]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - security/selinux/avc.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/x86
[mirror_ubuntu-zesty-kernel.git] / security / selinux / avc.c
1 /*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34
35 static const struct av_perm_to_string
36 {
37 u16 tclass;
38 u32 value;
39 const char *name;
40 } av_perm_to_string[] = {
41 #define S_(c, v, s) { c, v, s },
42 #include "av_perm_to_string.h"
43 #undef S_
44 };
45
46 #ifdef CONFIG_AUDIT
47 static const char *class_to_string[] = {
48 #define S_(s) s,
49 #include "class_to_string.h"
50 #undef S_
51 };
52 #endif
53
54 #define TB_(s) static const char * s [] = {
55 #define TE_(s) };
56 #define S_(s) s,
57 #include "common_perm_to_string.h"
58 #undef TB_
59 #undef TE_
60 #undef S_
61
62 static const struct av_inherit
63 {
64 u16 tclass;
65 const char **common_pts;
66 u32 common_base;
67 } av_inherit[] = {
68 #define S_(c, i, b) { c, common_##i##_perm_to_string, b },
69 #include "av_inherit.h"
70 #undef S_
71 };
72
73 #define AVC_CACHE_SLOTS 512
74 #define AVC_DEF_CACHE_THRESHOLD 512
75 #define AVC_CACHE_RECLAIM 16
76
77 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
78 #define avc_cache_stats_incr(field) \
79 do { \
80 per_cpu(avc_cache_stats, get_cpu()).field++; \
81 put_cpu(); \
82 } while (0)
83 #else
84 #define avc_cache_stats_incr(field) do {} while (0)
85 #endif
86
87 struct avc_entry {
88 u32 ssid;
89 u32 tsid;
90 u16 tclass;
91 struct av_decision avd;
92 atomic_t used; /* used recently */
93 };
94
95 struct avc_node {
96 struct avc_entry ae;
97 struct list_head list;
98 struct rcu_head rhead;
99 };
100
101 struct avc_cache {
102 struct list_head slots[AVC_CACHE_SLOTS];
103 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
104 atomic_t lru_hint; /* LRU hint for reclaim scan */
105 atomic_t active_nodes;
106 u32 latest_notif; /* latest revocation notification */
107 };
108
109 struct avc_callback_node {
110 int (*callback) (u32 event, u32 ssid, u32 tsid,
111 u16 tclass, u32 perms,
112 u32 *out_retained);
113 u32 events;
114 u32 ssid;
115 u32 tsid;
116 u16 tclass;
117 u32 perms;
118 struct avc_callback_node *next;
119 };
120
121 /* Exported via selinufs */
122 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
123
124 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
125 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
126 #endif
127
128 static struct avc_cache avc_cache;
129 static struct avc_callback_node *avc_callbacks;
130 static kmem_cache_t *avc_node_cachep;
131
132 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
133 {
134 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
135 }
136
137 /**
138 * avc_dump_av - Display an access vector in human-readable form.
139 * @tclass: target security class
140 * @av: access vector
141 */
142 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
143 {
144 const char **common_pts = NULL;
145 u32 common_base = 0;
146 int i, i2, perm;
147
148 if (av == 0) {
149 audit_log_format(ab, " null");
150 return;
151 }
152
153 for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
154 if (av_inherit[i].tclass == tclass) {
155 common_pts = av_inherit[i].common_pts;
156 common_base = av_inherit[i].common_base;
157 break;
158 }
159 }
160
161 audit_log_format(ab, " {");
162 i = 0;
163 perm = 1;
164 while (perm < common_base) {
165 if (perm & av) {
166 audit_log_format(ab, " %s", common_pts[i]);
167 av &= ~perm;
168 }
169 i++;
170 perm <<= 1;
171 }
172
173 while (i < sizeof(av) * 8) {
174 if (perm & av) {
175 for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
176 if ((av_perm_to_string[i2].tclass == tclass) &&
177 (av_perm_to_string[i2].value == perm))
178 break;
179 }
180 if (i2 < ARRAY_SIZE(av_perm_to_string)) {
181 audit_log_format(ab, " %s",
182 av_perm_to_string[i2].name);
183 av &= ~perm;
184 }
185 }
186 i++;
187 perm <<= 1;
188 }
189
190 if (av)
191 audit_log_format(ab, " 0x%x", av);
192
193 audit_log_format(ab, " }");
194 }
195
196 /**
197 * avc_dump_query - Display a SID pair and a class in human-readable form.
198 * @ssid: source security identifier
199 * @tsid: target security identifier
200 * @tclass: target security class
201 */
202 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
203 {
204 int rc;
205 char *scontext;
206 u32 scontext_len;
207
208 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
209 if (rc)
210 audit_log_format(ab, "ssid=%d", ssid);
211 else {
212 audit_log_format(ab, "scontext=%s", scontext);
213 kfree(scontext);
214 }
215
216 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
217 if (rc)
218 audit_log_format(ab, " tsid=%d", tsid);
219 else {
220 audit_log_format(ab, " tcontext=%s", scontext);
221 kfree(scontext);
222 }
223 audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
224 }
225
226 /**
227 * avc_init - Initialize the AVC.
228 *
229 * Initialize the access vector cache.
230 */
231 void __init avc_init(void)
232 {
233 int i;
234
235 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
236 INIT_LIST_HEAD(&avc_cache.slots[i]);
237 spin_lock_init(&avc_cache.slots_lock[i]);
238 }
239 atomic_set(&avc_cache.active_nodes, 0);
240 atomic_set(&avc_cache.lru_hint, 0);
241
242 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
243 0, SLAB_PANIC, NULL, NULL);
244
245 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
246 }
247
248 int avc_get_hash_stats(char *page)
249 {
250 int i, chain_len, max_chain_len, slots_used;
251 struct avc_node *node;
252
253 rcu_read_lock();
254
255 slots_used = 0;
256 max_chain_len = 0;
257 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
258 if (!list_empty(&avc_cache.slots[i])) {
259 slots_used++;
260 chain_len = 0;
261 list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
262 chain_len++;
263 if (chain_len > max_chain_len)
264 max_chain_len = chain_len;
265 }
266 }
267
268 rcu_read_unlock();
269
270 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
271 "longest chain: %d\n",
272 atomic_read(&avc_cache.active_nodes),
273 slots_used, AVC_CACHE_SLOTS, max_chain_len);
274 }
275
276 static void avc_node_free(struct rcu_head *rhead)
277 {
278 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
279 kmem_cache_free(avc_node_cachep, node);
280 avc_cache_stats_incr(frees);
281 }
282
283 static void avc_node_delete(struct avc_node *node)
284 {
285 list_del_rcu(&node->list);
286 call_rcu(&node->rhead, avc_node_free);
287 atomic_dec(&avc_cache.active_nodes);
288 }
289
290 static void avc_node_kill(struct avc_node *node)
291 {
292 kmem_cache_free(avc_node_cachep, node);
293 avc_cache_stats_incr(frees);
294 atomic_dec(&avc_cache.active_nodes);
295 }
296
297 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
298 {
299 list_replace_rcu(&old->list, &new->list);
300 call_rcu(&old->rhead, avc_node_free);
301 atomic_dec(&avc_cache.active_nodes);
302 }
303
304 static inline int avc_reclaim_node(void)
305 {
306 struct avc_node *node;
307 int hvalue, try, ecx;
308 unsigned long flags;
309
310 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {
311 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
312
313 if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
314 continue;
315
316 list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
317 if (atomic_dec_and_test(&node->ae.used)) {
318 /* Recently Unused */
319 avc_node_delete(node);
320 avc_cache_stats_incr(reclaims);
321 ecx++;
322 if (ecx >= AVC_CACHE_RECLAIM) {
323 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
324 goto out;
325 }
326 }
327 }
328 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
329 }
330 out:
331 return ecx;
332 }
333
334 static struct avc_node *avc_alloc_node(void)
335 {
336 struct avc_node *node;
337
338 node = kmem_cache_alloc(avc_node_cachep, SLAB_ATOMIC);
339 if (!node)
340 goto out;
341
342 memset(node, 0, sizeof(*node));
343 INIT_RCU_HEAD(&node->rhead);
344 INIT_LIST_HEAD(&node->list);
345 atomic_set(&node->ae.used, 1);
346 avc_cache_stats_incr(allocations);
347
348 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
349 avc_reclaim_node();
350
351 out:
352 return node;
353 }
354
355 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
356 {
357 node->ae.ssid = ssid;
358 node->ae.tsid = tsid;
359 node->ae.tclass = tclass;
360 memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
361 }
362
363 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
364 {
365 struct avc_node *node, *ret = NULL;
366 int hvalue;
367
368 hvalue = avc_hash(ssid, tsid, tclass);
369 list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
370 if (ssid == node->ae.ssid &&
371 tclass == node->ae.tclass &&
372 tsid == node->ae.tsid) {
373 ret = node;
374 break;
375 }
376 }
377
378 if (ret == NULL) {
379 /* cache miss */
380 goto out;
381 }
382
383 /* cache hit */
384 if (atomic_read(&ret->ae.used) != 1)
385 atomic_set(&ret->ae.used, 1);
386 out:
387 return ret;
388 }
389
390 /**
391 * avc_lookup - Look up an AVC entry.
392 * @ssid: source security identifier
393 * @tsid: target security identifier
394 * @tclass: target security class
395 * @requested: requested permissions, interpreted based on @tclass
396 *
397 * Look up an AVC entry that is valid for the
398 * @requested permissions between the SID pair
399 * (@ssid, @tsid), interpreting the permissions
400 * based on @tclass. If a valid AVC entry exists,
401 * then this function return the avc_node.
402 * Otherwise, this function returns NULL.
403 */
404 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
405 {
406 struct avc_node *node;
407
408 avc_cache_stats_incr(lookups);
409 node = avc_search_node(ssid, tsid, tclass);
410
411 if (node && ((node->ae.avd.decided & requested) == requested)) {
412 avc_cache_stats_incr(hits);
413 goto out;
414 }
415
416 node = NULL;
417 avc_cache_stats_incr(misses);
418 out:
419 return node;
420 }
421
422 static int avc_latest_notif_update(int seqno, int is_insert)
423 {
424 int ret = 0;
425 static DEFINE_SPINLOCK(notif_lock);
426 unsigned long flag;
427
428 spin_lock_irqsave(&notif_lock, flag);
429 if (is_insert) {
430 if (seqno < avc_cache.latest_notif) {
431 printk(KERN_WARNING "avc: seqno %d < latest_notif %d\n",
432 seqno, avc_cache.latest_notif);
433 ret = -EAGAIN;
434 }
435 } else {
436 if (seqno > avc_cache.latest_notif)
437 avc_cache.latest_notif = seqno;
438 }
439 spin_unlock_irqrestore(&notif_lock, flag);
440
441 return ret;
442 }
443
444 /**
445 * avc_insert - Insert an AVC entry.
446 * @ssid: source security identifier
447 * @tsid: target security identifier
448 * @tclass: target security class
449 * @ae: AVC entry
450 *
451 * Insert an AVC entry for the SID pair
452 * (@ssid, @tsid) and class @tclass.
453 * The access vectors and the sequence number are
454 * normally provided by the security server in
455 * response to a security_compute_av() call. If the
456 * sequence number @ae->avd.seqno is not less than the latest
457 * revocation notification, then the function copies
458 * the access vectors into a cache entry, returns
459 * avc_node inserted. Otherwise, this function returns NULL.
460 */
461 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
462 {
463 struct avc_node *pos, *node = NULL;
464 int hvalue;
465 unsigned long flag;
466
467 if (avc_latest_notif_update(ae->avd.seqno, 1))
468 goto out;
469
470 node = avc_alloc_node();
471 if (node) {
472 hvalue = avc_hash(ssid, tsid, tclass);
473 avc_node_populate(node, ssid, tsid, tclass, ae);
474
475 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
476 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
477 if (pos->ae.ssid == ssid &&
478 pos->ae.tsid == tsid &&
479 pos->ae.tclass == tclass) {
480 avc_node_replace(node, pos);
481 goto found;
482 }
483 }
484 list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
485 found:
486 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
487 }
488 out:
489 return node;
490 }
491
492 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
493 struct in6_addr *addr, __be16 port,
494 char *name1, char *name2)
495 {
496 if (!ipv6_addr_any(addr))
497 audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr));
498 if (port)
499 audit_log_format(ab, " %s=%d", name2, ntohs(port));
500 }
501
502 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, u32 addr,
503 __be16 port, char *name1, char *name2)
504 {
505 if (addr)
506 audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr));
507 if (port)
508 audit_log_format(ab, " %s=%d", name2, ntohs(port));
509 }
510
511 /**
512 * avc_audit - Audit the granting or denial of permissions.
513 * @ssid: source security identifier
514 * @tsid: target security identifier
515 * @tclass: target security class
516 * @requested: requested permissions
517 * @avd: access vector decisions
518 * @result: result from avc_has_perm_noaudit
519 * @a: auxiliary audit data
520 *
521 * Audit the granting or denial of permissions in accordance
522 * with the policy. This function is typically called by
523 * avc_has_perm() after a permission check, but can also be
524 * called directly by callers who use avc_has_perm_noaudit()
525 * in order to separate the permission check from the auditing.
526 * For example, this separation is useful when the permission check must
527 * be performed under a lock, to allow the lock to be released
528 * before calling the auditing code.
529 */
530 void avc_audit(u32 ssid, u32 tsid,
531 u16 tclass, u32 requested,
532 struct av_decision *avd, int result, struct avc_audit_data *a)
533 {
534 struct task_struct *tsk = current;
535 struct inode *inode = NULL;
536 u32 denied, audited;
537 struct audit_buffer *ab;
538
539 denied = requested & ~avd->allowed;
540 if (denied) {
541 audited = denied;
542 if (!(audited & avd->auditdeny))
543 return;
544 } else if (result) {
545 audited = denied = requested;
546 } else {
547 audited = requested;
548 if (!(audited & avd->auditallow))
549 return;
550 }
551
552 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
553 if (!ab)
554 return; /* audit_panic has been called */
555 audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
556 avc_dump_av(ab, tclass,audited);
557 audit_log_format(ab, " for ");
558 if (a && a->tsk)
559 tsk = a->tsk;
560 if (tsk && tsk->pid) {
561 audit_log_format(ab, " pid=%d comm=", tsk->pid);
562 audit_log_untrustedstring(ab, tsk->comm);
563 }
564 if (a) {
565 switch (a->type) {
566 case AVC_AUDIT_DATA_IPC:
567 audit_log_format(ab, " key=%d", a->u.ipc_id);
568 break;
569 case AVC_AUDIT_DATA_CAP:
570 audit_log_format(ab, " capability=%d", a->u.cap);
571 break;
572 case AVC_AUDIT_DATA_FS:
573 if (a->u.fs.dentry) {
574 struct dentry *dentry = a->u.fs.dentry;
575 if (a->u.fs.mnt)
576 audit_avc_path(dentry, a->u.fs.mnt);
577 audit_log_format(ab, " name=");
578 audit_log_untrustedstring(ab, dentry->d_name.name);
579 inode = dentry->d_inode;
580 } else if (a->u.fs.inode) {
581 struct dentry *dentry;
582 inode = a->u.fs.inode;
583 dentry = d_find_alias(inode);
584 if (dentry) {
585 audit_log_format(ab, " name=");
586 audit_log_untrustedstring(ab, dentry->d_name.name);
587 dput(dentry);
588 }
589 }
590 if (inode)
591 audit_log_format(ab, " dev=%s ino=%ld",
592 inode->i_sb->s_id,
593 inode->i_ino);
594 break;
595 case AVC_AUDIT_DATA_NET:
596 if (a->u.net.sk) {
597 struct sock *sk = a->u.net.sk;
598 struct unix_sock *u;
599 int len = 0;
600 char *p = NULL;
601
602 switch (sk->sk_family) {
603 case AF_INET: {
604 struct inet_sock *inet = inet_sk(sk);
605
606 avc_print_ipv4_addr(ab, inet->rcv_saddr,
607 inet->sport,
608 "laddr", "lport");
609 avc_print_ipv4_addr(ab, inet->daddr,
610 inet->dport,
611 "faddr", "fport");
612 break;
613 }
614 case AF_INET6: {
615 struct inet_sock *inet = inet_sk(sk);
616 struct ipv6_pinfo *inet6 = inet6_sk(sk);
617
618 avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
619 inet->sport,
620 "laddr", "lport");
621 avc_print_ipv6_addr(ab, &inet6->daddr,
622 inet->dport,
623 "faddr", "fport");
624 break;
625 }
626 case AF_UNIX:
627 u = unix_sk(sk);
628 if (u->dentry) {
629 audit_avc_path(u->dentry, u->mnt);
630 audit_log_format(ab, " name=");
631 audit_log_untrustedstring(ab, u->dentry->d_name.name);
632 break;
633 }
634 if (!u->addr)
635 break;
636 len = u->addr->len-sizeof(short);
637 p = &u->addr->name->sun_path[0];
638 audit_log_format(ab, " path=");
639 if (*p)
640 audit_log_untrustedstring(ab, p);
641 else
642 audit_log_hex(ab, p, len);
643 break;
644 }
645 }
646
647 switch (a->u.net.family) {
648 case AF_INET:
649 avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
650 a->u.net.sport,
651 "saddr", "src");
652 avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
653 a->u.net.dport,
654 "daddr", "dest");
655 break;
656 case AF_INET6:
657 avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
658 a->u.net.sport,
659 "saddr", "src");
660 avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
661 a->u.net.dport,
662 "daddr", "dest");
663 break;
664 }
665 if (a->u.net.netif)
666 audit_log_format(ab, " netif=%s",
667 a->u.net.netif);
668 break;
669 }
670 }
671 audit_log_format(ab, " ");
672 avc_dump_query(ab, ssid, tsid, tclass);
673 audit_log_end(ab);
674 }
675
676 /**
677 * avc_add_callback - Register a callback for security events.
678 * @callback: callback function
679 * @events: security events
680 * @ssid: source security identifier or %SECSID_WILD
681 * @tsid: target security identifier or %SECSID_WILD
682 * @tclass: target security class
683 * @perms: permissions
684 *
685 * Register a callback function for events in the set @events
686 * related to the SID pair (@ssid, @tsid) and
687 * and the permissions @perms, interpreting
688 * @perms based on @tclass. Returns %0 on success or
689 * -%ENOMEM if insufficient memory exists to add the callback.
690 */
691 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
692 u16 tclass, u32 perms,
693 u32 *out_retained),
694 u32 events, u32 ssid, u32 tsid,
695 u16 tclass, u32 perms)
696 {
697 struct avc_callback_node *c;
698 int rc = 0;
699
700 c = kmalloc(sizeof(*c), GFP_ATOMIC);
701 if (!c) {
702 rc = -ENOMEM;
703 goto out;
704 }
705
706 c->callback = callback;
707 c->events = events;
708 c->ssid = ssid;
709 c->tsid = tsid;
710 c->perms = perms;
711 c->next = avc_callbacks;
712 avc_callbacks = c;
713 out:
714 return rc;
715 }
716
717 static inline int avc_sidcmp(u32 x, u32 y)
718 {
719 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
720 }
721
722 /**
723 * avc_update_node Update an AVC entry
724 * @event : Updating event
725 * @perms : Permission mask bits
726 * @ssid,@tsid,@tclass : identifier of an AVC entry
727 *
728 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
729 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
730 * otherwise, this function update the AVC entry. The original AVC-entry object
731 * will release later by RCU.
732 */
733 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
734 {
735 int hvalue, rc = 0;
736 unsigned long flag;
737 struct avc_node *pos, *node, *orig = NULL;
738
739 node = avc_alloc_node();
740 if (!node) {
741 rc = -ENOMEM;
742 goto out;
743 }
744
745 /* Lock the target slot */
746 hvalue = avc_hash(ssid, tsid, tclass);
747 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
748
749 list_for_each_entry(pos, &avc_cache.slots[hvalue], list){
750 if ( ssid==pos->ae.ssid &&
751 tsid==pos->ae.tsid &&
752 tclass==pos->ae.tclass ){
753 orig = pos;
754 break;
755 }
756 }
757
758 if (!orig) {
759 rc = -ENOENT;
760 avc_node_kill(node);
761 goto out_unlock;
762 }
763
764 /*
765 * Copy and replace original node.
766 */
767
768 avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
769
770 switch (event) {
771 case AVC_CALLBACK_GRANT:
772 node->ae.avd.allowed |= perms;
773 break;
774 case AVC_CALLBACK_TRY_REVOKE:
775 case AVC_CALLBACK_REVOKE:
776 node->ae.avd.allowed &= ~perms;
777 break;
778 case AVC_CALLBACK_AUDITALLOW_ENABLE:
779 node->ae.avd.auditallow |= perms;
780 break;
781 case AVC_CALLBACK_AUDITALLOW_DISABLE:
782 node->ae.avd.auditallow &= ~perms;
783 break;
784 case AVC_CALLBACK_AUDITDENY_ENABLE:
785 node->ae.avd.auditdeny |= perms;
786 break;
787 case AVC_CALLBACK_AUDITDENY_DISABLE:
788 node->ae.avd.auditdeny &= ~perms;
789 break;
790 }
791 avc_node_replace(node, orig);
792 out_unlock:
793 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
794 out:
795 return rc;
796 }
797
798 /**
799 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
800 * @seqno: policy sequence number
801 */
802 int avc_ss_reset(u32 seqno)
803 {
804 struct avc_callback_node *c;
805 int i, rc = 0;
806 unsigned long flag;
807 struct avc_node *node;
808
809 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
810 spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
811 list_for_each_entry(node, &avc_cache.slots[i], list)
812 avc_node_delete(node);
813 spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
814 }
815
816 for (c = avc_callbacks; c; c = c->next) {
817 if (c->events & AVC_CALLBACK_RESET) {
818 rc = c->callback(AVC_CALLBACK_RESET,
819 0, 0, 0, 0, NULL);
820 if (rc)
821 goto out;
822 }
823 }
824
825 avc_latest_notif_update(seqno, 0);
826 out:
827 return rc;
828 }
829
830 /**
831 * avc_has_perm_noaudit - Check permissions but perform no auditing.
832 * @ssid: source security identifier
833 * @tsid: target security identifier
834 * @tclass: target security class
835 * @requested: requested permissions, interpreted based on @tclass
836 * @avd: access vector decisions
837 *
838 * Check the AVC to determine whether the @requested permissions are granted
839 * for the SID pair (@ssid, @tsid), interpreting the permissions
840 * based on @tclass, and call the security server on a cache miss to obtain
841 * a new decision and add it to the cache. Return a copy of the decisions
842 * in @avd. Return %0 if all @requested permissions are granted,
843 * -%EACCES if any permissions are denied, or another -errno upon
844 * other errors. This function is typically called by avc_has_perm(),
845 * but may also be called directly to separate permission checking from
846 * auditing, e.g. in cases where a lock must be held for the check but
847 * should be released for the auditing.
848 */
849 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
850 u16 tclass, u32 requested,
851 struct av_decision *avd)
852 {
853 struct avc_node *node;
854 struct avc_entry entry, *p_ae;
855 int rc = 0;
856 u32 denied;
857
858 rcu_read_lock();
859
860 node = avc_lookup(ssid, tsid, tclass, requested);
861 if (!node) {
862 rcu_read_unlock();
863 rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
864 if (rc)
865 goto out;
866 rcu_read_lock();
867 node = avc_insert(ssid,tsid,tclass,&entry);
868 }
869
870 p_ae = node ? &node->ae : &entry;
871
872 if (avd)
873 memcpy(avd, &p_ae->avd, sizeof(*avd));
874
875 denied = requested & ~(p_ae->avd.allowed);
876
877 if (!requested || denied) {
878 if (selinux_enforcing)
879 rc = -EACCES;
880 else
881 if (node)
882 avc_update_node(AVC_CALLBACK_GRANT,requested,
883 ssid,tsid,tclass);
884 }
885
886 rcu_read_unlock();
887 out:
888 return rc;
889 }
890
891 /**
892 * avc_has_perm - Check permissions and perform any appropriate auditing.
893 * @ssid: source security identifier
894 * @tsid: target security identifier
895 * @tclass: target security class
896 * @requested: requested permissions, interpreted based on @tclass
897 * @auditdata: auxiliary audit data
898 *
899 * Check the AVC to determine whether the @requested permissions are granted
900 * for the SID pair (@ssid, @tsid), interpreting the permissions
901 * based on @tclass, and call the security server on a cache miss to obtain
902 * a new decision and add it to the cache. Audit the granting or denial of
903 * permissions in accordance with the policy. Return %0 if all @requested
904 * permissions are granted, -%EACCES if any permissions are denied, or
905 * another -errno upon other errors.
906 */
907 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
908 u32 requested, struct avc_audit_data *auditdata)
909 {
910 struct av_decision avd;
911 int rc;
912
913 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, &avd);
914 avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
915 return rc;
916 }