]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - security/selinux/avc.c
timekeeping: Repair ktime_get_coarse*() granularity
[mirror_ubuntu-jammy-kernel.git] / security / selinux / avc.c
1 /*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <linux/list.h>
26 #include <net/sock.h>
27 #include <linux/un.h>
28 #include <net/af_unix.h>
29 #include <linux/ip.h>
30 #include <linux/audit.h>
31 #include <linux/ipv6.h>
32 #include <net/ipv6.h>
33 #include "avc.h"
34 #include "avc_ss.h"
35 #include "classmap.h"
36
37 #define AVC_CACHE_SLOTS 512
38 #define AVC_DEF_CACHE_THRESHOLD 512
39 #define AVC_CACHE_RECLAIM 16
40
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field) do {} while (0)
45 #endif
46
47 struct avc_entry {
48 u32 ssid;
49 u32 tsid;
50 u16 tclass;
51 struct av_decision avd;
52 struct avc_xperms_node *xp_node;
53 };
54
55 struct avc_node {
56 struct avc_entry ae;
57 struct hlist_node list; /* anchored in avc_cache->slots[i] */
58 struct rcu_head rhead;
59 };
60
61 struct avc_xperms_decision_node {
62 struct extended_perms_decision xpd;
63 struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65
66 struct avc_xperms_node {
67 struct extended_perms xp;
68 struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70
71 struct avc_cache {
72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 atomic_t lru_hint; /* LRU hint for reclaim scan */
75 atomic_t active_nodes;
76 u32 latest_notif; /* latest revocation notification */
77 };
78
79 struct avc_callback_node {
80 int (*callback) (u32 event);
81 u32 events;
82 struct avc_callback_node *next;
83 };
84
85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
87 #endif
88
89 struct selinux_avc {
90 unsigned int avc_cache_threshold;
91 struct avc_cache avc_cache;
92 };
93
94 static struct selinux_avc selinux_avc;
95
96 void selinux_avc_init(struct selinux_avc **avc)
97 {
98 int i;
99
100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
101 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
104 }
105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
107 *avc = &selinux_avc;
108 }
109
110 unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
111 {
112 return avc->avc_cache_threshold;
113 }
114
115 void avc_set_cache_threshold(struct selinux_avc *avc,
116 unsigned int cache_threshold)
117 {
118 avc->avc_cache_threshold = cache_threshold;
119 }
120
121 static struct avc_callback_node *avc_callbacks;
122 static struct kmem_cache *avc_node_cachep;
123 static struct kmem_cache *avc_xperms_data_cachep;
124 static struct kmem_cache *avc_xperms_decision_cachep;
125 static struct kmem_cache *avc_xperms_cachep;
126
127 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
128 {
129 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
130 }
131
132 /**
133 * avc_init - Initialize the AVC.
134 *
135 * Initialize the access vector cache.
136 */
137 void __init avc_init(void)
138 {
139 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
140 0, SLAB_PANIC, NULL);
141 avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
142 sizeof(struct avc_xperms_node),
143 0, SLAB_PANIC, NULL);
144 avc_xperms_decision_cachep = kmem_cache_create(
145 "avc_xperms_decision_node",
146 sizeof(struct avc_xperms_decision_node),
147 0, SLAB_PANIC, NULL);
148 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
149 sizeof(struct extended_perms_data),
150 0, SLAB_PANIC, NULL);
151 }
152
153 int avc_get_hash_stats(struct selinux_avc *avc, char *page)
154 {
155 int i, chain_len, max_chain_len, slots_used;
156 struct avc_node *node;
157 struct hlist_head *head;
158
159 rcu_read_lock();
160
161 slots_used = 0;
162 max_chain_len = 0;
163 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
164 head = &avc->avc_cache.slots[i];
165 if (!hlist_empty(head)) {
166 slots_used++;
167 chain_len = 0;
168 hlist_for_each_entry_rcu(node, head, list)
169 chain_len++;
170 if (chain_len > max_chain_len)
171 max_chain_len = chain_len;
172 }
173 }
174
175 rcu_read_unlock();
176
177 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
178 "longest chain: %d\n",
179 atomic_read(&avc->avc_cache.active_nodes),
180 slots_used, AVC_CACHE_SLOTS, max_chain_len);
181 }
182
183 /*
184 * using a linked list for extended_perms_decision lookup because the list is
185 * always small. i.e. less than 5, typically 1
186 */
187 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
188 struct avc_xperms_node *xp_node)
189 {
190 struct avc_xperms_decision_node *xpd_node;
191
192 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
193 if (xpd_node->xpd.driver == driver)
194 return &xpd_node->xpd;
195 }
196 return NULL;
197 }
198
199 static inline unsigned int
200 avc_xperms_has_perm(struct extended_perms_decision *xpd,
201 u8 perm, u8 which)
202 {
203 unsigned int rc = 0;
204
205 if ((which == XPERMS_ALLOWED) &&
206 (xpd->used & XPERMS_ALLOWED))
207 rc = security_xperm_test(xpd->allowed->p, perm);
208 else if ((which == XPERMS_AUDITALLOW) &&
209 (xpd->used & XPERMS_AUDITALLOW))
210 rc = security_xperm_test(xpd->auditallow->p, perm);
211 else if ((which == XPERMS_DONTAUDIT) &&
212 (xpd->used & XPERMS_DONTAUDIT))
213 rc = security_xperm_test(xpd->dontaudit->p, perm);
214 return rc;
215 }
216
217 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
218 u8 driver, u8 perm)
219 {
220 struct extended_perms_decision *xpd;
221 security_xperm_set(xp_node->xp.drivers.p, driver);
222 xpd = avc_xperms_decision_lookup(driver, xp_node);
223 if (xpd && xpd->allowed)
224 security_xperm_set(xpd->allowed->p, perm);
225 }
226
227 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
228 {
229 struct extended_perms_decision *xpd;
230
231 xpd = &xpd_node->xpd;
232 if (xpd->allowed)
233 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
234 if (xpd->auditallow)
235 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
236 if (xpd->dontaudit)
237 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
238 kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
239 }
240
241 static void avc_xperms_free(struct avc_xperms_node *xp_node)
242 {
243 struct avc_xperms_decision_node *xpd_node, *tmp;
244
245 if (!xp_node)
246 return;
247
248 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
249 list_del(&xpd_node->xpd_list);
250 avc_xperms_decision_free(xpd_node);
251 }
252 kmem_cache_free(avc_xperms_cachep, xp_node);
253 }
254
255 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
256 struct extended_perms_decision *src)
257 {
258 dest->driver = src->driver;
259 dest->used = src->used;
260 if (dest->used & XPERMS_ALLOWED)
261 memcpy(dest->allowed->p, src->allowed->p,
262 sizeof(src->allowed->p));
263 if (dest->used & XPERMS_AUDITALLOW)
264 memcpy(dest->auditallow->p, src->auditallow->p,
265 sizeof(src->auditallow->p));
266 if (dest->used & XPERMS_DONTAUDIT)
267 memcpy(dest->dontaudit->p, src->dontaudit->p,
268 sizeof(src->dontaudit->p));
269 }
270
271 /*
272 * similar to avc_copy_xperms_decision, but only copy decision
273 * information relevant to this perm
274 */
275 static inline void avc_quick_copy_xperms_decision(u8 perm,
276 struct extended_perms_decision *dest,
277 struct extended_perms_decision *src)
278 {
279 /*
280 * compute index of the u32 of the 256 bits (8 u32s) that contain this
281 * command permission
282 */
283 u8 i = perm >> 5;
284
285 dest->used = src->used;
286 if (dest->used & XPERMS_ALLOWED)
287 dest->allowed->p[i] = src->allowed->p[i];
288 if (dest->used & XPERMS_AUDITALLOW)
289 dest->auditallow->p[i] = src->auditallow->p[i];
290 if (dest->used & XPERMS_DONTAUDIT)
291 dest->dontaudit->p[i] = src->dontaudit->p[i];
292 }
293
294 static struct avc_xperms_decision_node
295 *avc_xperms_decision_alloc(u8 which)
296 {
297 struct avc_xperms_decision_node *xpd_node;
298 struct extended_perms_decision *xpd;
299
300 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
301 if (!xpd_node)
302 return NULL;
303
304 xpd = &xpd_node->xpd;
305 if (which & XPERMS_ALLOWED) {
306 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
307 GFP_NOWAIT);
308 if (!xpd->allowed)
309 goto error;
310 }
311 if (which & XPERMS_AUDITALLOW) {
312 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
313 GFP_NOWAIT);
314 if (!xpd->auditallow)
315 goto error;
316 }
317 if (which & XPERMS_DONTAUDIT) {
318 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
319 GFP_NOWAIT);
320 if (!xpd->dontaudit)
321 goto error;
322 }
323 return xpd_node;
324 error:
325 avc_xperms_decision_free(xpd_node);
326 return NULL;
327 }
328
329 static int avc_add_xperms_decision(struct avc_node *node,
330 struct extended_perms_decision *src)
331 {
332 struct avc_xperms_decision_node *dest_xpd;
333
334 node->ae.xp_node->xp.len++;
335 dest_xpd = avc_xperms_decision_alloc(src->used);
336 if (!dest_xpd)
337 return -ENOMEM;
338 avc_copy_xperms_decision(&dest_xpd->xpd, src);
339 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
340 return 0;
341 }
342
343 static struct avc_xperms_node *avc_xperms_alloc(void)
344 {
345 struct avc_xperms_node *xp_node;
346
347 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
348 if (!xp_node)
349 return xp_node;
350 INIT_LIST_HEAD(&xp_node->xpd_head);
351 return xp_node;
352 }
353
354 static int avc_xperms_populate(struct avc_node *node,
355 struct avc_xperms_node *src)
356 {
357 struct avc_xperms_node *dest;
358 struct avc_xperms_decision_node *dest_xpd;
359 struct avc_xperms_decision_node *src_xpd;
360
361 if (src->xp.len == 0)
362 return 0;
363 dest = avc_xperms_alloc();
364 if (!dest)
365 return -ENOMEM;
366
367 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
368 dest->xp.len = src->xp.len;
369
370 /* for each source xpd allocate a destination xpd and copy */
371 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
372 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
373 if (!dest_xpd)
374 goto error;
375 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
376 list_add(&dest_xpd->xpd_list, &dest->xpd_head);
377 }
378 node->ae.xp_node = dest;
379 return 0;
380 error:
381 avc_xperms_free(dest);
382 return -ENOMEM;
383
384 }
385
386 static inline u32 avc_xperms_audit_required(u32 requested,
387 struct av_decision *avd,
388 struct extended_perms_decision *xpd,
389 u8 perm,
390 int result,
391 u32 *deniedp)
392 {
393 u32 denied, audited;
394
395 denied = requested & ~avd->allowed;
396 if (unlikely(denied)) {
397 audited = denied & avd->auditdeny;
398 if (audited && xpd) {
399 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
400 audited &= ~requested;
401 }
402 } else if (result) {
403 audited = denied = requested;
404 } else {
405 audited = requested & avd->auditallow;
406 if (audited && xpd) {
407 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
408 audited &= ~requested;
409 }
410 }
411
412 *deniedp = denied;
413 return audited;
414 }
415
416 static inline int avc_xperms_audit(struct selinux_state *state,
417 u32 ssid, u32 tsid, u16 tclass,
418 u32 requested, struct av_decision *avd,
419 struct extended_perms_decision *xpd,
420 u8 perm, int result,
421 struct common_audit_data *ad)
422 {
423 u32 audited, denied;
424
425 audited = avc_xperms_audit_required(
426 requested, avd, xpd, perm, result, &denied);
427 if (likely(!audited))
428 return 0;
429 return slow_avc_audit(state, ssid, tsid, tclass, requested,
430 audited, denied, result, ad, 0);
431 }
432
433 static void avc_node_free(struct rcu_head *rhead)
434 {
435 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
436 avc_xperms_free(node->ae.xp_node);
437 kmem_cache_free(avc_node_cachep, node);
438 avc_cache_stats_incr(frees);
439 }
440
441 static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
442 {
443 hlist_del_rcu(&node->list);
444 call_rcu(&node->rhead, avc_node_free);
445 atomic_dec(&avc->avc_cache.active_nodes);
446 }
447
448 static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
449 {
450 avc_xperms_free(node->ae.xp_node);
451 kmem_cache_free(avc_node_cachep, node);
452 avc_cache_stats_incr(frees);
453 atomic_dec(&avc->avc_cache.active_nodes);
454 }
455
456 static void avc_node_replace(struct selinux_avc *avc,
457 struct avc_node *new, struct avc_node *old)
458 {
459 hlist_replace_rcu(&old->list, &new->list);
460 call_rcu(&old->rhead, avc_node_free);
461 atomic_dec(&avc->avc_cache.active_nodes);
462 }
463
464 static inline int avc_reclaim_node(struct selinux_avc *avc)
465 {
466 struct avc_node *node;
467 int hvalue, try, ecx;
468 unsigned long flags;
469 struct hlist_head *head;
470 spinlock_t *lock;
471
472 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
473 hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
474 (AVC_CACHE_SLOTS - 1);
475 head = &avc->avc_cache.slots[hvalue];
476 lock = &avc->avc_cache.slots_lock[hvalue];
477
478 if (!spin_trylock_irqsave(lock, flags))
479 continue;
480
481 rcu_read_lock();
482 hlist_for_each_entry(node, head, list) {
483 avc_node_delete(avc, node);
484 avc_cache_stats_incr(reclaims);
485 ecx++;
486 if (ecx >= AVC_CACHE_RECLAIM) {
487 rcu_read_unlock();
488 spin_unlock_irqrestore(lock, flags);
489 goto out;
490 }
491 }
492 rcu_read_unlock();
493 spin_unlock_irqrestore(lock, flags);
494 }
495 out:
496 return ecx;
497 }
498
499 static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
500 {
501 struct avc_node *node;
502
503 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
504 if (!node)
505 goto out;
506
507 INIT_HLIST_NODE(&node->list);
508 avc_cache_stats_incr(allocations);
509
510 if (atomic_inc_return(&avc->avc_cache.active_nodes) >
511 avc->avc_cache_threshold)
512 avc_reclaim_node(avc);
513
514 out:
515 return node;
516 }
517
518 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
519 {
520 node->ae.ssid = ssid;
521 node->ae.tsid = tsid;
522 node->ae.tclass = tclass;
523 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
524 }
525
526 static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
527 u32 ssid, u32 tsid, u16 tclass)
528 {
529 struct avc_node *node, *ret = NULL;
530 int hvalue;
531 struct hlist_head *head;
532
533 hvalue = avc_hash(ssid, tsid, tclass);
534 head = &avc->avc_cache.slots[hvalue];
535 hlist_for_each_entry_rcu(node, head, list) {
536 if (ssid == node->ae.ssid &&
537 tclass == node->ae.tclass &&
538 tsid == node->ae.tsid) {
539 ret = node;
540 break;
541 }
542 }
543
544 return ret;
545 }
546
547 /**
548 * avc_lookup - Look up an AVC entry.
549 * @ssid: source security identifier
550 * @tsid: target security identifier
551 * @tclass: target security class
552 *
553 * Look up an AVC entry that is valid for the
554 * (@ssid, @tsid), interpreting the permissions
555 * based on @tclass. If a valid AVC entry exists,
556 * then this function returns the avc_node.
557 * Otherwise, this function returns NULL.
558 */
559 static struct avc_node *avc_lookup(struct selinux_avc *avc,
560 u32 ssid, u32 tsid, u16 tclass)
561 {
562 struct avc_node *node;
563
564 avc_cache_stats_incr(lookups);
565 node = avc_search_node(avc, ssid, tsid, tclass);
566
567 if (node)
568 return node;
569
570 avc_cache_stats_incr(misses);
571 return NULL;
572 }
573
574 static int avc_latest_notif_update(struct selinux_avc *avc,
575 int seqno, int is_insert)
576 {
577 int ret = 0;
578 static DEFINE_SPINLOCK(notif_lock);
579 unsigned long flag;
580
581 spin_lock_irqsave(&notif_lock, flag);
582 if (is_insert) {
583 if (seqno < avc->avc_cache.latest_notif) {
584 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n",
585 seqno, avc->avc_cache.latest_notif);
586 ret = -EAGAIN;
587 }
588 } else {
589 if (seqno > avc->avc_cache.latest_notif)
590 avc->avc_cache.latest_notif = seqno;
591 }
592 spin_unlock_irqrestore(&notif_lock, flag);
593
594 return ret;
595 }
596
597 /**
598 * avc_insert - Insert an AVC entry.
599 * @ssid: source security identifier
600 * @tsid: target security identifier
601 * @tclass: target security class
602 * @avd: resulting av decision
603 * @xp_node: resulting extended permissions
604 *
605 * Insert an AVC entry for the SID pair
606 * (@ssid, @tsid) and class @tclass.
607 * The access vectors and the sequence number are
608 * normally provided by the security server in
609 * response to a security_compute_av() call. If the
610 * sequence number @avd->seqno is not less than the latest
611 * revocation notification, then the function copies
612 * the access vectors into a cache entry, returns
613 * avc_node inserted. Otherwise, this function returns NULL.
614 */
615 static struct avc_node *avc_insert(struct selinux_avc *avc,
616 u32 ssid, u32 tsid, u16 tclass,
617 struct av_decision *avd,
618 struct avc_xperms_node *xp_node)
619 {
620 struct avc_node *pos, *node = NULL;
621 int hvalue;
622 unsigned long flag;
623
624 if (avc_latest_notif_update(avc, avd->seqno, 1))
625 goto out;
626
627 node = avc_alloc_node(avc);
628 if (node) {
629 struct hlist_head *head;
630 spinlock_t *lock;
631 int rc = 0;
632
633 hvalue = avc_hash(ssid, tsid, tclass);
634 avc_node_populate(node, ssid, tsid, tclass, avd);
635 rc = avc_xperms_populate(node, xp_node);
636 if (rc) {
637 kmem_cache_free(avc_node_cachep, node);
638 return NULL;
639 }
640 head = &avc->avc_cache.slots[hvalue];
641 lock = &avc->avc_cache.slots_lock[hvalue];
642
643 spin_lock_irqsave(lock, flag);
644 hlist_for_each_entry(pos, head, list) {
645 if (pos->ae.ssid == ssid &&
646 pos->ae.tsid == tsid &&
647 pos->ae.tclass == tclass) {
648 avc_node_replace(avc, node, pos);
649 goto found;
650 }
651 }
652 hlist_add_head_rcu(&node->list, head);
653 found:
654 spin_unlock_irqrestore(lock, flag);
655 }
656 out:
657 return node;
658 }
659
660 /**
661 * avc_audit_pre_callback - SELinux specific information
662 * will be called by generic audit code
663 * @ab: the audit buffer
664 * @a: audit_data
665 */
666 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
667 {
668 struct common_audit_data *ad = a;
669 struct selinux_audit_data *sad = ad->selinux_audit_data;
670 u32 av = sad->audited;
671 const char **perms;
672 int i, perm;
673
674 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted");
675
676 if (av == 0) {
677 audit_log_format(ab, " null");
678 return;
679 }
680
681 perms = secclass_map[sad->tclass-1].perms;
682
683 audit_log_format(ab, " {");
684 i = 0;
685 perm = 1;
686 while (i < (sizeof(av) * 8)) {
687 if ((perm & av) && perms[i]) {
688 audit_log_format(ab, " %s", perms[i]);
689 av &= ~perm;
690 }
691 i++;
692 perm <<= 1;
693 }
694
695 if (av)
696 audit_log_format(ab, " 0x%x", av);
697
698 audit_log_format(ab, " } for ");
699 }
700
701 /**
702 * avc_audit_post_callback - SELinux specific information
703 * will be called by generic audit code
704 * @ab: the audit buffer
705 * @a: audit_data
706 */
707 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
708 {
709 struct common_audit_data *ad = a;
710 struct selinux_audit_data *sad = ad->selinux_audit_data;
711 char *scontext;
712 u32 scontext_len;
713 int rc;
714
715 rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
716 &scontext_len);
717 if (rc)
718 audit_log_format(ab, " ssid=%d", sad->ssid);
719 else {
720 audit_log_format(ab, " scontext=%s", scontext);
721 kfree(scontext);
722 }
723
724 rc = security_sid_to_context(sad->state, sad->tsid, &scontext,
725 &scontext_len);
726 if (rc)
727 audit_log_format(ab, " tsid=%d", sad->tsid);
728 else {
729 audit_log_format(ab, " tcontext=%s", scontext);
730 kfree(scontext);
731 }
732
733 audit_log_format(ab, " tclass=%s", secclass_map[sad->tclass-1].name);
734
735 if (sad->denied)
736 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
737
738 /* in case of invalid context report also the actual context string */
739 rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
740 &scontext_len);
741 if (!rc && scontext) {
742 audit_log_format(ab, " srawcon=%s", scontext);
743 kfree(scontext);
744 }
745
746 rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
747 &scontext_len);
748 if (!rc && scontext) {
749 audit_log_format(ab, " trawcon=%s", scontext);
750 kfree(scontext);
751 }
752 }
753
754 /* This is the slow part of avc audit with big stack footprint */
755 noinline int slow_avc_audit(struct selinux_state *state,
756 u32 ssid, u32 tsid, u16 tclass,
757 u32 requested, u32 audited, u32 denied, int result,
758 struct common_audit_data *a,
759 unsigned int flags)
760 {
761 struct common_audit_data stack_data;
762 struct selinux_audit_data sad;
763
764 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
765 return -EINVAL;
766
767 if (!a) {
768 a = &stack_data;
769 a->type = LSM_AUDIT_DATA_NONE;
770 }
771
772 /*
773 * When in a RCU walk do the audit on the RCU retry. This is because
774 * the collection of the dname in an inode audit message is not RCU
775 * safe. Note this may drop some audits when the situation changes
776 * during retry. However this is logically just as if the operation
777 * happened a little later.
778 */
779 if ((a->type == LSM_AUDIT_DATA_INODE) &&
780 (flags & MAY_NOT_BLOCK))
781 return -ECHILD;
782
783 sad.tclass = tclass;
784 sad.requested = requested;
785 sad.ssid = ssid;
786 sad.tsid = tsid;
787 sad.audited = audited;
788 sad.denied = denied;
789 sad.result = result;
790 sad.state = state;
791
792 a->selinux_audit_data = &sad;
793
794 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
795 return 0;
796 }
797
798 /**
799 * avc_add_callback - Register a callback for security events.
800 * @callback: callback function
801 * @events: security events
802 *
803 * Register a callback function for events in the set @events.
804 * Returns %0 on success or -%ENOMEM if insufficient memory
805 * exists to add the callback.
806 */
807 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
808 {
809 struct avc_callback_node *c;
810 int rc = 0;
811
812 c = kmalloc(sizeof(*c), GFP_KERNEL);
813 if (!c) {
814 rc = -ENOMEM;
815 goto out;
816 }
817
818 c->callback = callback;
819 c->events = events;
820 c->next = avc_callbacks;
821 avc_callbacks = c;
822 out:
823 return rc;
824 }
825
826 /**
827 * avc_update_node Update an AVC entry
828 * @event : Updating event
829 * @perms : Permission mask bits
830 * @ssid,@tsid,@tclass : identifier of an AVC entry
831 * @seqno : sequence number when decision was made
832 * @xpd: extended_perms_decision to be added to the node
833 * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
834 *
835 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
836 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
837 * otherwise, this function updates the AVC entry. The original AVC-entry object
838 * will release later by RCU.
839 */
840 static int avc_update_node(struct selinux_avc *avc,
841 u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
842 u32 tsid, u16 tclass, u32 seqno,
843 struct extended_perms_decision *xpd,
844 u32 flags)
845 {
846 int hvalue, rc = 0;
847 unsigned long flag;
848 struct avc_node *pos, *node, *orig = NULL;
849 struct hlist_head *head;
850 spinlock_t *lock;
851
852 /*
853 * If we are in a non-blocking code path, e.g. VFS RCU walk,
854 * then we must not add permissions to a cache entry
855 * because we cannot safely audit the denial. Otherwise,
856 * during the subsequent blocking retry (e.g. VFS ref walk), we
857 * will find the permissions already granted in the cache entry
858 * and won't audit anything at all, leading to silent denials in
859 * permissive mode that only appear when in enforcing mode.
860 *
861 * See the corresponding handling in slow_avc_audit(), and the
862 * logic in selinux_inode_permission for the MAY_NOT_BLOCK flag,
863 * which is transliterated into AVC_NONBLOCKING.
864 */
865 if (flags & AVC_NONBLOCKING)
866 return 0;
867
868 node = avc_alloc_node(avc);
869 if (!node) {
870 rc = -ENOMEM;
871 goto out;
872 }
873
874 /* Lock the target slot */
875 hvalue = avc_hash(ssid, tsid, tclass);
876
877 head = &avc->avc_cache.slots[hvalue];
878 lock = &avc->avc_cache.slots_lock[hvalue];
879
880 spin_lock_irqsave(lock, flag);
881
882 hlist_for_each_entry(pos, head, list) {
883 if (ssid == pos->ae.ssid &&
884 tsid == pos->ae.tsid &&
885 tclass == pos->ae.tclass &&
886 seqno == pos->ae.avd.seqno){
887 orig = pos;
888 break;
889 }
890 }
891
892 if (!orig) {
893 rc = -ENOENT;
894 avc_node_kill(avc, node);
895 goto out_unlock;
896 }
897
898 /*
899 * Copy and replace original node.
900 */
901
902 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
903
904 if (orig->ae.xp_node) {
905 rc = avc_xperms_populate(node, orig->ae.xp_node);
906 if (rc) {
907 kmem_cache_free(avc_node_cachep, node);
908 goto out_unlock;
909 }
910 }
911
912 switch (event) {
913 case AVC_CALLBACK_GRANT:
914 node->ae.avd.allowed |= perms;
915 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
916 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
917 break;
918 case AVC_CALLBACK_TRY_REVOKE:
919 case AVC_CALLBACK_REVOKE:
920 node->ae.avd.allowed &= ~perms;
921 break;
922 case AVC_CALLBACK_AUDITALLOW_ENABLE:
923 node->ae.avd.auditallow |= perms;
924 break;
925 case AVC_CALLBACK_AUDITALLOW_DISABLE:
926 node->ae.avd.auditallow &= ~perms;
927 break;
928 case AVC_CALLBACK_AUDITDENY_ENABLE:
929 node->ae.avd.auditdeny |= perms;
930 break;
931 case AVC_CALLBACK_AUDITDENY_DISABLE:
932 node->ae.avd.auditdeny &= ~perms;
933 break;
934 case AVC_CALLBACK_ADD_XPERMS:
935 avc_add_xperms_decision(node, xpd);
936 break;
937 }
938 avc_node_replace(avc, node, orig);
939 out_unlock:
940 spin_unlock_irqrestore(lock, flag);
941 out:
942 return rc;
943 }
944
945 /**
946 * avc_flush - Flush the cache
947 */
948 static void avc_flush(struct selinux_avc *avc)
949 {
950 struct hlist_head *head;
951 struct avc_node *node;
952 spinlock_t *lock;
953 unsigned long flag;
954 int i;
955
956 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
957 head = &avc->avc_cache.slots[i];
958 lock = &avc->avc_cache.slots_lock[i];
959
960 spin_lock_irqsave(lock, flag);
961 /*
962 * With preemptable RCU, the outer spinlock does not
963 * prevent RCU grace periods from ending.
964 */
965 rcu_read_lock();
966 hlist_for_each_entry(node, head, list)
967 avc_node_delete(avc, node);
968 rcu_read_unlock();
969 spin_unlock_irqrestore(lock, flag);
970 }
971 }
972
973 /**
974 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
975 * @seqno: policy sequence number
976 */
977 int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
978 {
979 struct avc_callback_node *c;
980 int rc = 0, tmprc;
981
982 avc_flush(avc);
983
984 for (c = avc_callbacks; c; c = c->next) {
985 if (c->events & AVC_CALLBACK_RESET) {
986 tmprc = c->callback(AVC_CALLBACK_RESET);
987 /* save the first error encountered for the return
988 value and continue processing the callbacks */
989 if (!rc)
990 rc = tmprc;
991 }
992 }
993
994 avc_latest_notif_update(avc, seqno, 0);
995 return rc;
996 }
997
998 /*
999 * Slow-path helper function for avc_has_perm_noaudit,
1000 * when the avc_node lookup fails. We get called with
1001 * the RCU read lock held, and need to return with it
1002 * still held, but drop if for the security compute.
1003 *
1004 * Don't inline this, since it's the slow-path and just
1005 * results in a bigger stack frame.
1006 */
1007 static noinline
1008 struct avc_node *avc_compute_av(struct selinux_state *state,
1009 u32 ssid, u32 tsid,
1010 u16 tclass, struct av_decision *avd,
1011 struct avc_xperms_node *xp_node)
1012 {
1013 rcu_read_unlock();
1014 INIT_LIST_HEAD(&xp_node->xpd_head);
1015 security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1016 rcu_read_lock();
1017 return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1018 }
1019
1020 static noinline int avc_denied(struct selinux_state *state,
1021 u32 ssid, u32 tsid,
1022 u16 tclass, u32 requested,
1023 u8 driver, u8 xperm, unsigned int flags,
1024 struct av_decision *avd)
1025 {
1026 if (flags & AVC_STRICT)
1027 return -EACCES;
1028
1029 if (enforcing_enabled(state) &&
1030 !(avd->flags & AVD_FLAGS_PERMISSIVE))
1031 return -EACCES;
1032
1033 avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1034 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1035 return 0;
1036 }
1037
1038 /*
1039 * The avc extended permissions logic adds an additional 256 bits of
1040 * permissions to an avc node when extended permissions for that node are
1041 * specified in the avtab. If the additional 256 permissions is not adequate,
1042 * as-is the case with ioctls, then multiple may be chained together and the
1043 * driver field is used to specify which set contains the permission.
1044 */
1045 int avc_has_extended_perms(struct selinux_state *state,
1046 u32 ssid, u32 tsid, u16 tclass, u32 requested,
1047 u8 driver, u8 xperm, struct common_audit_data *ad)
1048 {
1049 struct avc_node *node;
1050 struct av_decision avd;
1051 u32 denied;
1052 struct extended_perms_decision local_xpd;
1053 struct extended_perms_decision *xpd = NULL;
1054 struct extended_perms_data allowed;
1055 struct extended_perms_data auditallow;
1056 struct extended_perms_data dontaudit;
1057 struct avc_xperms_node local_xp_node;
1058 struct avc_xperms_node *xp_node;
1059 int rc = 0, rc2;
1060
1061 xp_node = &local_xp_node;
1062 if (WARN_ON(!requested))
1063 return -EACCES;
1064
1065 rcu_read_lock();
1066
1067 node = avc_lookup(state->avc, ssid, tsid, tclass);
1068 if (unlikely(!node)) {
1069 node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1070 } else {
1071 memcpy(&avd, &node->ae.avd, sizeof(avd));
1072 xp_node = node->ae.xp_node;
1073 }
1074 /* if extended permissions are not defined, only consider av_decision */
1075 if (!xp_node || !xp_node->xp.len)
1076 goto decision;
1077
1078 local_xpd.allowed = &allowed;
1079 local_xpd.auditallow = &auditallow;
1080 local_xpd.dontaudit = &dontaudit;
1081
1082 xpd = avc_xperms_decision_lookup(driver, xp_node);
1083 if (unlikely(!xpd)) {
1084 /*
1085 * Compute the extended_perms_decision only if the driver
1086 * is flagged
1087 */
1088 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1089 avd.allowed &= ~requested;
1090 goto decision;
1091 }
1092 rcu_read_unlock();
1093 security_compute_xperms_decision(state, ssid, tsid, tclass,
1094 driver, &local_xpd);
1095 rcu_read_lock();
1096 avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1097 driver, xperm, ssid, tsid, tclass, avd.seqno,
1098 &local_xpd, 0);
1099 } else {
1100 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1101 }
1102 xpd = &local_xpd;
1103
1104 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1105 avd.allowed &= ~requested;
1106
1107 decision:
1108 denied = requested & ~(avd.allowed);
1109 if (unlikely(denied))
1110 rc = avc_denied(state, ssid, tsid, tclass, requested,
1111 driver, xperm, AVC_EXTENDED_PERMS, &avd);
1112
1113 rcu_read_unlock();
1114
1115 rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1116 &avd, xpd, xperm, rc, ad);
1117 if (rc2)
1118 return rc2;
1119 return rc;
1120 }
1121
1122 /**
1123 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1124 * @ssid: source security identifier
1125 * @tsid: target security identifier
1126 * @tclass: target security class
1127 * @requested: requested permissions, interpreted based on @tclass
1128 * @flags: AVC_STRICT, AVC_NONBLOCKING, or 0
1129 * @avd: access vector decisions
1130 *
1131 * Check the AVC to determine whether the @requested permissions are granted
1132 * for the SID pair (@ssid, @tsid), interpreting the permissions
1133 * based on @tclass, and call the security server on a cache miss to obtain
1134 * a new decision and add it to the cache. Return a copy of the decisions
1135 * in @avd. Return %0 if all @requested permissions are granted,
1136 * -%EACCES if any permissions are denied, or another -errno upon
1137 * other errors. This function is typically called by avc_has_perm(),
1138 * but may also be called directly to separate permission checking from
1139 * auditing, e.g. in cases where a lock must be held for the check but
1140 * should be released for the auditing.
1141 */
1142 inline int avc_has_perm_noaudit(struct selinux_state *state,
1143 u32 ssid, u32 tsid,
1144 u16 tclass, u32 requested,
1145 unsigned int flags,
1146 struct av_decision *avd)
1147 {
1148 struct avc_node *node;
1149 struct avc_xperms_node xp_node;
1150 int rc = 0;
1151 u32 denied;
1152
1153 if (WARN_ON(!requested))
1154 return -EACCES;
1155
1156 rcu_read_lock();
1157
1158 node = avc_lookup(state->avc, ssid, tsid, tclass);
1159 if (unlikely(!node))
1160 node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1161 else
1162 memcpy(avd, &node->ae.avd, sizeof(*avd));
1163
1164 denied = requested & ~(avd->allowed);
1165 if (unlikely(denied))
1166 rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1167 flags, avd);
1168
1169 rcu_read_unlock();
1170 return rc;
1171 }
1172
1173 /**
1174 * avc_has_perm - Check permissions and perform any appropriate auditing.
1175 * @ssid: source security identifier
1176 * @tsid: target security identifier
1177 * @tclass: target security class
1178 * @requested: requested permissions, interpreted based on @tclass
1179 * @auditdata: auxiliary audit data
1180 *
1181 * Check the AVC to determine whether the @requested permissions are granted
1182 * for the SID pair (@ssid, @tsid), interpreting the permissions
1183 * based on @tclass, and call the security server on a cache miss to obtain
1184 * a new decision and add it to the cache. Audit the granting or denial of
1185 * permissions in accordance with the policy. Return %0 if all @requested
1186 * permissions are granted, -%EACCES if any permissions are denied, or
1187 * another -errno upon other errors.
1188 */
1189 int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1190 u32 requested, struct common_audit_data *auditdata)
1191 {
1192 struct av_decision avd;
1193 int rc, rc2;
1194
1195 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1196 &avd);
1197
1198 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1199 auditdata, 0);
1200 if (rc2)
1201 return rc2;
1202 return rc;
1203 }
1204
1205 u32 avc_policy_seqno(struct selinux_state *state)
1206 {
1207 return state->avc->avc_cache.latest_notif;
1208 }
1209
1210 void avc_disable(void)
1211 {
1212 /*
1213 * If you are looking at this because you have realized that we are
1214 * not destroying the avc_node_cachep it might be easy to fix, but
1215 * I don't know the memory barrier semantics well enough to know. It's
1216 * possible that some other task dereferenced security_ops when
1217 * it still pointed to selinux operations. If that is the case it's
1218 * possible that it is about to use the avc and is about to need the
1219 * avc_node_cachep. I know I could wrap the security.c security_ops call
1220 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
1221 * the cache and get that memory back.
1222 */
1223 if (avc_node_cachep) {
1224 avc_flush(selinux_state.avc);
1225 /* kmem_cache_destroy(avc_node_cachep); */
1226 }
1227 }