]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - security/selinux/avc.c
Merge branch 'for-next/52-bit-pa' into for-next/core
[mirror_ubuntu-hirsute-kernel.git] / security / selinux / avc.c
1 /*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <linux/list.h>
26 #include <net/sock.h>
27 #include <linux/un.h>
28 #include <net/af_unix.h>
29 #include <linux/ip.h>
30 #include <linux/audit.h>
31 #include <linux/ipv6.h>
32 #include <net/ipv6.h>
33 #include "avc.h"
34 #include "avc_ss.h"
35 #include "classmap.h"
36
37 #define AVC_CACHE_SLOTS 512
38 #define AVC_DEF_CACHE_THRESHOLD 512
39 #define AVC_CACHE_RECLAIM 16
40
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field) do {} while (0)
45 #endif
46
47 struct avc_entry {
48 u32 ssid;
49 u32 tsid;
50 u16 tclass;
51 struct av_decision avd;
52 struct avc_xperms_node *xp_node;
53 };
54
55 struct avc_node {
56 struct avc_entry ae;
57 struct hlist_node list; /* anchored in avc_cache->slots[i] */
58 struct rcu_head rhead;
59 };
60
61 struct avc_xperms_decision_node {
62 struct extended_perms_decision xpd;
63 struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65
66 struct avc_xperms_node {
67 struct extended_perms xp;
68 struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70
71 struct avc_cache {
72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 atomic_t lru_hint; /* LRU hint for reclaim scan */
75 atomic_t active_nodes;
76 u32 latest_notif; /* latest revocation notification */
77 };
78
79 struct avc_callback_node {
80 int (*callback) (u32 event);
81 u32 events;
82 struct avc_callback_node *next;
83 };
84
85 /* Exported via selinufs */
86 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
87
88 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
89 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
90 #endif
91
92 static struct avc_cache avc_cache;
93 static struct avc_callback_node *avc_callbacks;
94 static struct kmem_cache *avc_node_cachep;
95 static struct kmem_cache *avc_xperms_data_cachep;
96 static struct kmem_cache *avc_xperms_decision_cachep;
97 static struct kmem_cache *avc_xperms_cachep;
98
99 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
100 {
101 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
102 }
103
104 /**
105 * avc_dump_av - Display an access vector in human-readable form.
106 * @tclass: target security class
107 * @av: access vector
108 */
109 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
110 {
111 const char **perms;
112 int i, perm;
113
114 if (av == 0) {
115 audit_log_format(ab, " null");
116 return;
117 }
118
119 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
120 perms = secclass_map[tclass-1].perms;
121
122 audit_log_format(ab, " {");
123 i = 0;
124 perm = 1;
125 while (i < (sizeof(av) * 8)) {
126 if ((perm & av) && perms[i]) {
127 audit_log_format(ab, " %s", perms[i]);
128 av &= ~perm;
129 }
130 i++;
131 perm <<= 1;
132 }
133
134 if (av)
135 audit_log_format(ab, " 0x%x", av);
136
137 audit_log_format(ab, " }");
138 }
139
140 /**
141 * avc_dump_query - Display a SID pair and a class in human-readable form.
142 * @ssid: source security identifier
143 * @tsid: target security identifier
144 * @tclass: target security class
145 */
146 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
147 {
148 int rc;
149 char *scontext;
150 u32 scontext_len;
151
152 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
153 if (rc)
154 audit_log_format(ab, "ssid=%d", ssid);
155 else {
156 audit_log_format(ab, "scontext=%s", scontext);
157 kfree(scontext);
158 }
159
160 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
161 if (rc)
162 audit_log_format(ab, " tsid=%d", tsid);
163 else {
164 audit_log_format(ab, " tcontext=%s", scontext);
165 kfree(scontext);
166 }
167
168 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
169 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
170 }
171
172 /**
173 * avc_init - Initialize the AVC.
174 *
175 * Initialize the access vector cache.
176 */
177 void __init avc_init(void)
178 {
179 int i;
180
181 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
182 INIT_HLIST_HEAD(&avc_cache.slots[i]);
183 spin_lock_init(&avc_cache.slots_lock[i]);
184 }
185 atomic_set(&avc_cache.active_nodes, 0);
186 atomic_set(&avc_cache.lru_hint, 0);
187
188 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
189 0, SLAB_PANIC, NULL);
190 avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
191 sizeof(struct avc_xperms_node),
192 0, SLAB_PANIC, NULL);
193 avc_xperms_decision_cachep = kmem_cache_create(
194 "avc_xperms_decision_node",
195 sizeof(struct avc_xperms_decision_node),
196 0, SLAB_PANIC, NULL);
197 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
198 sizeof(struct extended_perms_data),
199 0, SLAB_PANIC, NULL);
200 }
201
202 int avc_get_hash_stats(char *page)
203 {
204 int i, chain_len, max_chain_len, slots_used;
205 struct avc_node *node;
206 struct hlist_head *head;
207
208 rcu_read_lock();
209
210 slots_used = 0;
211 max_chain_len = 0;
212 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
213 head = &avc_cache.slots[i];
214 if (!hlist_empty(head)) {
215 slots_used++;
216 chain_len = 0;
217 hlist_for_each_entry_rcu(node, head, list)
218 chain_len++;
219 if (chain_len > max_chain_len)
220 max_chain_len = chain_len;
221 }
222 }
223
224 rcu_read_unlock();
225
226 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
227 "longest chain: %d\n",
228 atomic_read(&avc_cache.active_nodes),
229 slots_used, AVC_CACHE_SLOTS, max_chain_len);
230 }
231
232 /*
233 * using a linked list for extended_perms_decision lookup because the list is
234 * always small. i.e. less than 5, typically 1
235 */
236 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
237 struct avc_xperms_node *xp_node)
238 {
239 struct avc_xperms_decision_node *xpd_node;
240
241 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
242 if (xpd_node->xpd.driver == driver)
243 return &xpd_node->xpd;
244 }
245 return NULL;
246 }
247
248 static inline unsigned int
249 avc_xperms_has_perm(struct extended_perms_decision *xpd,
250 u8 perm, u8 which)
251 {
252 unsigned int rc = 0;
253
254 if ((which == XPERMS_ALLOWED) &&
255 (xpd->used & XPERMS_ALLOWED))
256 rc = security_xperm_test(xpd->allowed->p, perm);
257 else if ((which == XPERMS_AUDITALLOW) &&
258 (xpd->used & XPERMS_AUDITALLOW))
259 rc = security_xperm_test(xpd->auditallow->p, perm);
260 else if ((which == XPERMS_DONTAUDIT) &&
261 (xpd->used & XPERMS_DONTAUDIT))
262 rc = security_xperm_test(xpd->dontaudit->p, perm);
263 return rc;
264 }
265
266 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
267 u8 driver, u8 perm)
268 {
269 struct extended_perms_decision *xpd;
270 security_xperm_set(xp_node->xp.drivers.p, driver);
271 xpd = avc_xperms_decision_lookup(driver, xp_node);
272 if (xpd && xpd->allowed)
273 security_xperm_set(xpd->allowed->p, perm);
274 }
275
276 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
277 {
278 struct extended_perms_decision *xpd;
279
280 xpd = &xpd_node->xpd;
281 if (xpd->allowed)
282 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
283 if (xpd->auditallow)
284 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
285 if (xpd->dontaudit)
286 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
287 kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
288 }
289
290 static void avc_xperms_free(struct avc_xperms_node *xp_node)
291 {
292 struct avc_xperms_decision_node *xpd_node, *tmp;
293
294 if (!xp_node)
295 return;
296
297 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
298 list_del(&xpd_node->xpd_list);
299 avc_xperms_decision_free(xpd_node);
300 }
301 kmem_cache_free(avc_xperms_cachep, xp_node);
302 }
303
304 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
305 struct extended_perms_decision *src)
306 {
307 dest->driver = src->driver;
308 dest->used = src->used;
309 if (dest->used & XPERMS_ALLOWED)
310 memcpy(dest->allowed->p, src->allowed->p,
311 sizeof(src->allowed->p));
312 if (dest->used & XPERMS_AUDITALLOW)
313 memcpy(dest->auditallow->p, src->auditallow->p,
314 sizeof(src->auditallow->p));
315 if (dest->used & XPERMS_DONTAUDIT)
316 memcpy(dest->dontaudit->p, src->dontaudit->p,
317 sizeof(src->dontaudit->p));
318 }
319
320 /*
321 * similar to avc_copy_xperms_decision, but only copy decision
322 * information relevant to this perm
323 */
324 static inline void avc_quick_copy_xperms_decision(u8 perm,
325 struct extended_perms_decision *dest,
326 struct extended_perms_decision *src)
327 {
328 /*
329 * compute index of the u32 of the 256 bits (8 u32s) that contain this
330 * command permission
331 */
332 u8 i = perm >> 5;
333
334 dest->used = src->used;
335 if (dest->used & XPERMS_ALLOWED)
336 dest->allowed->p[i] = src->allowed->p[i];
337 if (dest->used & XPERMS_AUDITALLOW)
338 dest->auditallow->p[i] = src->auditallow->p[i];
339 if (dest->used & XPERMS_DONTAUDIT)
340 dest->dontaudit->p[i] = src->dontaudit->p[i];
341 }
342
343 static struct avc_xperms_decision_node
344 *avc_xperms_decision_alloc(u8 which)
345 {
346 struct avc_xperms_decision_node *xpd_node;
347 struct extended_perms_decision *xpd;
348
349 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
350 if (!xpd_node)
351 return NULL;
352
353 xpd = &xpd_node->xpd;
354 if (which & XPERMS_ALLOWED) {
355 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
356 GFP_NOWAIT);
357 if (!xpd->allowed)
358 goto error;
359 }
360 if (which & XPERMS_AUDITALLOW) {
361 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
362 GFP_NOWAIT);
363 if (!xpd->auditallow)
364 goto error;
365 }
366 if (which & XPERMS_DONTAUDIT) {
367 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
368 GFP_NOWAIT);
369 if (!xpd->dontaudit)
370 goto error;
371 }
372 return xpd_node;
373 error:
374 avc_xperms_decision_free(xpd_node);
375 return NULL;
376 }
377
378 static int avc_add_xperms_decision(struct avc_node *node,
379 struct extended_perms_decision *src)
380 {
381 struct avc_xperms_decision_node *dest_xpd;
382
383 node->ae.xp_node->xp.len++;
384 dest_xpd = avc_xperms_decision_alloc(src->used);
385 if (!dest_xpd)
386 return -ENOMEM;
387 avc_copy_xperms_decision(&dest_xpd->xpd, src);
388 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
389 return 0;
390 }
391
392 static struct avc_xperms_node *avc_xperms_alloc(void)
393 {
394 struct avc_xperms_node *xp_node;
395
396 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
397 if (!xp_node)
398 return xp_node;
399 INIT_LIST_HEAD(&xp_node->xpd_head);
400 return xp_node;
401 }
402
403 static int avc_xperms_populate(struct avc_node *node,
404 struct avc_xperms_node *src)
405 {
406 struct avc_xperms_node *dest;
407 struct avc_xperms_decision_node *dest_xpd;
408 struct avc_xperms_decision_node *src_xpd;
409
410 if (src->xp.len == 0)
411 return 0;
412 dest = avc_xperms_alloc();
413 if (!dest)
414 return -ENOMEM;
415
416 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
417 dest->xp.len = src->xp.len;
418
419 /* for each source xpd allocate a destination xpd and copy */
420 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
421 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
422 if (!dest_xpd)
423 goto error;
424 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
425 list_add(&dest_xpd->xpd_list, &dest->xpd_head);
426 }
427 node->ae.xp_node = dest;
428 return 0;
429 error:
430 avc_xperms_free(dest);
431 return -ENOMEM;
432
433 }
434
435 static inline u32 avc_xperms_audit_required(u32 requested,
436 struct av_decision *avd,
437 struct extended_perms_decision *xpd,
438 u8 perm,
439 int result,
440 u32 *deniedp)
441 {
442 u32 denied, audited;
443
444 denied = requested & ~avd->allowed;
445 if (unlikely(denied)) {
446 audited = denied & avd->auditdeny;
447 if (audited && xpd) {
448 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
449 audited &= ~requested;
450 }
451 } else if (result) {
452 audited = denied = requested;
453 } else {
454 audited = requested & avd->auditallow;
455 if (audited && xpd) {
456 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
457 audited &= ~requested;
458 }
459 }
460
461 *deniedp = denied;
462 return audited;
463 }
464
465 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
466 u32 requested, struct av_decision *avd,
467 struct extended_perms_decision *xpd,
468 u8 perm, int result,
469 struct common_audit_data *ad)
470 {
471 u32 audited, denied;
472
473 audited = avc_xperms_audit_required(
474 requested, avd, xpd, perm, result, &denied);
475 if (likely(!audited))
476 return 0;
477 return slow_avc_audit(ssid, tsid, tclass, requested,
478 audited, denied, result, ad, 0);
479 }
480
481 static void avc_node_free(struct rcu_head *rhead)
482 {
483 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
484 avc_xperms_free(node->ae.xp_node);
485 kmem_cache_free(avc_node_cachep, node);
486 avc_cache_stats_incr(frees);
487 }
488
489 static void avc_node_delete(struct avc_node *node)
490 {
491 hlist_del_rcu(&node->list);
492 call_rcu(&node->rhead, avc_node_free);
493 atomic_dec(&avc_cache.active_nodes);
494 }
495
496 static void avc_node_kill(struct avc_node *node)
497 {
498 avc_xperms_free(node->ae.xp_node);
499 kmem_cache_free(avc_node_cachep, node);
500 avc_cache_stats_incr(frees);
501 atomic_dec(&avc_cache.active_nodes);
502 }
503
504 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
505 {
506 hlist_replace_rcu(&old->list, &new->list);
507 call_rcu(&old->rhead, avc_node_free);
508 atomic_dec(&avc_cache.active_nodes);
509 }
510
511 static inline int avc_reclaim_node(void)
512 {
513 struct avc_node *node;
514 int hvalue, try, ecx;
515 unsigned long flags;
516 struct hlist_head *head;
517 spinlock_t *lock;
518
519 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
520 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
521 head = &avc_cache.slots[hvalue];
522 lock = &avc_cache.slots_lock[hvalue];
523
524 if (!spin_trylock_irqsave(lock, flags))
525 continue;
526
527 rcu_read_lock();
528 hlist_for_each_entry(node, head, list) {
529 avc_node_delete(node);
530 avc_cache_stats_incr(reclaims);
531 ecx++;
532 if (ecx >= AVC_CACHE_RECLAIM) {
533 rcu_read_unlock();
534 spin_unlock_irqrestore(lock, flags);
535 goto out;
536 }
537 }
538 rcu_read_unlock();
539 spin_unlock_irqrestore(lock, flags);
540 }
541 out:
542 return ecx;
543 }
544
545 static struct avc_node *avc_alloc_node(void)
546 {
547 struct avc_node *node;
548
549 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
550 if (!node)
551 goto out;
552
553 INIT_HLIST_NODE(&node->list);
554 avc_cache_stats_incr(allocations);
555
556 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
557 avc_reclaim_node();
558
559 out:
560 return node;
561 }
562
563 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
564 {
565 node->ae.ssid = ssid;
566 node->ae.tsid = tsid;
567 node->ae.tclass = tclass;
568 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
569 }
570
571 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
572 {
573 struct avc_node *node, *ret = NULL;
574 int hvalue;
575 struct hlist_head *head;
576
577 hvalue = avc_hash(ssid, tsid, tclass);
578 head = &avc_cache.slots[hvalue];
579 hlist_for_each_entry_rcu(node, head, list) {
580 if (ssid == node->ae.ssid &&
581 tclass == node->ae.tclass &&
582 tsid == node->ae.tsid) {
583 ret = node;
584 break;
585 }
586 }
587
588 return ret;
589 }
590
591 /**
592 * avc_lookup - Look up an AVC entry.
593 * @ssid: source security identifier
594 * @tsid: target security identifier
595 * @tclass: target security class
596 *
597 * Look up an AVC entry that is valid for the
598 * (@ssid, @tsid), interpreting the permissions
599 * based on @tclass. If a valid AVC entry exists,
600 * then this function returns the avc_node.
601 * Otherwise, this function returns NULL.
602 */
603 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
604 {
605 struct avc_node *node;
606
607 avc_cache_stats_incr(lookups);
608 node = avc_search_node(ssid, tsid, tclass);
609
610 if (node)
611 return node;
612
613 avc_cache_stats_incr(misses);
614 return NULL;
615 }
616
617 static int avc_latest_notif_update(int seqno, int is_insert)
618 {
619 int ret = 0;
620 static DEFINE_SPINLOCK(notif_lock);
621 unsigned long flag;
622
623 spin_lock_irqsave(&notif_lock, flag);
624 if (is_insert) {
625 if (seqno < avc_cache.latest_notif) {
626 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
627 seqno, avc_cache.latest_notif);
628 ret = -EAGAIN;
629 }
630 } else {
631 if (seqno > avc_cache.latest_notif)
632 avc_cache.latest_notif = seqno;
633 }
634 spin_unlock_irqrestore(&notif_lock, flag);
635
636 return ret;
637 }
638
639 /**
640 * avc_insert - Insert an AVC entry.
641 * @ssid: source security identifier
642 * @tsid: target security identifier
643 * @tclass: target security class
644 * @avd: resulting av decision
645 * @xp_node: resulting extended permissions
646 *
647 * Insert an AVC entry for the SID pair
648 * (@ssid, @tsid) and class @tclass.
649 * The access vectors and the sequence number are
650 * normally provided by the security server in
651 * response to a security_compute_av() call. If the
652 * sequence number @avd->seqno is not less than the latest
653 * revocation notification, then the function copies
654 * the access vectors into a cache entry, returns
655 * avc_node inserted. Otherwise, this function returns NULL.
656 */
657 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass,
658 struct av_decision *avd,
659 struct avc_xperms_node *xp_node)
660 {
661 struct avc_node *pos, *node = NULL;
662 int hvalue;
663 unsigned long flag;
664
665 if (avc_latest_notif_update(avd->seqno, 1))
666 goto out;
667
668 node = avc_alloc_node();
669 if (node) {
670 struct hlist_head *head;
671 spinlock_t *lock;
672 int rc = 0;
673
674 hvalue = avc_hash(ssid, tsid, tclass);
675 avc_node_populate(node, ssid, tsid, tclass, avd);
676 rc = avc_xperms_populate(node, xp_node);
677 if (rc) {
678 kmem_cache_free(avc_node_cachep, node);
679 return NULL;
680 }
681 head = &avc_cache.slots[hvalue];
682 lock = &avc_cache.slots_lock[hvalue];
683
684 spin_lock_irqsave(lock, flag);
685 hlist_for_each_entry(pos, head, list) {
686 if (pos->ae.ssid == ssid &&
687 pos->ae.tsid == tsid &&
688 pos->ae.tclass == tclass) {
689 avc_node_replace(node, pos);
690 goto found;
691 }
692 }
693 hlist_add_head_rcu(&node->list, head);
694 found:
695 spin_unlock_irqrestore(lock, flag);
696 }
697 out:
698 return node;
699 }
700
701 /**
702 * avc_audit_pre_callback - SELinux specific information
703 * will be called by generic audit code
704 * @ab: the audit buffer
705 * @a: audit_data
706 */
707 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
708 {
709 struct common_audit_data *ad = a;
710 audit_log_format(ab, "avc: %s ",
711 ad->selinux_audit_data->denied ? "denied" : "granted");
712 avc_dump_av(ab, ad->selinux_audit_data->tclass,
713 ad->selinux_audit_data->audited);
714 audit_log_format(ab, " for ");
715 }
716
717 /**
718 * avc_audit_post_callback - SELinux specific information
719 * will be called by generic audit code
720 * @ab: the audit buffer
721 * @a: audit_data
722 */
723 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
724 {
725 struct common_audit_data *ad = a;
726 audit_log_format(ab, " ");
727 avc_dump_query(ab, ad->selinux_audit_data->ssid,
728 ad->selinux_audit_data->tsid,
729 ad->selinux_audit_data->tclass);
730 if (ad->selinux_audit_data->denied) {
731 audit_log_format(ab, " permissive=%u",
732 ad->selinux_audit_data->result ? 0 : 1);
733 }
734 }
735
736 /* This is the slow part of avc audit with big stack footprint */
737 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
738 u32 requested, u32 audited, u32 denied, int result,
739 struct common_audit_data *a,
740 unsigned flags)
741 {
742 struct common_audit_data stack_data;
743 struct selinux_audit_data sad;
744
745 if (!a) {
746 a = &stack_data;
747 a->type = LSM_AUDIT_DATA_NONE;
748 }
749
750 /*
751 * When in a RCU walk do the audit on the RCU retry. This is because
752 * the collection of the dname in an inode audit message is not RCU
753 * safe. Note this may drop some audits when the situation changes
754 * during retry. However this is logically just as if the operation
755 * happened a little later.
756 */
757 if ((a->type == LSM_AUDIT_DATA_INODE) &&
758 (flags & MAY_NOT_BLOCK))
759 return -ECHILD;
760
761 sad.tclass = tclass;
762 sad.requested = requested;
763 sad.ssid = ssid;
764 sad.tsid = tsid;
765 sad.audited = audited;
766 sad.denied = denied;
767 sad.result = result;
768
769 a->selinux_audit_data = &sad;
770
771 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
772 return 0;
773 }
774
775 /**
776 * avc_add_callback - Register a callback for security events.
777 * @callback: callback function
778 * @events: security events
779 *
780 * Register a callback function for events in the set @events.
781 * Returns %0 on success or -%ENOMEM if insufficient memory
782 * exists to add the callback.
783 */
784 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
785 {
786 struct avc_callback_node *c;
787 int rc = 0;
788
789 c = kmalloc(sizeof(*c), GFP_KERNEL);
790 if (!c) {
791 rc = -ENOMEM;
792 goto out;
793 }
794
795 c->callback = callback;
796 c->events = events;
797 c->next = avc_callbacks;
798 avc_callbacks = c;
799 out:
800 return rc;
801 }
802
803 /**
804 * avc_update_node Update an AVC entry
805 * @event : Updating event
806 * @perms : Permission mask bits
807 * @ssid,@tsid,@tclass : identifier of an AVC entry
808 * @seqno : sequence number when decision was made
809 * @xpd: extended_perms_decision to be added to the node
810 *
811 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
812 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
813 * otherwise, this function updates the AVC entry. The original AVC-entry object
814 * will release later by RCU.
815 */
816 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
817 u32 tsid, u16 tclass, u32 seqno,
818 struct extended_perms_decision *xpd,
819 u32 flags)
820 {
821 int hvalue, rc = 0;
822 unsigned long flag;
823 struct avc_node *pos, *node, *orig = NULL;
824 struct hlist_head *head;
825 spinlock_t *lock;
826
827 node = avc_alloc_node();
828 if (!node) {
829 rc = -ENOMEM;
830 goto out;
831 }
832
833 /* Lock the target slot */
834 hvalue = avc_hash(ssid, tsid, tclass);
835
836 head = &avc_cache.slots[hvalue];
837 lock = &avc_cache.slots_lock[hvalue];
838
839 spin_lock_irqsave(lock, flag);
840
841 hlist_for_each_entry(pos, head, list) {
842 if (ssid == pos->ae.ssid &&
843 tsid == pos->ae.tsid &&
844 tclass == pos->ae.tclass &&
845 seqno == pos->ae.avd.seqno){
846 orig = pos;
847 break;
848 }
849 }
850
851 if (!orig) {
852 rc = -ENOENT;
853 avc_node_kill(node);
854 goto out_unlock;
855 }
856
857 /*
858 * Copy and replace original node.
859 */
860
861 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
862
863 if (orig->ae.xp_node) {
864 rc = avc_xperms_populate(node, orig->ae.xp_node);
865 if (rc) {
866 kmem_cache_free(avc_node_cachep, node);
867 goto out_unlock;
868 }
869 }
870
871 switch (event) {
872 case AVC_CALLBACK_GRANT:
873 node->ae.avd.allowed |= perms;
874 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
875 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
876 break;
877 case AVC_CALLBACK_TRY_REVOKE:
878 case AVC_CALLBACK_REVOKE:
879 node->ae.avd.allowed &= ~perms;
880 break;
881 case AVC_CALLBACK_AUDITALLOW_ENABLE:
882 node->ae.avd.auditallow |= perms;
883 break;
884 case AVC_CALLBACK_AUDITALLOW_DISABLE:
885 node->ae.avd.auditallow &= ~perms;
886 break;
887 case AVC_CALLBACK_AUDITDENY_ENABLE:
888 node->ae.avd.auditdeny |= perms;
889 break;
890 case AVC_CALLBACK_AUDITDENY_DISABLE:
891 node->ae.avd.auditdeny &= ~perms;
892 break;
893 case AVC_CALLBACK_ADD_XPERMS:
894 avc_add_xperms_decision(node, xpd);
895 break;
896 }
897 avc_node_replace(node, orig);
898 out_unlock:
899 spin_unlock_irqrestore(lock, flag);
900 out:
901 return rc;
902 }
903
904 /**
905 * avc_flush - Flush the cache
906 */
907 static void avc_flush(void)
908 {
909 struct hlist_head *head;
910 struct avc_node *node;
911 spinlock_t *lock;
912 unsigned long flag;
913 int i;
914
915 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
916 head = &avc_cache.slots[i];
917 lock = &avc_cache.slots_lock[i];
918
919 spin_lock_irqsave(lock, flag);
920 /*
921 * With preemptable RCU, the outer spinlock does not
922 * prevent RCU grace periods from ending.
923 */
924 rcu_read_lock();
925 hlist_for_each_entry(node, head, list)
926 avc_node_delete(node);
927 rcu_read_unlock();
928 spin_unlock_irqrestore(lock, flag);
929 }
930 }
931
932 /**
933 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
934 * @seqno: policy sequence number
935 */
936 int avc_ss_reset(u32 seqno)
937 {
938 struct avc_callback_node *c;
939 int rc = 0, tmprc;
940
941 avc_flush();
942
943 for (c = avc_callbacks; c; c = c->next) {
944 if (c->events & AVC_CALLBACK_RESET) {
945 tmprc = c->callback(AVC_CALLBACK_RESET);
946 /* save the first error encountered for the return
947 value and continue processing the callbacks */
948 if (!rc)
949 rc = tmprc;
950 }
951 }
952
953 avc_latest_notif_update(seqno, 0);
954 return rc;
955 }
956
957 /*
958 * Slow-path helper function for avc_has_perm_noaudit,
959 * when the avc_node lookup fails. We get called with
960 * the RCU read lock held, and need to return with it
961 * still held, but drop if for the security compute.
962 *
963 * Don't inline this, since it's the slow-path and just
964 * results in a bigger stack frame.
965 */
966 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
967 u16 tclass, struct av_decision *avd,
968 struct avc_xperms_node *xp_node)
969 {
970 rcu_read_unlock();
971 INIT_LIST_HEAD(&xp_node->xpd_head);
972 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
973 rcu_read_lock();
974 return avc_insert(ssid, tsid, tclass, avd, xp_node);
975 }
976
977 static noinline int avc_denied(u32 ssid, u32 tsid,
978 u16 tclass, u32 requested,
979 u8 driver, u8 xperm, unsigned flags,
980 struct av_decision *avd)
981 {
982 if (flags & AVC_STRICT)
983 return -EACCES;
984
985 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
986 return -EACCES;
987
988 avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid,
989 tsid, tclass, avd->seqno, NULL, flags);
990 return 0;
991 }
992
993 /*
994 * The avc extended permissions logic adds an additional 256 bits of
995 * permissions to an avc node when extended permissions for that node are
996 * specified in the avtab. If the additional 256 permissions is not adequate,
997 * as-is the case with ioctls, then multiple may be chained together and the
998 * driver field is used to specify which set contains the permission.
999 */
1000 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1001 u8 driver, u8 xperm, struct common_audit_data *ad)
1002 {
1003 struct avc_node *node;
1004 struct av_decision avd;
1005 u32 denied;
1006 struct extended_perms_decision local_xpd;
1007 struct extended_perms_decision *xpd = NULL;
1008 struct extended_perms_data allowed;
1009 struct extended_perms_data auditallow;
1010 struct extended_perms_data dontaudit;
1011 struct avc_xperms_node local_xp_node;
1012 struct avc_xperms_node *xp_node;
1013 int rc = 0, rc2;
1014
1015 xp_node = &local_xp_node;
1016 BUG_ON(!requested);
1017
1018 rcu_read_lock();
1019
1020 node = avc_lookup(ssid, tsid, tclass);
1021 if (unlikely(!node)) {
1022 node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1023 } else {
1024 memcpy(&avd, &node->ae.avd, sizeof(avd));
1025 xp_node = node->ae.xp_node;
1026 }
1027 /* if extended permissions are not defined, only consider av_decision */
1028 if (!xp_node || !xp_node->xp.len)
1029 goto decision;
1030
1031 local_xpd.allowed = &allowed;
1032 local_xpd.auditallow = &auditallow;
1033 local_xpd.dontaudit = &dontaudit;
1034
1035 xpd = avc_xperms_decision_lookup(driver, xp_node);
1036 if (unlikely(!xpd)) {
1037 /*
1038 * Compute the extended_perms_decision only if the driver
1039 * is flagged
1040 */
1041 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1042 avd.allowed &= ~requested;
1043 goto decision;
1044 }
1045 rcu_read_unlock();
1046 security_compute_xperms_decision(ssid, tsid, tclass, driver,
1047 &local_xpd);
1048 rcu_read_lock();
1049 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm,
1050 ssid, tsid, tclass, avd.seqno, &local_xpd, 0);
1051 } else {
1052 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1053 }
1054 xpd = &local_xpd;
1055
1056 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1057 avd.allowed &= ~requested;
1058
1059 decision:
1060 denied = requested & ~(avd.allowed);
1061 if (unlikely(denied))
1062 rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm,
1063 AVC_EXTENDED_PERMS, &avd);
1064
1065 rcu_read_unlock();
1066
1067 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1068 &avd, xpd, xperm, rc, ad);
1069 if (rc2)
1070 return rc2;
1071 return rc;
1072 }
1073
1074 /**
1075 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1076 * @ssid: source security identifier
1077 * @tsid: target security identifier
1078 * @tclass: target security class
1079 * @requested: requested permissions, interpreted based on @tclass
1080 * @flags: AVC_STRICT or 0
1081 * @avd: access vector decisions
1082 *
1083 * Check the AVC to determine whether the @requested permissions are granted
1084 * for the SID pair (@ssid, @tsid), interpreting the permissions
1085 * based on @tclass, and call the security server on a cache miss to obtain
1086 * a new decision and add it to the cache. Return a copy of the decisions
1087 * in @avd. Return %0 if all @requested permissions are granted,
1088 * -%EACCES if any permissions are denied, or another -errno upon
1089 * other errors. This function is typically called by avc_has_perm(),
1090 * but may also be called directly to separate permission checking from
1091 * auditing, e.g. in cases where a lock must be held for the check but
1092 * should be released for the auditing.
1093 */
1094 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1095 u16 tclass, u32 requested,
1096 unsigned flags,
1097 struct av_decision *avd)
1098 {
1099 struct avc_node *node;
1100 struct avc_xperms_node xp_node;
1101 int rc = 0;
1102 u32 denied;
1103
1104 BUG_ON(!requested);
1105
1106 rcu_read_lock();
1107
1108 node = avc_lookup(ssid, tsid, tclass);
1109 if (unlikely(!node))
1110 node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1111 else
1112 memcpy(avd, &node->ae.avd, sizeof(*avd));
1113
1114 denied = requested & ~(avd->allowed);
1115 if (unlikely(denied))
1116 rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd);
1117
1118 rcu_read_unlock();
1119 return rc;
1120 }
1121
1122 /**
1123 * avc_has_perm - Check permissions and perform any appropriate auditing.
1124 * @ssid: source security identifier
1125 * @tsid: target security identifier
1126 * @tclass: target security class
1127 * @requested: requested permissions, interpreted based on @tclass
1128 * @auditdata: auxiliary audit data
1129 *
1130 * Check the AVC to determine whether the @requested permissions are granted
1131 * for the SID pair (@ssid, @tsid), interpreting the permissions
1132 * based on @tclass, and call the security server on a cache miss to obtain
1133 * a new decision and add it to the cache. Audit the granting or denial of
1134 * permissions in accordance with the policy. Return %0 if all @requested
1135 * permissions are granted, -%EACCES if any permissions are denied, or
1136 * another -errno upon other errors.
1137 */
1138 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1139 u32 requested, struct common_audit_data *auditdata)
1140 {
1141 struct av_decision avd;
1142 int rc, rc2;
1143
1144 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1145
1146 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 0);
1147 if (rc2)
1148 return rc2;
1149 return rc;
1150 }
1151
1152 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
1153 u32 requested, struct common_audit_data *auditdata,
1154 int flags)
1155 {
1156 struct av_decision avd;
1157 int rc, rc2;
1158
1159 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1160
1161 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1162 auditdata, flags);
1163 if (rc2)
1164 return rc2;
1165 return rc;
1166 }
1167
1168 u32 avc_policy_seqno(void)
1169 {
1170 return avc_cache.latest_notif;
1171 }
1172
1173 void avc_disable(void)
1174 {
1175 /*
1176 * If you are looking at this because you have realized that we are
1177 * not destroying the avc_node_cachep it might be easy to fix, but
1178 * I don't know the memory barrier semantics well enough to know. It's
1179 * possible that some other task dereferenced security_ops when
1180 * it still pointed to selinux operations. If that is the case it's
1181 * possible that it is about to use the avc and is about to need the
1182 * avc_node_cachep. I know I could wrap the security.c security_ops call
1183 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
1184 * the cache and get that memory back.
1185 */
1186 if (avc_node_cachep) {
1187 avc_flush();
1188 /* kmem_cache_destroy(avc_node_cachep); */
1189 }
1190 }