418
2419 void security_perf_event_free(struct perf_event *event)
2420 {
2421 call_void_hook(perf_event_free, event);
2422 }
2423
2424 int security_perf_event_read(struct perf_event *event)
2425 {
2426 return call_int_hook(perf_event_read, 0, event);
2427 }
2428
2429 int security_perf_event_write(struct perf_event *event)
2430 {
2431 return call_int_hook(perf_event_write, 0, event);
2432 }
2433 #endif /* CONFIG_PERF_EVENTS */