]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - security/security.c
Merge tag 'for-5.0-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-jammy-kernel.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2016 Mellanox Technologies
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 */
14
15 #define pr_fmt(fmt) "LSM: " fmt
16
17 #include <linux/bpf.h>
18 #include <linux/capability.h>
19 #include <linux/dcache.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/lsm_hooks.h>
24 #include <linux/integrity.h>
25 #include <linux/ima.h>
26 #include <linux/evm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/mman.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/backing-dev.h>
32 #include <linux/string.h>
33 #include <net/flow.h>
34
35 #define MAX_LSM_EVM_XATTR 2
36
37 /* Maximum number of letters for an LSM name string */
38 #define SECURITY_NAME_MAX 10
39
40 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
42
43 char *lsm_names;
44 /* Boot-time LSM user choice */
45 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
46 CONFIG_DEFAULT_SECURITY;
47
48 static __initdata bool debug;
49 #define init_debug(...) \
50 do { \
51 if (debug) \
52 pr_info(__VA_ARGS__); \
53 } while (0)
54
55 static void __init major_lsm_init(void)
56 {
57 struct lsm_info *lsm;
58 int ret;
59
60 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
61 init_debug("initializing %s\n", lsm->name);
62 ret = lsm->init();
63 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
64 }
65 }
66
67 /**
68 * security_init - initializes the security framework
69 *
70 * This should be called early in the kernel initialization sequence.
71 */
72 int __init security_init(void)
73 {
74 int i;
75 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
76
77 pr_info("Security Framework initializing\n");
78
79 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
80 i++)
81 INIT_HLIST_HEAD(&list[i]);
82
83 /*
84 * Load minor LSMs, with the capability module always first.
85 */
86 capability_add_hooks();
87 yama_add_hooks();
88 loadpin_add_hooks();
89
90 /*
91 * Load all the remaining security modules.
92 */
93 major_lsm_init();
94
95 return 0;
96 }
97
98 /* Save user chosen LSM */
99 static int __init choose_lsm(char *str)
100 {
101 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
102 return 1;
103 }
104 __setup("security=", choose_lsm);
105
106 /* Enable LSM order debugging. */
107 static int __init enable_debug(char *str)
108 {
109 debug = true;
110 return 1;
111 }
112 __setup("lsm.debug", enable_debug);
113
114 static bool match_last_lsm(const char *list, const char *lsm)
115 {
116 const char *last;
117
118 if (WARN_ON(!list || !lsm))
119 return false;
120 last = strrchr(list, ',');
121 if (last)
122 /* Pass the comma, strcmp() will check for '\0' */
123 last++;
124 else
125 last = list;
126 return !strcmp(last, lsm);
127 }
128
129 static int lsm_append(char *new, char **result)
130 {
131 char *cp;
132
133 if (*result == NULL) {
134 *result = kstrdup(new, GFP_KERNEL);
135 if (*result == NULL)
136 return -ENOMEM;
137 } else {
138 /* Check if it is the last registered name */
139 if (match_last_lsm(*result, new))
140 return 0;
141 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
142 if (cp == NULL)
143 return -ENOMEM;
144 kfree(*result);
145 *result = cp;
146 }
147 return 0;
148 }
149
150 /**
151 * security_module_enable - Load given security module on boot ?
152 * @module: the name of the module
153 *
154 * Each LSM must pass this method before registering its own operations
155 * to avoid security registration races. This method may also be used
156 * to check if your LSM is currently loaded during kernel initialization.
157 *
158 * Returns:
159 *
160 * true if:
161 *
162 * - The passed LSM is the one chosen by user at boot time,
163 * - or the passed LSM is configured as the default and the user did not
164 * choose an alternate LSM at boot time.
165 *
166 * Otherwise, return false.
167 */
168 int __init security_module_enable(const char *module)
169 {
170 return !strcmp(module, chosen_lsm);
171 }
172
173 /**
174 * security_add_hooks - Add a modules hooks to the hook lists.
175 * @hooks: the hooks to add
176 * @count: the number of hooks to add
177 * @lsm: the name of the security module
178 *
179 * Each LSM has to register its hooks with the infrastructure.
180 */
181 void __init security_add_hooks(struct security_hook_list *hooks, int count,
182 char *lsm)
183 {
184 int i;
185
186 for (i = 0; i < count; i++) {
187 hooks[i].lsm = lsm;
188 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
189 }
190 if (lsm_append(lsm, &lsm_names) < 0)
191 panic("%s - Cannot get early memory.\n", __func__);
192 }
193
194 int call_lsm_notifier(enum lsm_event event, void *data)
195 {
196 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
197 }
198 EXPORT_SYMBOL(call_lsm_notifier);
199
200 int register_lsm_notifier(struct notifier_block *nb)
201 {
202 return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
203 }
204 EXPORT_SYMBOL(register_lsm_notifier);
205
206 int unregister_lsm_notifier(struct notifier_block *nb)
207 {
208 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
209 }
210 EXPORT_SYMBOL(unregister_lsm_notifier);
211
212 /*
213 * Hook list operation macros.
214 *
215 * call_void_hook:
216 * This is a hook that does not return a value.
217 *
218 * call_int_hook:
219 * This is a hook that returns a value.
220 */
221
222 #define call_void_hook(FUNC, ...) \
223 do { \
224 struct security_hook_list *P; \
225 \
226 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
227 P->hook.FUNC(__VA_ARGS__); \
228 } while (0)
229
230 #define call_int_hook(FUNC, IRC, ...) ({ \
231 int RC = IRC; \
232 do { \
233 struct security_hook_list *P; \
234 \
235 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
236 RC = P->hook.FUNC(__VA_ARGS__); \
237 if (RC != 0) \
238 break; \
239 } \
240 } while (0); \
241 RC; \
242 })
243
244 /* Security operations */
245
246 int security_binder_set_context_mgr(struct task_struct *mgr)
247 {
248 return call_int_hook(binder_set_context_mgr, 0, mgr);
249 }
250
251 int security_binder_transaction(struct task_struct *from,
252 struct task_struct *to)
253 {
254 return call_int_hook(binder_transaction, 0, from, to);
255 }
256
257 int security_binder_transfer_binder(struct task_struct *from,
258 struct task_struct *to)
259 {
260 return call_int_hook(binder_transfer_binder, 0, from, to);
261 }
262
263 int security_binder_transfer_file(struct task_struct *from,
264 struct task_struct *to, struct file *file)
265 {
266 return call_int_hook(binder_transfer_file, 0, from, to, file);
267 }
268
269 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
270 {
271 return call_int_hook(ptrace_access_check, 0, child, mode);
272 }
273
274 int security_ptrace_traceme(struct task_struct *parent)
275 {
276 return call_int_hook(ptrace_traceme, 0, parent);
277 }
278
279 int security_capget(struct task_struct *target,
280 kernel_cap_t *effective,
281 kernel_cap_t *inheritable,
282 kernel_cap_t *permitted)
283 {
284 return call_int_hook(capget, 0, target,
285 effective, inheritable, permitted);
286 }
287
288 int security_capset(struct cred *new, const struct cred *old,
289 const kernel_cap_t *effective,
290 const kernel_cap_t *inheritable,
291 const kernel_cap_t *permitted)
292 {
293 return call_int_hook(capset, 0, new, old,
294 effective, inheritable, permitted);
295 }
296
297 int security_capable(const struct cred *cred, struct user_namespace *ns,
298 int cap)
299 {
300 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
301 }
302
303 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
304 int cap)
305 {
306 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
307 }
308
309 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
310 {
311 return call_int_hook(quotactl, 0, cmds, type, id, sb);
312 }
313
314 int security_quota_on(struct dentry *dentry)
315 {
316 return call_int_hook(quota_on, 0, dentry);
317 }
318
319 int security_syslog(int type)
320 {
321 return call_int_hook(syslog, 0, type);
322 }
323
324 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
325 {
326 return call_int_hook(settime, 0, ts, tz);
327 }
328
329 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
330 {
331 struct security_hook_list *hp;
332 int cap_sys_admin = 1;
333 int rc;
334
335 /*
336 * The module will respond with a positive value if
337 * it thinks the __vm_enough_memory() call should be
338 * made with the cap_sys_admin set. If all of the modules
339 * agree that it should be set it will. If any module
340 * thinks it should not be set it won't.
341 */
342 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
343 rc = hp->hook.vm_enough_memory(mm, pages);
344 if (rc <= 0) {
345 cap_sys_admin = 0;
346 break;
347 }
348 }
349 return __vm_enough_memory(mm, pages, cap_sys_admin);
350 }
351
352 int security_bprm_set_creds(struct linux_binprm *bprm)
353 {
354 return call_int_hook(bprm_set_creds, 0, bprm);
355 }
356
357 int security_bprm_check(struct linux_binprm *bprm)
358 {
359 int ret;
360
361 ret = call_int_hook(bprm_check_security, 0, bprm);
362 if (ret)
363 return ret;
364 return ima_bprm_check(bprm);
365 }
366
367 void security_bprm_committing_creds(struct linux_binprm *bprm)
368 {
369 call_void_hook(bprm_committing_creds, bprm);
370 }
371
372 void security_bprm_committed_creds(struct linux_binprm *bprm)
373 {
374 call_void_hook(bprm_committed_creds, bprm);
375 }
376
377 int security_sb_alloc(struct super_block *sb)
378 {
379 return call_int_hook(sb_alloc_security, 0, sb);
380 }
381
382 void security_sb_free(struct super_block *sb)
383 {
384 call_void_hook(sb_free_security, sb);
385 }
386
387 void security_free_mnt_opts(void **mnt_opts)
388 {
389 if (!*mnt_opts)
390 return;
391 call_void_hook(sb_free_mnt_opts, *mnt_opts);
392 *mnt_opts = NULL;
393 }
394 EXPORT_SYMBOL(security_free_mnt_opts);
395
396 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
397 {
398 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
399 }
400 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
401
402 int security_sb_remount(struct super_block *sb,
403 void *mnt_opts)
404 {
405 return call_int_hook(sb_remount, 0, sb, mnt_opts);
406 }
407 EXPORT_SYMBOL(security_sb_remount);
408
409 int security_sb_kern_mount(struct super_block *sb)
410 {
411 return call_int_hook(sb_kern_mount, 0, sb);
412 }
413
414 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
415 {
416 return call_int_hook(sb_show_options, 0, m, sb);
417 }
418
419 int security_sb_statfs(struct dentry *dentry)
420 {
421 return call_int_hook(sb_statfs, 0, dentry);
422 }
423
424 int security_sb_mount(const char *dev_name, const struct path *path,
425 const char *type, unsigned long flags, void *data)
426 {
427 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
428 }
429
430 int security_sb_umount(struct vfsmount *mnt, int flags)
431 {
432 return call_int_hook(sb_umount, 0, mnt, flags);
433 }
434
435 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
436 {
437 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
438 }
439
440 int security_sb_set_mnt_opts(struct super_block *sb,
441 void *mnt_opts,
442 unsigned long kern_flags,
443 unsigned long *set_kern_flags)
444 {
445 return call_int_hook(sb_set_mnt_opts,
446 mnt_opts ? -EOPNOTSUPP : 0, sb,
447 mnt_opts, kern_flags, set_kern_flags);
448 }
449 EXPORT_SYMBOL(security_sb_set_mnt_opts);
450
451 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
452 struct super_block *newsb,
453 unsigned long kern_flags,
454 unsigned long *set_kern_flags)
455 {
456 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
457 kern_flags, set_kern_flags);
458 }
459 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
460
461 int security_add_mnt_opt(const char *option, const char *val, int len,
462 void **mnt_opts)
463 {
464 return call_int_hook(sb_add_mnt_opt, -EINVAL,
465 option, val, len, mnt_opts);
466 }
467 EXPORT_SYMBOL(security_add_mnt_opt);
468
469 int security_inode_alloc(struct inode *inode)
470 {
471 inode->i_security = NULL;
472 return call_int_hook(inode_alloc_security, 0, inode);
473 }
474
475 void security_inode_free(struct inode *inode)
476 {
477 integrity_inode_free(inode);
478 call_void_hook(inode_free_security, inode);
479 }
480
481 int security_dentry_init_security(struct dentry *dentry, int mode,
482 const struct qstr *name, void **ctx,
483 u32 *ctxlen)
484 {
485 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
486 name, ctx, ctxlen);
487 }
488 EXPORT_SYMBOL(security_dentry_init_security);
489
490 int security_dentry_create_files_as(struct dentry *dentry, int mode,
491 struct qstr *name,
492 const struct cred *old, struct cred *new)
493 {
494 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
495 name, old, new);
496 }
497 EXPORT_SYMBOL(security_dentry_create_files_as);
498
499 int security_inode_init_security(struct inode *inode, struct inode *dir,
500 const struct qstr *qstr,
501 const initxattrs initxattrs, void *fs_data)
502 {
503 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
504 struct xattr *lsm_xattr, *evm_xattr, *xattr;
505 int ret;
506
507 if (unlikely(IS_PRIVATE(inode)))
508 return 0;
509
510 if (!initxattrs)
511 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
512 dir, qstr, NULL, NULL, NULL);
513 memset(new_xattrs, 0, sizeof(new_xattrs));
514 lsm_xattr = new_xattrs;
515 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
516 &lsm_xattr->name,
517 &lsm_xattr->value,
518 &lsm_xattr->value_len);
519 if (ret)
520 goto out;
521
522 evm_xattr = lsm_xattr + 1;
523 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
524 if (ret)
525 goto out;
526 ret = initxattrs(inode, new_xattrs, fs_data);
527 out:
528 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
529 kfree(xattr->value);
530 return (ret == -EOPNOTSUPP) ? 0 : ret;
531 }
532 EXPORT_SYMBOL(security_inode_init_security);
533
534 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
535 const struct qstr *qstr, const char **name,
536 void **value, size_t *len)
537 {
538 if (unlikely(IS_PRIVATE(inode)))
539 return -EOPNOTSUPP;
540 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
541 qstr, name, value, len);
542 }
543 EXPORT_SYMBOL(security_old_inode_init_security);
544
545 #ifdef CONFIG_SECURITY_PATH
546 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
547 unsigned int dev)
548 {
549 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
550 return 0;
551 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
552 }
553 EXPORT_SYMBOL(security_path_mknod);
554
555 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
556 {
557 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
558 return 0;
559 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
560 }
561 EXPORT_SYMBOL(security_path_mkdir);
562
563 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
564 {
565 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
566 return 0;
567 return call_int_hook(path_rmdir, 0, dir, dentry);
568 }
569
570 int security_path_unlink(const struct path *dir, struct dentry *dentry)
571 {
572 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
573 return 0;
574 return call_int_hook(path_unlink, 0, dir, dentry);
575 }
576 EXPORT_SYMBOL(security_path_unlink);
577
578 int security_path_symlink(const struct path *dir, struct dentry *dentry,
579 const char *old_name)
580 {
581 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
582 return 0;
583 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
584 }
585
586 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
587 struct dentry *new_dentry)
588 {
589 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
590 return 0;
591 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
592 }
593
594 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
595 const struct path *new_dir, struct dentry *new_dentry,
596 unsigned int flags)
597 {
598 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
599 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
600 return 0;
601
602 if (flags & RENAME_EXCHANGE) {
603 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
604 old_dir, old_dentry);
605 if (err)
606 return err;
607 }
608
609 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
610 new_dentry);
611 }
612 EXPORT_SYMBOL(security_path_rename);
613
614 int security_path_truncate(const struct path *path)
615 {
616 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
617 return 0;
618 return call_int_hook(path_truncate, 0, path);
619 }
620
621 int security_path_chmod(const struct path *path, umode_t mode)
622 {
623 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
624 return 0;
625 return call_int_hook(path_chmod, 0, path, mode);
626 }
627
628 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
629 {
630 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
631 return 0;
632 return call_int_hook(path_chown, 0, path, uid, gid);
633 }
634
635 int security_path_chroot(const struct path *path)
636 {
637 return call_int_hook(path_chroot, 0, path);
638 }
639 #endif
640
641 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
642 {
643 if (unlikely(IS_PRIVATE(dir)))
644 return 0;
645 return call_int_hook(inode_create, 0, dir, dentry, mode);
646 }
647 EXPORT_SYMBOL_GPL(security_inode_create);
648
649 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
650 struct dentry *new_dentry)
651 {
652 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
653 return 0;
654 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
655 }
656
657 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
658 {
659 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
660 return 0;
661 return call_int_hook(inode_unlink, 0, dir, dentry);
662 }
663
664 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
665 const char *old_name)
666 {
667 if (unlikely(IS_PRIVATE(dir)))
668 return 0;
669 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
670 }
671
672 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
673 {
674 if (unlikely(IS_PRIVATE(dir)))
675 return 0;
676 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
677 }
678 EXPORT_SYMBOL_GPL(security_inode_mkdir);
679
680 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
681 {
682 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
683 return 0;
684 return call_int_hook(inode_rmdir, 0, dir, dentry);
685 }
686
687 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
688 {
689 if (unlikely(IS_PRIVATE(dir)))
690 return 0;
691 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
692 }
693
694 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
695 struct inode *new_dir, struct dentry *new_dentry,
696 unsigned int flags)
697 {
698 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
699 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
700 return 0;
701
702 if (flags & RENAME_EXCHANGE) {
703 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
704 old_dir, old_dentry);
705 if (err)
706 return err;
707 }
708
709 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
710 new_dir, new_dentry);
711 }
712
713 int security_inode_readlink(struct dentry *dentry)
714 {
715 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
716 return 0;
717 return call_int_hook(inode_readlink, 0, dentry);
718 }
719
720 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
721 bool rcu)
722 {
723 if (unlikely(IS_PRIVATE(inode)))
724 return 0;
725 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
726 }
727
728 int security_inode_permission(struct inode *inode, int mask)
729 {
730 if (unlikely(IS_PRIVATE(inode)))
731 return 0;
732 return call_int_hook(inode_permission, 0, inode, mask);
733 }
734
735 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
736 {
737 int ret;
738
739 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
740 return 0;
741 ret = call_int_hook(inode_setattr, 0, dentry, attr);
742 if (ret)
743 return ret;
744 return evm_inode_setattr(dentry, attr);
745 }
746 EXPORT_SYMBOL_GPL(security_inode_setattr);
747
748 int security_inode_getattr(const struct path *path)
749 {
750 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
751 return 0;
752 return call_int_hook(inode_getattr, 0, path);
753 }
754
755 int security_inode_setxattr(struct dentry *dentry, const char *name,
756 const void *value, size_t size, int flags)
757 {
758 int ret;
759
760 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
761 return 0;
762 /*
763 * SELinux and Smack integrate the cap call,
764 * so assume that all LSMs supplying this call do so.
765 */
766 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
767 flags);
768
769 if (ret == 1)
770 ret = cap_inode_setxattr(dentry, name, value, size, flags);
771 if (ret)
772 return ret;
773 ret = ima_inode_setxattr(dentry, name, value, size);
774 if (ret)
775 return ret;
776 return evm_inode_setxattr(dentry, name, value, size);
777 }
778
779 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
780 const void *value, size_t size, int flags)
781 {
782 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
783 return;
784 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
785 evm_inode_post_setxattr(dentry, name, value, size);
786 }
787
788 int security_inode_getxattr(struct dentry *dentry, const char *name)
789 {
790 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
791 return 0;
792 return call_int_hook(inode_getxattr, 0, dentry, name);
793 }
794
795 int security_inode_listxattr(struct dentry *dentry)
796 {
797 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
798 return 0;
799 return call_int_hook(inode_listxattr, 0, dentry);
800 }
801
802 int security_inode_removexattr(struct dentry *dentry, const char *name)
803 {
804 int ret;
805
806 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
807 return 0;
808 /*
809 * SELinux and Smack integrate the cap call,
810 * so assume that all LSMs supplying this call do so.
811 */
812 ret = call_int_hook(inode_removexattr, 1, dentry, name);
813 if (ret == 1)
814 ret = cap_inode_removexattr(dentry, name);
815 if (ret)
816 return ret;
817 ret = ima_inode_removexattr(dentry, name);
818 if (ret)
819 return ret;
820 return evm_inode_removexattr(dentry, name);
821 }
822
823 int security_inode_need_killpriv(struct dentry *dentry)
824 {
825 return call_int_hook(inode_need_killpriv, 0, dentry);
826 }
827
828 int security_inode_killpriv(struct dentry *dentry)
829 {
830 return call_int_hook(inode_killpriv, 0, dentry);
831 }
832
833 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
834 {
835 struct security_hook_list *hp;
836 int rc;
837
838 if (unlikely(IS_PRIVATE(inode)))
839 return -EOPNOTSUPP;
840 /*
841 * Only one module will provide an attribute with a given name.
842 */
843 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
844 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
845 if (rc != -EOPNOTSUPP)
846 return rc;
847 }
848 return -EOPNOTSUPP;
849 }
850
851 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
852 {
853 struct security_hook_list *hp;
854 int rc;
855
856 if (unlikely(IS_PRIVATE(inode)))
857 return -EOPNOTSUPP;
858 /*
859 * Only one module will provide an attribute with a given name.
860 */
861 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
862 rc = hp->hook.inode_setsecurity(inode, name, value, size,
863 flags);
864 if (rc != -EOPNOTSUPP)
865 return rc;
866 }
867 return -EOPNOTSUPP;
868 }
869
870 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
871 {
872 if (unlikely(IS_PRIVATE(inode)))
873 return 0;
874 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
875 }
876 EXPORT_SYMBOL(security_inode_listsecurity);
877
878 void security_inode_getsecid(struct inode *inode, u32 *secid)
879 {
880 call_void_hook(inode_getsecid, inode, secid);
881 }
882
883 int security_inode_copy_up(struct dentry *src, struct cred **new)
884 {
885 return call_int_hook(inode_copy_up, 0, src, new);
886 }
887 EXPORT_SYMBOL(security_inode_copy_up);
888
889 int security_inode_copy_up_xattr(const char *name)
890 {
891 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
892 }
893 EXPORT_SYMBOL(security_inode_copy_up_xattr);
894
895 int security_file_permission(struct file *file, int mask)
896 {
897 int ret;
898
899 ret = call_int_hook(file_permission, 0, file, mask);
900 if (ret)
901 return ret;
902
903 return fsnotify_perm(file, mask);
904 }
905
906 int security_file_alloc(struct file *file)
907 {
908 return call_int_hook(file_alloc_security, 0, file);
909 }
910
911 void security_file_free(struct file *file)
912 {
913 call_void_hook(file_free_security, file);
914 }
915
916 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
917 {
918 return call_int_hook(file_ioctl, 0, file, cmd, arg);
919 }
920
921 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
922 {
923 /*
924 * Does we have PROT_READ and does the application expect
925 * it to imply PROT_EXEC? If not, nothing to talk about...
926 */
927 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
928 return prot;
929 if (!(current->personality & READ_IMPLIES_EXEC))
930 return prot;
931 /*
932 * if that's an anonymous mapping, let it.
933 */
934 if (!file)
935 return prot | PROT_EXEC;
936 /*
937 * ditto if it's not on noexec mount, except that on !MMU we need
938 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
939 */
940 if (!path_noexec(&file->f_path)) {
941 #ifndef CONFIG_MMU
942 if (file->f_op->mmap_capabilities) {
943 unsigned caps = file->f_op->mmap_capabilities(file);
944 if (!(caps & NOMMU_MAP_EXEC))
945 return prot;
946 }
947 #endif
948 return prot | PROT_EXEC;
949 }
950 /* anything on noexec mount won't get PROT_EXEC */
951 return prot;
952 }
953
954 int security_mmap_file(struct file *file, unsigned long prot,
955 unsigned long flags)
956 {
957 int ret;
958 ret = call_int_hook(mmap_file, 0, file, prot,
959 mmap_prot(file, prot), flags);
960 if (ret)
961 return ret;
962 return ima_file_mmap(file, prot);
963 }
964
965 int security_mmap_addr(unsigned long addr)
966 {
967 return call_int_hook(mmap_addr, 0, addr);
968 }
969
970 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
971 unsigned long prot)
972 {
973 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
974 }
975
976 int security_file_lock(struct file *file, unsigned int cmd)
977 {
978 return call_int_hook(file_lock, 0, file, cmd);
979 }
980
981 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
982 {
983 return call_int_hook(file_fcntl, 0, file, cmd, arg);
984 }
985
986 void security_file_set_fowner(struct file *file)
987 {
988 call_void_hook(file_set_fowner, file);
989 }
990
991 int security_file_send_sigiotask(struct task_struct *tsk,
992 struct fown_struct *fown, int sig)
993 {
994 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
995 }
996
997 int security_file_receive(struct file *file)
998 {
999 return call_int_hook(file_receive, 0, file);
1000 }
1001
1002 int security_file_open(struct file *file)
1003 {
1004 int ret;
1005
1006 ret = call_int_hook(file_open, 0, file);
1007 if (ret)
1008 return ret;
1009
1010 return fsnotify_perm(file, MAY_OPEN);
1011 }
1012
1013 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1014 {
1015 return call_int_hook(task_alloc, 0, task, clone_flags);
1016 }
1017
1018 void security_task_free(struct task_struct *task)
1019 {
1020 call_void_hook(task_free, task);
1021 }
1022
1023 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1024 {
1025 return call_int_hook(cred_alloc_blank, 0, cred, gfp);
1026 }
1027
1028 void security_cred_free(struct cred *cred)
1029 {
1030 call_void_hook(cred_free, cred);
1031 }
1032
1033 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1034 {
1035 return call_int_hook(cred_prepare, 0, new, old, gfp);
1036 }
1037
1038 void security_transfer_creds(struct cred *new, const struct cred *old)
1039 {
1040 call_void_hook(cred_transfer, new, old);
1041 }
1042
1043 void security_cred_getsecid(const struct cred *c, u32 *secid)
1044 {
1045 *secid = 0;
1046 call_void_hook(cred_getsecid, c, secid);
1047 }
1048 EXPORT_SYMBOL(security_cred_getsecid);
1049
1050 int security_kernel_act_as(struct cred *new, u32 secid)
1051 {
1052 return call_int_hook(kernel_act_as, 0, new, secid);
1053 }
1054
1055 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1056 {
1057 return call_int_hook(kernel_create_files_as, 0, new, inode);
1058 }
1059
1060 int security_kernel_module_request(char *kmod_name)
1061 {
1062 int ret;
1063
1064 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1065 if (ret)
1066 return ret;
1067 return integrity_kernel_module_request(kmod_name);
1068 }
1069
1070 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1071 {
1072 int ret;
1073
1074 ret = call_int_hook(kernel_read_file, 0, file, id);
1075 if (ret)
1076 return ret;
1077 return ima_read_file(file, id);
1078 }
1079 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1080
1081 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1082 enum kernel_read_file_id id)
1083 {
1084 int ret;
1085
1086 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1087 if (ret)
1088 return ret;
1089 return ima_post_read_file(file, buf, size, id);
1090 }
1091 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1092
1093 int security_kernel_load_data(enum kernel_load_data_id id)
1094 {
1095 int ret;
1096
1097 ret = call_int_hook(kernel_load_data, 0, id);
1098 if (ret)
1099 return ret;
1100 return ima_load_data(id);
1101 }
1102 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1103
1104 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1105 int flags)
1106 {
1107 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1108 }
1109
1110 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1111 {
1112 return call_int_hook(task_setpgid, 0, p, pgid);
1113 }
1114
1115 int security_task_getpgid(struct task_struct *p)
1116 {
1117 return call_int_hook(task_getpgid, 0, p);
1118 }
1119
1120 int security_task_getsid(struct task_struct *p)
1121 {
1122 return call_int_hook(task_getsid, 0, p);
1123 }
1124
1125 void security_task_getsecid(struct task_struct *p, u32 *secid)
1126 {
1127 *secid = 0;
1128 call_void_hook(task_getsecid, p, secid);
1129 }
1130 EXPORT_SYMBOL(security_task_getsecid);
1131
1132 int security_task_setnice(struct task_struct *p, int nice)
1133 {
1134 return call_int_hook(task_setnice, 0, p, nice);
1135 }
1136
1137 int security_task_setioprio(struct task_struct *p, int ioprio)
1138 {
1139 return call_int_hook(task_setioprio, 0, p, ioprio);
1140 }
1141
1142 int security_task_getioprio(struct task_struct *p)
1143 {
1144 return call_int_hook(task_getioprio, 0, p);
1145 }
1146
1147 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1148 unsigned int flags)
1149 {
1150 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1151 }
1152
1153 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1154 struct rlimit *new_rlim)
1155 {
1156 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1157 }
1158
1159 int security_task_setscheduler(struct task_struct *p)
1160 {
1161 return call_int_hook(task_setscheduler, 0, p);
1162 }
1163
1164 int security_task_getscheduler(struct task_struct *p)
1165 {
1166 return call_int_hook(task_getscheduler, 0, p);
1167 }
1168
1169 int security_task_movememory(struct task_struct *p)
1170 {
1171 return call_int_hook(task_movememory, 0, p);
1172 }
1173
1174 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1175 int sig, const struct cred *cred)
1176 {
1177 return call_int_hook(task_kill, 0, p, info, sig, cred);
1178 }
1179
1180 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1181 unsigned long arg4, unsigned long arg5)
1182 {
1183 int thisrc;
1184 int rc = -ENOSYS;
1185 struct security_hook_list *hp;
1186
1187 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1188 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1189 if (thisrc != -ENOSYS) {
1190 rc = thisrc;
1191 if (thisrc != 0)
1192 break;
1193 }
1194 }
1195 return rc;
1196 }
1197
1198 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1199 {
1200 call_void_hook(task_to_inode, p, inode);
1201 }
1202
1203 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1204 {
1205 return call_int_hook(ipc_permission, 0, ipcp, flag);
1206 }
1207
1208 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1209 {
1210 *secid = 0;
1211 call_void_hook(ipc_getsecid, ipcp, secid);
1212 }
1213
1214 int security_msg_msg_alloc(struct msg_msg *msg)
1215 {
1216 return call_int_hook(msg_msg_alloc_security, 0, msg);
1217 }
1218
1219 void security_msg_msg_free(struct msg_msg *msg)
1220 {
1221 call_void_hook(msg_msg_free_security, msg);
1222 }
1223
1224 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1225 {
1226 return call_int_hook(msg_queue_alloc_security, 0, msq);
1227 }
1228
1229 void security_msg_queue_free(struct kern_ipc_perm *msq)
1230 {
1231 call_void_hook(msg_queue_free_security, msq);
1232 }
1233
1234 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1235 {
1236 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1237 }
1238
1239 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1240 {
1241 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1242 }
1243
1244 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1245 struct msg_msg *msg, int msqflg)
1246 {
1247 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1248 }
1249
1250 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1251 struct task_struct *target, long type, int mode)
1252 {
1253 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1254 }
1255
1256 int security_shm_alloc(struct kern_ipc_perm *shp)
1257 {
1258 return call_int_hook(shm_alloc_security, 0, shp);
1259 }
1260
1261 void security_shm_free(struct kern_ipc_perm *shp)
1262 {
1263 call_void_hook(shm_free_security, shp);
1264 }
1265
1266 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1267 {
1268 return call_int_hook(shm_associate, 0, shp, shmflg);
1269 }
1270
1271 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1272 {
1273 return call_int_hook(shm_shmctl, 0, shp, cmd);
1274 }
1275
1276 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1277 {
1278 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1279 }
1280
1281 int security_sem_alloc(struct kern_ipc_perm *sma)
1282 {
1283 return call_int_hook(sem_alloc_security, 0, sma);
1284 }
1285
1286 void security_sem_free(struct kern_ipc_perm *sma)
1287 {
1288 call_void_hook(sem_free_security, sma);
1289 }
1290
1291 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1292 {
1293 return call_int_hook(sem_associate, 0, sma, semflg);
1294 }
1295
1296 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1297 {
1298 return call_int_hook(sem_semctl, 0, sma, cmd);
1299 }
1300
1301 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1302 unsigned nsops, int alter)
1303 {
1304 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1305 }
1306
1307 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1308 {
1309 if (unlikely(inode && IS_PRIVATE(inode)))
1310 return;
1311 call_void_hook(d_instantiate, dentry, inode);
1312 }
1313 EXPORT_SYMBOL(security_d_instantiate);
1314
1315 int security_getprocattr(struct task_struct *p, char *name, char **value)
1316 {
1317 return call_int_hook(getprocattr, -EINVAL, p, name, value);
1318 }
1319
1320 int security_setprocattr(const char *name, void *value, size_t size)
1321 {
1322 return call_int_hook(setprocattr, -EINVAL, name, value, size);
1323 }
1324
1325 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1326 {
1327 return call_int_hook(netlink_send, 0, sk, skb);
1328 }
1329
1330 int security_ismaclabel(const char *name)
1331 {
1332 return call_int_hook(ismaclabel, 0, name);
1333 }
1334 EXPORT_SYMBOL(security_ismaclabel);
1335
1336 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1337 {
1338 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1339 seclen);
1340 }
1341 EXPORT_SYMBOL(security_secid_to_secctx);
1342
1343 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1344 {
1345 *secid = 0;
1346 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1347 }
1348 EXPORT_SYMBOL(security_secctx_to_secid);
1349
1350 void security_release_secctx(char *secdata, u32 seclen)
1351 {
1352 call_void_hook(release_secctx, secdata, seclen);
1353 }
1354 EXPORT_SYMBOL(security_release_secctx);
1355
1356 void security_inode_invalidate_secctx(struct inode *inode)
1357 {
1358 call_void_hook(inode_invalidate_secctx, inode);
1359 }
1360 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1361
1362 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1363 {
1364 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1365 }
1366 EXPORT_SYMBOL(security_inode_notifysecctx);
1367
1368 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1369 {
1370 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1371 }
1372 EXPORT_SYMBOL(security_inode_setsecctx);
1373
1374 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1375 {
1376 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1377 }
1378 EXPORT_SYMBOL(security_inode_getsecctx);
1379
1380 #ifdef CONFIG_SECURITY_NETWORK
1381
1382 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1383 {
1384 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1385 }
1386 EXPORT_SYMBOL(security_unix_stream_connect);
1387
1388 int security_unix_may_send(struct socket *sock, struct socket *other)
1389 {
1390 return call_int_hook(unix_may_send, 0, sock, other);
1391 }
1392 EXPORT_SYMBOL(security_unix_may_send);
1393
1394 int security_socket_create(int family, int type, int protocol, int kern)
1395 {
1396 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1397 }
1398
1399 int security_socket_post_create(struct socket *sock, int family,
1400 int type, int protocol, int kern)
1401 {
1402 return call_int_hook(socket_post_create, 0, sock, family, type,
1403 protocol, kern);
1404 }
1405
1406 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1407 {
1408 return call_int_hook(socket_socketpair, 0, socka, sockb);
1409 }
1410 EXPORT_SYMBOL(security_socket_socketpair);
1411
1412 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1413 {
1414 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1415 }
1416
1417 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1418 {
1419 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1420 }
1421
1422 int security_socket_listen(struct socket *sock, int backlog)
1423 {
1424 return call_int_hook(socket_listen, 0, sock, backlog);
1425 }
1426
1427 int security_socket_accept(struct socket *sock, struct socket *newsock)
1428 {
1429 return call_int_hook(socket_accept, 0, sock, newsock);
1430 }
1431
1432 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1433 {
1434 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1435 }
1436
1437 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1438 int size, int flags)
1439 {
1440 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1441 }
1442
1443 int security_socket_getsockname(struct socket *sock)
1444 {
1445 return call_int_hook(socket_getsockname, 0, sock);
1446 }
1447
1448 int security_socket_getpeername(struct socket *sock)
1449 {
1450 return call_int_hook(socket_getpeername, 0, sock);
1451 }
1452
1453 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1454 {
1455 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1456 }
1457
1458 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1459 {
1460 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1461 }
1462
1463 int security_socket_shutdown(struct socket *sock, int how)
1464 {
1465 return call_int_hook(socket_shutdown, 0, sock, how);
1466 }
1467
1468 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1469 {
1470 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1471 }
1472 EXPORT_SYMBOL(security_sock_rcv_skb);
1473
1474 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1475 int __user *optlen, unsigned len)
1476 {
1477 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1478 optval, optlen, len);
1479 }
1480
1481 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1482 {
1483 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1484 skb, secid);
1485 }
1486 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1487
1488 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1489 {
1490 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1491 }
1492
1493 void security_sk_free(struct sock *sk)
1494 {
1495 call_void_hook(sk_free_security, sk);
1496 }
1497
1498 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1499 {
1500 call_void_hook(sk_clone_security, sk, newsk);
1501 }
1502 EXPORT_SYMBOL(security_sk_clone);
1503
1504 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1505 {
1506 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1507 }
1508 EXPORT_SYMBOL(security_sk_classify_flow);
1509
1510 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1511 {
1512 call_void_hook(req_classify_flow, req, fl);
1513 }
1514 EXPORT_SYMBOL(security_req_classify_flow);
1515
1516 void security_sock_graft(struct sock *sk, struct socket *parent)
1517 {
1518 call_void_hook(sock_graft, sk, parent);
1519 }
1520 EXPORT_SYMBOL(security_sock_graft);
1521
1522 int security_inet_conn_request(struct sock *sk,
1523 struct sk_buff *skb, struct request_sock *req)
1524 {
1525 return call_int_hook(inet_conn_request, 0, sk, skb, req);
1526 }
1527 EXPORT_SYMBOL(security_inet_conn_request);
1528
1529 void security_inet_csk_clone(struct sock *newsk,
1530 const struct request_sock *req)
1531 {
1532 call_void_hook(inet_csk_clone, newsk, req);
1533 }
1534
1535 void security_inet_conn_established(struct sock *sk,
1536 struct sk_buff *skb)
1537 {
1538 call_void_hook(inet_conn_established, sk, skb);
1539 }
1540 EXPORT_SYMBOL(security_inet_conn_established);
1541
1542 int security_secmark_relabel_packet(u32 secid)
1543 {
1544 return call_int_hook(secmark_relabel_packet, 0, secid);
1545 }
1546 EXPORT_SYMBOL(security_secmark_relabel_packet);
1547
1548 void security_secmark_refcount_inc(void)
1549 {
1550 call_void_hook(secmark_refcount_inc);
1551 }
1552 EXPORT_SYMBOL(security_secmark_refcount_inc);
1553
1554 void security_secmark_refcount_dec(void)
1555 {
1556 call_void_hook(secmark_refcount_dec);
1557 }
1558 EXPORT_SYMBOL(security_secmark_refcount_dec);
1559
1560 int security_tun_dev_alloc_security(void **security)
1561 {
1562 return call_int_hook(tun_dev_alloc_security, 0, security);
1563 }
1564 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1565
1566 void security_tun_dev_free_security(void *security)
1567 {
1568 call_void_hook(tun_dev_free_security, security);
1569 }
1570 EXPORT_SYMBOL(security_tun_dev_free_security);
1571
1572 int security_tun_dev_create(void)
1573 {
1574 return call_int_hook(tun_dev_create, 0);
1575 }
1576 EXPORT_SYMBOL(security_tun_dev_create);
1577
1578 int security_tun_dev_attach_queue(void *security)
1579 {
1580 return call_int_hook(tun_dev_attach_queue, 0, security);
1581 }
1582 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1583
1584 int security_tun_dev_attach(struct sock *sk, void *security)
1585 {
1586 return call_int_hook(tun_dev_attach, 0, sk, security);
1587 }
1588 EXPORT_SYMBOL(security_tun_dev_attach);
1589
1590 int security_tun_dev_open(void *security)
1591 {
1592 return call_int_hook(tun_dev_open, 0, security);
1593 }
1594 EXPORT_SYMBOL(security_tun_dev_open);
1595
1596 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
1597 {
1598 return call_int_hook(sctp_assoc_request, 0, ep, skb);
1599 }
1600 EXPORT_SYMBOL(security_sctp_assoc_request);
1601
1602 int security_sctp_bind_connect(struct sock *sk, int optname,
1603 struct sockaddr *address, int addrlen)
1604 {
1605 return call_int_hook(sctp_bind_connect, 0, sk, optname,
1606 address, addrlen);
1607 }
1608 EXPORT_SYMBOL(security_sctp_bind_connect);
1609
1610 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
1611 struct sock *newsk)
1612 {
1613 call_void_hook(sctp_sk_clone, ep, sk, newsk);
1614 }
1615 EXPORT_SYMBOL(security_sctp_sk_clone);
1616
1617 #endif /* CONFIG_SECURITY_NETWORK */
1618
1619 #ifdef CONFIG_SECURITY_INFINIBAND
1620
1621 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1622 {
1623 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1624 }
1625 EXPORT_SYMBOL(security_ib_pkey_access);
1626
1627 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1628 {
1629 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1630 }
1631 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1632
1633 int security_ib_alloc_security(void **sec)
1634 {
1635 return call_int_hook(ib_alloc_security, 0, sec);
1636 }
1637 EXPORT_SYMBOL(security_ib_alloc_security);
1638
1639 void security_ib_free_security(void *sec)
1640 {
1641 call_void_hook(ib_free_security, sec);
1642 }
1643 EXPORT_SYMBOL(security_ib_free_security);
1644 #endif /* CONFIG_SECURITY_INFINIBAND */
1645
1646 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1647
1648 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1649 struct xfrm_user_sec_ctx *sec_ctx,
1650 gfp_t gfp)
1651 {
1652 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1653 }
1654 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1655
1656 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1657 struct xfrm_sec_ctx **new_ctxp)
1658 {
1659 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1660 }
1661
1662 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1663 {
1664 call_void_hook(xfrm_policy_free_security, ctx);
1665 }
1666 EXPORT_SYMBOL(security_xfrm_policy_free);
1667
1668 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1669 {
1670 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1671 }
1672
1673 int security_xfrm_state_alloc(struct xfrm_state *x,
1674 struct xfrm_user_sec_ctx *sec_ctx)
1675 {
1676 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1677 }
1678 EXPORT_SYMBOL(security_xfrm_state_alloc);
1679
1680 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1681 struct xfrm_sec_ctx *polsec, u32 secid)
1682 {
1683 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1684 }
1685
1686 int security_xfrm_state_delete(struct xfrm_state *x)
1687 {
1688 return call_int_hook(xfrm_state_delete_security, 0, x);
1689 }
1690 EXPORT_SYMBOL(security_xfrm_state_delete);
1691
1692 void security_xfrm_state_free(struct xfrm_state *x)
1693 {
1694 call_void_hook(xfrm_state_free_security, x);
1695 }
1696
1697 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1698 {
1699 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1700 }
1701
1702 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1703 struct xfrm_policy *xp,
1704 const struct flowi *fl)
1705 {
1706 struct security_hook_list *hp;
1707 int rc = 1;
1708
1709 /*
1710 * Since this function is expected to return 0 or 1, the judgment
1711 * becomes difficult if multiple LSMs supply this call. Fortunately,
1712 * we can use the first LSM's judgment because currently only SELinux
1713 * supplies this call.
1714 *
1715 * For speed optimization, we explicitly break the loop rather than
1716 * using the macro
1717 */
1718 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1719 list) {
1720 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1721 break;
1722 }
1723 return rc;
1724 }
1725
1726 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1727 {
1728 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1729 }
1730
1731 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1732 {
1733 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1734 0);
1735
1736 BUG_ON(rc);
1737 }
1738 EXPORT_SYMBOL(security_skb_classify_flow);
1739
1740 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1741
1742 #ifdef CONFIG_KEYS
1743
1744 int security_key_alloc(struct key *key, const struct cred *cred,
1745 unsigned long flags)
1746 {
1747 return call_int_hook(key_alloc, 0, key, cred, flags);
1748 }
1749
1750 void security_key_free(struct key *key)
1751 {
1752 call_void_hook(key_free, key);
1753 }
1754
1755 int security_key_permission(key_ref_t key_ref,
1756 const struct cred *cred, unsigned perm)
1757 {
1758 return call_int_hook(key_permission, 0, key_ref, cred, perm);
1759 }
1760
1761 int security_key_getsecurity(struct key *key, char **_buffer)
1762 {
1763 *_buffer = NULL;
1764 return call_int_hook(key_getsecurity, 0, key, _buffer);
1765 }
1766
1767 #endif /* CONFIG_KEYS */
1768
1769 #ifdef CONFIG_AUDIT
1770
1771 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1772 {
1773 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1774 }
1775
1776 int security_audit_rule_known(struct audit_krule *krule)
1777 {
1778 return call_int_hook(audit_rule_known, 0, krule);
1779 }
1780
1781 void security_audit_rule_free(void *lsmrule)
1782 {
1783 call_void_hook(audit_rule_free, lsmrule);
1784 }
1785
1786 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1787 struct audit_context *actx)
1788 {
1789 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1790 actx);
1791 }
1792 #endif /* CONFIG_AUDIT */
1793
1794 #ifdef CONFIG_BPF_SYSCALL
1795 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1796 {
1797 return call_int_hook(bpf, 0, cmd, attr, size);
1798 }
1799 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1800 {
1801 return call_int_hook(bpf_map, 0, map, fmode);
1802 }
1803 int security_bpf_prog(struct bpf_prog *prog)
1804 {
1805 return call_int_hook(bpf_prog, 0, prog);
1806 }
1807 int security_bpf_map_alloc(struct bpf_map *map)
1808 {
1809 return call_int_hook(bpf_map_alloc_security, 0, map);
1810 }
1811 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1812 {
1813 return call_int_hook(bpf_prog_alloc_security, 0, aux);
1814 }
1815 void security_bpf_map_free(struct bpf_map *map)
1816 {
1817 call_void_hook(bpf_map_free_security, map);
1818 }
1819 void security_bpf_prog_free(struct bpf_prog_aux *aux)
1820 {
1821 call_void_hook(bpf_prog_free_security, aux);
1822 }
1823 #endif /* CONFIG_BPF_SYSCALL */