]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/selinux/avc.c
Merge tag 'for-linus' of git://github.com/rustyrussell/linux
[mirror_ubuntu-bionic-kernel.git] / security / selinux / avc.c
1 /*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
35
36 #define AVC_CACHE_SLOTS 512
37 #define AVC_DEF_CACHE_THRESHOLD 512
38 #define AVC_CACHE_RECLAIM 16
39
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
42 #else
43 #define avc_cache_stats_incr(field) do {} while (0)
44 #endif
45
46 struct avc_entry {
47 u32 ssid;
48 u32 tsid;
49 u16 tclass;
50 struct av_decision avd;
51 };
52
53 struct avc_node {
54 struct avc_entry ae;
55 struct hlist_node list; /* anchored in avc_cache->slots[i] */
56 struct rcu_head rhead;
57 };
58
59 struct avc_cache {
60 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62 atomic_t lru_hint; /* LRU hint for reclaim scan */
63 atomic_t active_nodes;
64 u32 latest_notif; /* latest revocation notification */
65 };
66
67 struct avc_callback_node {
68 int (*callback) (u32 event, u32 ssid, u32 tsid,
69 u16 tclass, u32 perms,
70 u32 *out_retained);
71 u32 events;
72 u32 ssid;
73 u32 tsid;
74 u16 tclass;
75 u32 perms;
76 struct avc_callback_node *next;
77 };
78
79 /* Exported via selinufs */
80 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
81
82 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
83 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
84 #endif
85
86 static struct avc_cache avc_cache;
87 static struct avc_callback_node *avc_callbacks;
88 static struct kmem_cache *avc_node_cachep;
89
90 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
91 {
92 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
93 }
94
95 /**
96 * avc_dump_av - Display an access vector in human-readable form.
97 * @tclass: target security class
98 * @av: access vector
99 */
100 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
101 {
102 const char **perms;
103 int i, perm;
104
105 if (av == 0) {
106 audit_log_format(ab, " null");
107 return;
108 }
109
110 perms = secclass_map[tclass-1].perms;
111
112 audit_log_format(ab, " {");
113 i = 0;
114 perm = 1;
115 while (i < (sizeof(av) * 8)) {
116 if ((perm & av) && perms[i]) {
117 audit_log_format(ab, " %s", perms[i]);
118 av &= ~perm;
119 }
120 i++;
121 perm <<= 1;
122 }
123
124 if (av)
125 audit_log_format(ab, " 0x%x", av);
126
127 audit_log_format(ab, " }");
128 }
129
130 /**
131 * avc_dump_query - Display a SID pair and a class in human-readable form.
132 * @ssid: source security identifier
133 * @tsid: target security identifier
134 * @tclass: target security class
135 */
136 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
137 {
138 int rc;
139 char *scontext;
140 u32 scontext_len;
141
142 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
143 if (rc)
144 audit_log_format(ab, "ssid=%d", ssid);
145 else {
146 audit_log_format(ab, "scontext=%s", scontext);
147 kfree(scontext);
148 }
149
150 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
151 if (rc)
152 audit_log_format(ab, " tsid=%d", tsid);
153 else {
154 audit_log_format(ab, " tcontext=%s", scontext);
155 kfree(scontext);
156 }
157
158 BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
159 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
160 }
161
162 /**
163 * avc_init - Initialize the AVC.
164 *
165 * Initialize the access vector cache.
166 */
167 void __init avc_init(void)
168 {
169 int i;
170
171 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
172 INIT_HLIST_HEAD(&avc_cache.slots[i]);
173 spin_lock_init(&avc_cache.slots_lock[i]);
174 }
175 atomic_set(&avc_cache.active_nodes, 0);
176 atomic_set(&avc_cache.lru_hint, 0);
177
178 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
179 0, SLAB_PANIC, NULL);
180
181 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
182 }
183
184 int avc_get_hash_stats(char *page)
185 {
186 int i, chain_len, max_chain_len, slots_used;
187 struct avc_node *node;
188 struct hlist_head *head;
189
190 rcu_read_lock();
191
192 slots_used = 0;
193 max_chain_len = 0;
194 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
195 head = &avc_cache.slots[i];
196 if (!hlist_empty(head)) {
197 struct hlist_node *next;
198
199 slots_used++;
200 chain_len = 0;
201 hlist_for_each_entry_rcu(node, next, head, list)
202 chain_len++;
203 if (chain_len > max_chain_len)
204 max_chain_len = chain_len;
205 }
206 }
207
208 rcu_read_unlock();
209
210 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
211 "longest chain: %d\n",
212 atomic_read(&avc_cache.active_nodes),
213 slots_used, AVC_CACHE_SLOTS, max_chain_len);
214 }
215
216 static void avc_node_free(struct rcu_head *rhead)
217 {
218 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
219 kmem_cache_free(avc_node_cachep, node);
220 avc_cache_stats_incr(frees);
221 }
222
223 static void avc_node_delete(struct avc_node *node)
224 {
225 hlist_del_rcu(&node->list);
226 call_rcu(&node->rhead, avc_node_free);
227 atomic_dec(&avc_cache.active_nodes);
228 }
229
230 static void avc_node_kill(struct avc_node *node)
231 {
232 kmem_cache_free(avc_node_cachep, node);
233 avc_cache_stats_incr(frees);
234 atomic_dec(&avc_cache.active_nodes);
235 }
236
237 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
238 {
239 hlist_replace_rcu(&old->list, &new->list);
240 call_rcu(&old->rhead, avc_node_free);
241 atomic_dec(&avc_cache.active_nodes);
242 }
243
244 static inline int avc_reclaim_node(void)
245 {
246 struct avc_node *node;
247 int hvalue, try, ecx;
248 unsigned long flags;
249 struct hlist_head *head;
250 struct hlist_node *next;
251 spinlock_t *lock;
252
253 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
254 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
255 head = &avc_cache.slots[hvalue];
256 lock = &avc_cache.slots_lock[hvalue];
257
258 if (!spin_trylock_irqsave(lock, flags))
259 continue;
260
261 rcu_read_lock();
262 hlist_for_each_entry(node, next, head, list) {
263 avc_node_delete(node);
264 avc_cache_stats_incr(reclaims);
265 ecx++;
266 if (ecx >= AVC_CACHE_RECLAIM) {
267 rcu_read_unlock();
268 spin_unlock_irqrestore(lock, flags);
269 goto out;
270 }
271 }
272 rcu_read_unlock();
273 spin_unlock_irqrestore(lock, flags);
274 }
275 out:
276 return ecx;
277 }
278
279 static struct avc_node *avc_alloc_node(void)
280 {
281 struct avc_node *node;
282
283 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
284 if (!node)
285 goto out;
286
287 INIT_HLIST_NODE(&node->list);
288 avc_cache_stats_incr(allocations);
289
290 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
291 avc_reclaim_node();
292
293 out:
294 return node;
295 }
296
297 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
298 {
299 node->ae.ssid = ssid;
300 node->ae.tsid = tsid;
301 node->ae.tclass = tclass;
302 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
303 }
304
305 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
306 {
307 struct avc_node *node, *ret = NULL;
308 int hvalue;
309 struct hlist_head *head;
310 struct hlist_node *next;
311
312 hvalue = avc_hash(ssid, tsid, tclass);
313 head = &avc_cache.slots[hvalue];
314 hlist_for_each_entry_rcu(node, next, head, list) {
315 if (ssid == node->ae.ssid &&
316 tclass == node->ae.tclass &&
317 tsid == node->ae.tsid) {
318 ret = node;
319 break;
320 }
321 }
322
323 return ret;
324 }
325
326 /**
327 * avc_lookup - Look up an AVC entry.
328 * @ssid: source security identifier
329 * @tsid: target security identifier
330 * @tclass: target security class
331 *
332 * Look up an AVC entry that is valid for the
333 * (@ssid, @tsid), interpreting the permissions
334 * based on @tclass. If a valid AVC entry exists,
335 * then this function returns the avc_node.
336 * Otherwise, this function returns NULL.
337 */
338 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
339 {
340 struct avc_node *node;
341
342 avc_cache_stats_incr(lookups);
343 node = avc_search_node(ssid, tsid, tclass);
344
345 if (node)
346 return node;
347
348 avc_cache_stats_incr(misses);
349 return NULL;
350 }
351
352 static int avc_latest_notif_update(int seqno, int is_insert)
353 {
354 int ret = 0;
355 static DEFINE_SPINLOCK(notif_lock);
356 unsigned long flag;
357
358 spin_lock_irqsave(&notif_lock, flag);
359 if (is_insert) {
360 if (seqno < avc_cache.latest_notif) {
361 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
362 seqno, avc_cache.latest_notif);
363 ret = -EAGAIN;
364 }
365 } else {
366 if (seqno > avc_cache.latest_notif)
367 avc_cache.latest_notif = seqno;
368 }
369 spin_unlock_irqrestore(&notif_lock, flag);
370
371 return ret;
372 }
373
374 /**
375 * avc_insert - Insert an AVC entry.
376 * @ssid: source security identifier
377 * @tsid: target security identifier
378 * @tclass: target security class
379 * @avd: resulting av decision
380 *
381 * Insert an AVC entry for the SID pair
382 * (@ssid, @tsid) and class @tclass.
383 * The access vectors and the sequence number are
384 * normally provided by the security server in
385 * response to a security_compute_av() call. If the
386 * sequence number @avd->seqno is not less than the latest
387 * revocation notification, then the function copies
388 * the access vectors into a cache entry, returns
389 * avc_node inserted. Otherwise, this function returns NULL.
390 */
391 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
392 {
393 struct avc_node *pos, *node = NULL;
394 int hvalue;
395 unsigned long flag;
396
397 if (avc_latest_notif_update(avd->seqno, 1))
398 goto out;
399
400 node = avc_alloc_node();
401 if (node) {
402 struct hlist_head *head;
403 struct hlist_node *next;
404 spinlock_t *lock;
405
406 hvalue = avc_hash(ssid, tsid, tclass);
407 avc_node_populate(node, ssid, tsid, tclass, avd);
408
409 head = &avc_cache.slots[hvalue];
410 lock = &avc_cache.slots_lock[hvalue];
411
412 spin_lock_irqsave(lock, flag);
413 hlist_for_each_entry(pos, next, head, list) {
414 if (pos->ae.ssid == ssid &&
415 pos->ae.tsid == tsid &&
416 pos->ae.tclass == tclass) {
417 avc_node_replace(node, pos);
418 goto found;
419 }
420 }
421 hlist_add_head_rcu(&node->list, head);
422 found:
423 spin_unlock_irqrestore(lock, flag);
424 }
425 out:
426 return node;
427 }
428
429 /**
430 * avc_audit_pre_callback - SELinux specific information
431 * will be called by generic audit code
432 * @ab: the audit buffer
433 * @a: audit_data
434 */
435 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
436 {
437 struct common_audit_data *ad = a;
438 audit_log_format(ab, "avc: %s ",
439 ad->selinux_audit_data.denied ? "denied" : "granted");
440 avc_dump_av(ab, ad->selinux_audit_data.tclass,
441 ad->selinux_audit_data.audited);
442 audit_log_format(ab, " for ");
443 }
444
445 /**
446 * avc_audit_post_callback - SELinux specific information
447 * will be called by generic audit code
448 * @ab: the audit buffer
449 * @a: audit_data
450 */
451 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
452 {
453 struct common_audit_data *ad = a;
454 audit_log_format(ab, " ");
455 avc_dump_query(ab, ad->selinux_audit_data.ssid,
456 ad->selinux_audit_data.tsid,
457 ad->selinux_audit_data.tclass);
458 }
459
460 /* This is the slow part of avc audit with big stack footprint */
461 static noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
462 u32 requested, u32 audited, u32 denied,
463 struct av_decision *avd, struct common_audit_data *a,
464 unsigned flags)
465 {
466 struct common_audit_data stack_data;
467
468 if (!a) {
469 a = &stack_data;
470 COMMON_AUDIT_DATA_INIT(a, NONE);
471 }
472
473 /*
474 * When in a RCU walk do the audit on the RCU retry. This is because
475 * the collection of the dname in an inode audit message is not RCU
476 * safe. Note this may drop some audits when the situation changes
477 * during retry. However this is logically just as if the operation
478 * happened a little later.
479 */
480 if ((a->type == LSM_AUDIT_DATA_INODE) &&
481 (flags & MAY_NOT_BLOCK))
482 return -ECHILD;
483
484 a->selinux_audit_data.tclass = tclass;
485 a->selinux_audit_data.requested = requested;
486 a->selinux_audit_data.ssid = ssid;
487 a->selinux_audit_data.tsid = tsid;
488 a->selinux_audit_data.audited = audited;
489 a->selinux_audit_data.denied = denied;
490 a->lsm_pre_audit = avc_audit_pre_callback;
491 a->lsm_post_audit = avc_audit_post_callback;
492 common_lsm_audit(a);
493 return 0;
494 }
495
496 /**
497 * avc_audit - Audit the granting or denial of permissions.
498 * @ssid: source security identifier
499 * @tsid: target security identifier
500 * @tclass: target security class
501 * @requested: requested permissions
502 * @avd: access vector decisions
503 * @result: result from avc_has_perm_noaudit
504 * @a: auxiliary audit data
505 * @flags: VFS walk flags
506 *
507 * Audit the granting or denial of permissions in accordance
508 * with the policy. This function is typically called by
509 * avc_has_perm() after a permission check, but can also be
510 * called directly by callers who use avc_has_perm_noaudit()
511 * in order to separate the permission check from the auditing.
512 * For example, this separation is useful when the permission check must
513 * be performed under a lock, to allow the lock to be released
514 * before calling the auditing code.
515 */
516 inline int avc_audit(u32 ssid, u32 tsid,
517 u16 tclass, u32 requested,
518 struct av_decision *avd, int result, struct common_audit_data *a,
519 unsigned flags)
520 {
521 u32 denied, audited;
522 denied = requested & ~avd->allowed;
523 if (unlikely(denied)) {
524 audited = denied & avd->auditdeny;
525 /*
526 * a->selinux_audit_data.auditdeny is TRICKY! Setting a bit in
527 * this field means that ANY denials should NOT be audited if
528 * the policy contains an explicit dontaudit rule for that
529 * permission. Take notice that this is unrelated to the
530 * actual permissions that were denied. As an example lets
531 * assume:
532 *
533 * denied == READ
534 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
535 * selinux_audit_data.auditdeny & ACCESS == 1
536 *
537 * We will NOT audit the denial even though the denied
538 * permission was READ and the auditdeny checks were for
539 * ACCESS
540 */
541 if (a &&
542 a->selinux_audit_data.auditdeny &&
543 !(a->selinux_audit_data.auditdeny & avd->auditdeny))
544 audited = 0;
545 } else if (result)
546 audited = denied = requested;
547 else
548 audited = requested & avd->auditallow;
549 if (likely(!audited))
550 return 0;
551
552 return slow_avc_audit(ssid, tsid, tclass,
553 requested, audited, denied,
554 avd, a, flags);
555 }
556
557 /**
558 * avc_add_callback - Register a callback for security events.
559 * @callback: callback function
560 * @events: security events
561 * @ssid: source security identifier or %SECSID_WILD
562 * @tsid: target security identifier or %SECSID_WILD
563 * @tclass: target security class
564 * @perms: permissions
565 *
566 * Register a callback function for events in the set @events
567 * related to the SID pair (@ssid, @tsid)
568 * and the permissions @perms, interpreting
569 * @perms based on @tclass. Returns %0 on success or
570 * -%ENOMEM if insufficient memory exists to add the callback.
571 */
572 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
573 u16 tclass, u32 perms,
574 u32 *out_retained),
575 u32 events, u32 ssid, u32 tsid,
576 u16 tclass, u32 perms)
577 {
578 struct avc_callback_node *c;
579 int rc = 0;
580
581 c = kmalloc(sizeof(*c), GFP_ATOMIC);
582 if (!c) {
583 rc = -ENOMEM;
584 goto out;
585 }
586
587 c->callback = callback;
588 c->events = events;
589 c->ssid = ssid;
590 c->tsid = tsid;
591 c->perms = perms;
592 c->next = avc_callbacks;
593 avc_callbacks = c;
594 out:
595 return rc;
596 }
597
598 static inline int avc_sidcmp(u32 x, u32 y)
599 {
600 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
601 }
602
603 /**
604 * avc_update_node Update an AVC entry
605 * @event : Updating event
606 * @perms : Permission mask bits
607 * @ssid,@tsid,@tclass : identifier of an AVC entry
608 * @seqno : sequence number when decision was made
609 *
610 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
611 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
612 * otherwise, this function updates the AVC entry. The original AVC-entry object
613 * will release later by RCU.
614 */
615 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
616 u32 seqno)
617 {
618 int hvalue, rc = 0;
619 unsigned long flag;
620 struct avc_node *pos, *node, *orig = NULL;
621 struct hlist_head *head;
622 struct hlist_node *next;
623 spinlock_t *lock;
624
625 node = avc_alloc_node();
626 if (!node) {
627 rc = -ENOMEM;
628 goto out;
629 }
630
631 /* Lock the target slot */
632 hvalue = avc_hash(ssid, tsid, tclass);
633
634 head = &avc_cache.slots[hvalue];
635 lock = &avc_cache.slots_lock[hvalue];
636
637 spin_lock_irqsave(lock, flag);
638
639 hlist_for_each_entry(pos, next, head, list) {
640 if (ssid == pos->ae.ssid &&
641 tsid == pos->ae.tsid &&
642 tclass == pos->ae.tclass &&
643 seqno == pos->ae.avd.seqno){
644 orig = pos;
645 break;
646 }
647 }
648
649 if (!orig) {
650 rc = -ENOENT;
651 avc_node_kill(node);
652 goto out_unlock;
653 }
654
655 /*
656 * Copy and replace original node.
657 */
658
659 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
660
661 switch (event) {
662 case AVC_CALLBACK_GRANT:
663 node->ae.avd.allowed |= perms;
664 break;
665 case AVC_CALLBACK_TRY_REVOKE:
666 case AVC_CALLBACK_REVOKE:
667 node->ae.avd.allowed &= ~perms;
668 break;
669 case AVC_CALLBACK_AUDITALLOW_ENABLE:
670 node->ae.avd.auditallow |= perms;
671 break;
672 case AVC_CALLBACK_AUDITALLOW_DISABLE:
673 node->ae.avd.auditallow &= ~perms;
674 break;
675 case AVC_CALLBACK_AUDITDENY_ENABLE:
676 node->ae.avd.auditdeny |= perms;
677 break;
678 case AVC_CALLBACK_AUDITDENY_DISABLE:
679 node->ae.avd.auditdeny &= ~perms;
680 break;
681 }
682 avc_node_replace(node, orig);
683 out_unlock:
684 spin_unlock_irqrestore(lock, flag);
685 out:
686 return rc;
687 }
688
689 /**
690 * avc_flush - Flush the cache
691 */
692 static void avc_flush(void)
693 {
694 struct hlist_head *head;
695 struct hlist_node *next;
696 struct avc_node *node;
697 spinlock_t *lock;
698 unsigned long flag;
699 int i;
700
701 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
702 head = &avc_cache.slots[i];
703 lock = &avc_cache.slots_lock[i];
704
705 spin_lock_irqsave(lock, flag);
706 /*
707 * With preemptable RCU, the outer spinlock does not
708 * prevent RCU grace periods from ending.
709 */
710 rcu_read_lock();
711 hlist_for_each_entry(node, next, head, list)
712 avc_node_delete(node);
713 rcu_read_unlock();
714 spin_unlock_irqrestore(lock, flag);
715 }
716 }
717
718 /**
719 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
720 * @seqno: policy sequence number
721 */
722 int avc_ss_reset(u32 seqno)
723 {
724 struct avc_callback_node *c;
725 int rc = 0, tmprc;
726
727 avc_flush();
728
729 for (c = avc_callbacks; c; c = c->next) {
730 if (c->events & AVC_CALLBACK_RESET) {
731 tmprc = c->callback(AVC_CALLBACK_RESET,
732 0, 0, 0, 0, NULL);
733 /* save the first error encountered for the return
734 value and continue processing the callbacks */
735 if (!rc)
736 rc = tmprc;
737 }
738 }
739
740 avc_latest_notif_update(seqno, 0);
741 return rc;
742 }
743
744 /*
745 * Slow-path helper function for avc_has_perm_noaudit,
746 * when the avc_node lookup fails. We get called with
747 * the RCU read lock held, and need to return with it
748 * still held, but drop if for the security compute.
749 *
750 * Don't inline this, since it's the slow-path and just
751 * results in a bigger stack frame.
752 */
753 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
754 u16 tclass, struct av_decision *avd)
755 {
756 rcu_read_unlock();
757 security_compute_av(ssid, tsid, tclass, avd);
758 rcu_read_lock();
759 return avc_insert(ssid, tsid, tclass, avd);
760 }
761
762 static noinline int avc_denied(u32 ssid, u32 tsid,
763 u16 tclass, u32 requested,
764 unsigned flags,
765 struct av_decision *avd)
766 {
767 if (flags & AVC_STRICT)
768 return -EACCES;
769
770 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
771 return -EACCES;
772
773 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
774 tsid, tclass, avd->seqno);
775 return 0;
776 }
777
778
779 /**
780 * avc_has_perm_noaudit - Check permissions but perform no auditing.
781 * @ssid: source security identifier
782 * @tsid: target security identifier
783 * @tclass: target security class
784 * @requested: requested permissions, interpreted based on @tclass
785 * @flags: AVC_STRICT or 0
786 * @avd: access vector decisions
787 *
788 * Check the AVC to determine whether the @requested permissions are granted
789 * for the SID pair (@ssid, @tsid), interpreting the permissions
790 * based on @tclass, and call the security server on a cache miss to obtain
791 * a new decision and add it to the cache. Return a copy of the decisions
792 * in @avd. Return %0 if all @requested permissions are granted,
793 * -%EACCES if any permissions are denied, or another -errno upon
794 * other errors. This function is typically called by avc_has_perm(),
795 * but may also be called directly to separate permission checking from
796 * auditing, e.g. in cases where a lock must be held for the check but
797 * should be released for the auditing.
798 */
799 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
800 u16 tclass, u32 requested,
801 unsigned flags,
802 struct av_decision *avd)
803 {
804 struct avc_node *node;
805 int rc = 0;
806 u32 denied;
807
808 BUG_ON(!requested);
809
810 rcu_read_lock();
811
812 node = avc_lookup(ssid, tsid, tclass);
813 if (unlikely(!node)) {
814 node = avc_compute_av(ssid, tsid, tclass, avd);
815 } else {
816 memcpy(avd, &node->ae.avd, sizeof(*avd));
817 avd = &node->ae.avd;
818 }
819
820 denied = requested & ~(avd->allowed);
821 if (unlikely(denied))
822 rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
823
824 rcu_read_unlock();
825 return rc;
826 }
827
828 /**
829 * avc_has_perm - Check permissions and perform any appropriate auditing.
830 * @ssid: source security identifier
831 * @tsid: target security identifier
832 * @tclass: target security class
833 * @requested: requested permissions, interpreted based on @tclass
834 * @auditdata: auxiliary audit data
835 * @flags: VFS walk flags
836 *
837 * Check the AVC to determine whether the @requested permissions are granted
838 * for the SID pair (@ssid, @tsid), interpreting the permissions
839 * based on @tclass, and call the security server on a cache miss to obtain
840 * a new decision and add it to the cache. Audit the granting or denial of
841 * permissions in accordance with the policy. Return %0 if all @requested
842 * permissions are granted, -%EACCES if any permissions are denied, or
843 * another -errno upon other errors.
844 */
845 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
846 u32 requested, struct common_audit_data *auditdata,
847 unsigned flags)
848 {
849 struct av_decision avd;
850 int rc, rc2;
851
852 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
853
854 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
855 flags);
856 if (rc2)
857 return rc2;
858 return rc;
859 }
860
861 u32 avc_policy_seqno(void)
862 {
863 return avc_cache.latest_notif;
864 }
865
866 void avc_disable(void)
867 {
868 /*
869 * If you are looking at this because you have realized that we are
870 * not destroying the avc_node_cachep it might be easy to fix, but
871 * I don't know the memory barrier semantics well enough to know. It's
872 * possible that some other task dereferenced security_ops when
873 * it still pointed to selinux operations. If that is the case it's
874 * possible that it is about to use the avc and is about to need the
875 * avc_node_cachep. I know I could wrap the security.c security_ops call
876 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
877 * the cache and get that memory back.
878 */
879 if (avc_node_cachep) {
880 avc_flush();
881 /* kmem_cache_destroy(avc_node_cachep); */
882 }
883 }