]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - security/security.c
UBUNTU: SAUCE: LSM: Infrastructure management of the sock security
[mirror_ubuntu-focal-kernel.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31 #include <net/sock.h>
32
33 #define MAX_LSM_EVM_XATTR 2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 #define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
38
39 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
40 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
41
42 static struct kmem_cache *lsm_file_cache;
43 static struct kmem_cache *lsm_inode_cache;
44
45 char *lsm_names;
46 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
47
48 /* Boot-time LSM user choice */
49 static __initdata const char *chosen_lsm_order;
50 static __initdata const char *chosen_major_lsm;
51
52 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
53
54 /* Ordered list of LSMs to initialize. */
55 static __initdata struct lsm_info **ordered_lsms;
56 static __initdata struct lsm_info *exclusive;
57
58 static __initdata bool debug;
59 #define init_debug(...) \
60 do { \
61 if (debug) \
62 pr_info(__VA_ARGS__); \
63 } while (0)
64
65 static bool __init is_enabled(struct lsm_info *lsm)
66 {
67 if (!lsm->enabled)
68 return false;
69
70 return *lsm->enabled;
71 }
72
73 /* Mark an LSM's enabled flag. */
74 static int lsm_enabled_true __initdata = 1;
75 static int lsm_enabled_false __initdata = 0;
76 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
77 {
78 /*
79 * When an LSM hasn't configured an enable variable, we can use
80 * a hard-coded location for storing the default enabled state.
81 */
82 if (!lsm->enabled) {
83 if (enabled)
84 lsm->enabled = &lsm_enabled_true;
85 else
86 lsm->enabled = &lsm_enabled_false;
87 } else if (lsm->enabled == &lsm_enabled_true) {
88 if (!enabled)
89 lsm->enabled = &lsm_enabled_false;
90 } else if (lsm->enabled == &lsm_enabled_false) {
91 if (enabled)
92 lsm->enabled = &lsm_enabled_true;
93 } else {
94 *lsm->enabled = enabled;
95 }
96 }
97
98 /* Is an LSM already listed in the ordered LSMs list? */
99 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
100 {
101 struct lsm_info **check;
102
103 for (check = ordered_lsms; *check; check++)
104 if (*check == lsm)
105 return true;
106
107 return false;
108 }
109
110 /* Append an LSM to the list of ordered LSMs to initialize. */
111 static int last_lsm __initdata;
112 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
113 {
114 /* Ignore duplicate selections. */
115 if (exists_ordered_lsm(lsm))
116 return;
117
118 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
119 return;
120
121 /* Enable this LSM, if it is not already set. */
122 if (!lsm->enabled)
123 lsm->enabled = &lsm_enabled_true;
124 ordered_lsms[last_lsm++] = lsm;
125
126 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
127 is_enabled(lsm) ? "en" : "dis");
128 }
129
130 /* Is an LSM allowed to be initialized? */
131 static bool __init lsm_allowed(struct lsm_info *lsm)
132 {
133 /* Skip if the LSM is disabled. */
134 if (!is_enabled(lsm))
135 return false;
136
137 /* Not allowed if another exclusive LSM already initialized. */
138 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
139 init_debug("exclusive disabled: %s\n", lsm->name);
140 return false;
141 }
142
143 return true;
144 }
145
146 static void __init lsm_set_blob_size(int *need, int *lbs)
147 {
148 int offset;
149
150 if (*need > 0) {
151 offset = *lbs;
152 *lbs += *need;
153 *need = offset;
154 }
155 }
156
157 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
158 {
159 if (!needed)
160 return;
161
162 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
163 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
164 /*
165 * The inode blob gets an rcu_head in addition to
166 * what the modules might need.
167 */
168 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
169 blob_sizes.lbs_inode = sizeof(struct rcu_head);
170 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
171 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
172 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
173 lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
174 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
175 }
176
177 /* Prepare LSM for initialization. */
178 static void __init prepare_lsm(struct lsm_info *lsm)
179 {
180 int enabled = lsm_allowed(lsm);
181
182 /* Record enablement (to handle any following exclusive LSMs). */
183 set_enabled(lsm, enabled);
184
185 /* If enabled, do pre-initialization work. */
186 if (enabled) {
187 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
188 exclusive = lsm;
189 init_debug("exclusive chosen: %s\n", lsm->name);
190 }
191
192 lsm_set_blob_sizes(lsm->blobs);
193 }
194 }
195
196 /* Initialize a given LSM, if it is enabled. */
197 static void __init initialize_lsm(struct lsm_info *lsm)
198 {
199 if (is_enabled(lsm)) {
200 int ret;
201
202 init_debug("initializing %s\n", lsm->name);
203 ret = lsm->init();
204 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
205 }
206 }
207
208 /* Populate ordered LSMs list from comma-separated LSM name list. */
209 static void __init ordered_lsm_parse(const char *order, const char *origin)
210 {
211 struct lsm_info *lsm;
212 char *sep, *name, *next;
213
214 /* LSM_ORDER_FIRST is always first. */
215 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
216 if (lsm->order == LSM_ORDER_FIRST)
217 append_ordered_lsm(lsm, "first");
218 }
219
220 /* Process "security=", if given. */
221 if (chosen_major_lsm) {
222 struct lsm_info *major;
223
224 /*
225 * To match the original "security=" behavior, this
226 * explicitly does NOT fallback to another Legacy Major
227 * if the selected one was separately disabled: disable
228 * all non-matching Legacy Major LSMs.
229 */
230 for (major = __start_lsm_info; major < __end_lsm_info;
231 major++) {
232 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
233 strcmp(major->name, chosen_major_lsm) != 0) {
234 set_enabled(major, false);
235 init_debug("security=%s disabled: %s\n",
236 chosen_major_lsm, major->name);
237 }
238 }
239 }
240
241 sep = kstrdup(order, GFP_KERNEL);
242 next = sep;
243 /* Walk the list, looking for matching LSMs. */
244 while ((name = strsep(&next, ",")) != NULL) {
245 bool found = false;
246
247 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
248 if (lsm->order == LSM_ORDER_MUTABLE &&
249 strcmp(lsm->name, name) == 0) {
250 append_ordered_lsm(lsm, origin);
251 found = true;
252 }
253 }
254
255 if (!found)
256 init_debug("%s ignored: %s\n", origin, name);
257 }
258
259 /* Process "security=", if given. */
260 if (chosen_major_lsm) {
261 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
262 if (exists_ordered_lsm(lsm))
263 continue;
264 if (strcmp(lsm->name, chosen_major_lsm) == 0)
265 append_ordered_lsm(lsm, "security=");
266 }
267 }
268
269 /* Disable all LSMs not in the ordered list. */
270 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
271 if (exists_ordered_lsm(lsm))
272 continue;
273 set_enabled(lsm, false);
274 init_debug("%s disabled: %s\n", origin, lsm->name);
275 }
276
277 kfree(sep);
278 }
279
280 static void __init lsm_early_cred(struct cred *cred);
281 static void __init lsm_early_task(struct task_struct *task);
282
283 static int lsm_append(const char *new, char **result);
284
285 static void __init ordered_lsm_init(void)
286 {
287 struct lsm_info **lsm;
288
289 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
290 GFP_KERNEL);
291
292 if (chosen_lsm_order) {
293 if (chosen_major_lsm) {
294 pr_info("security= is ignored because it is superseded by lsm=\n");
295 chosen_major_lsm = NULL;
296 }
297 ordered_lsm_parse(chosen_lsm_order, "cmdline");
298 } else
299 ordered_lsm_parse(builtin_lsm_order, "builtin");
300
301 for (lsm = ordered_lsms; *lsm; lsm++)
302 prepare_lsm(*lsm);
303
304 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
305 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
306 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
307 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
308 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
309 init_debug("sock blob size = %d\n", blob_sizes.lbs_sock);
310 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
311
312 /*
313 * Create any kmem_caches needed for blobs
314 */
315 if (blob_sizes.lbs_file)
316 lsm_file_cache = kmem_cache_create("lsm_file_cache",
317 blob_sizes.lbs_file, 0,
318 SLAB_PANIC, NULL);
319 if (blob_sizes.lbs_inode)
320 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
321 blob_sizes.lbs_inode, 0,
322 SLAB_PANIC, NULL);
323
324 lsm_early_cred((struct cred *) current->cred);
325 lsm_early_task(current);
326 for (lsm = ordered_lsms; *lsm; lsm++)
327 initialize_lsm(*lsm);
328
329 kfree(ordered_lsms);
330 }
331
332 int __init early_security_init(void)
333 {
334 int i;
335 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
336 struct lsm_info *lsm;
337
338 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
339 i++)
340 INIT_HLIST_HEAD(&list[i]);
341
342 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
343 if (!lsm->enabled)
344 lsm->enabled = &lsm_enabled_true;
345 prepare_lsm(lsm);
346 initialize_lsm(lsm);
347 }
348
349 return 0;
350 }
351
352 /**
353 * security_init - initializes the security framework
354 *
355 * This should be called early in the kernel initialization sequence.
356 */
357 int __init security_init(void)
358 {
359 struct lsm_info *lsm;
360
361 pr_info("Security Framework initializing\n");
362
363 /*
364 * Append the names of the early LSM modules now that kmalloc() is
365 * available
366 */
367 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
368 if (lsm->enabled)
369 lsm_append(lsm->name, &lsm_names);
370 }
371
372 /* Load LSMs in specified order. */
373 ordered_lsm_init();
374
375 return 0;
376 }
377
378 /* Save user chosen LSM */
379 static int __init choose_major_lsm(char *str)
380 {
381 chosen_major_lsm = str;
382 return 1;
383 }
384 __setup("security=", choose_major_lsm);
385
386 /* Explicitly choose LSM initialization order. */
387 static int __init choose_lsm_order(char *str)
388 {
389 chosen_lsm_order = str;
390 return 1;
391 }
392 __setup("lsm=", choose_lsm_order);
393
394 /* Enable LSM order debugging. */
395 static int __init enable_debug(char *str)
396 {
397 debug = true;
398 return 1;
399 }
400 __setup("lsm.debug", enable_debug);
401
402 static bool match_last_lsm(const char *list, const char *lsm)
403 {
404 const char *last;
405
406 if (WARN_ON(!list || !lsm))
407 return false;
408 last = strrchr(list, ',');
409 if (last)
410 /* Pass the comma, strcmp() will check for '\0' */
411 last++;
412 else
413 last = list;
414 return !strcmp(last, lsm);
415 }
416
417 static int lsm_append(const char *new, char **result)
418 {
419 char *cp;
420
421 if (*result == NULL) {
422 *result = kstrdup(new, GFP_KERNEL);
423 if (*result == NULL)
424 return -ENOMEM;
425 } else {
426 /* Check if it is the last registered name */
427 if (match_last_lsm(*result, new))
428 return 0;
429 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
430 if (cp == NULL)
431 return -ENOMEM;
432 kfree(*result);
433 *result = cp;
434 }
435 return 0;
436 }
437
438 /**
439 * security_add_hooks - Add a modules hooks to the hook lists.
440 * @hooks: the hooks to add
441 * @count: the number of hooks to add
442 * @lsm: the name of the security module
443 *
444 * Each LSM has to register its hooks with the infrastructure.
445 */
446 void __init security_add_hooks(struct security_hook_list *hooks, int count,
447 char *lsm)
448 {
449 int i;
450
451 for (i = 0; i < count; i++) {
452 hooks[i].lsm = lsm;
453 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
454 }
455
456 /*
457 * Don't try to append during early_security_init(), we'll come back
458 * and fix this up afterwards.
459 */
460 if (slab_is_available()) {
461 if (lsm_append(lsm, &lsm_names) < 0)
462 panic("%s - Cannot get early memory.\n", __func__);
463 }
464 }
465
466 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
467 {
468 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
469 event, data);
470 }
471 EXPORT_SYMBOL(call_blocking_lsm_notifier);
472
473 int register_blocking_lsm_notifier(struct notifier_block *nb)
474 {
475 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
476 nb);
477 }
478 EXPORT_SYMBOL(register_blocking_lsm_notifier);
479
480 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
481 {
482 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
483 nb);
484 }
485 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
486
487 /**
488 * lsm_cred_alloc - allocate a composite cred blob
489 * @cred: the cred that needs a blob
490 * @gfp: allocation type
491 *
492 * Allocate the cred blob for all the modules
493 *
494 * Returns 0, or -ENOMEM if memory can't be allocated.
495 */
496 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
497 {
498 if (blob_sizes.lbs_cred == 0) {
499 cred->security = NULL;
500 return 0;
501 }
502
503 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
504 if (cred->security == NULL)
505 return -ENOMEM;
506 return 0;
507 }
508
509 /**
510 * lsm_early_cred - during initialization allocate a composite cred blob
511 * @cred: the cred that needs a blob
512 *
513 * Allocate the cred blob for all the modules
514 */
515 static void __init lsm_early_cred(struct cred *cred)
516 {
517 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
518
519 if (rc)
520 panic("%s: Early cred alloc failed.\n", __func__);
521 }
522
523 /**
524 * lsm_file_alloc - allocate a composite file blob
525 * @file: the file that needs a blob
526 *
527 * Allocate the file blob for all the modules
528 *
529 * Returns 0, or -ENOMEM if memory can't be allocated.
530 */
531 static int lsm_file_alloc(struct file *file)
532 {
533 if (!lsm_file_cache) {
534 file->f_security = NULL;
535 return 0;
536 }
537
538 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
539 if (file->f_security == NULL)
540 return -ENOMEM;
541 return 0;
542 }
543
544 /**
545 * lsm_inode_alloc - allocate a composite inode blob
546 * @inode: the inode that needs a blob
547 *
548 * Allocate the inode blob for all the modules
549 *
550 * Returns 0, or -ENOMEM if memory can't be allocated.
551 */
552 int lsm_inode_alloc(struct inode *inode)
553 {
554 if (!lsm_inode_cache) {
555 inode->i_security = NULL;
556 return 0;
557 }
558
559 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
560 if (inode->i_security == NULL)
561 return -ENOMEM;
562 return 0;
563 }
564
565 /**
566 * lsm_task_alloc - allocate a composite task blob
567 * @task: the task that needs a blob
568 *
569 * Allocate the task blob for all the modules
570 *
571 * Returns 0, or -ENOMEM if memory can't be allocated.
572 */
573 static int lsm_task_alloc(struct task_struct *task)
574 {
575 if (blob_sizes.lbs_task == 0) {
576 task->security = NULL;
577 return 0;
578 }
579
580 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
581 if (task->security == NULL)
582 return -ENOMEM;
583 return 0;
584 }
585
586 /**
587 * lsm_ipc_alloc - allocate a composite ipc blob
588 * @kip: the ipc that needs a blob
589 *
590 * Allocate the ipc blob for all the modules
591 *
592 * Returns 0, or -ENOMEM if memory can't be allocated.
593 */
594 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
595 {
596 if (blob_sizes.lbs_ipc == 0) {
597 kip->security = NULL;
598 return 0;
599 }
600
601 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
602 if (kip->security == NULL)
603 return -ENOMEM;
604 return 0;
605 }
606
607 /**
608 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
609 * @mp: the msg_msg that needs a blob
610 *
611 * Allocate the ipc blob for all the modules
612 *
613 * Returns 0, or -ENOMEM if memory can't be allocated.
614 */
615 static int lsm_msg_msg_alloc(struct msg_msg *mp)
616 {
617 if (blob_sizes.lbs_msg_msg == 0) {
618 mp->security = NULL;
619 return 0;
620 }
621
622 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
623 if (mp->security == NULL)
624 return -ENOMEM;
625 return 0;
626 }
627
628 /**
629 * lsm_sock_alloc - allocate a composite sock blob
630 * @sock: the sock that needs a blob
631 * @priority: allocation mode
632 *
633 * Allocate the sock blob for all the modules
634 *
635 * Returns 0, or -ENOMEM if memory can't be allocated.
636 */
637 static int lsm_sock_alloc(struct sock *sock, gfp_t priority)
638 {
639 if (blob_sizes.lbs_sock == 0) {
640 sock->sk_security = NULL;
641 return 0;
642 }
643
644 sock->sk_security = kzalloc(blob_sizes.lbs_sock, priority);
645 if (sock->sk_security == NULL)
646 return -ENOMEM;
647 return 0;
648 }
649
650 /**
651 * lsm_early_task - during initialization allocate a composite task blob
652 * @task: the task that needs a blob
653 *
654 * Allocate the task blob for all the modules
655 */
656 static void __init lsm_early_task(struct task_struct *task)
657 {
658 int rc = lsm_task_alloc(task);
659
660 if (rc)
661 panic("%s: Early task alloc failed.\n", __func__);
662 }
663
664 /*
665 * Hook list operation macros.
666 *
667 * call_void_hook:
668 * This is a hook that does not return a value.
669 *
670 * call_int_hook:
671 * This is a hook that returns a value.
672 */
673
674 #define call_void_hook(FUNC, ...) \
675 do { \
676 struct security_hook_list *P; \
677 \
678 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
679 P->hook.FUNC(__VA_ARGS__); \
680 } while (0)
681
682 #define call_int_hook(FUNC, IRC, ...) ({ \
683 int RC = IRC; \
684 do { \
685 struct security_hook_list *P; \
686 \
687 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
688 RC = P->hook.FUNC(__VA_ARGS__); \
689 if (RC != 0) \
690 break; \
691 } \
692 } while (0); \
693 RC; \
694 })
695
696 /* Security operations */
697
698 int security_binder_set_context_mgr(struct task_struct *mgr)
699 {
700 return call_int_hook(binder_set_context_mgr, 0, mgr);
701 }
702 EXPORT_SYMBOL(security_binder_set_context_mgr);
703
704 int security_binder_transaction(struct task_struct *from,
705 struct task_struct *to)
706 {
707 return call_int_hook(binder_transaction, 0, from, to);
708 }
709 EXPORT_SYMBOL(security_binder_transaction);
710
711 int security_binder_transfer_binder(struct task_struct *from,
712 struct task_struct *to)
713 {
714 return call_int_hook(binder_transfer_binder, 0, from, to);
715 }
716 EXPORT_SYMBOL(security_binder_transfer_binder);
717
718 int security_binder_transfer_file(struct task_struct *from,
719 struct task_struct *to, struct file *file)
720 {
721 return call_int_hook(binder_transfer_file, 0, from, to, file);
722 }
723 EXPORT_SYMBOL(security_binder_transfer_file);
724
725 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
726 {
727 return call_int_hook(ptrace_access_check, 0, child, mode);
728 }
729
730 int security_ptrace_traceme(struct task_struct *parent)
731 {
732 return call_int_hook(ptrace_traceme, 0, parent);
733 }
734
735 int security_capget(struct task_struct *target,
736 kernel_cap_t *effective,
737 kernel_cap_t *inheritable,
738 kernel_cap_t *permitted)
739 {
740 return call_int_hook(capget, 0, target,
741 effective, inheritable, permitted);
742 }
743
744 int security_capset(struct cred *new, const struct cred *old,
745 const kernel_cap_t *effective,
746 const kernel_cap_t *inheritable,
747 const kernel_cap_t *permitted)
748 {
749 return call_int_hook(capset, 0, new, old,
750 effective, inheritable, permitted);
751 }
752
753 int security_capable(const struct cred *cred,
754 struct user_namespace *ns,
755 int cap,
756 unsigned int opts)
757 {
758 return call_int_hook(capable, 0, cred, ns, cap, opts);
759 }
760
761 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
762 {
763 return call_int_hook(quotactl, 0, cmds, type, id, sb);
764 }
765
766 int security_quota_on(struct dentry *dentry)
767 {
768 return call_int_hook(quota_on, 0, dentry);
769 }
770
771 int security_syslog(int type)
772 {
773 return call_int_hook(syslog, 0, type);
774 }
775
776 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
777 {
778 return call_int_hook(settime, 0, ts, tz);
779 }
780
781 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
782 {
783 struct security_hook_list *hp;
784 int cap_sys_admin = 1;
785 int rc;
786
787 /*
788 * The module will respond with a positive value if
789 * it thinks the __vm_enough_memory() call should be
790 * made with the cap_sys_admin set. If all of the modules
791 * agree that it should be set it will. If any module
792 * thinks it should not be set it won't.
793 */
794 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
795 rc = hp->hook.vm_enough_memory(mm, pages);
796 if (rc <= 0) {
797 cap_sys_admin = 0;
798 break;
799 }
800 }
801 return __vm_enough_memory(mm, pages, cap_sys_admin);
802 }
803
804 int security_bprm_set_creds(struct linux_binprm *bprm)
805 {
806 return call_int_hook(bprm_set_creds, 0, bprm);
807 }
808
809 int security_bprm_check(struct linux_binprm *bprm)
810 {
811 int ret;
812
813 ret = call_int_hook(bprm_check_security, 0, bprm);
814 if (ret)
815 return ret;
816 return ima_bprm_check(bprm);
817 }
818
819 void security_bprm_committing_creds(struct linux_binprm *bprm)
820 {
821 call_void_hook(bprm_committing_creds, bprm);
822 }
823
824 void security_bprm_committed_creds(struct linux_binprm *bprm)
825 {
826 call_void_hook(bprm_committed_creds, bprm);
827 }
828
829 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
830 {
831 return call_int_hook(fs_context_dup, 0, fc, src_fc);
832 }
833
834 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
835 {
836 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
837 }
838
839 int security_sb_alloc(struct super_block *sb)
840 {
841 return call_int_hook(sb_alloc_security, 0, sb);
842 }
843
844 void security_sb_free(struct super_block *sb)
845 {
846 call_void_hook(sb_free_security, sb);
847 }
848
849 void security_free_mnt_opts(void **mnt_opts)
850 {
851 if (!*mnt_opts)
852 return;
853 call_void_hook(sb_free_mnt_opts, *mnt_opts);
854 *mnt_opts = NULL;
855 }
856 EXPORT_SYMBOL(security_free_mnt_opts);
857
858 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
859 {
860 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
861 }
862 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
863
864 int security_sb_remount(struct super_block *sb,
865 void *mnt_opts)
866 {
867 return call_int_hook(sb_remount, 0, sb, mnt_opts);
868 }
869 EXPORT_SYMBOL(security_sb_remount);
870
871 int security_sb_kern_mount(struct super_block *sb)
872 {
873 return call_int_hook(sb_kern_mount, 0, sb);
874 }
875
876 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
877 {
878 return call_int_hook(sb_show_options, 0, m, sb);
879 }
880
881 int security_sb_statfs(struct dentry *dentry)
882 {
883 return call_int_hook(sb_statfs, 0, dentry);
884 }
885
886 int security_sb_mount(const char *dev_name, const struct path *path,
887 const char *type, unsigned long flags, void *data)
888 {
889 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
890 }
891
892 int security_sb_umount(struct vfsmount *mnt, int flags)
893 {
894 return call_int_hook(sb_umount, 0, mnt, flags);
895 }
896
897 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
898 {
899 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
900 }
901
902 int security_sb_set_mnt_opts(struct super_block *sb,
903 void *mnt_opts,
904 unsigned long kern_flags,
905 unsigned long *set_kern_flags)
906 {
907 return call_int_hook(sb_set_mnt_opts,
908 mnt_opts ? -EOPNOTSUPP : 0, sb,
909 mnt_opts, kern_flags, set_kern_flags);
910 }
911 EXPORT_SYMBOL(security_sb_set_mnt_opts);
912
913 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
914 struct super_block *newsb,
915 unsigned long kern_flags,
916 unsigned long *set_kern_flags)
917 {
918 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
919 kern_flags, set_kern_flags);
920 }
921 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
922
923 int security_add_mnt_opt(const char *option, const char *val, int len,
924 void **mnt_opts)
925 {
926 return call_int_hook(sb_add_mnt_opt, -EINVAL,
927 option, val, len, mnt_opts);
928 }
929 EXPORT_SYMBOL(security_add_mnt_opt);
930
931 int security_move_mount(const struct path *from_path, const struct path *to_path)
932 {
933 return call_int_hook(move_mount, 0, from_path, to_path);
934 }
935
936 int security_path_notify(const struct path *path, u64 mask,
937 unsigned int obj_type)
938 {
939 return call_int_hook(path_notify, 0, path, mask, obj_type);
940 }
941
942 int security_inode_alloc(struct inode *inode)
943 {
944 int rc = lsm_inode_alloc(inode);
945
946 if (unlikely(rc))
947 return rc;
948 rc = call_int_hook(inode_alloc_security, 0, inode);
949 if (unlikely(rc))
950 security_inode_free(inode);
951 return rc;
952 }
953
954 static void inode_free_by_rcu(struct rcu_head *head)
955 {
956 /*
957 * The rcu head is at the start of the inode blob
958 */
959 kmem_cache_free(lsm_inode_cache, head);
960 }
961
962 void security_inode_free(struct inode *inode)
963 {
964 integrity_inode_free(inode);
965 call_void_hook(inode_free_security, inode);
966 /*
967 * The inode may still be referenced in a path walk and
968 * a call to security_inode_permission() can be made
969 * after inode_free_security() is called. Ideally, the VFS
970 * wouldn't do this, but fixing that is a much harder
971 * job. For now, simply free the i_security via RCU, and
972 * leave the current inode->i_security pointer intact.
973 * The inode will be freed after the RCU grace period too.
974 */
975 if (inode->i_security)
976 call_rcu((struct rcu_head *)inode->i_security,
977 inode_free_by_rcu);
978 }
979
980 int security_dentry_init_security(struct dentry *dentry, int mode,
981 const struct qstr *name, void **ctx,
982 u32 *ctxlen)
983 {
984 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
985 name, ctx, ctxlen);
986 }
987 EXPORT_SYMBOL(security_dentry_init_security);
988
989 int security_dentry_create_files_as(struct dentry *dentry, int mode,
990 struct qstr *name,
991 const struct cred *old, struct cred *new)
992 {
993 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
994 name, old, new);
995 }
996 EXPORT_SYMBOL(security_dentry_create_files_as);
997
998 int security_inode_init_security(struct inode *inode, struct inode *dir,
999 const struct qstr *qstr,
1000 const initxattrs initxattrs, void *fs_data)
1001 {
1002 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1003 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1004 int ret;
1005
1006 if (unlikely(IS_PRIVATE(inode)))
1007 return 0;
1008
1009 if (!initxattrs)
1010 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1011 dir, qstr, NULL, NULL, NULL);
1012 memset(new_xattrs, 0, sizeof(new_xattrs));
1013 lsm_xattr = new_xattrs;
1014 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1015 &lsm_xattr->name,
1016 &lsm_xattr->value,
1017 &lsm_xattr->value_len);
1018 if (ret)
1019 goto out;
1020
1021 evm_xattr = lsm_xattr + 1;
1022 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1023 if (ret)
1024 goto out;
1025 ret = initxattrs(inode, new_xattrs, fs_data);
1026 out:
1027 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1028 kfree(xattr->value);
1029 return (ret == -EOPNOTSUPP) ? 0 : ret;
1030 }
1031 EXPORT_SYMBOL(security_inode_init_security);
1032
1033 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1034 const struct qstr *qstr, const char **name,
1035 void **value, size_t *len)
1036 {
1037 if (unlikely(IS_PRIVATE(inode)))
1038 return -EOPNOTSUPP;
1039 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1040 qstr, name, value, len);
1041 }
1042 EXPORT_SYMBOL(security_old_inode_init_security);
1043
1044 #ifdef CONFIG_SECURITY_PATH
1045 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1046 unsigned int dev)
1047 {
1048 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1049 return 0;
1050 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1051 }
1052 EXPORT_SYMBOL(security_path_mknod);
1053
1054 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1055 {
1056 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1057 return 0;
1058 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1059 }
1060 EXPORT_SYMBOL(security_path_mkdir);
1061
1062 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1063 {
1064 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1065 return 0;
1066 return call_int_hook(path_rmdir, 0, dir, dentry);
1067 }
1068
1069 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1070 {
1071 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1072 return 0;
1073 return call_int_hook(path_unlink, 0, dir, dentry);
1074 }
1075 EXPORT_SYMBOL(security_path_unlink);
1076
1077 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1078 const char *old_name)
1079 {
1080 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1081 return 0;
1082 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1083 }
1084
1085 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1086 struct dentry *new_dentry)
1087 {
1088 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1089 return 0;
1090 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1091 }
1092
1093 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1094 const struct path *new_dir, struct dentry *new_dentry,
1095 unsigned int flags)
1096 {
1097 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1098 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1099 return 0;
1100
1101 if (flags & RENAME_EXCHANGE) {
1102 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1103 old_dir, old_dentry);
1104 if (err)
1105 return err;
1106 }
1107
1108 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1109 new_dentry);
1110 }
1111 EXPORT_SYMBOL(security_path_rename);
1112
1113 int security_path_truncate(const struct path *path)
1114 {
1115 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1116 return 0;
1117 return call_int_hook(path_truncate, 0, path);
1118 }
1119
1120 int security_path_chmod(const struct path *path, umode_t mode)
1121 {
1122 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1123 return 0;
1124 return call_int_hook(path_chmod, 0, path, mode);
1125 }
1126
1127 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1128 {
1129 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1130 return 0;
1131 return call_int_hook(path_chown, 0, path, uid, gid);
1132 }
1133
1134 int security_path_chroot(const struct path *path)
1135 {
1136 return call_int_hook(path_chroot, 0, path);
1137 }
1138 #endif
1139
1140 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1141 {
1142 if (unlikely(IS_PRIVATE(dir)))
1143 return 0;
1144 return call_int_hook(inode_create, 0, dir, dentry, mode);
1145 }
1146 EXPORT_SYMBOL_GPL(security_inode_create);
1147
1148 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1149 struct dentry *new_dentry)
1150 {
1151 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1152 return 0;
1153 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1154 }
1155
1156 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1157 {
1158 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1159 return 0;
1160 return call_int_hook(inode_unlink, 0, dir, dentry);
1161 }
1162
1163 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1164 const char *old_name)
1165 {
1166 if (unlikely(IS_PRIVATE(dir)))
1167 return 0;
1168 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1169 }
1170
1171 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1172 {
1173 if (unlikely(IS_PRIVATE(dir)))
1174 return 0;
1175 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1176 }
1177 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1178
1179 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1180 {
1181 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1182 return 0;
1183 return call_int_hook(inode_rmdir, 0, dir, dentry);
1184 }
1185
1186 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1187 {
1188 if (unlikely(IS_PRIVATE(dir)))
1189 return 0;
1190 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1191 }
1192
1193 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1194 struct inode *new_dir, struct dentry *new_dentry,
1195 unsigned int flags)
1196 {
1197 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1198 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1199 return 0;
1200
1201 if (flags & RENAME_EXCHANGE) {
1202 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1203 old_dir, old_dentry);
1204 if (err)
1205 return err;
1206 }
1207
1208 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1209 new_dir, new_dentry);
1210 }
1211
1212 int security_inode_readlink(struct dentry *dentry)
1213 {
1214 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1215 return 0;
1216 return call_int_hook(inode_readlink, 0, dentry);
1217 }
1218
1219 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1220 bool rcu)
1221 {
1222 if (unlikely(IS_PRIVATE(inode)))
1223 return 0;
1224 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1225 }
1226
1227 int security_inode_permission(struct inode *inode, int mask)
1228 {
1229 if (unlikely(IS_PRIVATE(inode)))
1230 return 0;
1231 return call_int_hook(inode_permission, 0, inode, mask);
1232 }
1233
1234 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1235 {
1236 int ret;
1237
1238 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1239 return 0;
1240 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1241 if (ret)
1242 return ret;
1243 return evm_inode_setattr(dentry, attr);
1244 }
1245 EXPORT_SYMBOL_GPL(security_inode_setattr);
1246
1247 int security_inode_getattr(const struct path *path)
1248 {
1249 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1250 return 0;
1251 return call_int_hook(inode_getattr, 0, path);
1252 }
1253
1254 int security_inode_setxattr(struct dentry *dentry, const char *name,
1255 const void *value, size_t size, int flags)
1256 {
1257 int ret;
1258
1259 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1260 return 0;
1261 /*
1262 * SELinux and Smack integrate the cap call,
1263 * so assume that all LSMs supplying this call do so.
1264 */
1265 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1266 flags);
1267
1268 if (ret == 1)
1269 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1270 if (ret)
1271 return ret;
1272 ret = ima_inode_setxattr(dentry, name, value, size);
1273 if (ret)
1274 return ret;
1275 return evm_inode_setxattr(dentry, name, value, size);
1276 }
1277
1278 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1279 const void *value, size_t size, int flags)
1280 {
1281 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1282 return;
1283 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1284 evm_inode_post_setxattr(dentry, name, value, size);
1285 }
1286
1287 int security_inode_getxattr(struct dentry *dentry, const char *name)
1288 {
1289 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1290 return 0;
1291 return call_int_hook(inode_getxattr, 0, dentry, name);
1292 }
1293
1294 int security_inode_listxattr(struct dentry *dentry)
1295 {
1296 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1297 return 0;
1298 return call_int_hook(inode_listxattr, 0, dentry);
1299 }
1300
1301 int security_inode_removexattr(struct dentry *dentry, const char *name)
1302 {
1303 int ret;
1304
1305 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1306 return 0;
1307 /*
1308 * SELinux and Smack integrate the cap call,
1309 * so assume that all LSMs supplying this call do so.
1310 */
1311 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1312 if (ret == 1)
1313 ret = cap_inode_removexattr(dentry, name);
1314 if (ret)
1315 return ret;
1316 ret = ima_inode_removexattr(dentry, name);
1317 if (ret)
1318 return ret;
1319 return evm_inode_removexattr(dentry, name);
1320 }
1321
1322 int security_inode_need_killpriv(struct dentry *dentry)
1323 {
1324 return call_int_hook(inode_need_killpriv, 0, dentry);
1325 }
1326
1327 int security_inode_killpriv(struct dentry *dentry)
1328 {
1329 return call_int_hook(inode_killpriv, 0, dentry);
1330 }
1331
1332 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1333 {
1334 struct security_hook_list *hp;
1335 int rc;
1336
1337 if (unlikely(IS_PRIVATE(inode)))
1338 return -EOPNOTSUPP;
1339 /*
1340 * Only one module will provide an attribute with a given name.
1341 */
1342 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1343 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1344 if (rc != -EOPNOTSUPP)
1345 return rc;
1346 }
1347 return -EOPNOTSUPP;
1348 }
1349
1350 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1351 {
1352 struct security_hook_list *hp;
1353 int rc;
1354
1355 if (unlikely(IS_PRIVATE(inode)))
1356 return -EOPNOTSUPP;
1357 /*
1358 * Only one module will provide an attribute with a given name.
1359 */
1360 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1361 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1362 flags);
1363 if (rc != -EOPNOTSUPP)
1364 return rc;
1365 }
1366 return -EOPNOTSUPP;
1367 }
1368
1369 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1370 {
1371 if (unlikely(IS_PRIVATE(inode)))
1372 return 0;
1373 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1374 }
1375 EXPORT_SYMBOL(security_inode_listsecurity);
1376
1377 void security_inode_getsecid(struct inode *inode, u32 *secid)
1378 {
1379 call_void_hook(inode_getsecid, inode, secid);
1380 }
1381
1382 int security_inode_copy_up(struct dentry *src, struct cred **new)
1383 {
1384 return call_int_hook(inode_copy_up, 0, src, new);
1385 }
1386 EXPORT_SYMBOL(security_inode_copy_up);
1387
1388 int security_inode_copy_up_xattr(const char *name)
1389 {
1390 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1391 }
1392 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1393
1394 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1395 struct kernfs_node *kn)
1396 {
1397 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1398 }
1399
1400 int security_file_permission(struct file *file, int mask)
1401 {
1402 int ret;
1403
1404 ret = call_int_hook(file_permission, 0, file, mask);
1405 if (ret)
1406 return ret;
1407
1408 return fsnotify_perm(file, mask);
1409 }
1410
1411 int security_file_alloc(struct file *file)
1412 {
1413 int rc = lsm_file_alloc(file);
1414
1415 if (rc)
1416 return rc;
1417 rc = call_int_hook(file_alloc_security, 0, file);
1418 if (unlikely(rc))
1419 security_file_free(file);
1420 return rc;
1421 }
1422
1423 void security_file_free(struct file *file)
1424 {
1425 void *blob;
1426
1427 call_void_hook(file_free_security, file);
1428
1429 blob = file->f_security;
1430 if (blob) {
1431 file->f_security = NULL;
1432 kmem_cache_free(lsm_file_cache, blob);
1433 }
1434 }
1435
1436 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1437 {
1438 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1439 }
1440
1441 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1442 {
1443 /*
1444 * Does we have PROT_READ and does the application expect
1445 * it to imply PROT_EXEC? If not, nothing to talk about...
1446 */
1447 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1448 return prot;
1449 if (!(current->personality & READ_IMPLIES_EXEC))
1450 return prot;
1451 /*
1452 * if that's an anonymous mapping, let it.
1453 */
1454 if (!file)
1455 return prot | PROT_EXEC;
1456 /*
1457 * ditto if it's not on noexec mount, except that on !MMU we need
1458 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1459 */
1460 if (!path_noexec(&file->f_path)) {
1461 #ifndef CONFIG_MMU
1462 if (file->f_op->mmap_capabilities) {
1463 unsigned caps = file->f_op->mmap_capabilities(file);
1464 if (!(caps & NOMMU_MAP_EXEC))
1465 return prot;
1466 }
1467 #endif
1468 return prot | PROT_EXEC;
1469 }
1470 /* anything on noexec mount won't get PROT_EXEC */
1471 return prot;
1472 }
1473
1474 int security_mmap_file(struct file *file, unsigned long prot,
1475 unsigned long flags)
1476 {
1477 int ret;
1478 ret = call_int_hook(mmap_file, 0, file, prot,
1479 mmap_prot(file, prot), flags);
1480 if (ret)
1481 return ret;
1482 return ima_file_mmap(file, prot);
1483 }
1484
1485 int security_mmap_addr(unsigned long addr)
1486 {
1487 return call_int_hook(mmap_addr, 0, addr);
1488 }
1489
1490 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1491 unsigned long prot)
1492 {
1493 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1494 }
1495
1496 int security_file_lock(struct file *file, unsigned int cmd)
1497 {
1498 return call_int_hook(file_lock, 0, file, cmd);
1499 }
1500
1501 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1502 {
1503 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1504 }
1505
1506 void security_file_set_fowner(struct file *file)
1507 {
1508 call_void_hook(file_set_fowner, file);
1509 }
1510
1511 int security_file_send_sigiotask(struct task_struct *tsk,
1512 struct fown_struct *fown, int sig)
1513 {
1514 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1515 }
1516
1517 int security_file_receive(struct file *file)
1518 {
1519 return call_int_hook(file_receive, 0, file);
1520 }
1521
1522 int security_file_open(struct file *file)
1523 {
1524 int ret;
1525
1526 ret = call_int_hook(file_open, 0, file);
1527 if (ret)
1528 return ret;
1529
1530 return fsnotify_perm(file, MAY_OPEN);
1531 }
1532
1533 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1534 {
1535 int rc = lsm_task_alloc(task);
1536
1537 if (rc)
1538 return rc;
1539 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1540 if (unlikely(rc))
1541 security_task_free(task);
1542 return rc;
1543 }
1544
1545 void security_task_free(struct task_struct *task)
1546 {
1547 call_void_hook(task_free, task);
1548
1549 kfree(task->security);
1550 task->security = NULL;
1551 }
1552
1553 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1554 {
1555 int rc = lsm_cred_alloc(cred, gfp);
1556
1557 if (rc)
1558 return rc;
1559
1560 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1561 if (unlikely(rc))
1562 security_cred_free(cred);
1563 return rc;
1564 }
1565
1566 void security_cred_free(struct cred *cred)
1567 {
1568 /*
1569 * There is a failure case in prepare_creds() that
1570 * may result in a call here with ->security being NULL.
1571 */
1572 if (unlikely(cred->security == NULL))
1573 return;
1574
1575 call_void_hook(cred_free, cred);
1576
1577 kfree(cred->security);
1578 cred->security = NULL;
1579 }
1580
1581 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1582 {
1583 int rc = lsm_cred_alloc(new, gfp);
1584
1585 if (rc)
1586 return rc;
1587
1588 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1589 if (unlikely(rc))
1590 security_cred_free(new);
1591 return rc;
1592 }
1593
1594 void security_transfer_creds(struct cred *new, const struct cred *old)
1595 {
1596 call_void_hook(cred_transfer, new, old);
1597 }
1598
1599 void security_cred_getsecid(const struct cred *c, u32 *secid)
1600 {
1601 *secid = 0;
1602 call_void_hook(cred_getsecid, c, secid);
1603 }
1604 EXPORT_SYMBOL(security_cred_getsecid);
1605
1606 int security_kernel_act_as(struct cred *new, u32 secid)
1607 {
1608 return call_int_hook(kernel_act_as, 0, new, secid);
1609 }
1610
1611 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1612 {
1613 return call_int_hook(kernel_create_files_as, 0, new, inode);
1614 }
1615
1616 int security_kernel_module_request(char *kmod_name)
1617 {
1618 int ret;
1619
1620 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1621 if (ret)
1622 return ret;
1623 return integrity_kernel_module_request(kmod_name);
1624 }
1625
1626 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1627 {
1628 int ret;
1629
1630 ret = call_int_hook(kernel_read_file, 0, file, id);
1631 if (ret)
1632 return ret;
1633 return ima_read_file(file, id);
1634 }
1635 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1636
1637 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1638 enum kernel_read_file_id id)
1639 {
1640 int ret;
1641
1642 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1643 if (ret)
1644 return ret;
1645 return ima_post_read_file(file, buf, size, id);
1646 }
1647 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1648
1649 int security_kernel_load_data(enum kernel_load_data_id id)
1650 {
1651 int ret;
1652
1653 ret = call_int_hook(kernel_load_data, 0, id);
1654 if (ret)
1655 return ret;
1656 return ima_load_data(id);
1657 }
1658 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1659
1660 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1661 int flags)
1662 {
1663 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1664 }
1665
1666 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1667 {
1668 return call_int_hook(task_setpgid, 0, p, pgid);
1669 }
1670
1671 int security_task_getpgid(struct task_struct *p)
1672 {
1673 return call_int_hook(task_getpgid, 0, p);
1674 }
1675
1676 int security_task_getsid(struct task_struct *p)
1677 {
1678 return call_int_hook(task_getsid, 0, p);
1679 }
1680
1681 void security_task_getsecid(struct task_struct *p, u32 *secid)
1682 {
1683 *secid = 0;
1684 call_void_hook(task_getsecid, p, secid);
1685 }
1686 EXPORT_SYMBOL(security_task_getsecid);
1687
1688 int security_task_setnice(struct task_struct *p, int nice)
1689 {
1690 return call_int_hook(task_setnice, 0, p, nice);
1691 }
1692
1693 int security_task_setioprio(struct task_struct *p, int ioprio)
1694 {
1695 return call_int_hook(task_setioprio, 0, p, ioprio);
1696 }
1697
1698 int security_task_getioprio(struct task_struct *p)
1699 {
1700 return call_int_hook(task_getioprio, 0, p);
1701 }
1702
1703 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1704 unsigned int flags)
1705 {
1706 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1707 }
1708
1709 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1710 struct rlimit *new_rlim)
1711 {
1712 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1713 }
1714
1715 int security_task_setscheduler(struct task_struct *p)
1716 {
1717 return call_int_hook(task_setscheduler, 0, p);
1718 }
1719
1720 int security_task_getscheduler(struct task_struct *p)
1721 {
1722 return call_int_hook(task_getscheduler, 0, p);
1723 }
1724
1725 int security_task_movememory(struct task_struct *p)
1726 {
1727 return call_int_hook(task_movememory, 0, p);
1728 }
1729
1730 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1731 int sig, const struct cred *cred)
1732 {
1733 return call_int_hook(task_kill, 0, p, info, sig, cred);
1734 }
1735
1736 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1737 unsigned long arg4, unsigned long arg5)
1738 {
1739 int thisrc;
1740 int rc = -ENOSYS;
1741 struct security_hook_list *hp;
1742
1743 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1744 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1745 if (thisrc != -ENOSYS) {
1746 rc = thisrc;
1747 if (thisrc != 0)
1748 break;
1749 }
1750 }
1751 return rc;
1752 }
1753
1754 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1755 {
1756 call_void_hook(task_to_inode, p, inode);
1757 }
1758
1759 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1760 {
1761 return call_int_hook(ipc_permission, 0, ipcp, flag);
1762 }
1763
1764 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1765 {
1766 *secid = 0;
1767 call_void_hook(ipc_getsecid, ipcp, secid);
1768 }
1769
1770 int security_msg_msg_alloc(struct msg_msg *msg)
1771 {
1772 int rc = lsm_msg_msg_alloc(msg);
1773
1774 if (unlikely(rc))
1775 return rc;
1776 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1777 if (unlikely(rc))
1778 security_msg_msg_free(msg);
1779 return rc;
1780 }
1781
1782 void security_msg_msg_free(struct msg_msg *msg)
1783 {
1784 call_void_hook(msg_msg_free_security, msg);
1785 kfree(msg->security);
1786 msg->security = NULL;
1787 }
1788
1789 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1790 {
1791 int rc = lsm_ipc_alloc(msq);
1792
1793 if (unlikely(rc))
1794 return rc;
1795 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1796 if (unlikely(rc))
1797 security_msg_queue_free(msq);
1798 return rc;
1799 }
1800
1801 void security_msg_queue_free(struct kern_ipc_perm *msq)
1802 {
1803 call_void_hook(msg_queue_free_security, msq);
1804 kfree(msq->security);
1805 msq->security = NULL;
1806 }
1807
1808 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1809 {
1810 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1811 }
1812
1813 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1814 {
1815 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1816 }
1817
1818 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1819 struct msg_msg *msg, int msqflg)
1820 {
1821 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1822 }
1823
1824 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1825 struct task_struct *target, long type, int mode)
1826 {
1827 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1828 }
1829
1830 int security_shm_alloc(struct kern_ipc_perm *shp)
1831 {
1832 int rc = lsm_ipc_alloc(shp);
1833
1834 if (unlikely(rc))
1835 return rc;
1836 rc = call_int_hook(shm_alloc_security, 0, shp);
1837 if (unlikely(rc))
1838 security_shm_free(shp);
1839 return rc;
1840 }
1841
1842 void security_shm_free(struct kern_ipc_perm *shp)
1843 {
1844 call_void_hook(shm_free_security, shp);
1845 kfree(shp->security);
1846 shp->security = NULL;
1847 }
1848
1849 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1850 {
1851 return call_int_hook(shm_associate, 0, shp, shmflg);
1852 }
1853
1854 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1855 {
1856 return call_int_hook(shm_shmctl, 0, shp, cmd);
1857 }
1858
1859 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1860 {
1861 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1862 }
1863
1864 int security_sem_alloc(struct kern_ipc_perm *sma)
1865 {
1866 int rc = lsm_ipc_alloc(sma);
1867
1868 if (unlikely(rc))
1869 return rc;
1870 rc = call_int_hook(sem_alloc_security, 0, sma);
1871 if (unlikely(rc))
1872 security_sem_free(sma);
1873 return rc;
1874 }
1875
1876 void security_sem_free(struct kern_ipc_perm *sma)
1877 {
1878 call_void_hook(sem_free_security, sma);
1879 kfree(sma->security);
1880 sma->security = NULL;
1881 }
1882
1883 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1884 {
1885 return call_int_hook(sem_associate, 0, sma, semflg);
1886 }
1887
1888 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1889 {
1890 return call_int_hook(sem_semctl, 0, sma, cmd);
1891 }
1892
1893 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1894 unsigned nsops, int alter)
1895 {
1896 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1897 }
1898
1899 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1900 {
1901 if (unlikely(inode && IS_PRIVATE(inode)))
1902 return;
1903 call_void_hook(d_instantiate, dentry, inode);
1904 }
1905 EXPORT_SYMBOL(security_d_instantiate);
1906
1907 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1908 char **value)
1909 {
1910 struct security_hook_list *hp;
1911
1912 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1913 if (lsm != NULL && strcmp(lsm, hp->lsm))
1914 continue;
1915 return hp->hook.getprocattr(p, name, value);
1916 }
1917 return -EINVAL;
1918 }
1919
1920 int security_setprocattr(const char *lsm, const char *name, void *value,
1921 size_t size)
1922 {
1923 struct security_hook_list *hp;
1924
1925 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1926 if (lsm != NULL && strcmp(lsm, hp->lsm))
1927 continue;
1928 return hp->hook.setprocattr(name, value, size);
1929 }
1930 return -EINVAL;
1931 }
1932
1933 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1934 {
1935 return call_int_hook(netlink_send, 0, sk, skb);
1936 }
1937
1938 int security_ismaclabel(const char *name)
1939 {
1940 return call_int_hook(ismaclabel, 0, name);
1941 }
1942 EXPORT_SYMBOL(security_ismaclabel);
1943
1944 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1945 {
1946 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1947 seclen);
1948 }
1949 EXPORT_SYMBOL(security_secid_to_secctx);
1950
1951 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1952 {
1953 *secid = 0;
1954 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1955 }
1956 EXPORT_SYMBOL(security_secctx_to_secid);
1957
1958 void security_release_secctx(char *secdata, u32 seclen)
1959 {
1960 call_void_hook(release_secctx, secdata, seclen);
1961 }
1962 EXPORT_SYMBOL(security_release_secctx);
1963
1964 void security_inode_invalidate_secctx(struct inode *inode)
1965 {
1966 call_void_hook(inode_invalidate_secctx, inode);
1967 }
1968 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1969
1970 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1971 {
1972 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1973 }
1974 EXPORT_SYMBOL(security_inode_notifysecctx);
1975
1976 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1977 {
1978 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1979 }
1980 EXPORT_SYMBOL(security_inode_setsecctx);
1981
1982 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1983 {
1984 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1985 }
1986 EXPORT_SYMBOL(security_inode_getsecctx);
1987
1988 #ifdef CONFIG_SECURITY_NETWORK
1989
1990 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1991 {
1992 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1993 }
1994 EXPORT_SYMBOL(security_unix_stream_connect);
1995
1996 int security_unix_may_send(struct socket *sock, struct socket *other)
1997 {
1998 return call_int_hook(unix_may_send, 0, sock, other);
1999 }
2000 EXPORT_SYMBOL(security_unix_may_send);
2001
2002 int security_socket_create(int family, int type, int protocol, int kern)
2003 {
2004 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2005 }
2006
2007 int security_socket_post_create(struct socket *sock, int family,
2008 int type, int protocol, int kern)
2009 {
2010 return call_int_hook(socket_post_create, 0, sock, family, type,
2011 protocol, kern);
2012 }
2013
2014 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2015 {
2016 return call_int_hook(socket_socketpair, 0, socka, sockb);
2017 }
2018 EXPORT_SYMBOL(security_socket_socketpair);
2019
2020 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2021 {
2022 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2023 }
2024
2025 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2026 {
2027 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2028 }
2029
2030 int security_socket_listen(struct socket *sock, int backlog)
2031 {
2032 return call_int_hook(socket_listen, 0, sock, backlog);
2033 }
2034
2035 int security_socket_accept(struct socket *sock, struct socket *newsock)
2036 {
2037 return call_int_hook(socket_accept, 0, sock, newsock);
2038 }
2039
2040 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2041 {
2042 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2043 }
2044
2045 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2046 int size, int flags)
2047 {
2048 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2049 }
2050
2051 int security_socket_getsockname(struct socket *sock)
2052 {
2053 return call_int_hook(socket_getsockname, 0, sock);
2054 }
2055
2056 int security_socket_getpeername(struct socket *sock)
2057 {
2058 return call_int_hook(socket_getpeername, 0, sock);
2059 }
2060
2061 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2062 {
2063 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2064 }
2065
2066 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2067 {
2068 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2069 }
2070
2071 int security_socket_shutdown(struct socket *sock, int how)
2072 {
2073 return call_int_hook(socket_shutdown, 0, sock, how);
2074 }
2075
2076 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2077 {
2078 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2079 }
2080 EXPORT_SYMBOL(security_sock_rcv_skb);
2081
2082 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2083 int __user *optlen, unsigned len)
2084 {
2085 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2086 optval, optlen, len);
2087 }
2088
2089 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2090 {
2091 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2092 skb, secid);
2093 }
2094 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2095
2096 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2097 {
2098 int rc = lsm_sock_alloc(sk, priority);
2099
2100 if (unlikely(rc))
2101 return rc;
2102 rc = call_int_hook(sk_alloc_security, 0, sk, family, priority);
2103 if (unlikely(rc))
2104 security_sk_free(sk);
2105 return rc;
2106 }
2107
2108 void security_sk_free(struct sock *sk)
2109 {
2110 call_void_hook(sk_free_security, sk);
2111 kfree(sk->sk_security);
2112 sk->sk_security = NULL;
2113 }
2114
2115 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2116 {
2117 call_void_hook(sk_clone_security, sk, newsk);
2118 }
2119 EXPORT_SYMBOL(security_sk_clone);
2120
2121 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2122 {
2123 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2124 }
2125 EXPORT_SYMBOL(security_sk_classify_flow);
2126
2127 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2128 {
2129 call_void_hook(req_classify_flow, req, fl);
2130 }
2131 EXPORT_SYMBOL(security_req_classify_flow);
2132
2133 void security_sock_graft(struct sock *sk, struct socket *parent)
2134 {
2135 call_void_hook(sock_graft, sk, parent);
2136 }
2137 EXPORT_SYMBOL(security_sock_graft);
2138
2139 int security_inet_conn_request(struct sock *sk,
2140 struct sk_buff *skb, struct request_sock *req)
2141 {
2142 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2143 }
2144 EXPORT_SYMBOL(security_inet_conn_request);
2145
2146 void security_inet_csk_clone(struct sock *newsk,
2147 const struct request_sock *req)
2148 {
2149 call_void_hook(inet_csk_clone, newsk, req);
2150 }
2151
2152 void security_inet_conn_established(struct sock *sk,
2153 struct sk_buff *skb)
2154 {
2155 call_void_hook(inet_conn_established, sk, skb);
2156 }
2157 EXPORT_SYMBOL(security_inet_conn_established);
2158
2159 int security_secmark_relabel_packet(u32 secid)
2160 {
2161 return call_int_hook(secmark_relabel_packet, 0, secid);
2162 }
2163 EXPORT_SYMBOL(security_secmark_relabel_packet);
2164
2165 void security_secmark_refcount_inc(void)
2166 {
2167 call_void_hook(secmark_refcount_inc);
2168 }
2169 EXPORT_SYMBOL(security_secmark_refcount_inc);
2170
2171 void security_secmark_refcount_dec(void)
2172 {
2173 call_void_hook(secmark_refcount_dec);
2174 }
2175 EXPORT_SYMBOL(security_secmark_refcount_dec);
2176
2177 int security_tun_dev_alloc_security(void **security)
2178 {
2179 return call_int_hook(tun_dev_alloc_security, 0, security);
2180 }
2181 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2182
2183 void security_tun_dev_free_security(void *security)
2184 {
2185 call_void_hook(tun_dev_free_security, security);
2186 }
2187 EXPORT_SYMBOL(security_tun_dev_free_security);
2188
2189 int security_tun_dev_create(void)
2190 {
2191 return call_int_hook(tun_dev_create, 0);
2192 }
2193 EXPORT_SYMBOL(security_tun_dev_create);
2194
2195 int security_tun_dev_attach_queue(void *security)
2196 {
2197 return call_int_hook(tun_dev_attach_queue, 0, security);
2198 }
2199 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2200
2201 int security_tun_dev_attach(struct sock *sk, void *security)
2202 {
2203 return call_int_hook(tun_dev_attach, 0, sk, security);
2204 }
2205 EXPORT_SYMBOL(security_tun_dev_attach);
2206
2207 int security_tun_dev_open(void *security)
2208 {
2209 return call_int_hook(tun_dev_open, 0, security);
2210 }
2211 EXPORT_SYMBOL(security_tun_dev_open);
2212
2213 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2214 {
2215 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2216 }
2217 EXPORT_SYMBOL(security_sctp_assoc_request);
2218
2219 int security_sctp_bind_connect(struct sock *sk, int optname,
2220 struct sockaddr *address, int addrlen)
2221 {
2222 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2223 address, addrlen);
2224 }
2225 EXPORT_SYMBOL(security_sctp_bind_connect);
2226
2227 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2228 struct sock *newsk)
2229 {
2230 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2231 }
2232 EXPORT_SYMBOL(security_sctp_sk_clone);
2233
2234 #endif /* CONFIG_SECURITY_NETWORK */
2235
2236 #ifdef CONFIG_SECURITY_INFINIBAND
2237
2238 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2239 {
2240 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2241 }
2242 EXPORT_SYMBOL(security_ib_pkey_access);
2243
2244 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2245 {
2246 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2247 }
2248 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2249
2250 int security_ib_alloc_security(void **sec)
2251 {
2252 return call_int_hook(ib_alloc_security, 0, sec);
2253 }
2254 EXPORT_SYMBOL(security_ib_alloc_security);
2255
2256 void security_ib_free_security(void *sec)
2257 {
2258 call_void_hook(ib_free_security, sec);
2259 }
2260 EXPORT_SYMBOL(security_ib_free_security);
2261 #endif /* CONFIG_SECURITY_INFINIBAND */
2262
2263 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2264
2265 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2266 struct xfrm_user_sec_ctx *sec_ctx,
2267 gfp_t gfp)
2268 {
2269 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2270 }
2271 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2272
2273 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2274 struct xfrm_sec_ctx **new_ctxp)
2275 {
2276 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2277 }
2278
2279 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2280 {
2281 call_void_hook(xfrm_policy_free_security, ctx);
2282 }
2283 EXPORT_SYMBOL(security_xfrm_policy_free);
2284
2285 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2286 {
2287 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2288 }
2289
2290 int security_xfrm_state_alloc(struct xfrm_state *x,
2291 struct xfrm_user_sec_ctx *sec_ctx)
2292 {
2293 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2294 }
2295 EXPORT_SYMBOL(security_xfrm_state_alloc);
2296
2297 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2298 struct xfrm_sec_ctx *polsec, u32 secid)
2299 {
2300 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2301 }
2302
2303 int security_xfrm_state_delete(struct xfrm_state *x)
2304 {
2305 return call_int_hook(xfrm_state_delete_security, 0, x);
2306 }
2307 EXPORT_SYMBOL(security_xfrm_state_delete);
2308
2309 void security_xfrm_state_free(struct xfrm_state *x)
2310 {
2311 call_void_hook(xfrm_state_free_security, x);
2312 }
2313
2314 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2315 {
2316 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2317 }
2318
2319 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2320 struct xfrm_policy *xp,
2321 const struct flowi *fl)
2322 {
2323 struct security_hook_list *hp;
2324 int rc = 1;
2325
2326 /*
2327 * Since this function is expected to return 0 or 1, the judgment
2328 * becomes difficult if multiple LSMs supply this call. Fortunately,
2329 * we can use the first LSM's judgment because currently only SELinux
2330 * supplies this call.
2331 *
2332 * For speed optimization, we explicitly break the loop rather than
2333 * using the macro
2334 */
2335 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2336 list) {
2337 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2338 break;
2339 }
2340 return rc;
2341 }
2342
2343 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2344 {
2345 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2346 }
2347
2348 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2349 {
2350 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2351 0);
2352
2353 BUG_ON(rc);
2354 }
2355 EXPORT_SYMBOL(security_skb_classify_flow);
2356
2357 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2358
2359 #ifdef CONFIG_KEYS
2360
2361 int security_key_alloc(struct key *key, const struct cred *cred,
2362 unsigned long flags)
2363 {
2364 return call_int_hook(key_alloc, 0, key, cred, flags);
2365 }
2366
2367 void security_key_free(struct key *key)
2368 {
2369 call_void_hook(key_free, key);
2370 }
2371
2372 int security_key_permission(key_ref_t key_ref,
2373 const struct cred *cred, unsigned perm)
2374 {
2375 return call_int_hook(key_permission, 0, key_ref, cred, perm);
2376 }
2377
2378 int security_key_getsecurity(struct key *key, char **_buffer)
2379 {
2380 *_buffer = NULL;
2381 return call_int_hook(key_getsecurity, 0, key, _buffer);
2382 }
2383
2384 #endif /* CONFIG_KEYS */
2385
2386 #ifdef CONFIG_AUDIT
2387
2388 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2389 {
2390 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2391 }
2392
2393 int security_audit_rule_known(struct audit_krule *krule)
2394 {
2395 return call_int_hook(audit_rule_known, 0, krule);
2396 }
2397
2398 void security_audit_rule_free(void *lsmrule)
2399 {
2400 call_void_hook(audit_rule_free, lsmrule);
2401 }
2402
2403 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2404 {
2405 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2406 }
2407 #endif /* CONFIG_AUDIT */
2408
2409 #ifdef CONFIG_BPF_SYSCALL
2410 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2411 {
2412 return call_int_hook(bpf, 0, cmd, attr, size);
2413 }
2414 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2415 {
2416 return call_int_hook(bpf_map, 0, map, fmode);
2417 }
2418 int security_bpf_prog(struct bpf_prog *prog)
2419 {
2420 return call_int_hook(bpf_prog, 0, prog);
2421 }
2422 int security_bpf_map_alloc(struct bpf_map *map)
2423 {
2424 return call_int_hook(bpf_map_alloc_security, 0, map);
2425 }
2426 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2427 {
2428 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2429 }
2430 void security_bpf_map_free(struct bpf_map *map)
2431 {
2432 call_void_hook(bpf_map_free_security, map);
2433 }
2434 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2435 {
2436 call_void_hook(bpf_prog_free_security, aux);
2437 }
2438 #endif /* CONFIG_BPF_SYSCALL */
2439
2440 int security_locked_down(enum lockdown_reason what)
2441 {
2442 return call_int_hook(locked_down, 0, what);
2443 }
2444 EXPORT_SYMBOL(security_locked_down);