]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/security.c
selinux: restore optimization to selinux_file_permission
[mirror_ubuntu-bionic-kernel.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops; /* Initialized to NULL */
28
29 static inline int verify(struct security_operations *ops)
30 {
31 /* verify the security_operations structure exists */
32 if (!ops)
33 return -EINVAL;
34 security_fixup_ops(ops);
35 return 0;
36 }
37
38 static void __init do_security_initcalls(void)
39 {
40 initcall_t *call;
41 call = __security_initcall_start;
42 while (call < __security_initcall_end) {
43 (*call) ();
44 call++;
45 }
46 }
47
48 /**
49 * security_init - initializes the security framework
50 *
51 * This should be called early in the kernel initialization sequence.
52 */
53 int __init security_init(void)
54 {
55 printk(KERN_INFO "Security Framework initialized\n");
56
57 security_fixup_ops(&default_security_ops);
58 security_ops = &default_security_ops;
59 do_security_initcalls();
60
61 return 0;
62 }
63
64 /* Save user chosen LSM */
65 static int __init choose_lsm(char *str)
66 {
67 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
68 return 1;
69 }
70 __setup("security=", choose_lsm);
71
72 /**
73 * security_module_enable - Load given security module on boot ?
74 * @ops: a pointer to the struct security_operations that is to be checked.
75 *
76 * Each LSM must pass this method before registering its own operations
77 * to avoid security registration races. This method may also be used
78 * to check if your LSM is currently loaded during kernel initialization.
79 *
80 * Return true if:
81 * -The passed LSM is the one chosen by user at boot time,
82 * -or user didn't specify a specific LSM and we're the first to ask
83 * for registration permission,
84 * -or the passed LSM is currently loaded.
85 * Otherwise, return false.
86 */
87 int __init security_module_enable(struct security_operations *ops)
88 {
89 if (!*chosen_lsm)
90 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
91 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
92 return 0;
93
94 return 1;
95 }
96
97 /**
98 * register_security - registers a security framework with the kernel
99 * @ops: a pointer to the struct security_options that is to be registered
100 *
101 * This function allows a security module to register itself with the
102 * kernel security subsystem. Some rudimentary checking is done on the @ops
103 * value passed to this function. You'll need to check first if your LSM
104 * is allowed to register its @ops by calling security_module_enable(@ops).
105 *
106 * If there is already a security module registered with the kernel,
107 * an error will be returned. Otherwise %0 is returned on success.
108 */
109 int register_security(struct security_operations *ops)
110 {
111 if (verify(ops)) {
112 printk(KERN_DEBUG "%s could not verify "
113 "security_operations structure.\n", __func__);
114 return -EINVAL;
115 }
116
117 if (security_ops != &default_security_ops)
118 return -EAGAIN;
119
120 security_ops = ops;
121
122 return 0;
123 }
124
125 /* Security operations */
126
127 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
128 {
129 return security_ops->ptrace_may_access(child, mode);
130 }
131
132 int security_ptrace_traceme(struct task_struct *parent)
133 {
134 return security_ops->ptrace_traceme(parent);
135 }
136
137 int security_capget(struct task_struct *target,
138 kernel_cap_t *effective,
139 kernel_cap_t *inheritable,
140 kernel_cap_t *permitted)
141 {
142 return security_ops->capget(target, effective, inheritable, permitted);
143 }
144
145 int security_capset(struct cred *new, const struct cred *old,
146 const kernel_cap_t *effective,
147 const kernel_cap_t *inheritable,
148 const kernel_cap_t *permitted)
149 {
150 return security_ops->capset(new, old,
151 effective, inheritable, permitted);
152 }
153
154 int security_capable(int cap)
155 {
156 return security_ops->capable(current, current_cred(), cap,
157 SECURITY_CAP_AUDIT);
158 }
159
160 int security_real_capable(struct task_struct *tsk, int cap)
161 {
162 const struct cred *cred;
163 int ret;
164
165 cred = get_task_cred(tsk);
166 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
167 put_cred(cred);
168 return ret;
169 }
170
171 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
172 {
173 const struct cred *cred;
174 int ret;
175
176 cred = get_task_cred(tsk);
177 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
178 put_cred(cred);
179 return ret;
180 }
181
182 int security_acct(struct file *file)
183 {
184 return security_ops->acct(file);
185 }
186
187 int security_sysctl(struct ctl_table *table, int op)
188 {
189 return security_ops->sysctl(table, op);
190 }
191
192 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
193 {
194 return security_ops->quotactl(cmds, type, id, sb);
195 }
196
197 int security_quota_on(struct dentry *dentry)
198 {
199 return security_ops->quota_on(dentry);
200 }
201
202 int security_syslog(int type)
203 {
204 return security_ops->syslog(type);
205 }
206
207 int security_settime(struct timespec *ts, struct timezone *tz)
208 {
209 return security_ops->settime(ts, tz);
210 }
211
212 int security_vm_enough_memory(long pages)
213 {
214 WARN_ON(current->mm == NULL);
215 return security_ops->vm_enough_memory(current->mm, pages);
216 }
217
218 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
219 {
220 WARN_ON(mm == NULL);
221 return security_ops->vm_enough_memory(mm, pages);
222 }
223
224 int security_vm_enough_memory_kern(long pages)
225 {
226 /* If current->mm is a kernel thread then we will pass NULL,
227 for this specific case that is fine */
228 return security_ops->vm_enough_memory(current->mm, pages);
229 }
230
231 int security_bprm_set_creds(struct linux_binprm *bprm)
232 {
233 return security_ops->bprm_set_creds(bprm);
234 }
235
236 int security_bprm_check(struct linux_binprm *bprm)
237 {
238 return security_ops->bprm_check_security(bprm);
239 }
240
241 void security_bprm_committing_creds(struct linux_binprm *bprm)
242 {
243 security_ops->bprm_committing_creds(bprm);
244 }
245
246 void security_bprm_committed_creds(struct linux_binprm *bprm)
247 {
248 security_ops->bprm_committed_creds(bprm);
249 }
250
251 int security_bprm_secureexec(struct linux_binprm *bprm)
252 {
253 return security_ops->bprm_secureexec(bprm);
254 }
255
256 int security_sb_alloc(struct super_block *sb)
257 {
258 return security_ops->sb_alloc_security(sb);
259 }
260
261 void security_sb_free(struct super_block *sb)
262 {
263 security_ops->sb_free_security(sb);
264 }
265
266 int security_sb_copy_data(char *orig, char *copy)
267 {
268 return security_ops->sb_copy_data(orig, copy);
269 }
270 EXPORT_SYMBOL(security_sb_copy_data);
271
272 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
273 {
274 return security_ops->sb_kern_mount(sb, flags, data);
275 }
276
277 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
278 {
279 return security_ops->sb_show_options(m, sb);
280 }
281
282 int security_sb_statfs(struct dentry *dentry)
283 {
284 return security_ops->sb_statfs(dentry);
285 }
286
287 int security_sb_mount(char *dev_name, struct path *path,
288 char *type, unsigned long flags, void *data)
289 {
290 return security_ops->sb_mount(dev_name, path, type, flags, data);
291 }
292
293 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
294 {
295 return security_ops->sb_check_sb(mnt, path);
296 }
297
298 int security_sb_umount(struct vfsmount *mnt, int flags)
299 {
300 return security_ops->sb_umount(mnt, flags);
301 }
302
303 void security_sb_umount_close(struct vfsmount *mnt)
304 {
305 security_ops->sb_umount_close(mnt);
306 }
307
308 void security_sb_umount_busy(struct vfsmount *mnt)
309 {
310 security_ops->sb_umount_busy(mnt);
311 }
312
313 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
314 {
315 security_ops->sb_post_remount(mnt, flags, data);
316 }
317
318 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
319 {
320 security_ops->sb_post_addmount(mnt, mountpoint);
321 }
322
323 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
324 {
325 return security_ops->sb_pivotroot(old_path, new_path);
326 }
327
328 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
329 {
330 security_ops->sb_post_pivotroot(old_path, new_path);
331 }
332
333 int security_sb_set_mnt_opts(struct super_block *sb,
334 struct security_mnt_opts *opts)
335 {
336 return security_ops->sb_set_mnt_opts(sb, opts);
337 }
338 EXPORT_SYMBOL(security_sb_set_mnt_opts);
339
340 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
341 struct super_block *newsb)
342 {
343 security_ops->sb_clone_mnt_opts(oldsb, newsb);
344 }
345 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
346
347 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
348 {
349 return security_ops->sb_parse_opts_str(options, opts);
350 }
351 EXPORT_SYMBOL(security_sb_parse_opts_str);
352
353 int security_inode_alloc(struct inode *inode)
354 {
355 inode->i_security = NULL;
356 return security_ops->inode_alloc_security(inode);
357 }
358
359 void security_inode_free(struct inode *inode)
360 {
361 security_ops->inode_free_security(inode);
362 }
363
364 int security_inode_init_security(struct inode *inode, struct inode *dir,
365 char **name, void **value, size_t *len)
366 {
367 if (unlikely(IS_PRIVATE(inode)))
368 return -EOPNOTSUPP;
369 return security_ops->inode_init_security(inode, dir, name, value, len);
370 }
371 EXPORT_SYMBOL(security_inode_init_security);
372
373 #ifdef CONFIG_SECURITY_PATH
374 int security_path_mknod(struct path *path, struct dentry *dentry, int mode,
375 unsigned int dev)
376 {
377 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
378 return 0;
379 return security_ops->path_mknod(path, dentry, mode, dev);
380 }
381 EXPORT_SYMBOL(security_path_mknod);
382
383 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode)
384 {
385 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
386 return 0;
387 return security_ops->path_mkdir(path, dentry, mode);
388 }
389
390 int security_path_rmdir(struct path *path, struct dentry *dentry)
391 {
392 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
393 return 0;
394 return security_ops->path_rmdir(path, dentry);
395 }
396
397 int security_path_unlink(struct path *path, struct dentry *dentry)
398 {
399 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
400 return 0;
401 return security_ops->path_unlink(path, dentry);
402 }
403
404 int security_path_symlink(struct path *path, struct dentry *dentry,
405 const char *old_name)
406 {
407 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
408 return 0;
409 return security_ops->path_symlink(path, dentry, old_name);
410 }
411
412 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
413 struct dentry *new_dentry)
414 {
415 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
416 return 0;
417 return security_ops->path_link(old_dentry, new_dir, new_dentry);
418 }
419
420 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
421 struct path *new_dir, struct dentry *new_dentry)
422 {
423 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
424 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
425 return 0;
426 return security_ops->path_rename(old_dir, old_dentry, new_dir,
427 new_dentry);
428 }
429
430 int security_path_truncate(struct path *path, loff_t length,
431 unsigned int time_attrs)
432 {
433 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
434 return 0;
435 return security_ops->path_truncate(path, length, time_attrs);
436 }
437 #endif
438
439 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
440 {
441 if (unlikely(IS_PRIVATE(dir)))
442 return 0;
443 return security_ops->inode_create(dir, dentry, mode);
444 }
445 EXPORT_SYMBOL_GPL(security_inode_create);
446
447 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
448 struct dentry *new_dentry)
449 {
450 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
451 return 0;
452 return security_ops->inode_link(old_dentry, dir, new_dentry);
453 }
454
455 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
456 {
457 if (unlikely(IS_PRIVATE(dentry->d_inode)))
458 return 0;
459 return security_ops->inode_unlink(dir, dentry);
460 }
461
462 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
463 const char *old_name)
464 {
465 if (unlikely(IS_PRIVATE(dir)))
466 return 0;
467 return security_ops->inode_symlink(dir, dentry, old_name);
468 }
469
470 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
471 {
472 if (unlikely(IS_PRIVATE(dir)))
473 return 0;
474 return security_ops->inode_mkdir(dir, dentry, mode);
475 }
476 EXPORT_SYMBOL_GPL(security_inode_mkdir);
477
478 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
479 {
480 if (unlikely(IS_PRIVATE(dentry->d_inode)))
481 return 0;
482 return security_ops->inode_rmdir(dir, dentry);
483 }
484
485 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
486 {
487 if (unlikely(IS_PRIVATE(dir)))
488 return 0;
489 return security_ops->inode_mknod(dir, dentry, mode, dev);
490 }
491
492 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
493 struct inode *new_dir, struct dentry *new_dentry)
494 {
495 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
496 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
497 return 0;
498 return security_ops->inode_rename(old_dir, old_dentry,
499 new_dir, new_dentry);
500 }
501
502 int security_inode_readlink(struct dentry *dentry)
503 {
504 if (unlikely(IS_PRIVATE(dentry->d_inode)))
505 return 0;
506 return security_ops->inode_readlink(dentry);
507 }
508
509 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
510 {
511 if (unlikely(IS_PRIVATE(dentry->d_inode)))
512 return 0;
513 return security_ops->inode_follow_link(dentry, nd);
514 }
515
516 int security_inode_permission(struct inode *inode, int mask)
517 {
518 if (unlikely(IS_PRIVATE(inode)))
519 return 0;
520 return security_ops->inode_permission(inode, mask);
521 }
522
523 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
524 {
525 if (unlikely(IS_PRIVATE(dentry->d_inode)))
526 return 0;
527 return security_ops->inode_setattr(dentry, attr);
528 }
529 EXPORT_SYMBOL_GPL(security_inode_setattr);
530
531 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
532 {
533 if (unlikely(IS_PRIVATE(dentry->d_inode)))
534 return 0;
535 return security_ops->inode_getattr(mnt, dentry);
536 }
537
538 void security_inode_delete(struct inode *inode)
539 {
540 if (unlikely(IS_PRIVATE(inode)))
541 return;
542 security_ops->inode_delete(inode);
543 }
544
545 int security_inode_setxattr(struct dentry *dentry, const char *name,
546 const void *value, size_t size, int flags)
547 {
548 if (unlikely(IS_PRIVATE(dentry->d_inode)))
549 return 0;
550 return security_ops->inode_setxattr(dentry, name, value, size, flags);
551 }
552
553 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
554 const void *value, size_t size, int flags)
555 {
556 if (unlikely(IS_PRIVATE(dentry->d_inode)))
557 return;
558 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
559 }
560
561 int security_inode_getxattr(struct dentry *dentry, const char *name)
562 {
563 if (unlikely(IS_PRIVATE(dentry->d_inode)))
564 return 0;
565 return security_ops->inode_getxattr(dentry, name);
566 }
567
568 int security_inode_listxattr(struct dentry *dentry)
569 {
570 if (unlikely(IS_PRIVATE(dentry->d_inode)))
571 return 0;
572 return security_ops->inode_listxattr(dentry);
573 }
574
575 int security_inode_removexattr(struct dentry *dentry, const char *name)
576 {
577 if (unlikely(IS_PRIVATE(dentry->d_inode)))
578 return 0;
579 return security_ops->inode_removexattr(dentry, name);
580 }
581
582 int security_inode_need_killpriv(struct dentry *dentry)
583 {
584 return security_ops->inode_need_killpriv(dentry);
585 }
586
587 int security_inode_killpriv(struct dentry *dentry)
588 {
589 return security_ops->inode_killpriv(dentry);
590 }
591
592 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
593 {
594 if (unlikely(IS_PRIVATE(inode)))
595 return 0;
596 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
597 }
598
599 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
600 {
601 if (unlikely(IS_PRIVATE(inode)))
602 return 0;
603 return security_ops->inode_setsecurity(inode, name, value, size, flags);
604 }
605
606 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
607 {
608 if (unlikely(IS_PRIVATE(inode)))
609 return 0;
610 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
611 }
612
613 void security_inode_getsecid(const struct inode *inode, u32 *secid)
614 {
615 security_ops->inode_getsecid(inode, secid);
616 }
617
618 int security_file_permission(struct file *file, int mask)
619 {
620 return security_ops->file_permission(file, mask);
621 }
622
623 int security_file_alloc(struct file *file)
624 {
625 return security_ops->file_alloc_security(file);
626 }
627
628 void security_file_free(struct file *file)
629 {
630 security_ops->file_free_security(file);
631 }
632
633 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
634 {
635 return security_ops->file_ioctl(file, cmd, arg);
636 }
637
638 int security_file_mmap(struct file *file, unsigned long reqprot,
639 unsigned long prot, unsigned long flags,
640 unsigned long addr, unsigned long addr_only)
641 {
642 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
643 }
644
645 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
646 unsigned long prot)
647 {
648 return security_ops->file_mprotect(vma, reqprot, prot);
649 }
650
651 int security_file_lock(struct file *file, unsigned int cmd)
652 {
653 return security_ops->file_lock(file, cmd);
654 }
655
656 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
657 {
658 return security_ops->file_fcntl(file, cmd, arg);
659 }
660
661 int security_file_set_fowner(struct file *file)
662 {
663 return security_ops->file_set_fowner(file);
664 }
665
666 int security_file_send_sigiotask(struct task_struct *tsk,
667 struct fown_struct *fown, int sig)
668 {
669 return security_ops->file_send_sigiotask(tsk, fown, sig);
670 }
671
672 int security_file_receive(struct file *file)
673 {
674 return security_ops->file_receive(file);
675 }
676
677 int security_dentry_open(struct file *file, const struct cred *cred)
678 {
679 return security_ops->dentry_open(file, cred);
680 }
681
682 int security_task_create(unsigned long clone_flags)
683 {
684 return security_ops->task_create(clone_flags);
685 }
686
687 void security_cred_free(struct cred *cred)
688 {
689 security_ops->cred_free(cred);
690 }
691
692 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
693 {
694 return security_ops->cred_prepare(new, old, gfp);
695 }
696
697 void security_commit_creds(struct cred *new, const struct cred *old)
698 {
699 security_ops->cred_commit(new, old);
700 }
701
702 int security_kernel_act_as(struct cred *new, u32 secid)
703 {
704 return security_ops->kernel_act_as(new, secid);
705 }
706
707 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
708 {
709 return security_ops->kernel_create_files_as(new, inode);
710 }
711
712 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
713 {
714 return security_ops->task_setuid(id0, id1, id2, flags);
715 }
716
717 int security_task_fix_setuid(struct cred *new, const struct cred *old,
718 int flags)
719 {
720 return security_ops->task_fix_setuid(new, old, flags);
721 }
722
723 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
724 {
725 return security_ops->task_setgid(id0, id1, id2, flags);
726 }
727
728 int security_task_setpgid(struct task_struct *p, pid_t pgid)
729 {
730 return security_ops->task_setpgid(p, pgid);
731 }
732
733 int security_task_getpgid(struct task_struct *p)
734 {
735 return security_ops->task_getpgid(p);
736 }
737
738 int security_task_getsid(struct task_struct *p)
739 {
740 return security_ops->task_getsid(p);
741 }
742
743 void security_task_getsecid(struct task_struct *p, u32 *secid)
744 {
745 security_ops->task_getsecid(p, secid);
746 }
747 EXPORT_SYMBOL(security_task_getsecid);
748
749 int security_task_setgroups(struct group_info *group_info)
750 {
751 return security_ops->task_setgroups(group_info);
752 }
753
754 int security_task_setnice(struct task_struct *p, int nice)
755 {
756 return security_ops->task_setnice(p, nice);
757 }
758
759 int security_task_setioprio(struct task_struct *p, int ioprio)
760 {
761 return security_ops->task_setioprio(p, ioprio);
762 }
763
764 int security_task_getioprio(struct task_struct *p)
765 {
766 return security_ops->task_getioprio(p);
767 }
768
769 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
770 {
771 return security_ops->task_setrlimit(resource, new_rlim);
772 }
773
774 int security_task_setscheduler(struct task_struct *p,
775 int policy, struct sched_param *lp)
776 {
777 return security_ops->task_setscheduler(p, policy, lp);
778 }
779
780 int security_task_getscheduler(struct task_struct *p)
781 {
782 return security_ops->task_getscheduler(p);
783 }
784
785 int security_task_movememory(struct task_struct *p)
786 {
787 return security_ops->task_movememory(p);
788 }
789
790 int security_task_kill(struct task_struct *p, struct siginfo *info,
791 int sig, u32 secid)
792 {
793 return security_ops->task_kill(p, info, sig, secid);
794 }
795
796 int security_task_wait(struct task_struct *p)
797 {
798 return security_ops->task_wait(p);
799 }
800
801 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
802 unsigned long arg4, unsigned long arg5)
803 {
804 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
805 }
806
807 void security_task_to_inode(struct task_struct *p, struct inode *inode)
808 {
809 security_ops->task_to_inode(p, inode);
810 }
811
812 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
813 {
814 return security_ops->ipc_permission(ipcp, flag);
815 }
816
817 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
818 {
819 security_ops->ipc_getsecid(ipcp, secid);
820 }
821
822 int security_msg_msg_alloc(struct msg_msg *msg)
823 {
824 return security_ops->msg_msg_alloc_security(msg);
825 }
826
827 void security_msg_msg_free(struct msg_msg *msg)
828 {
829 security_ops->msg_msg_free_security(msg);
830 }
831
832 int security_msg_queue_alloc(struct msg_queue *msq)
833 {
834 return security_ops->msg_queue_alloc_security(msq);
835 }
836
837 void security_msg_queue_free(struct msg_queue *msq)
838 {
839 security_ops->msg_queue_free_security(msq);
840 }
841
842 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
843 {
844 return security_ops->msg_queue_associate(msq, msqflg);
845 }
846
847 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
848 {
849 return security_ops->msg_queue_msgctl(msq, cmd);
850 }
851
852 int security_msg_queue_msgsnd(struct msg_queue *msq,
853 struct msg_msg *msg, int msqflg)
854 {
855 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
856 }
857
858 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
859 struct task_struct *target, long type, int mode)
860 {
861 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
862 }
863
864 int security_shm_alloc(struct shmid_kernel *shp)
865 {
866 return security_ops->shm_alloc_security(shp);
867 }
868
869 void security_shm_free(struct shmid_kernel *shp)
870 {
871 security_ops->shm_free_security(shp);
872 }
873
874 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
875 {
876 return security_ops->shm_associate(shp, shmflg);
877 }
878
879 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
880 {
881 return security_ops->shm_shmctl(shp, cmd);
882 }
883
884 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
885 {
886 return security_ops->shm_shmat(shp, shmaddr, shmflg);
887 }
888
889 int security_sem_alloc(struct sem_array *sma)
890 {
891 return security_ops->sem_alloc_security(sma);
892 }
893
894 void security_sem_free(struct sem_array *sma)
895 {
896 security_ops->sem_free_security(sma);
897 }
898
899 int security_sem_associate(struct sem_array *sma, int semflg)
900 {
901 return security_ops->sem_associate(sma, semflg);
902 }
903
904 int security_sem_semctl(struct sem_array *sma, int cmd)
905 {
906 return security_ops->sem_semctl(sma, cmd);
907 }
908
909 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
910 unsigned nsops, int alter)
911 {
912 return security_ops->sem_semop(sma, sops, nsops, alter);
913 }
914
915 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
916 {
917 if (unlikely(inode && IS_PRIVATE(inode)))
918 return;
919 security_ops->d_instantiate(dentry, inode);
920 }
921 EXPORT_SYMBOL(security_d_instantiate);
922
923 int security_getprocattr(struct task_struct *p, char *name, char **value)
924 {
925 return security_ops->getprocattr(p, name, value);
926 }
927
928 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
929 {
930 return security_ops->setprocattr(p, name, value, size);
931 }
932
933 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
934 {
935 return security_ops->netlink_send(sk, skb);
936 }
937
938 int security_netlink_recv(struct sk_buff *skb, int cap)
939 {
940 return security_ops->netlink_recv(skb, cap);
941 }
942 EXPORT_SYMBOL(security_netlink_recv);
943
944 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
945 {
946 return security_ops->secid_to_secctx(secid, secdata, seclen);
947 }
948 EXPORT_SYMBOL(security_secid_to_secctx);
949
950 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
951 {
952 return security_ops->secctx_to_secid(secdata, seclen, secid);
953 }
954 EXPORT_SYMBOL(security_secctx_to_secid);
955
956 void security_release_secctx(char *secdata, u32 seclen)
957 {
958 security_ops->release_secctx(secdata, seclen);
959 }
960 EXPORT_SYMBOL(security_release_secctx);
961
962 #ifdef CONFIG_SECURITY_NETWORK
963
964 int security_unix_stream_connect(struct socket *sock, struct socket *other,
965 struct sock *newsk)
966 {
967 return security_ops->unix_stream_connect(sock, other, newsk);
968 }
969 EXPORT_SYMBOL(security_unix_stream_connect);
970
971 int security_unix_may_send(struct socket *sock, struct socket *other)
972 {
973 return security_ops->unix_may_send(sock, other);
974 }
975 EXPORT_SYMBOL(security_unix_may_send);
976
977 int security_socket_create(int family, int type, int protocol, int kern)
978 {
979 return security_ops->socket_create(family, type, protocol, kern);
980 }
981
982 int security_socket_post_create(struct socket *sock, int family,
983 int type, int protocol, int kern)
984 {
985 return security_ops->socket_post_create(sock, family, type,
986 protocol, kern);
987 }
988
989 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
990 {
991 return security_ops->socket_bind(sock, address, addrlen);
992 }
993
994 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
995 {
996 return security_ops->socket_connect(sock, address, addrlen);
997 }
998
999 int security_socket_listen(struct socket *sock, int backlog)
1000 {
1001 return security_ops->socket_listen(sock, backlog);
1002 }
1003
1004 int security_socket_accept(struct socket *sock, struct socket *newsock)
1005 {
1006 return security_ops->socket_accept(sock, newsock);
1007 }
1008
1009 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1010 {
1011 return security_ops->socket_sendmsg(sock, msg, size);
1012 }
1013
1014 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1015 int size, int flags)
1016 {
1017 return security_ops->socket_recvmsg(sock, msg, size, flags);
1018 }
1019
1020 int security_socket_getsockname(struct socket *sock)
1021 {
1022 return security_ops->socket_getsockname(sock);
1023 }
1024
1025 int security_socket_getpeername(struct socket *sock)
1026 {
1027 return security_ops->socket_getpeername(sock);
1028 }
1029
1030 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1031 {
1032 return security_ops->socket_getsockopt(sock, level, optname);
1033 }
1034
1035 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1036 {
1037 return security_ops->socket_setsockopt(sock, level, optname);
1038 }
1039
1040 int security_socket_shutdown(struct socket *sock, int how)
1041 {
1042 return security_ops->socket_shutdown(sock, how);
1043 }
1044
1045 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1046 {
1047 return security_ops->socket_sock_rcv_skb(sk, skb);
1048 }
1049 EXPORT_SYMBOL(security_sock_rcv_skb);
1050
1051 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1052 int __user *optlen, unsigned len)
1053 {
1054 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1055 }
1056
1057 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1058 {
1059 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1060 }
1061 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1062
1063 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1064 {
1065 return security_ops->sk_alloc_security(sk, family, priority);
1066 }
1067
1068 void security_sk_free(struct sock *sk)
1069 {
1070 security_ops->sk_free_security(sk);
1071 }
1072
1073 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1074 {
1075 security_ops->sk_clone_security(sk, newsk);
1076 }
1077
1078 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1079 {
1080 security_ops->sk_getsecid(sk, &fl->secid);
1081 }
1082 EXPORT_SYMBOL(security_sk_classify_flow);
1083
1084 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1085 {
1086 security_ops->req_classify_flow(req, fl);
1087 }
1088 EXPORT_SYMBOL(security_req_classify_flow);
1089
1090 void security_sock_graft(struct sock *sk, struct socket *parent)
1091 {
1092 security_ops->sock_graft(sk, parent);
1093 }
1094 EXPORT_SYMBOL(security_sock_graft);
1095
1096 int security_inet_conn_request(struct sock *sk,
1097 struct sk_buff *skb, struct request_sock *req)
1098 {
1099 return security_ops->inet_conn_request(sk, skb, req);
1100 }
1101 EXPORT_SYMBOL(security_inet_conn_request);
1102
1103 void security_inet_csk_clone(struct sock *newsk,
1104 const struct request_sock *req)
1105 {
1106 security_ops->inet_csk_clone(newsk, req);
1107 }
1108
1109 void security_inet_conn_established(struct sock *sk,
1110 struct sk_buff *skb)
1111 {
1112 security_ops->inet_conn_established(sk, skb);
1113 }
1114
1115 #endif /* CONFIG_SECURITY_NETWORK */
1116
1117 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1118
1119 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1120 {
1121 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1122 }
1123 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1124
1125 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1126 struct xfrm_sec_ctx **new_ctxp)
1127 {
1128 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1129 }
1130
1131 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1132 {
1133 security_ops->xfrm_policy_free_security(ctx);
1134 }
1135 EXPORT_SYMBOL(security_xfrm_policy_free);
1136
1137 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1138 {
1139 return security_ops->xfrm_policy_delete_security(ctx);
1140 }
1141
1142 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1143 {
1144 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1145 }
1146 EXPORT_SYMBOL(security_xfrm_state_alloc);
1147
1148 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1149 struct xfrm_sec_ctx *polsec, u32 secid)
1150 {
1151 if (!polsec)
1152 return 0;
1153 /*
1154 * We want the context to be taken from secid which is usually
1155 * from the sock.
1156 */
1157 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1158 }
1159
1160 int security_xfrm_state_delete(struct xfrm_state *x)
1161 {
1162 return security_ops->xfrm_state_delete_security(x);
1163 }
1164 EXPORT_SYMBOL(security_xfrm_state_delete);
1165
1166 void security_xfrm_state_free(struct xfrm_state *x)
1167 {
1168 security_ops->xfrm_state_free_security(x);
1169 }
1170
1171 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1172 {
1173 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1174 }
1175
1176 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1177 struct xfrm_policy *xp, struct flowi *fl)
1178 {
1179 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1180 }
1181
1182 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1183 {
1184 return security_ops->xfrm_decode_session(skb, secid, 1);
1185 }
1186
1187 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1188 {
1189 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1190
1191 BUG_ON(rc);
1192 }
1193 EXPORT_SYMBOL(security_skb_classify_flow);
1194
1195 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1196
1197 #ifdef CONFIG_KEYS
1198
1199 int security_key_alloc(struct key *key, const struct cred *cred,
1200 unsigned long flags)
1201 {
1202 return security_ops->key_alloc(key, cred, flags);
1203 }
1204
1205 void security_key_free(struct key *key)
1206 {
1207 security_ops->key_free(key);
1208 }
1209
1210 int security_key_permission(key_ref_t key_ref,
1211 const struct cred *cred, key_perm_t perm)
1212 {
1213 return security_ops->key_permission(key_ref, cred, perm);
1214 }
1215
1216 int security_key_getsecurity(struct key *key, char **_buffer)
1217 {
1218 return security_ops->key_getsecurity(key, _buffer);
1219 }
1220
1221 #endif /* CONFIG_KEYS */
1222
1223 #ifdef CONFIG_AUDIT
1224
1225 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1226 {
1227 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1228 }
1229
1230 int security_audit_rule_known(struct audit_krule *krule)
1231 {
1232 return security_ops->audit_rule_known(krule);
1233 }
1234
1235 void security_audit_rule_free(void *lsmrule)
1236 {
1237 security_ops->audit_rule_free(lsmrule);
1238 }
1239
1240 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1241 struct audit_context *actx)
1242 {
1243 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1244 }
1245
1246 #endif /* CONFIG_AUDIT */