]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - security/selinux/hooks.c
[PATCH] VFS: Permit filesystem to perform statfs with a known root dentry
[mirror_ubuntu-artful-kernel.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2,
18 * as published by the Free Software Foundation.
19 */
20
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/security.h>
29 #include <linux/xattr.h>
30 #include <linux/capability.h>
31 #include <linux/unistd.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/slab.h>
35 #include <linux/pagemap.h>
36 #include <linux/swap.h>
37 #include <linux/smp_lock.h>
38 #include <linux/spinlock.h>
39 #include <linux/syscalls.h>
40 #include <linux/file.h>
41 #include <linux/namei.h>
42 #include <linux/mount.h>
43 #include <linux/ext2_fs.h>
44 #include <linux/proc_fs.h>
45 #include <linux/kd.h>
46 #include <linux/netfilter_ipv4.h>
47 #include <linux/netfilter_ipv6.h>
48 #include <linux/tty.h>
49 #include <net/icmp.h>
50 #include <net/ip.h> /* for sysctl_local_port_range[] */
51 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
52 #include <asm/uaccess.h>
53 #include <asm/semaphore.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h> /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/quota.h>
62 #include <linux/un.h> /* for Unix socket types */
63 #include <net/af_unix.h> /* for Unix socket types */
64 #include <linux/parser.h>
65 #include <linux/nfs_mount.h>
66 #include <net/ipv6.h>
67 #include <linux/hugetlb.h>
68 #include <linux/personality.h>
69 #include <linux/sysctl.h>
70 #include <linux/audit.h>
71 #include <linux/string.h>
72
73 #include "avc.h"
74 #include "objsec.h"
75 #include "netif.h"
76 #include "xfrm.h"
77
78 #define XATTR_SELINUX_SUFFIX "selinux"
79 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
80
81 extern unsigned int policydb_loaded_version;
82 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
83 extern int selinux_compat_net;
84
85 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
86 int selinux_enforcing = 0;
87
88 static int __init enforcing_setup(char *str)
89 {
90 selinux_enforcing = simple_strtol(str,NULL,0);
91 return 1;
92 }
93 __setup("enforcing=", enforcing_setup);
94 #endif
95
96 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
97 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
98
99 static int __init selinux_enabled_setup(char *str)
100 {
101 selinux_enabled = simple_strtol(str, NULL, 0);
102 return 1;
103 }
104 __setup("selinux=", selinux_enabled_setup);
105 #else
106 int selinux_enabled = 1;
107 #endif
108
109 /* Original (dummy) security module. */
110 static struct security_operations *original_ops = NULL;
111
112 /* Minimal support for a secondary security module,
113 just to allow the use of the dummy or capability modules.
114 The owlsm module can alternatively be used as a secondary
115 module as long as CONFIG_OWLSM_FD is not enabled. */
116 static struct security_operations *secondary_ops = NULL;
117
118 /* Lists of inode and superblock security structures initialized
119 before the policy was loaded. */
120 static LIST_HEAD(superblock_security_head);
121 static DEFINE_SPINLOCK(sb_security_lock);
122
123 static kmem_cache_t *sel_inode_cache;
124
125 /* Return security context for a given sid or just the context
126 length if the buffer is null or length is 0 */
127 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
128 {
129 char *context;
130 unsigned len;
131 int rc;
132
133 rc = security_sid_to_context(sid, &context, &len);
134 if (rc)
135 return rc;
136
137 if (!buffer || !size)
138 goto getsecurity_exit;
139
140 if (size < len) {
141 len = -ERANGE;
142 goto getsecurity_exit;
143 }
144 memcpy(buffer, context, len);
145
146 getsecurity_exit:
147 kfree(context);
148 return len;
149 }
150
151 /* Allocate and free functions for each kind of security blob. */
152
153 static int task_alloc_security(struct task_struct *task)
154 {
155 struct task_security_struct *tsec;
156
157 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
158 if (!tsec)
159 return -ENOMEM;
160
161 tsec->task = task;
162 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
163 task->security = tsec;
164
165 return 0;
166 }
167
168 static void task_free_security(struct task_struct *task)
169 {
170 struct task_security_struct *tsec = task->security;
171 task->security = NULL;
172 kfree(tsec);
173 }
174
175 static int inode_alloc_security(struct inode *inode)
176 {
177 struct task_security_struct *tsec = current->security;
178 struct inode_security_struct *isec;
179
180 isec = kmem_cache_alloc(sel_inode_cache, SLAB_KERNEL);
181 if (!isec)
182 return -ENOMEM;
183
184 memset(isec, 0, sizeof(*isec));
185 init_MUTEX(&isec->sem);
186 INIT_LIST_HEAD(&isec->list);
187 isec->inode = inode;
188 isec->sid = SECINITSID_UNLABELED;
189 isec->sclass = SECCLASS_FILE;
190 isec->task_sid = tsec->sid;
191 inode->i_security = isec;
192
193 return 0;
194 }
195
196 static void inode_free_security(struct inode *inode)
197 {
198 struct inode_security_struct *isec = inode->i_security;
199 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
200
201 spin_lock(&sbsec->isec_lock);
202 if (!list_empty(&isec->list))
203 list_del_init(&isec->list);
204 spin_unlock(&sbsec->isec_lock);
205
206 inode->i_security = NULL;
207 kmem_cache_free(sel_inode_cache, isec);
208 }
209
210 static int file_alloc_security(struct file *file)
211 {
212 struct task_security_struct *tsec = current->security;
213 struct file_security_struct *fsec;
214
215 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
216 if (!fsec)
217 return -ENOMEM;
218
219 fsec->file = file;
220 fsec->sid = tsec->sid;
221 fsec->fown_sid = tsec->sid;
222 file->f_security = fsec;
223
224 return 0;
225 }
226
227 static void file_free_security(struct file *file)
228 {
229 struct file_security_struct *fsec = file->f_security;
230 file->f_security = NULL;
231 kfree(fsec);
232 }
233
234 static int superblock_alloc_security(struct super_block *sb)
235 {
236 struct superblock_security_struct *sbsec;
237
238 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
239 if (!sbsec)
240 return -ENOMEM;
241
242 init_MUTEX(&sbsec->sem);
243 INIT_LIST_HEAD(&sbsec->list);
244 INIT_LIST_HEAD(&sbsec->isec_head);
245 spin_lock_init(&sbsec->isec_lock);
246 sbsec->sb = sb;
247 sbsec->sid = SECINITSID_UNLABELED;
248 sbsec->def_sid = SECINITSID_FILE;
249 sb->s_security = sbsec;
250
251 return 0;
252 }
253
254 static void superblock_free_security(struct super_block *sb)
255 {
256 struct superblock_security_struct *sbsec = sb->s_security;
257
258 spin_lock(&sb_security_lock);
259 if (!list_empty(&sbsec->list))
260 list_del_init(&sbsec->list);
261 spin_unlock(&sb_security_lock);
262
263 sb->s_security = NULL;
264 kfree(sbsec);
265 }
266
267 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
268 {
269 struct sk_security_struct *ssec;
270
271 if (family != PF_UNIX)
272 return 0;
273
274 ssec = kzalloc(sizeof(*ssec), priority);
275 if (!ssec)
276 return -ENOMEM;
277
278 ssec->sk = sk;
279 ssec->peer_sid = SECINITSID_UNLABELED;
280 sk->sk_security = ssec;
281
282 return 0;
283 }
284
285 static void sk_free_security(struct sock *sk)
286 {
287 struct sk_security_struct *ssec = sk->sk_security;
288
289 if (sk->sk_family != PF_UNIX)
290 return;
291
292 sk->sk_security = NULL;
293 kfree(ssec);
294 }
295
296 /* The security server must be initialized before
297 any labeling or access decisions can be provided. */
298 extern int ss_initialized;
299
300 /* The file system's label must be initialized prior to use. */
301
302 static char *labeling_behaviors[6] = {
303 "uses xattr",
304 "uses transition SIDs",
305 "uses task SIDs",
306 "uses genfs_contexts",
307 "not configured for labeling",
308 "uses mountpoint labeling",
309 };
310
311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
312
313 static inline int inode_doinit(struct inode *inode)
314 {
315 return inode_doinit_with_dentry(inode, NULL);
316 }
317
318 enum {
319 Opt_context = 1,
320 Opt_fscontext = 2,
321 Opt_defcontext = 4,
322 };
323
324 static match_table_t tokens = {
325 {Opt_context, "context=%s"},
326 {Opt_fscontext, "fscontext=%s"},
327 {Opt_defcontext, "defcontext=%s"},
328 };
329
330 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
331
332 static int try_context_mount(struct super_block *sb, void *data)
333 {
334 char *context = NULL, *defcontext = NULL;
335 const char *name;
336 u32 sid;
337 int alloc = 0, rc = 0, seen = 0;
338 struct task_security_struct *tsec = current->security;
339 struct superblock_security_struct *sbsec = sb->s_security;
340
341 if (!data)
342 goto out;
343
344 name = sb->s_type->name;
345
346 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
347
348 /* NFS we understand. */
349 if (!strcmp(name, "nfs")) {
350 struct nfs_mount_data *d = data;
351
352 if (d->version < NFS_MOUNT_VERSION)
353 goto out;
354
355 if (d->context[0]) {
356 context = d->context;
357 seen |= Opt_context;
358 }
359 } else
360 goto out;
361
362 } else {
363 /* Standard string-based options. */
364 char *p, *options = data;
365
366 while ((p = strsep(&options, ",")) != NULL) {
367 int token;
368 substring_t args[MAX_OPT_ARGS];
369
370 if (!*p)
371 continue;
372
373 token = match_token(p, tokens, args);
374
375 switch (token) {
376 case Opt_context:
377 if (seen) {
378 rc = -EINVAL;
379 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
380 goto out_free;
381 }
382 context = match_strdup(&args[0]);
383 if (!context) {
384 rc = -ENOMEM;
385 goto out_free;
386 }
387 if (!alloc)
388 alloc = 1;
389 seen |= Opt_context;
390 break;
391
392 case Opt_fscontext:
393 if (seen & (Opt_context|Opt_fscontext)) {
394 rc = -EINVAL;
395 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
396 goto out_free;
397 }
398 context = match_strdup(&args[0]);
399 if (!context) {
400 rc = -ENOMEM;
401 goto out_free;
402 }
403 if (!alloc)
404 alloc = 1;
405 seen |= Opt_fscontext;
406 break;
407
408 case Opt_defcontext:
409 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
410 rc = -EINVAL;
411 printk(KERN_WARNING "SELinux: "
412 "defcontext option is invalid "
413 "for this filesystem type\n");
414 goto out_free;
415 }
416 if (seen & (Opt_context|Opt_defcontext)) {
417 rc = -EINVAL;
418 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
419 goto out_free;
420 }
421 defcontext = match_strdup(&args[0]);
422 if (!defcontext) {
423 rc = -ENOMEM;
424 goto out_free;
425 }
426 if (!alloc)
427 alloc = 1;
428 seen |= Opt_defcontext;
429 break;
430
431 default:
432 rc = -EINVAL;
433 printk(KERN_WARNING "SELinux: unknown mount "
434 "option\n");
435 goto out_free;
436
437 }
438 }
439 }
440
441 if (!seen)
442 goto out;
443
444 if (context) {
445 rc = security_context_to_sid(context, strlen(context), &sid);
446 if (rc) {
447 printk(KERN_WARNING "SELinux: security_context_to_sid"
448 "(%s) failed for (dev %s, type %s) errno=%d\n",
449 context, sb->s_id, name, rc);
450 goto out_free;
451 }
452
453 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
454 FILESYSTEM__RELABELFROM, NULL);
455 if (rc)
456 goto out_free;
457
458 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
459 FILESYSTEM__RELABELTO, NULL);
460 if (rc)
461 goto out_free;
462
463 sbsec->sid = sid;
464
465 if (seen & Opt_context)
466 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
467 }
468
469 if (defcontext) {
470 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
471 if (rc) {
472 printk(KERN_WARNING "SELinux: security_context_to_sid"
473 "(%s) failed for (dev %s, type %s) errno=%d\n",
474 defcontext, sb->s_id, name, rc);
475 goto out_free;
476 }
477
478 if (sid == sbsec->def_sid)
479 goto out_free;
480
481 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
482 FILESYSTEM__RELABELFROM, NULL);
483 if (rc)
484 goto out_free;
485
486 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
487 FILESYSTEM__ASSOCIATE, NULL);
488 if (rc)
489 goto out_free;
490
491 sbsec->def_sid = sid;
492 }
493
494 out_free:
495 if (alloc) {
496 kfree(context);
497 kfree(defcontext);
498 }
499 out:
500 return rc;
501 }
502
503 static int superblock_doinit(struct super_block *sb, void *data)
504 {
505 struct superblock_security_struct *sbsec = sb->s_security;
506 struct dentry *root = sb->s_root;
507 struct inode *inode = root->d_inode;
508 int rc = 0;
509
510 down(&sbsec->sem);
511 if (sbsec->initialized)
512 goto out;
513
514 if (!ss_initialized) {
515 /* Defer initialization until selinux_complete_init,
516 after the initial policy is loaded and the security
517 server is ready to handle calls. */
518 spin_lock(&sb_security_lock);
519 if (list_empty(&sbsec->list))
520 list_add(&sbsec->list, &superblock_security_head);
521 spin_unlock(&sb_security_lock);
522 goto out;
523 }
524
525 /* Determine the labeling behavior to use for this filesystem type. */
526 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
527 if (rc) {
528 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
529 __FUNCTION__, sb->s_type->name, rc);
530 goto out;
531 }
532
533 rc = try_context_mount(sb, data);
534 if (rc)
535 goto out;
536
537 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
538 /* Make sure that the xattr handler exists and that no
539 error other than -ENODATA is returned by getxattr on
540 the root directory. -ENODATA is ok, as this may be
541 the first boot of the SELinux kernel before we have
542 assigned xattr values to the filesystem. */
543 if (!inode->i_op->getxattr) {
544 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
545 "xattr support\n", sb->s_id, sb->s_type->name);
546 rc = -EOPNOTSUPP;
547 goto out;
548 }
549 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
550 if (rc < 0 && rc != -ENODATA) {
551 if (rc == -EOPNOTSUPP)
552 printk(KERN_WARNING "SELinux: (dev %s, type "
553 "%s) has no security xattr handler\n",
554 sb->s_id, sb->s_type->name);
555 else
556 printk(KERN_WARNING "SELinux: (dev %s, type "
557 "%s) getxattr errno %d\n", sb->s_id,
558 sb->s_type->name, -rc);
559 goto out;
560 }
561 }
562
563 if (strcmp(sb->s_type->name, "proc") == 0)
564 sbsec->proc = 1;
565
566 sbsec->initialized = 1;
567
568 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
569 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
570 sb->s_id, sb->s_type->name);
571 }
572 else {
573 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
574 sb->s_id, sb->s_type->name,
575 labeling_behaviors[sbsec->behavior-1]);
576 }
577
578 /* Initialize the root inode. */
579 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
580
581 /* Initialize any other inodes associated with the superblock, e.g.
582 inodes created prior to initial policy load or inodes created
583 during get_sb by a pseudo filesystem that directly
584 populates itself. */
585 spin_lock(&sbsec->isec_lock);
586 next_inode:
587 if (!list_empty(&sbsec->isec_head)) {
588 struct inode_security_struct *isec =
589 list_entry(sbsec->isec_head.next,
590 struct inode_security_struct, list);
591 struct inode *inode = isec->inode;
592 spin_unlock(&sbsec->isec_lock);
593 inode = igrab(inode);
594 if (inode) {
595 if (!IS_PRIVATE (inode))
596 inode_doinit(inode);
597 iput(inode);
598 }
599 spin_lock(&sbsec->isec_lock);
600 list_del_init(&isec->list);
601 goto next_inode;
602 }
603 spin_unlock(&sbsec->isec_lock);
604 out:
605 up(&sbsec->sem);
606 return rc;
607 }
608
609 static inline u16 inode_mode_to_security_class(umode_t mode)
610 {
611 switch (mode & S_IFMT) {
612 case S_IFSOCK:
613 return SECCLASS_SOCK_FILE;
614 case S_IFLNK:
615 return SECCLASS_LNK_FILE;
616 case S_IFREG:
617 return SECCLASS_FILE;
618 case S_IFBLK:
619 return SECCLASS_BLK_FILE;
620 case S_IFDIR:
621 return SECCLASS_DIR;
622 case S_IFCHR:
623 return SECCLASS_CHR_FILE;
624 case S_IFIFO:
625 return SECCLASS_FIFO_FILE;
626
627 }
628
629 return SECCLASS_FILE;
630 }
631
632 static inline int default_protocol_stream(int protocol)
633 {
634 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
635 }
636
637 static inline int default_protocol_dgram(int protocol)
638 {
639 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
640 }
641
642 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
643 {
644 switch (family) {
645 case PF_UNIX:
646 switch (type) {
647 case SOCK_STREAM:
648 case SOCK_SEQPACKET:
649 return SECCLASS_UNIX_STREAM_SOCKET;
650 case SOCK_DGRAM:
651 return SECCLASS_UNIX_DGRAM_SOCKET;
652 }
653 break;
654 case PF_INET:
655 case PF_INET6:
656 switch (type) {
657 case SOCK_STREAM:
658 if (default_protocol_stream(protocol))
659 return SECCLASS_TCP_SOCKET;
660 else
661 return SECCLASS_RAWIP_SOCKET;
662 case SOCK_DGRAM:
663 if (default_protocol_dgram(protocol))
664 return SECCLASS_UDP_SOCKET;
665 else
666 return SECCLASS_RAWIP_SOCKET;
667 default:
668 return SECCLASS_RAWIP_SOCKET;
669 }
670 break;
671 case PF_NETLINK:
672 switch (protocol) {
673 case NETLINK_ROUTE:
674 return SECCLASS_NETLINK_ROUTE_SOCKET;
675 case NETLINK_FIREWALL:
676 return SECCLASS_NETLINK_FIREWALL_SOCKET;
677 case NETLINK_INET_DIAG:
678 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
679 case NETLINK_NFLOG:
680 return SECCLASS_NETLINK_NFLOG_SOCKET;
681 case NETLINK_XFRM:
682 return SECCLASS_NETLINK_XFRM_SOCKET;
683 case NETLINK_SELINUX:
684 return SECCLASS_NETLINK_SELINUX_SOCKET;
685 case NETLINK_AUDIT:
686 return SECCLASS_NETLINK_AUDIT_SOCKET;
687 case NETLINK_IP6_FW:
688 return SECCLASS_NETLINK_IP6FW_SOCKET;
689 case NETLINK_DNRTMSG:
690 return SECCLASS_NETLINK_DNRT_SOCKET;
691 case NETLINK_KOBJECT_UEVENT:
692 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
693 default:
694 return SECCLASS_NETLINK_SOCKET;
695 }
696 case PF_PACKET:
697 return SECCLASS_PACKET_SOCKET;
698 case PF_KEY:
699 return SECCLASS_KEY_SOCKET;
700 case PF_APPLETALK:
701 return SECCLASS_APPLETALK_SOCKET;
702 }
703
704 return SECCLASS_SOCKET;
705 }
706
707 #ifdef CONFIG_PROC_FS
708 static int selinux_proc_get_sid(struct proc_dir_entry *de,
709 u16 tclass,
710 u32 *sid)
711 {
712 int buflen, rc;
713 char *buffer, *path, *end;
714
715 buffer = (char*)__get_free_page(GFP_KERNEL);
716 if (!buffer)
717 return -ENOMEM;
718
719 buflen = PAGE_SIZE;
720 end = buffer+buflen;
721 *--end = '\0';
722 buflen--;
723 path = end-1;
724 *path = '/';
725 while (de && de != de->parent) {
726 buflen -= de->namelen + 1;
727 if (buflen < 0)
728 break;
729 end -= de->namelen;
730 memcpy(end, de->name, de->namelen);
731 *--end = '/';
732 path = end;
733 de = de->parent;
734 }
735 rc = security_genfs_sid("proc", path, tclass, sid);
736 free_page((unsigned long)buffer);
737 return rc;
738 }
739 #else
740 static int selinux_proc_get_sid(struct proc_dir_entry *de,
741 u16 tclass,
742 u32 *sid)
743 {
744 return -EINVAL;
745 }
746 #endif
747
748 /* The inode's security attributes must be initialized before first use. */
749 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
750 {
751 struct superblock_security_struct *sbsec = NULL;
752 struct inode_security_struct *isec = inode->i_security;
753 u32 sid;
754 struct dentry *dentry;
755 #define INITCONTEXTLEN 255
756 char *context = NULL;
757 unsigned len = 0;
758 int rc = 0;
759 int hold_sem = 0;
760
761 if (isec->initialized)
762 goto out;
763
764 down(&isec->sem);
765 hold_sem = 1;
766 if (isec->initialized)
767 goto out;
768
769 sbsec = inode->i_sb->s_security;
770 if (!sbsec->initialized) {
771 /* Defer initialization until selinux_complete_init,
772 after the initial policy is loaded and the security
773 server is ready to handle calls. */
774 spin_lock(&sbsec->isec_lock);
775 if (list_empty(&isec->list))
776 list_add(&isec->list, &sbsec->isec_head);
777 spin_unlock(&sbsec->isec_lock);
778 goto out;
779 }
780
781 switch (sbsec->behavior) {
782 case SECURITY_FS_USE_XATTR:
783 if (!inode->i_op->getxattr) {
784 isec->sid = sbsec->def_sid;
785 break;
786 }
787
788 /* Need a dentry, since the xattr API requires one.
789 Life would be simpler if we could just pass the inode. */
790 if (opt_dentry) {
791 /* Called from d_instantiate or d_splice_alias. */
792 dentry = dget(opt_dentry);
793 } else {
794 /* Called from selinux_complete_init, try to find a dentry. */
795 dentry = d_find_alias(inode);
796 }
797 if (!dentry) {
798 printk(KERN_WARNING "%s: no dentry for dev=%s "
799 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
800 inode->i_ino);
801 goto out;
802 }
803
804 len = INITCONTEXTLEN;
805 context = kmalloc(len, GFP_KERNEL);
806 if (!context) {
807 rc = -ENOMEM;
808 dput(dentry);
809 goto out;
810 }
811 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
812 context, len);
813 if (rc == -ERANGE) {
814 /* Need a larger buffer. Query for the right size. */
815 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
816 NULL, 0);
817 if (rc < 0) {
818 dput(dentry);
819 goto out;
820 }
821 kfree(context);
822 len = rc;
823 context = kmalloc(len, GFP_KERNEL);
824 if (!context) {
825 rc = -ENOMEM;
826 dput(dentry);
827 goto out;
828 }
829 rc = inode->i_op->getxattr(dentry,
830 XATTR_NAME_SELINUX,
831 context, len);
832 }
833 dput(dentry);
834 if (rc < 0) {
835 if (rc != -ENODATA) {
836 printk(KERN_WARNING "%s: getxattr returned "
837 "%d for dev=%s ino=%ld\n", __FUNCTION__,
838 -rc, inode->i_sb->s_id, inode->i_ino);
839 kfree(context);
840 goto out;
841 }
842 /* Map ENODATA to the default file SID */
843 sid = sbsec->def_sid;
844 rc = 0;
845 } else {
846 rc = security_context_to_sid_default(context, rc, &sid,
847 sbsec->def_sid);
848 if (rc) {
849 printk(KERN_WARNING "%s: context_to_sid(%s) "
850 "returned %d for dev=%s ino=%ld\n",
851 __FUNCTION__, context, -rc,
852 inode->i_sb->s_id, inode->i_ino);
853 kfree(context);
854 /* Leave with the unlabeled SID */
855 rc = 0;
856 break;
857 }
858 }
859 kfree(context);
860 isec->sid = sid;
861 break;
862 case SECURITY_FS_USE_TASK:
863 isec->sid = isec->task_sid;
864 break;
865 case SECURITY_FS_USE_TRANS:
866 /* Default to the fs SID. */
867 isec->sid = sbsec->sid;
868
869 /* Try to obtain a transition SID. */
870 isec->sclass = inode_mode_to_security_class(inode->i_mode);
871 rc = security_transition_sid(isec->task_sid,
872 sbsec->sid,
873 isec->sclass,
874 &sid);
875 if (rc)
876 goto out;
877 isec->sid = sid;
878 break;
879 default:
880 /* Default to the fs SID. */
881 isec->sid = sbsec->sid;
882
883 if (sbsec->proc) {
884 struct proc_inode *proci = PROC_I(inode);
885 if (proci->pde) {
886 isec->sclass = inode_mode_to_security_class(inode->i_mode);
887 rc = selinux_proc_get_sid(proci->pde,
888 isec->sclass,
889 &sid);
890 if (rc)
891 goto out;
892 isec->sid = sid;
893 }
894 }
895 break;
896 }
897
898 isec->initialized = 1;
899
900 out:
901 if (isec->sclass == SECCLASS_FILE)
902 isec->sclass = inode_mode_to_security_class(inode->i_mode);
903
904 if (hold_sem)
905 up(&isec->sem);
906 return rc;
907 }
908
909 /* Convert a Linux signal to an access vector. */
910 static inline u32 signal_to_av(int sig)
911 {
912 u32 perm = 0;
913
914 switch (sig) {
915 case SIGCHLD:
916 /* Commonly granted from child to parent. */
917 perm = PROCESS__SIGCHLD;
918 break;
919 case SIGKILL:
920 /* Cannot be caught or ignored */
921 perm = PROCESS__SIGKILL;
922 break;
923 case SIGSTOP:
924 /* Cannot be caught or ignored */
925 perm = PROCESS__SIGSTOP;
926 break;
927 default:
928 /* All other signals. */
929 perm = PROCESS__SIGNAL;
930 break;
931 }
932
933 return perm;
934 }
935
936 /* Check permission betweeen a pair of tasks, e.g. signal checks,
937 fork check, ptrace check, etc. */
938 static int task_has_perm(struct task_struct *tsk1,
939 struct task_struct *tsk2,
940 u32 perms)
941 {
942 struct task_security_struct *tsec1, *tsec2;
943
944 tsec1 = tsk1->security;
945 tsec2 = tsk2->security;
946 return avc_has_perm(tsec1->sid, tsec2->sid,
947 SECCLASS_PROCESS, perms, NULL);
948 }
949
950 /* Check whether a task is allowed to use a capability. */
951 static int task_has_capability(struct task_struct *tsk,
952 int cap)
953 {
954 struct task_security_struct *tsec;
955 struct avc_audit_data ad;
956
957 tsec = tsk->security;
958
959 AVC_AUDIT_DATA_INIT(&ad,CAP);
960 ad.tsk = tsk;
961 ad.u.cap = cap;
962
963 return avc_has_perm(tsec->sid, tsec->sid,
964 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
965 }
966
967 /* Check whether a task is allowed to use a system operation. */
968 static int task_has_system(struct task_struct *tsk,
969 u32 perms)
970 {
971 struct task_security_struct *tsec;
972
973 tsec = tsk->security;
974
975 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
976 SECCLASS_SYSTEM, perms, NULL);
977 }
978
979 /* Check whether a task has a particular permission to an inode.
980 The 'adp' parameter is optional and allows other audit
981 data to be passed (e.g. the dentry). */
982 static int inode_has_perm(struct task_struct *tsk,
983 struct inode *inode,
984 u32 perms,
985 struct avc_audit_data *adp)
986 {
987 struct task_security_struct *tsec;
988 struct inode_security_struct *isec;
989 struct avc_audit_data ad;
990
991 tsec = tsk->security;
992 isec = inode->i_security;
993
994 if (!adp) {
995 adp = &ad;
996 AVC_AUDIT_DATA_INIT(&ad, FS);
997 ad.u.fs.inode = inode;
998 }
999
1000 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1001 }
1002
1003 /* Same as inode_has_perm, but pass explicit audit data containing
1004 the dentry to help the auditing code to more easily generate the
1005 pathname if needed. */
1006 static inline int dentry_has_perm(struct task_struct *tsk,
1007 struct vfsmount *mnt,
1008 struct dentry *dentry,
1009 u32 av)
1010 {
1011 struct inode *inode = dentry->d_inode;
1012 struct avc_audit_data ad;
1013 AVC_AUDIT_DATA_INIT(&ad,FS);
1014 ad.u.fs.mnt = mnt;
1015 ad.u.fs.dentry = dentry;
1016 return inode_has_perm(tsk, inode, av, &ad);
1017 }
1018
1019 /* Check whether a task can use an open file descriptor to
1020 access an inode in a given way. Check access to the
1021 descriptor itself, and then use dentry_has_perm to
1022 check a particular permission to the file.
1023 Access to the descriptor is implicitly granted if it
1024 has the same SID as the process. If av is zero, then
1025 access to the file is not checked, e.g. for cases
1026 where only the descriptor is affected like seek. */
1027 static int file_has_perm(struct task_struct *tsk,
1028 struct file *file,
1029 u32 av)
1030 {
1031 struct task_security_struct *tsec = tsk->security;
1032 struct file_security_struct *fsec = file->f_security;
1033 struct vfsmount *mnt = file->f_vfsmnt;
1034 struct dentry *dentry = file->f_dentry;
1035 struct inode *inode = dentry->d_inode;
1036 struct avc_audit_data ad;
1037 int rc;
1038
1039 AVC_AUDIT_DATA_INIT(&ad, FS);
1040 ad.u.fs.mnt = mnt;
1041 ad.u.fs.dentry = dentry;
1042
1043 if (tsec->sid != fsec->sid) {
1044 rc = avc_has_perm(tsec->sid, fsec->sid,
1045 SECCLASS_FD,
1046 FD__USE,
1047 &ad);
1048 if (rc)
1049 return rc;
1050 }
1051
1052 /* av is zero if only checking access to the descriptor. */
1053 if (av)
1054 return inode_has_perm(tsk, inode, av, &ad);
1055
1056 return 0;
1057 }
1058
1059 /* Check whether a task can create a file. */
1060 static int may_create(struct inode *dir,
1061 struct dentry *dentry,
1062 u16 tclass)
1063 {
1064 struct task_security_struct *tsec;
1065 struct inode_security_struct *dsec;
1066 struct superblock_security_struct *sbsec;
1067 u32 newsid;
1068 struct avc_audit_data ad;
1069 int rc;
1070
1071 tsec = current->security;
1072 dsec = dir->i_security;
1073 sbsec = dir->i_sb->s_security;
1074
1075 AVC_AUDIT_DATA_INIT(&ad, FS);
1076 ad.u.fs.dentry = dentry;
1077
1078 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1079 DIR__ADD_NAME | DIR__SEARCH,
1080 &ad);
1081 if (rc)
1082 return rc;
1083
1084 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1085 newsid = tsec->create_sid;
1086 } else {
1087 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1088 &newsid);
1089 if (rc)
1090 return rc;
1091 }
1092
1093 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1094 if (rc)
1095 return rc;
1096
1097 return avc_has_perm(newsid, sbsec->sid,
1098 SECCLASS_FILESYSTEM,
1099 FILESYSTEM__ASSOCIATE, &ad);
1100 }
1101
1102 #define MAY_LINK 0
1103 #define MAY_UNLINK 1
1104 #define MAY_RMDIR 2
1105
1106 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1107 static int may_link(struct inode *dir,
1108 struct dentry *dentry,
1109 int kind)
1110
1111 {
1112 struct task_security_struct *tsec;
1113 struct inode_security_struct *dsec, *isec;
1114 struct avc_audit_data ad;
1115 u32 av;
1116 int rc;
1117
1118 tsec = current->security;
1119 dsec = dir->i_security;
1120 isec = dentry->d_inode->i_security;
1121
1122 AVC_AUDIT_DATA_INIT(&ad, FS);
1123 ad.u.fs.dentry = dentry;
1124
1125 av = DIR__SEARCH;
1126 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1127 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1128 if (rc)
1129 return rc;
1130
1131 switch (kind) {
1132 case MAY_LINK:
1133 av = FILE__LINK;
1134 break;
1135 case MAY_UNLINK:
1136 av = FILE__UNLINK;
1137 break;
1138 case MAY_RMDIR:
1139 av = DIR__RMDIR;
1140 break;
1141 default:
1142 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1143 return 0;
1144 }
1145
1146 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1147 return rc;
1148 }
1149
1150 static inline int may_rename(struct inode *old_dir,
1151 struct dentry *old_dentry,
1152 struct inode *new_dir,
1153 struct dentry *new_dentry)
1154 {
1155 struct task_security_struct *tsec;
1156 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1157 struct avc_audit_data ad;
1158 u32 av;
1159 int old_is_dir, new_is_dir;
1160 int rc;
1161
1162 tsec = current->security;
1163 old_dsec = old_dir->i_security;
1164 old_isec = old_dentry->d_inode->i_security;
1165 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1166 new_dsec = new_dir->i_security;
1167
1168 AVC_AUDIT_DATA_INIT(&ad, FS);
1169
1170 ad.u.fs.dentry = old_dentry;
1171 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1172 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1173 if (rc)
1174 return rc;
1175 rc = avc_has_perm(tsec->sid, old_isec->sid,
1176 old_isec->sclass, FILE__RENAME, &ad);
1177 if (rc)
1178 return rc;
1179 if (old_is_dir && new_dir != old_dir) {
1180 rc = avc_has_perm(tsec->sid, old_isec->sid,
1181 old_isec->sclass, DIR__REPARENT, &ad);
1182 if (rc)
1183 return rc;
1184 }
1185
1186 ad.u.fs.dentry = new_dentry;
1187 av = DIR__ADD_NAME | DIR__SEARCH;
1188 if (new_dentry->d_inode)
1189 av |= DIR__REMOVE_NAME;
1190 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1191 if (rc)
1192 return rc;
1193 if (new_dentry->d_inode) {
1194 new_isec = new_dentry->d_inode->i_security;
1195 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1196 rc = avc_has_perm(tsec->sid, new_isec->sid,
1197 new_isec->sclass,
1198 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1199 if (rc)
1200 return rc;
1201 }
1202
1203 return 0;
1204 }
1205
1206 /* Check whether a task can perform a filesystem operation. */
1207 static int superblock_has_perm(struct task_struct *tsk,
1208 struct super_block *sb,
1209 u32 perms,
1210 struct avc_audit_data *ad)
1211 {
1212 struct task_security_struct *tsec;
1213 struct superblock_security_struct *sbsec;
1214
1215 tsec = tsk->security;
1216 sbsec = sb->s_security;
1217 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1218 perms, ad);
1219 }
1220
1221 /* Convert a Linux mode and permission mask to an access vector. */
1222 static inline u32 file_mask_to_av(int mode, int mask)
1223 {
1224 u32 av = 0;
1225
1226 if ((mode & S_IFMT) != S_IFDIR) {
1227 if (mask & MAY_EXEC)
1228 av |= FILE__EXECUTE;
1229 if (mask & MAY_READ)
1230 av |= FILE__READ;
1231
1232 if (mask & MAY_APPEND)
1233 av |= FILE__APPEND;
1234 else if (mask & MAY_WRITE)
1235 av |= FILE__WRITE;
1236
1237 } else {
1238 if (mask & MAY_EXEC)
1239 av |= DIR__SEARCH;
1240 if (mask & MAY_WRITE)
1241 av |= DIR__WRITE;
1242 if (mask & MAY_READ)
1243 av |= DIR__READ;
1244 }
1245
1246 return av;
1247 }
1248
1249 /* Convert a Linux file to an access vector. */
1250 static inline u32 file_to_av(struct file *file)
1251 {
1252 u32 av = 0;
1253
1254 if (file->f_mode & FMODE_READ)
1255 av |= FILE__READ;
1256 if (file->f_mode & FMODE_WRITE) {
1257 if (file->f_flags & O_APPEND)
1258 av |= FILE__APPEND;
1259 else
1260 av |= FILE__WRITE;
1261 }
1262
1263 return av;
1264 }
1265
1266 /* Set an inode's SID to a specified value. */
1267 static int inode_security_set_sid(struct inode *inode, u32 sid)
1268 {
1269 struct inode_security_struct *isec = inode->i_security;
1270 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
1271
1272 if (!sbsec->initialized) {
1273 /* Defer initialization to selinux_complete_init. */
1274 return 0;
1275 }
1276
1277 down(&isec->sem);
1278 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1279 isec->sid = sid;
1280 isec->initialized = 1;
1281 up(&isec->sem);
1282 return 0;
1283 }
1284
1285 /* Hook functions begin here. */
1286
1287 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1288 {
1289 struct task_security_struct *psec = parent->security;
1290 struct task_security_struct *csec = child->security;
1291 int rc;
1292
1293 rc = secondary_ops->ptrace(parent,child);
1294 if (rc)
1295 return rc;
1296
1297 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1298 /* Save the SID of the tracing process for later use in apply_creds. */
1299 if (!(child->ptrace & PT_PTRACED) && !rc)
1300 csec->ptrace_sid = psec->sid;
1301 return rc;
1302 }
1303
1304 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1305 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1306 {
1307 int error;
1308
1309 error = task_has_perm(current, target, PROCESS__GETCAP);
1310 if (error)
1311 return error;
1312
1313 return secondary_ops->capget(target, effective, inheritable, permitted);
1314 }
1315
1316 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1317 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1318 {
1319 int error;
1320
1321 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1322 if (error)
1323 return error;
1324
1325 return task_has_perm(current, target, PROCESS__SETCAP);
1326 }
1327
1328 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1329 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1330 {
1331 secondary_ops->capset_set(target, effective, inheritable, permitted);
1332 }
1333
1334 static int selinux_capable(struct task_struct *tsk, int cap)
1335 {
1336 int rc;
1337
1338 rc = secondary_ops->capable(tsk, cap);
1339 if (rc)
1340 return rc;
1341
1342 return task_has_capability(tsk,cap);
1343 }
1344
1345 static int selinux_sysctl(ctl_table *table, int op)
1346 {
1347 int error = 0;
1348 u32 av;
1349 struct task_security_struct *tsec;
1350 u32 tsid;
1351 int rc;
1352
1353 rc = secondary_ops->sysctl(table, op);
1354 if (rc)
1355 return rc;
1356
1357 tsec = current->security;
1358
1359 rc = selinux_proc_get_sid(table->de, (op == 001) ?
1360 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1361 if (rc) {
1362 /* Default to the well-defined sysctl SID. */
1363 tsid = SECINITSID_SYSCTL;
1364 }
1365
1366 /* The op values are "defined" in sysctl.c, thereby creating
1367 * a bad coupling between this module and sysctl.c */
1368 if(op == 001) {
1369 error = avc_has_perm(tsec->sid, tsid,
1370 SECCLASS_DIR, DIR__SEARCH, NULL);
1371 } else {
1372 av = 0;
1373 if (op & 004)
1374 av |= FILE__READ;
1375 if (op & 002)
1376 av |= FILE__WRITE;
1377 if (av)
1378 error = avc_has_perm(tsec->sid, tsid,
1379 SECCLASS_FILE, av, NULL);
1380 }
1381
1382 return error;
1383 }
1384
1385 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1386 {
1387 int rc = 0;
1388
1389 if (!sb)
1390 return 0;
1391
1392 switch (cmds) {
1393 case Q_SYNC:
1394 case Q_QUOTAON:
1395 case Q_QUOTAOFF:
1396 case Q_SETINFO:
1397 case Q_SETQUOTA:
1398 rc = superblock_has_perm(current,
1399 sb,
1400 FILESYSTEM__QUOTAMOD, NULL);
1401 break;
1402 case Q_GETFMT:
1403 case Q_GETINFO:
1404 case Q_GETQUOTA:
1405 rc = superblock_has_perm(current,
1406 sb,
1407 FILESYSTEM__QUOTAGET, NULL);
1408 break;
1409 default:
1410 rc = 0; /* let the kernel handle invalid cmds */
1411 break;
1412 }
1413 return rc;
1414 }
1415
1416 static int selinux_quota_on(struct dentry *dentry)
1417 {
1418 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1419 }
1420
1421 static int selinux_syslog(int type)
1422 {
1423 int rc;
1424
1425 rc = secondary_ops->syslog(type);
1426 if (rc)
1427 return rc;
1428
1429 switch (type) {
1430 case 3: /* Read last kernel messages */
1431 case 10: /* Return size of the log buffer */
1432 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1433 break;
1434 case 6: /* Disable logging to console */
1435 case 7: /* Enable logging to console */
1436 case 8: /* Set level of messages printed to console */
1437 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1438 break;
1439 case 0: /* Close log */
1440 case 1: /* Open log */
1441 case 2: /* Read from log */
1442 case 4: /* Read/clear last kernel messages */
1443 case 5: /* Clear ring buffer */
1444 default:
1445 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1446 break;
1447 }
1448 return rc;
1449 }
1450
1451 /*
1452 * Check that a process has enough memory to allocate a new virtual
1453 * mapping. 0 means there is enough memory for the allocation to
1454 * succeed and -ENOMEM implies there is not.
1455 *
1456 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1457 * if the capability is granted, but __vm_enough_memory requires 1 if
1458 * the capability is granted.
1459 *
1460 * Do not audit the selinux permission check, as this is applied to all
1461 * processes that allocate mappings.
1462 */
1463 static int selinux_vm_enough_memory(long pages)
1464 {
1465 int rc, cap_sys_admin = 0;
1466 struct task_security_struct *tsec = current->security;
1467
1468 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1469 if (rc == 0)
1470 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1471 SECCLASS_CAPABILITY,
1472 CAP_TO_MASK(CAP_SYS_ADMIN),
1473 NULL);
1474
1475 if (rc == 0)
1476 cap_sys_admin = 1;
1477
1478 return __vm_enough_memory(pages, cap_sys_admin);
1479 }
1480
1481 /* binprm security operations */
1482
1483 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1484 {
1485 struct bprm_security_struct *bsec;
1486
1487 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1488 if (!bsec)
1489 return -ENOMEM;
1490
1491 bsec->bprm = bprm;
1492 bsec->sid = SECINITSID_UNLABELED;
1493 bsec->set = 0;
1494
1495 bprm->security = bsec;
1496 return 0;
1497 }
1498
1499 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1500 {
1501 struct task_security_struct *tsec;
1502 struct inode *inode = bprm->file->f_dentry->d_inode;
1503 struct inode_security_struct *isec;
1504 struct bprm_security_struct *bsec;
1505 u32 newsid;
1506 struct avc_audit_data ad;
1507 int rc;
1508
1509 rc = secondary_ops->bprm_set_security(bprm);
1510 if (rc)
1511 return rc;
1512
1513 bsec = bprm->security;
1514
1515 if (bsec->set)
1516 return 0;
1517
1518 tsec = current->security;
1519 isec = inode->i_security;
1520
1521 /* Default to the current task SID. */
1522 bsec->sid = tsec->sid;
1523
1524 /* Reset create SID on execve. */
1525 tsec->create_sid = 0;
1526
1527 if (tsec->exec_sid) {
1528 newsid = tsec->exec_sid;
1529 /* Reset exec SID on execve. */
1530 tsec->exec_sid = 0;
1531 } else {
1532 /* Check for a default transition on this program. */
1533 rc = security_transition_sid(tsec->sid, isec->sid,
1534 SECCLASS_PROCESS, &newsid);
1535 if (rc)
1536 return rc;
1537 }
1538
1539 AVC_AUDIT_DATA_INIT(&ad, FS);
1540 ad.u.fs.mnt = bprm->file->f_vfsmnt;
1541 ad.u.fs.dentry = bprm->file->f_dentry;
1542
1543 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1544 newsid = tsec->sid;
1545
1546 if (tsec->sid == newsid) {
1547 rc = avc_has_perm(tsec->sid, isec->sid,
1548 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1549 if (rc)
1550 return rc;
1551 } else {
1552 /* Check permissions for the transition. */
1553 rc = avc_has_perm(tsec->sid, newsid,
1554 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1555 if (rc)
1556 return rc;
1557
1558 rc = avc_has_perm(newsid, isec->sid,
1559 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1560 if (rc)
1561 return rc;
1562
1563 /* Clear any possibly unsafe personality bits on exec: */
1564 current->personality &= ~PER_CLEAR_ON_SETID;
1565
1566 /* Set the security field to the new SID. */
1567 bsec->sid = newsid;
1568 }
1569
1570 bsec->set = 1;
1571 return 0;
1572 }
1573
1574 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1575 {
1576 return secondary_ops->bprm_check_security(bprm);
1577 }
1578
1579
1580 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1581 {
1582 struct task_security_struct *tsec = current->security;
1583 int atsecure = 0;
1584
1585 if (tsec->osid != tsec->sid) {
1586 /* Enable secure mode for SIDs transitions unless
1587 the noatsecure permission is granted between
1588 the two SIDs, i.e. ahp returns 0. */
1589 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1590 SECCLASS_PROCESS,
1591 PROCESS__NOATSECURE, NULL);
1592 }
1593
1594 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1595 }
1596
1597 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1598 {
1599 kfree(bprm->security);
1600 bprm->security = NULL;
1601 }
1602
1603 extern struct vfsmount *selinuxfs_mount;
1604 extern struct dentry *selinux_null;
1605
1606 /* Derived from fs/exec.c:flush_old_files. */
1607 static inline void flush_unauthorized_files(struct files_struct * files)
1608 {
1609 struct avc_audit_data ad;
1610 struct file *file, *devnull = NULL;
1611 struct tty_struct *tty = current->signal->tty;
1612 struct fdtable *fdt;
1613 long j = -1;
1614
1615 if (tty) {
1616 file_list_lock();
1617 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1618 if (file) {
1619 /* Revalidate access to controlling tty.
1620 Use inode_has_perm on the tty inode directly rather
1621 than using file_has_perm, as this particular open
1622 file may belong to another process and we are only
1623 interested in the inode-based check here. */
1624 struct inode *inode = file->f_dentry->d_inode;
1625 if (inode_has_perm(current, inode,
1626 FILE__READ | FILE__WRITE, NULL)) {
1627 /* Reset controlling tty. */
1628 current->signal->tty = NULL;
1629 current->signal->tty_old_pgrp = 0;
1630 }
1631 }
1632 file_list_unlock();
1633 }
1634
1635 /* Revalidate access to inherited open files. */
1636
1637 AVC_AUDIT_DATA_INIT(&ad,FS);
1638
1639 spin_lock(&files->file_lock);
1640 for (;;) {
1641 unsigned long set, i;
1642 int fd;
1643
1644 j++;
1645 i = j * __NFDBITS;
1646 fdt = files_fdtable(files);
1647 if (i >= fdt->max_fds || i >= fdt->max_fdset)
1648 break;
1649 set = fdt->open_fds->fds_bits[j];
1650 if (!set)
1651 continue;
1652 spin_unlock(&files->file_lock);
1653 for ( ; set ; i++,set >>= 1) {
1654 if (set & 1) {
1655 file = fget(i);
1656 if (!file)
1657 continue;
1658 if (file_has_perm(current,
1659 file,
1660 file_to_av(file))) {
1661 sys_close(i);
1662 fd = get_unused_fd();
1663 if (fd != i) {
1664 if (fd >= 0)
1665 put_unused_fd(fd);
1666 fput(file);
1667 continue;
1668 }
1669 if (devnull) {
1670 get_file(devnull);
1671 } else {
1672 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1673 if (!devnull) {
1674 put_unused_fd(fd);
1675 fput(file);
1676 continue;
1677 }
1678 }
1679 fd_install(fd, devnull);
1680 }
1681 fput(file);
1682 }
1683 }
1684 spin_lock(&files->file_lock);
1685
1686 }
1687 spin_unlock(&files->file_lock);
1688 }
1689
1690 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1691 {
1692 struct task_security_struct *tsec;
1693 struct bprm_security_struct *bsec;
1694 u32 sid;
1695 int rc;
1696
1697 secondary_ops->bprm_apply_creds(bprm, unsafe);
1698
1699 tsec = current->security;
1700
1701 bsec = bprm->security;
1702 sid = bsec->sid;
1703
1704 tsec->osid = tsec->sid;
1705 bsec->unsafe = 0;
1706 if (tsec->sid != sid) {
1707 /* Check for shared state. If not ok, leave SID
1708 unchanged and kill. */
1709 if (unsafe & LSM_UNSAFE_SHARE) {
1710 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1711 PROCESS__SHARE, NULL);
1712 if (rc) {
1713 bsec->unsafe = 1;
1714 return;
1715 }
1716 }
1717
1718 /* Check for ptracing, and update the task SID if ok.
1719 Otherwise, leave SID unchanged and kill. */
1720 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1721 rc = avc_has_perm(tsec->ptrace_sid, sid,
1722 SECCLASS_PROCESS, PROCESS__PTRACE,
1723 NULL);
1724 if (rc) {
1725 bsec->unsafe = 1;
1726 return;
1727 }
1728 }
1729 tsec->sid = sid;
1730 }
1731 }
1732
1733 /*
1734 * called after apply_creds without the task lock held
1735 */
1736 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1737 {
1738 struct task_security_struct *tsec;
1739 struct rlimit *rlim, *initrlim;
1740 struct itimerval itimer;
1741 struct bprm_security_struct *bsec;
1742 int rc, i;
1743
1744 tsec = current->security;
1745 bsec = bprm->security;
1746
1747 if (bsec->unsafe) {
1748 force_sig_specific(SIGKILL, current);
1749 return;
1750 }
1751 if (tsec->osid == tsec->sid)
1752 return;
1753
1754 /* Close files for which the new task SID is not authorized. */
1755 flush_unauthorized_files(current->files);
1756
1757 /* Check whether the new SID can inherit signal state
1758 from the old SID. If not, clear itimers to avoid
1759 subsequent signal generation and flush and unblock
1760 signals. This must occur _after_ the task SID has
1761 been updated so that any kill done after the flush
1762 will be checked against the new SID. */
1763 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1764 PROCESS__SIGINH, NULL);
1765 if (rc) {
1766 memset(&itimer, 0, sizeof itimer);
1767 for (i = 0; i < 3; i++)
1768 do_setitimer(i, &itimer, NULL);
1769 flush_signals(current);
1770 spin_lock_irq(&current->sighand->siglock);
1771 flush_signal_handlers(current, 1);
1772 sigemptyset(&current->blocked);
1773 recalc_sigpending();
1774 spin_unlock_irq(&current->sighand->siglock);
1775 }
1776
1777 /* Check whether the new SID can inherit resource limits
1778 from the old SID. If not, reset all soft limits to
1779 the lower of the current task's hard limit and the init
1780 task's soft limit. Note that the setting of hard limits
1781 (even to lower them) can be controlled by the setrlimit
1782 check. The inclusion of the init task's soft limit into
1783 the computation is to avoid resetting soft limits higher
1784 than the default soft limit for cases where the default
1785 is lower than the hard limit, e.g. RLIMIT_CORE or
1786 RLIMIT_STACK.*/
1787 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1788 PROCESS__RLIMITINH, NULL);
1789 if (rc) {
1790 for (i = 0; i < RLIM_NLIMITS; i++) {
1791 rlim = current->signal->rlim + i;
1792 initrlim = init_task.signal->rlim+i;
1793 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1794 }
1795 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1796 /*
1797 * This will cause RLIMIT_CPU calculations
1798 * to be refigured.
1799 */
1800 current->it_prof_expires = jiffies_to_cputime(1);
1801 }
1802 }
1803
1804 /* Wake up the parent if it is waiting so that it can
1805 recheck wait permission to the new task SID. */
1806 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1807 }
1808
1809 /* superblock security operations */
1810
1811 static int selinux_sb_alloc_security(struct super_block *sb)
1812 {
1813 return superblock_alloc_security(sb);
1814 }
1815
1816 static void selinux_sb_free_security(struct super_block *sb)
1817 {
1818 superblock_free_security(sb);
1819 }
1820
1821 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1822 {
1823 if (plen > olen)
1824 return 0;
1825
1826 return !memcmp(prefix, option, plen);
1827 }
1828
1829 static inline int selinux_option(char *option, int len)
1830 {
1831 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1832 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1833 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len));
1834 }
1835
1836 static inline void take_option(char **to, char *from, int *first, int len)
1837 {
1838 if (!*first) {
1839 **to = ',';
1840 *to += 1;
1841 }
1842 else
1843 *first = 0;
1844 memcpy(*to, from, len);
1845 *to += len;
1846 }
1847
1848 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1849 {
1850 int fnosec, fsec, rc = 0;
1851 char *in_save, *in_curr, *in_end;
1852 char *sec_curr, *nosec_save, *nosec;
1853
1854 in_curr = orig;
1855 sec_curr = copy;
1856
1857 /* Binary mount data: just copy */
1858 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1859 copy_page(sec_curr, in_curr);
1860 goto out;
1861 }
1862
1863 nosec = (char *)get_zeroed_page(GFP_KERNEL);
1864 if (!nosec) {
1865 rc = -ENOMEM;
1866 goto out;
1867 }
1868
1869 nosec_save = nosec;
1870 fnosec = fsec = 1;
1871 in_save = in_end = orig;
1872
1873 do {
1874 if (*in_end == ',' || *in_end == '\0') {
1875 int len = in_end - in_curr;
1876
1877 if (selinux_option(in_curr, len))
1878 take_option(&sec_curr, in_curr, &fsec, len);
1879 else
1880 take_option(&nosec, in_curr, &fnosec, len);
1881
1882 in_curr = in_end + 1;
1883 }
1884 } while (*in_end++);
1885
1886 strcpy(in_save, nosec_save);
1887 free_page((unsigned long)nosec_save);
1888 out:
1889 return rc;
1890 }
1891
1892 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
1893 {
1894 struct avc_audit_data ad;
1895 int rc;
1896
1897 rc = superblock_doinit(sb, data);
1898 if (rc)
1899 return rc;
1900
1901 AVC_AUDIT_DATA_INIT(&ad,FS);
1902 ad.u.fs.dentry = sb->s_root;
1903 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
1904 }
1905
1906 static int selinux_sb_statfs(struct dentry *dentry)
1907 {
1908 struct avc_audit_data ad;
1909
1910 AVC_AUDIT_DATA_INIT(&ad,FS);
1911 ad.u.fs.dentry = dentry->d_sb->s_root;
1912 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
1913 }
1914
1915 static int selinux_mount(char * dev_name,
1916 struct nameidata *nd,
1917 char * type,
1918 unsigned long flags,
1919 void * data)
1920 {
1921 int rc;
1922
1923 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
1924 if (rc)
1925 return rc;
1926
1927 if (flags & MS_REMOUNT)
1928 return superblock_has_perm(current, nd->mnt->mnt_sb,
1929 FILESYSTEM__REMOUNT, NULL);
1930 else
1931 return dentry_has_perm(current, nd->mnt, nd->dentry,
1932 FILE__MOUNTON);
1933 }
1934
1935 static int selinux_umount(struct vfsmount *mnt, int flags)
1936 {
1937 int rc;
1938
1939 rc = secondary_ops->sb_umount(mnt, flags);
1940 if (rc)
1941 return rc;
1942
1943 return superblock_has_perm(current,mnt->mnt_sb,
1944 FILESYSTEM__UNMOUNT,NULL);
1945 }
1946
1947 /* inode security operations */
1948
1949 static int selinux_inode_alloc_security(struct inode *inode)
1950 {
1951 return inode_alloc_security(inode);
1952 }
1953
1954 static void selinux_inode_free_security(struct inode *inode)
1955 {
1956 inode_free_security(inode);
1957 }
1958
1959 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
1960 char **name, void **value,
1961 size_t *len)
1962 {
1963 struct task_security_struct *tsec;
1964 struct inode_security_struct *dsec;
1965 struct superblock_security_struct *sbsec;
1966 u32 newsid, clen;
1967 int rc;
1968 char *namep = NULL, *context;
1969
1970 tsec = current->security;
1971 dsec = dir->i_security;
1972 sbsec = dir->i_sb->s_security;
1973
1974 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1975 newsid = tsec->create_sid;
1976 } else {
1977 rc = security_transition_sid(tsec->sid, dsec->sid,
1978 inode_mode_to_security_class(inode->i_mode),
1979 &newsid);
1980 if (rc) {
1981 printk(KERN_WARNING "%s: "
1982 "security_transition_sid failed, rc=%d (dev=%s "
1983 "ino=%ld)\n",
1984 __FUNCTION__,
1985 -rc, inode->i_sb->s_id, inode->i_ino);
1986 return rc;
1987 }
1988 }
1989
1990 inode_security_set_sid(inode, newsid);
1991
1992 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
1993 return -EOPNOTSUPP;
1994
1995 if (name) {
1996 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
1997 if (!namep)
1998 return -ENOMEM;
1999 *name = namep;
2000 }
2001
2002 if (value && len) {
2003 rc = security_sid_to_context(newsid, &context, &clen);
2004 if (rc) {
2005 kfree(namep);
2006 return rc;
2007 }
2008 *value = context;
2009 *len = clen;
2010 }
2011
2012 return 0;
2013 }
2014
2015 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2016 {
2017 return may_create(dir, dentry, SECCLASS_FILE);
2018 }
2019
2020 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2021 {
2022 int rc;
2023
2024 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2025 if (rc)
2026 return rc;
2027 return may_link(dir, old_dentry, MAY_LINK);
2028 }
2029
2030 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2031 {
2032 int rc;
2033
2034 rc = secondary_ops->inode_unlink(dir, dentry);
2035 if (rc)
2036 return rc;
2037 return may_link(dir, dentry, MAY_UNLINK);
2038 }
2039
2040 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2041 {
2042 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2043 }
2044
2045 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2046 {
2047 return may_create(dir, dentry, SECCLASS_DIR);
2048 }
2049
2050 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2051 {
2052 return may_link(dir, dentry, MAY_RMDIR);
2053 }
2054
2055 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2056 {
2057 int rc;
2058
2059 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2060 if (rc)
2061 return rc;
2062
2063 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2064 }
2065
2066 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2067 struct inode *new_inode, struct dentry *new_dentry)
2068 {
2069 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2070 }
2071
2072 static int selinux_inode_readlink(struct dentry *dentry)
2073 {
2074 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2075 }
2076
2077 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2078 {
2079 int rc;
2080
2081 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2082 if (rc)
2083 return rc;
2084 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2085 }
2086
2087 static int selinux_inode_permission(struct inode *inode, int mask,
2088 struct nameidata *nd)
2089 {
2090 int rc;
2091
2092 rc = secondary_ops->inode_permission(inode, mask, nd);
2093 if (rc)
2094 return rc;
2095
2096 if (!mask) {
2097 /* No permission to check. Existence test. */
2098 return 0;
2099 }
2100
2101 return inode_has_perm(current, inode,
2102 file_mask_to_av(inode->i_mode, mask), NULL);
2103 }
2104
2105 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2106 {
2107 int rc;
2108
2109 rc = secondary_ops->inode_setattr(dentry, iattr);
2110 if (rc)
2111 return rc;
2112
2113 if (iattr->ia_valid & ATTR_FORCE)
2114 return 0;
2115
2116 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2117 ATTR_ATIME_SET | ATTR_MTIME_SET))
2118 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2119
2120 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2121 }
2122
2123 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2124 {
2125 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2126 }
2127
2128 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2129 {
2130 struct task_security_struct *tsec = current->security;
2131 struct inode *inode = dentry->d_inode;
2132 struct inode_security_struct *isec = inode->i_security;
2133 struct superblock_security_struct *sbsec;
2134 struct avc_audit_data ad;
2135 u32 newsid;
2136 int rc = 0;
2137
2138 if (strcmp(name, XATTR_NAME_SELINUX)) {
2139 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2140 sizeof XATTR_SECURITY_PREFIX - 1) &&
2141 !capable(CAP_SYS_ADMIN)) {
2142 /* A different attribute in the security namespace.
2143 Restrict to administrator. */
2144 return -EPERM;
2145 }
2146
2147 /* Not an attribute we recognize, so just check the
2148 ordinary setattr permission. */
2149 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2150 }
2151
2152 sbsec = inode->i_sb->s_security;
2153 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2154 return -EOPNOTSUPP;
2155
2156 if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2157 return -EPERM;
2158
2159 AVC_AUDIT_DATA_INIT(&ad,FS);
2160 ad.u.fs.dentry = dentry;
2161
2162 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2163 FILE__RELABELFROM, &ad);
2164 if (rc)
2165 return rc;
2166
2167 rc = security_context_to_sid(value, size, &newsid);
2168 if (rc)
2169 return rc;
2170
2171 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2172 FILE__RELABELTO, &ad);
2173 if (rc)
2174 return rc;
2175
2176 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2177 isec->sclass);
2178 if (rc)
2179 return rc;
2180
2181 return avc_has_perm(newsid,
2182 sbsec->sid,
2183 SECCLASS_FILESYSTEM,
2184 FILESYSTEM__ASSOCIATE,
2185 &ad);
2186 }
2187
2188 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2189 void *value, size_t size, int flags)
2190 {
2191 struct inode *inode = dentry->d_inode;
2192 struct inode_security_struct *isec = inode->i_security;
2193 u32 newsid;
2194 int rc;
2195
2196 if (strcmp(name, XATTR_NAME_SELINUX)) {
2197 /* Not an attribute we recognize, so nothing to do. */
2198 return;
2199 }
2200
2201 rc = security_context_to_sid(value, size, &newsid);
2202 if (rc) {
2203 printk(KERN_WARNING "%s: unable to obtain SID for context "
2204 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2205 return;
2206 }
2207
2208 isec->sid = newsid;
2209 return;
2210 }
2211
2212 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2213 {
2214 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2215 }
2216
2217 static int selinux_inode_listxattr (struct dentry *dentry)
2218 {
2219 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2220 }
2221
2222 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2223 {
2224 if (strcmp(name, XATTR_NAME_SELINUX)) {
2225 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2226 sizeof XATTR_SECURITY_PREFIX - 1) &&
2227 !capable(CAP_SYS_ADMIN)) {
2228 /* A different attribute in the security namespace.
2229 Restrict to administrator. */
2230 return -EPERM;
2231 }
2232
2233 /* Not an attribute we recognize, so just check the
2234 ordinary setattr permission. Might want a separate
2235 permission for removexattr. */
2236 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2237 }
2238
2239 /* No one is allowed to remove a SELinux security label.
2240 You can change the label, but all data must be labeled. */
2241 return -EACCES;
2242 }
2243
2244 static const char *selinux_inode_xattr_getsuffix(void)
2245 {
2246 return XATTR_SELINUX_SUFFIX;
2247 }
2248
2249 /*
2250 * Copy the in-core inode security context value to the user. If the
2251 * getxattr() prior to this succeeded, check to see if we need to
2252 * canonicalize the value to be finally returned to the user.
2253 *
2254 * Permission check is handled by selinux_inode_getxattr hook.
2255 */
2256 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2257 {
2258 struct inode_security_struct *isec = inode->i_security;
2259
2260 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2261 return -EOPNOTSUPP;
2262
2263 return selinux_getsecurity(isec->sid, buffer, size);
2264 }
2265
2266 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2267 const void *value, size_t size, int flags)
2268 {
2269 struct inode_security_struct *isec = inode->i_security;
2270 u32 newsid;
2271 int rc;
2272
2273 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2274 return -EOPNOTSUPP;
2275
2276 if (!value || !size)
2277 return -EACCES;
2278
2279 rc = security_context_to_sid((void*)value, size, &newsid);
2280 if (rc)
2281 return rc;
2282
2283 isec->sid = newsid;
2284 return 0;
2285 }
2286
2287 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2288 {
2289 const int len = sizeof(XATTR_NAME_SELINUX);
2290 if (buffer && len <= buffer_size)
2291 memcpy(buffer, XATTR_NAME_SELINUX, len);
2292 return len;
2293 }
2294
2295 /* file security operations */
2296
2297 static int selinux_file_permission(struct file *file, int mask)
2298 {
2299 struct inode *inode = file->f_dentry->d_inode;
2300
2301 if (!mask) {
2302 /* No permission to check. Existence test. */
2303 return 0;
2304 }
2305
2306 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2307 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2308 mask |= MAY_APPEND;
2309
2310 return file_has_perm(current, file,
2311 file_mask_to_av(inode->i_mode, mask));
2312 }
2313
2314 static int selinux_file_alloc_security(struct file *file)
2315 {
2316 return file_alloc_security(file);
2317 }
2318
2319 static void selinux_file_free_security(struct file *file)
2320 {
2321 file_free_security(file);
2322 }
2323
2324 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2325 unsigned long arg)
2326 {
2327 int error = 0;
2328
2329 switch (cmd) {
2330 case FIONREAD:
2331 /* fall through */
2332 case FIBMAP:
2333 /* fall through */
2334 case FIGETBSZ:
2335 /* fall through */
2336 case EXT2_IOC_GETFLAGS:
2337 /* fall through */
2338 case EXT2_IOC_GETVERSION:
2339 error = file_has_perm(current, file, FILE__GETATTR);
2340 break;
2341
2342 case EXT2_IOC_SETFLAGS:
2343 /* fall through */
2344 case EXT2_IOC_SETVERSION:
2345 error = file_has_perm(current, file, FILE__SETATTR);
2346 break;
2347
2348 /* sys_ioctl() checks */
2349 case FIONBIO:
2350 /* fall through */
2351 case FIOASYNC:
2352 error = file_has_perm(current, file, 0);
2353 break;
2354
2355 case KDSKBENT:
2356 case KDSKBSENT:
2357 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2358 break;
2359
2360 /* default case assumes that the command will go
2361 * to the file's ioctl() function.
2362 */
2363 default:
2364 error = file_has_perm(current, file, FILE__IOCTL);
2365
2366 }
2367 return error;
2368 }
2369
2370 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2371 {
2372 #ifndef CONFIG_PPC32
2373 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2374 /*
2375 * We are making executable an anonymous mapping or a
2376 * private file mapping that will also be writable.
2377 * This has an additional check.
2378 */
2379 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2380 if (rc)
2381 return rc;
2382 }
2383 #endif
2384
2385 if (file) {
2386 /* read access is always possible with a mapping */
2387 u32 av = FILE__READ;
2388
2389 /* write access only matters if the mapping is shared */
2390 if (shared && (prot & PROT_WRITE))
2391 av |= FILE__WRITE;
2392
2393 if (prot & PROT_EXEC)
2394 av |= FILE__EXECUTE;
2395
2396 return file_has_perm(current, file, av);
2397 }
2398 return 0;
2399 }
2400
2401 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2402 unsigned long prot, unsigned long flags)
2403 {
2404 int rc;
2405
2406 rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2407 if (rc)
2408 return rc;
2409
2410 if (selinux_checkreqprot)
2411 prot = reqprot;
2412
2413 return file_map_prot_check(file, prot,
2414 (flags & MAP_TYPE) == MAP_SHARED);
2415 }
2416
2417 static int selinux_file_mprotect(struct vm_area_struct *vma,
2418 unsigned long reqprot,
2419 unsigned long prot)
2420 {
2421 int rc;
2422
2423 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2424 if (rc)
2425 return rc;
2426
2427 if (selinux_checkreqprot)
2428 prot = reqprot;
2429
2430 #ifndef CONFIG_PPC32
2431 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2432 rc = 0;
2433 if (vma->vm_start >= vma->vm_mm->start_brk &&
2434 vma->vm_end <= vma->vm_mm->brk) {
2435 rc = task_has_perm(current, current,
2436 PROCESS__EXECHEAP);
2437 } else if (!vma->vm_file &&
2438 vma->vm_start <= vma->vm_mm->start_stack &&
2439 vma->vm_end >= vma->vm_mm->start_stack) {
2440 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2441 } else if (vma->vm_file && vma->anon_vma) {
2442 /*
2443 * We are making executable a file mapping that has
2444 * had some COW done. Since pages might have been
2445 * written, check ability to execute the possibly
2446 * modified content. This typically should only
2447 * occur for text relocations.
2448 */
2449 rc = file_has_perm(current, vma->vm_file,
2450 FILE__EXECMOD);
2451 }
2452 if (rc)
2453 return rc;
2454 }
2455 #endif
2456
2457 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2458 }
2459
2460 static int selinux_file_lock(struct file *file, unsigned int cmd)
2461 {
2462 return file_has_perm(current, file, FILE__LOCK);
2463 }
2464
2465 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2466 unsigned long arg)
2467 {
2468 int err = 0;
2469
2470 switch (cmd) {
2471 case F_SETFL:
2472 if (!file->f_dentry || !file->f_dentry->d_inode) {
2473 err = -EINVAL;
2474 break;
2475 }
2476
2477 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2478 err = file_has_perm(current, file,FILE__WRITE);
2479 break;
2480 }
2481 /* fall through */
2482 case F_SETOWN:
2483 case F_SETSIG:
2484 case F_GETFL:
2485 case F_GETOWN:
2486 case F_GETSIG:
2487 /* Just check FD__USE permission */
2488 err = file_has_perm(current, file, 0);
2489 break;
2490 case F_GETLK:
2491 case F_SETLK:
2492 case F_SETLKW:
2493 #if BITS_PER_LONG == 32
2494 case F_GETLK64:
2495 case F_SETLK64:
2496 case F_SETLKW64:
2497 #endif
2498 if (!file->f_dentry || !file->f_dentry->d_inode) {
2499 err = -EINVAL;
2500 break;
2501 }
2502 err = file_has_perm(current, file, FILE__LOCK);
2503 break;
2504 }
2505
2506 return err;
2507 }
2508
2509 static int selinux_file_set_fowner(struct file *file)
2510 {
2511 struct task_security_struct *tsec;
2512 struct file_security_struct *fsec;
2513
2514 tsec = current->security;
2515 fsec = file->f_security;
2516 fsec->fown_sid = tsec->sid;
2517
2518 return 0;
2519 }
2520
2521 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2522 struct fown_struct *fown, int signum)
2523 {
2524 struct file *file;
2525 u32 perm;
2526 struct task_security_struct *tsec;
2527 struct file_security_struct *fsec;
2528
2529 /* struct fown_struct is never outside the context of a struct file */
2530 file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2531
2532 tsec = tsk->security;
2533 fsec = file->f_security;
2534
2535 if (!signum)
2536 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2537 else
2538 perm = signal_to_av(signum);
2539
2540 return avc_has_perm(fsec->fown_sid, tsec->sid,
2541 SECCLASS_PROCESS, perm, NULL);
2542 }
2543
2544 static int selinux_file_receive(struct file *file)
2545 {
2546 return file_has_perm(current, file, file_to_av(file));
2547 }
2548
2549 /* task security operations */
2550
2551 static int selinux_task_create(unsigned long clone_flags)
2552 {
2553 int rc;
2554
2555 rc = secondary_ops->task_create(clone_flags);
2556 if (rc)
2557 return rc;
2558
2559 return task_has_perm(current, current, PROCESS__FORK);
2560 }
2561
2562 static int selinux_task_alloc_security(struct task_struct *tsk)
2563 {
2564 struct task_security_struct *tsec1, *tsec2;
2565 int rc;
2566
2567 tsec1 = current->security;
2568
2569 rc = task_alloc_security(tsk);
2570 if (rc)
2571 return rc;
2572 tsec2 = tsk->security;
2573
2574 tsec2->osid = tsec1->osid;
2575 tsec2->sid = tsec1->sid;
2576
2577 /* Retain the exec and create SIDs across fork */
2578 tsec2->exec_sid = tsec1->exec_sid;
2579 tsec2->create_sid = tsec1->create_sid;
2580
2581 /* Retain ptracer SID across fork, if any.
2582 This will be reset by the ptrace hook upon any
2583 subsequent ptrace_attach operations. */
2584 tsec2->ptrace_sid = tsec1->ptrace_sid;
2585
2586 return 0;
2587 }
2588
2589 static void selinux_task_free_security(struct task_struct *tsk)
2590 {
2591 task_free_security(tsk);
2592 }
2593
2594 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2595 {
2596 /* Since setuid only affects the current process, and
2597 since the SELinux controls are not based on the Linux
2598 identity attributes, SELinux does not need to control
2599 this operation. However, SELinux does control the use
2600 of the CAP_SETUID and CAP_SETGID capabilities using the
2601 capable hook. */
2602 return 0;
2603 }
2604
2605 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2606 {
2607 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2608 }
2609
2610 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2611 {
2612 /* See the comment for setuid above. */
2613 return 0;
2614 }
2615
2616 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2617 {
2618 return task_has_perm(current, p, PROCESS__SETPGID);
2619 }
2620
2621 static int selinux_task_getpgid(struct task_struct *p)
2622 {
2623 return task_has_perm(current, p, PROCESS__GETPGID);
2624 }
2625
2626 static int selinux_task_getsid(struct task_struct *p)
2627 {
2628 return task_has_perm(current, p, PROCESS__GETSESSION);
2629 }
2630
2631 static int selinux_task_setgroups(struct group_info *group_info)
2632 {
2633 /* See the comment for setuid above. */
2634 return 0;
2635 }
2636
2637 static int selinux_task_setnice(struct task_struct *p, int nice)
2638 {
2639 int rc;
2640
2641 rc = secondary_ops->task_setnice(p, nice);
2642 if (rc)
2643 return rc;
2644
2645 return task_has_perm(current,p, PROCESS__SETSCHED);
2646 }
2647
2648 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2649 {
2650 struct rlimit *old_rlim = current->signal->rlim + resource;
2651 int rc;
2652
2653 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2654 if (rc)
2655 return rc;
2656
2657 /* Control the ability to change the hard limit (whether
2658 lowering or raising it), so that the hard limit can
2659 later be used as a safe reset point for the soft limit
2660 upon context transitions. See selinux_bprm_apply_creds. */
2661 if (old_rlim->rlim_max != new_rlim->rlim_max)
2662 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2663
2664 return 0;
2665 }
2666
2667 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2668 {
2669 return task_has_perm(current, p, PROCESS__SETSCHED);
2670 }
2671
2672 static int selinux_task_getscheduler(struct task_struct *p)
2673 {
2674 return task_has_perm(current, p, PROCESS__GETSCHED);
2675 }
2676
2677 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, int sig)
2678 {
2679 u32 perm;
2680 int rc;
2681
2682 rc = secondary_ops->task_kill(p, info, sig);
2683 if (rc)
2684 return rc;
2685
2686 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2687 return 0;
2688
2689 if (!sig)
2690 perm = PROCESS__SIGNULL; /* null signal; existence test */
2691 else
2692 perm = signal_to_av(sig);
2693
2694 return task_has_perm(current, p, perm);
2695 }
2696
2697 static int selinux_task_prctl(int option,
2698 unsigned long arg2,
2699 unsigned long arg3,
2700 unsigned long arg4,
2701 unsigned long arg5)
2702 {
2703 /* The current prctl operations do not appear to require
2704 any SELinux controls since they merely observe or modify
2705 the state of the current process. */
2706 return 0;
2707 }
2708
2709 static int selinux_task_wait(struct task_struct *p)
2710 {
2711 u32 perm;
2712
2713 perm = signal_to_av(p->exit_signal);
2714
2715 return task_has_perm(p, current, perm);
2716 }
2717
2718 static void selinux_task_reparent_to_init(struct task_struct *p)
2719 {
2720 struct task_security_struct *tsec;
2721
2722 secondary_ops->task_reparent_to_init(p);
2723
2724 tsec = p->security;
2725 tsec->osid = tsec->sid;
2726 tsec->sid = SECINITSID_KERNEL;
2727 return;
2728 }
2729
2730 static void selinux_task_to_inode(struct task_struct *p,
2731 struct inode *inode)
2732 {
2733 struct task_security_struct *tsec = p->security;
2734 struct inode_security_struct *isec = inode->i_security;
2735
2736 isec->sid = tsec->sid;
2737 isec->initialized = 1;
2738 return;
2739 }
2740
2741 /* Returns error only if unable to parse addresses */
2742 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad)
2743 {
2744 int offset, ihlen, ret = -EINVAL;
2745 struct iphdr _iph, *ih;
2746
2747 offset = skb->nh.raw - skb->data;
2748 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2749 if (ih == NULL)
2750 goto out;
2751
2752 ihlen = ih->ihl * 4;
2753 if (ihlen < sizeof(_iph))
2754 goto out;
2755
2756 ad->u.net.v4info.saddr = ih->saddr;
2757 ad->u.net.v4info.daddr = ih->daddr;
2758 ret = 0;
2759
2760 switch (ih->protocol) {
2761 case IPPROTO_TCP: {
2762 struct tcphdr _tcph, *th;
2763
2764 if (ntohs(ih->frag_off) & IP_OFFSET)
2765 break;
2766
2767 offset += ihlen;
2768 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2769 if (th == NULL)
2770 break;
2771
2772 ad->u.net.sport = th->source;
2773 ad->u.net.dport = th->dest;
2774 break;
2775 }
2776
2777 case IPPROTO_UDP: {
2778 struct udphdr _udph, *uh;
2779
2780 if (ntohs(ih->frag_off) & IP_OFFSET)
2781 break;
2782
2783 offset += ihlen;
2784 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2785 if (uh == NULL)
2786 break;
2787
2788 ad->u.net.sport = uh->source;
2789 ad->u.net.dport = uh->dest;
2790 break;
2791 }
2792
2793 default:
2794 break;
2795 }
2796 out:
2797 return ret;
2798 }
2799
2800 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2801
2802 /* Returns error only if unable to parse addresses */
2803 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad)
2804 {
2805 u8 nexthdr;
2806 int ret = -EINVAL, offset;
2807 struct ipv6hdr _ipv6h, *ip6;
2808
2809 offset = skb->nh.raw - skb->data;
2810 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2811 if (ip6 == NULL)
2812 goto out;
2813
2814 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2815 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2816 ret = 0;
2817
2818 nexthdr = ip6->nexthdr;
2819 offset += sizeof(_ipv6h);
2820 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2821 if (offset < 0)
2822 goto out;
2823
2824 switch (nexthdr) {
2825 case IPPROTO_TCP: {
2826 struct tcphdr _tcph, *th;
2827
2828 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2829 if (th == NULL)
2830 break;
2831
2832 ad->u.net.sport = th->source;
2833 ad->u.net.dport = th->dest;
2834 break;
2835 }
2836
2837 case IPPROTO_UDP: {
2838 struct udphdr _udph, *uh;
2839
2840 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2841 if (uh == NULL)
2842 break;
2843
2844 ad->u.net.sport = uh->source;
2845 ad->u.net.dport = uh->dest;
2846 break;
2847 }
2848
2849 /* includes fragments */
2850 default:
2851 break;
2852 }
2853 out:
2854 return ret;
2855 }
2856
2857 #endif /* IPV6 */
2858
2859 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
2860 char **addrp, int *len, int src)
2861 {
2862 int ret = 0;
2863
2864 switch (ad->u.net.family) {
2865 case PF_INET:
2866 ret = selinux_parse_skb_ipv4(skb, ad);
2867 if (ret || !addrp)
2868 break;
2869 *len = 4;
2870 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
2871 &ad->u.net.v4info.daddr);
2872 break;
2873
2874 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2875 case PF_INET6:
2876 ret = selinux_parse_skb_ipv6(skb, ad);
2877 if (ret || !addrp)
2878 break;
2879 *len = 16;
2880 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
2881 &ad->u.net.v6info.daddr);
2882 break;
2883 #endif /* IPV6 */
2884 default:
2885 break;
2886 }
2887
2888 return ret;
2889 }
2890
2891 /* socket security operations */
2892 static int socket_has_perm(struct task_struct *task, struct socket *sock,
2893 u32 perms)
2894 {
2895 struct inode_security_struct *isec;
2896 struct task_security_struct *tsec;
2897 struct avc_audit_data ad;
2898 int err = 0;
2899
2900 tsec = task->security;
2901 isec = SOCK_INODE(sock)->i_security;
2902
2903 if (isec->sid == SECINITSID_KERNEL)
2904 goto out;
2905
2906 AVC_AUDIT_DATA_INIT(&ad,NET);
2907 ad.u.net.sk = sock->sk;
2908 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
2909
2910 out:
2911 return err;
2912 }
2913
2914 static int selinux_socket_create(int family, int type,
2915 int protocol, int kern)
2916 {
2917 int err = 0;
2918 struct task_security_struct *tsec;
2919
2920 if (kern)
2921 goto out;
2922
2923 tsec = current->security;
2924 err = avc_has_perm(tsec->sid, tsec->sid,
2925 socket_type_to_security_class(family, type,
2926 protocol), SOCKET__CREATE, NULL);
2927
2928 out:
2929 return err;
2930 }
2931
2932 static void selinux_socket_post_create(struct socket *sock, int family,
2933 int type, int protocol, int kern)
2934 {
2935 struct inode_security_struct *isec;
2936 struct task_security_struct *tsec;
2937
2938 isec = SOCK_INODE(sock)->i_security;
2939
2940 tsec = current->security;
2941 isec->sclass = socket_type_to_security_class(family, type, protocol);
2942 isec->sid = kern ? SECINITSID_KERNEL : tsec->sid;
2943 isec->initialized = 1;
2944
2945 return;
2946 }
2947
2948 /* Range of port numbers used to automatically bind.
2949 Need to determine whether we should perform a name_bind
2950 permission check between the socket and the port number. */
2951 #define ip_local_port_range_0 sysctl_local_port_range[0]
2952 #define ip_local_port_range_1 sysctl_local_port_range[1]
2953
2954 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2955 {
2956 u16 family;
2957 int err;
2958
2959 err = socket_has_perm(current, sock, SOCKET__BIND);
2960 if (err)
2961 goto out;
2962
2963 /*
2964 * If PF_INET or PF_INET6, check name_bind permission for the port.
2965 * Multiple address binding for SCTP is not supported yet: we just
2966 * check the first address now.
2967 */
2968 family = sock->sk->sk_family;
2969 if (family == PF_INET || family == PF_INET6) {
2970 char *addrp;
2971 struct inode_security_struct *isec;
2972 struct task_security_struct *tsec;
2973 struct avc_audit_data ad;
2974 struct sockaddr_in *addr4 = NULL;
2975 struct sockaddr_in6 *addr6 = NULL;
2976 unsigned short snum;
2977 struct sock *sk = sock->sk;
2978 u32 sid, node_perm, addrlen;
2979
2980 tsec = current->security;
2981 isec = SOCK_INODE(sock)->i_security;
2982
2983 if (family == PF_INET) {
2984 addr4 = (struct sockaddr_in *)address;
2985 snum = ntohs(addr4->sin_port);
2986 addrlen = sizeof(addr4->sin_addr.s_addr);
2987 addrp = (char *)&addr4->sin_addr.s_addr;
2988 } else {
2989 addr6 = (struct sockaddr_in6 *)address;
2990 snum = ntohs(addr6->sin6_port);
2991 addrlen = sizeof(addr6->sin6_addr.s6_addr);
2992 addrp = (char *)&addr6->sin6_addr.s6_addr;
2993 }
2994
2995 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
2996 snum > ip_local_port_range_1)) {
2997 err = security_port_sid(sk->sk_family, sk->sk_type,
2998 sk->sk_protocol, snum, &sid);
2999 if (err)
3000 goto out;
3001 AVC_AUDIT_DATA_INIT(&ad,NET);
3002 ad.u.net.sport = htons(snum);
3003 ad.u.net.family = family;
3004 err = avc_has_perm(isec->sid, sid,
3005 isec->sclass,
3006 SOCKET__NAME_BIND, &ad);
3007 if (err)
3008 goto out;
3009 }
3010
3011 switch(isec->sclass) {
3012 case SECCLASS_TCP_SOCKET:
3013 node_perm = TCP_SOCKET__NODE_BIND;
3014 break;
3015
3016 case SECCLASS_UDP_SOCKET:
3017 node_perm = UDP_SOCKET__NODE_BIND;
3018 break;
3019
3020 default:
3021 node_perm = RAWIP_SOCKET__NODE_BIND;
3022 break;
3023 }
3024
3025 err = security_node_sid(family, addrp, addrlen, &sid);
3026 if (err)
3027 goto out;
3028
3029 AVC_AUDIT_DATA_INIT(&ad,NET);
3030 ad.u.net.sport = htons(snum);
3031 ad.u.net.family = family;
3032
3033 if (family == PF_INET)
3034 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3035 else
3036 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3037
3038 err = avc_has_perm(isec->sid, sid,
3039 isec->sclass, node_perm, &ad);
3040 if (err)
3041 goto out;
3042 }
3043 out:
3044 return err;
3045 }
3046
3047 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3048 {
3049 struct inode_security_struct *isec;
3050 int err;
3051
3052 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3053 if (err)
3054 return err;
3055
3056 /*
3057 * If a TCP socket, check name_connect permission for the port.
3058 */
3059 isec = SOCK_INODE(sock)->i_security;
3060 if (isec->sclass == SECCLASS_TCP_SOCKET) {
3061 struct sock *sk = sock->sk;
3062 struct avc_audit_data ad;
3063 struct sockaddr_in *addr4 = NULL;
3064 struct sockaddr_in6 *addr6 = NULL;
3065 unsigned short snum;
3066 u32 sid;
3067
3068 if (sk->sk_family == PF_INET) {
3069 addr4 = (struct sockaddr_in *)address;
3070 if (addrlen < sizeof(struct sockaddr_in))
3071 return -EINVAL;
3072 snum = ntohs(addr4->sin_port);
3073 } else {
3074 addr6 = (struct sockaddr_in6 *)address;
3075 if (addrlen < SIN6_LEN_RFC2133)
3076 return -EINVAL;
3077 snum = ntohs(addr6->sin6_port);
3078 }
3079
3080 err = security_port_sid(sk->sk_family, sk->sk_type,
3081 sk->sk_protocol, snum, &sid);
3082 if (err)
3083 goto out;
3084
3085 AVC_AUDIT_DATA_INIT(&ad,NET);
3086 ad.u.net.dport = htons(snum);
3087 ad.u.net.family = sk->sk_family;
3088 err = avc_has_perm(isec->sid, sid, isec->sclass,
3089 TCP_SOCKET__NAME_CONNECT, &ad);
3090 if (err)
3091 goto out;
3092 }
3093
3094 out:
3095 return err;
3096 }
3097
3098 static int selinux_socket_listen(struct socket *sock, int backlog)
3099 {
3100 return socket_has_perm(current, sock, SOCKET__LISTEN);
3101 }
3102
3103 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3104 {
3105 int err;
3106 struct inode_security_struct *isec;
3107 struct inode_security_struct *newisec;
3108
3109 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3110 if (err)
3111 return err;
3112
3113 newisec = SOCK_INODE(newsock)->i_security;
3114
3115 isec = SOCK_INODE(sock)->i_security;
3116 newisec->sclass = isec->sclass;
3117 newisec->sid = isec->sid;
3118 newisec->initialized = 1;
3119
3120 return 0;
3121 }
3122
3123 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3124 int size)
3125 {
3126 return socket_has_perm(current, sock, SOCKET__WRITE);
3127 }
3128
3129 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3130 int size, int flags)
3131 {
3132 return socket_has_perm(current, sock, SOCKET__READ);
3133 }
3134
3135 static int selinux_socket_getsockname(struct socket *sock)
3136 {
3137 return socket_has_perm(current, sock, SOCKET__GETATTR);
3138 }
3139
3140 static int selinux_socket_getpeername(struct socket *sock)
3141 {
3142 return socket_has_perm(current, sock, SOCKET__GETATTR);
3143 }
3144
3145 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3146 {
3147 return socket_has_perm(current, sock, SOCKET__SETOPT);
3148 }
3149
3150 static int selinux_socket_getsockopt(struct socket *sock, int level,
3151 int optname)
3152 {
3153 return socket_has_perm(current, sock, SOCKET__GETOPT);
3154 }
3155
3156 static int selinux_socket_shutdown(struct socket *sock, int how)
3157 {
3158 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3159 }
3160
3161 static int selinux_socket_unix_stream_connect(struct socket *sock,
3162 struct socket *other,
3163 struct sock *newsk)
3164 {
3165 struct sk_security_struct *ssec;
3166 struct inode_security_struct *isec;
3167 struct inode_security_struct *other_isec;
3168 struct avc_audit_data ad;
3169 int err;
3170
3171 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3172 if (err)
3173 return err;
3174
3175 isec = SOCK_INODE(sock)->i_security;
3176 other_isec = SOCK_INODE(other)->i_security;
3177
3178 AVC_AUDIT_DATA_INIT(&ad,NET);
3179 ad.u.net.sk = other->sk;
3180
3181 err = avc_has_perm(isec->sid, other_isec->sid,
3182 isec->sclass,
3183 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3184 if (err)
3185 return err;
3186
3187 /* connecting socket */
3188 ssec = sock->sk->sk_security;
3189 ssec->peer_sid = other_isec->sid;
3190
3191 /* server child socket */
3192 ssec = newsk->sk_security;
3193 ssec->peer_sid = isec->sid;
3194
3195 return 0;
3196 }
3197
3198 static int selinux_socket_unix_may_send(struct socket *sock,
3199 struct socket *other)
3200 {
3201 struct inode_security_struct *isec;
3202 struct inode_security_struct *other_isec;
3203 struct avc_audit_data ad;
3204 int err;
3205
3206 isec = SOCK_INODE(sock)->i_security;
3207 other_isec = SOCK_INODE(other)->i_security;
3208
3209 AVC_AUDIT_DATA_INIT(&ad,NET);
3210 ad.u.net.sk = other->sk;
3211
3212 err = avc_has_perm(isec->sid, other_isec->sid,
3213 isec->sclass, SOCKET__SENDTO, &ad);
3214 if (err)
3215 return err;
3216
3217 return 0;
3218 }
3219
3220 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3221 struct avc_audit_data *ad, u32 sock_sid, u16 sock_class,
3222 u16 family, char *addrp, int len)
3223 {
3224 int err = 0;
3225 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3226
3227 if (!skb->dev)
3228 goto out;
3229
3230 err = sel_netif_sids(skb->dev, &if_sid, NULL);
3231 if (err)
3232 goto out;
3233
3234 switch (sock_class) {
3235 case SECCLASS_UDP_SOCKET:
3236 netif_perm = NETIF__UDP_RECV;
3237 node_perm = NODE__UDP_RECV;
3238 recv_perm = UDP_SOCKET__RECV_MSG;
3239 break;
3240
3241 case SECCLASS_TCP_SOCKET:
3242 netif_perm = NETIF__TCP_RECV;
3243 node_perm = NODE__TCP_RECV;
3244 recv_perm = TCP_SOCKET__RECV_MSG;
3245 break;
3246
3247 default:
3248 netif_perm = NETIF__RAWIP_RECV;
3249 node_perm = NODE__RAWIP_RECV;
3250 break;
3251 }
3252
3253 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3254 if (err)
3255 goto out;
3256
3257 err = security_node_sid(family, addrp, len, &node_sid);
3258 if (err)
3259 goto out;
3260
3261 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3262 if (err)
3263 goto out;
3264
3265 if (recv_perm) {
3266 u32 port_sid;
3267
3268 err = security_port_sid(sk->sk_family, sk->sk_type,
3269 sk->sk_protocol, ntohs(ad->u.net.sport),
3270 &port_sid);
3271 if (err)
3272 goto out;
3273
3274 err = avc_has_perm(sock_sid, port_sid,
3275 sock_class, recv_perm, ad);
3276 }
3277
3278 out:
3279 return err;
3280 }
3281
3282 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3283 {
3284 u16 family;
3285 u16 sock_class = 0;
3286 char *addrp;
3287 int len, err = 0;
3288 u32 sock_sid = 0;
3289 struct socket *sock;
3290 struct avc_audit_data ad;
3291
3292 family = sk->sk_family;
3293 if (family != PF_INET && family != PF_INET6)
3294 goto out;
3295
3296 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3297 if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP))
3298 family = PF_INET;
3299
3300 read_lock_bh(&sk->sk_callback_lock);
3301 sock = sk->sk_socket;
3302 if (sock) {
3303 struct inode *inode;
3304 inode = SOCK_INODE(sock);
3305 if (inode) {
3306 struct inode_security_struct *isec;
3307 isec = inode->i_security;
3308 sock_sid = isec->sid;
3309 sock_class = isec->sclass;
3310 }
3311 }
3312 read_unlock_bh(&sk->sk_callback_lock);
3313 if (!sock_sid)
3314 goto out;
3315
3316 AVC_AUDIT_DATA_INIT(&ad, NET);
3317 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3318 ad.u.net.family = family;
3319
3320 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1);
3321 if (err)
3322 goto out;
3323
3324 if (selinux_compat_net)
3325 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, sock_sid,
3326 sock_class, family,
3327 addrp, len);
3328 else
3329 err = avc_has_perm(sock_sid, skb->secmark, SECCLASS_PACKET,
3330 PACKET__RECV, &ad);
3331 if (err)
3332 goto out;
3333
3334 err = selinux_xfrm_sock_rcv_skb(sock_sid, skb);
3335 out:
3336 return err;
3337 }
3338
3339 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3340 int __user *optlen, unsigned len)
3341 {
3342 int err = 0;
3343 char *scontext;
3344 u32 scontext_len;
3345 struct sk_security_struct *ssec;
3346 struct inode_security_struct *isec;
3347 u32 peer_sid = 0;
3348
3349 isec = SOCK_INODE(sock)->i_security;
3350
3351 /* if UNIX_STREAM check peer_sid, if TCP check dst for labelled sa */
3352 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET) {
3353 ssec = sock->sk->sk_security;
3354 peer_sid = ssec->peer_sid;
3355 }
3356 else if (isec->sclass == SECCLASS_TCP_SOCKET) {
3357 peer_sid = selinux_socket_getpeer_stream(sock->sk);
3358
3359 if (peer_sid == SECSID_NULL) {
3360 err = -ENOPROTOOPT;
3361 goto out;
3362 }
3363 }
3364 else {
3365 err = -ENOPROTOOPT;
3366 goto out;
3367 }
3368
3369 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3370
3371 if (err)
3372 goto out;
3373
3374 if (scontext_len > len) {
3375 err = -ERANGE;
3376 goto out_len;
3377 }
3378
3379 if (copy_to_user(optval, scontext, scontext_len))
3380 err = -EFAULT;
3381
3382 out_len:
3383 if (put_user(scontext_len, optlen))
3384 err = -EFAULT;
3385
3386 kfree(scontext);
3387 out:
3388 return err;
3389 }
3390
3391 static int selinux_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, u32 *seclen)
3392 {
3393 int err = 0;
3394 u32 peer_sid = selinux_socket_getpeer_dgram(skb);
3395
3396 if (peer_sid == SECSID_NULL)
3397 return -EINVAL;
3398
3399 err = security_sid_to_context(peer_sid, secdata, seclen);
3400 if (err)
3401 return err;
3402
3403 return 0;
3404 }
3405
3406
3407
3408 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3409 {
3410 return sk_alloc_security(sk, family, priority);
3411 }
3412
3413 static void selinux_sk_free_security(struct sock *sk)
3414 {
3415 sk_free_security(sk);
3416 }
3417
3418 static unsigned int selinux_sk_getsid_security(struct sock *sk, struct flowi *fl, u8 dir)
3419 {
3420 struct inode_security_struct *isec;
3421 u32 sock_sid = SECINITSID_ANY_SOCKET;
3422
3423 if (!sk)
3424 return selinux_no_sk_sid(fl);
3425
3426 read_lock_bh(&sk->sk_callback_lock);
3427 isec = get_sock_isec(sk);
3428
3429 if (isec)
3430 sock_sid = isec->sid;
3431
3432 read_unlock_bh(&sk->sk_callback_lock);
3433 return sock_sid;
3434 }
3435
3436 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3437 {
3438 int err = 0;
3439 u32 perm;
3440 struct nlmsghdr *nlh;
3441 struct socket *sock = sk->sk_socket;
3442 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3443
3444 if (skb->len < NLMSG_SPACE(0)) {
3445 err = -EINVAL;
3446 goto out;
3447 }
3448 nlh = (struct nlmsghdr *)skb->data;
3449
3450 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3451 if (err) {
3452 if (err == -EINVAL) {
3453 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3454 "SELinux: unrecognized netlink message"
3455 " type=%hu for sclass=%hu\n",
3456 nlh->nlmsg_type, isec->sclass);
3457 if (!selinux_enforcing)
3458 err = 0;
3459 }
3460
3461 /* Ignore */
3462 if (err == -ENOENT)
3463 err = 0;
3464 goto out;
3465 }
3466
3467 err = socket_has_perm(current, sock, perm);
3468 out:
3469 return err;
3470 }
3471
3472 #ifdef CONFIG_NETFILTER
3473
3474 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3475 struct inode_security_struct *isec,
3476 struct avc_audit_data *ad,
3477 u16 family, char *addrp, int len)
3478 {
3479 int err;
3480 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3481
3482 err = sel_netif_sids(dev, &if_sid, NULL);
3483 if (err)
3484 goto out;
3485
3486 switch (isec->sclass) {
3487 case SECCLASS_UDP_SOCKET:
3488 netif_perm = NETIF__UDP_SEND;
3489 node_perm = NODE__UDP_SEND;
3490 send_perm = UDP_SOCKET__SEND_MSG;
3491 break;
3492
3493 case SECCLASS_TCP_SOCKET:
3494 netif_perm = NETIF__TCP_SEND;
3495 node_perm = NODE__TCP_SEND;
3496 send_perm = TCP_SOCKET__SEND_MSG;
3497 break;
3498
3499 default:
3500 netif_perm = NETIF__RAWIP_SEND;
3501 node_perm = NODE__RAWIP_SEND;
3502 break;
3503 }
3504
3505 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3506 if (err)
3507 goto out;
3508
3509 err = security_node_sid(family, addrp, len, &node_sid);
3510 if (err)
3511 goto out;
3512
3513 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3514 if (err)
3515 goto out;
3516
3517 if (send_perm) {
3518 u32 port_sid;
3519
3520 err = security_port_sid(sk->sk_family,
3521 sk->sk_type,
3522 sk->sk_protocol,
3523 ntohs(ad->u.net.dport),
3524 &port_sid);
3525 if (err)
3526 goto out;
3527
3528 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3529 send_perm, ad);
3530 }
3531 out:
3532 return err;
3533 }
3534
3535 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3536 struct sk_buff **pskb,
3537 const struct net_device *in,
3538 const struct net_device *out,
3539 int (*okfn)(struct sk_buff *),
3540 u16 family)
3541 {
3542 char *addrp;
3543 int len, err = 0;
3544 struct sock *sk;
3545 struct socket *sock;
3546 struct inode *inode;
3547 struct sk_buff *skb = *pskb;
3548 struct inode_security_struct *isec;
3549 struct avc_audit_data ad;
3550 struct net_device *dev = (struct net_device *)out;
3551
3552 sk = skb->sk;
3553 if (!sk)
3554 goto out;
3555
3556 sock = sk->sk_socket;
3557 if (!sock)
3558 goto out;
3559
3560 inode = SOCK_INODE(sock);
3561 if (!inode)
3562 goto out;
3563
3564 isec = inode->i_security;
3565
3566 AVC_AUDIT_DATA_INIT(&ad, NET);
3567 ad.u.net.netif = dev->name;
3568 ad.u.net.family = family;
3569
3570 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0);
3571 if (err)
3572 goto out;
3573
3574 if (selinux_compat_net)
3575 err = selinux_ip_postroute_last_compat(sk, dev, isec, &ad,
3576 family, addrp, len);
3577 else
3578 err = avc_has_perm(isec->sid, skb->secmark, SECCLASS_PACKET,
3579 PACKET__SEND, &ad);
3580
3581 if (err)
3582 goto out;
3583
3584 err = selinux_xfrm_postroute_last(isec->sid, skb);
3585 out:
3586 return err ? NF_DROP : NF_ACCEPT;
3587 }
3588
3589 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3590 struct sk_buff **pskb,
3591 const struct net_device *in,
3592 const struct net_device *out,
3593 int (*okfn)(struct sk_buff *))
3594 {
3595 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3596 }
3597
3598 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3599
3600 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3601 struct sk_buff **pskb,
3602 const struct net_device *in,
3603 const struct net_device *out,
3604 int (*okfn)(struct sk_buff *))
3605 {
3606 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3607 }
3608
3609 #endif /* IPV6 */
3610
3611 #endif /* CONFIG_NETFILTER */
3612
3613 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3614 {
3615 struct task_security_struct *tsec;
3616 struct av_decision avd;
3617 int err;
3618
3619 err = secondary_ops->netlink_send(sk, skb);
3620 if (err)
3621 return err;
3622
3623 tsec = current->security;
3624
3625 avd.allowed = 0;
3626 avc_has_perm_noaudit(tsec->sid, tsec->sid,
3627 SECCLASS_CAPABILITY, ~0, &avd);
3628 cap_mask(NETLINK_CB(skb).eff_cap, avd.allowed);
3629
3630 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3631 err = selinux_nlmsg_perm(sk, skb);
3632
3633 return err;
3634 }
3635
3636 static int selinux_netlink_recv(struct sk_buff *skb)
3637 {
3638 if (!cap_raised(NETLINK_CB(skb).eff_cap, CAP_NET_ADMIN))
3639 return -EPERM;
3640 return 0;
3641 }
3642
3643 static int ipc_alloc_security(struct task_struct *task,
3644 struct kern_ipc_perm *perm,
3645 u16 sclass)
3646 {
3647 struct task_security_struct *tsec = task->security;
3648 struct ipc_security_struct *isec;
3649
3650 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3651 if (!isec)
3652 return -ENOMEM;
3653
3654 isec->sclass = sclass;
3655 isec->ipc_perm = perm;
3656 isec->sid = tsec->sid;
3657 perm->security = isec;
3658
3659 return 0;
3660 }
3661
3662 static void ipc_free_security(struct kern_ipc_perm *perm)
3663 {
3664 struct ipc_security_struct *isec = perm->security;
3665 perm->security = NULL;
3666 kfree(isec);
3667 }
3668
3669 static int msg_msg_alloc_security(struct msg_msg *msg)
3670 {
3671 struct msg_security_struct *msec;
3672
3673 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3674 if (!msec)
3675 return -ENOMEM;
3676
3677 msec->msg = msg;
3678 msec->sid = SECINITSID_UNLABELED;
3679 msg->security = msec;
3680
3681 return 0;
3682 }
3683
3684 static void msg_msg_free_security(struct msg_msg *msg)
3685 {
3686 struct msg_security_struct *msec = msg->security;
3687
3688 msg->security = NULL;
3689 kfree(msec);
3690 }
3691
3692 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3693 u32 perms)
3694 {
3695 struct task_security_struct *tsec;
3696 struct ipc_security_struct *isec;
3697 struct avc_audit_data ad;
3698
3699 tsec = current->security;
3700 isec = ipc_perms->security;
3701
3702 AVC_AUDIT_DATA_INIT(&ad, IPC);
3703 ad.u.ipc_id = ipc_perms->key;
3704
3705 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3706 }
3707
3708 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
3709 {
3710 return msg_msg_alloc_security(msg);
3711 }
3712
3713 static void selinux_msg_msg_free_security(struct msg_msg *msg)
3714 {
3715 msg_msg_free_security(msg);
3716 }
3717
3718 /* message queue security operations */
3719 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
3720 {
3721 struct task_security_struct *tsec;
3722 struct ipc_security_struct *isec;
3723 struct avc_audit_data ad;
3724 int rc;
3725
3726 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
3727 if (rc)
3728 return rc;
3729
3730 tsec = current->security;
3731 isec = msq->q_perm.security;
3732
3733 AVC_AUDIT_DATA_INIT(&ad, IPC);
3734 ad.u.ipc_id = msq->q_perm.key;
3735
3736 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3737 MSGQ__CREATE, &ad);
3738 if (rc) {
3739 ipc_free_security(&msq->q_perm);
3740 return rc;
3741 }
3742 return 0;
3743 }
3744
3745 static void selinux_msg_queue_free_security(struct msg_queue *msq)
3746 {
3747 ipc_free_security(&msq->q_perm);
3748 }
3749
3750 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
3751 {
3752 struct task_security_struct *tsec;
3753 struct ipc_security_struct *isec;
3754 struct avc_audit_data ad;
3755
3756 tsec = current->security;
3757 isec = msq->q_perm.security;
3758
3759 AVC_AUDIT_DATA_INIT(&ad, IPC);
3760 ad.u.ipc_id = msq->q_perm.key;
3761
3762 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3763 MSGQ__ASSOCIATE, &ad);
3764 }
3765
3766 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
3767 {
3768 int err;
3769 int perms;
3770
3771 switch(cmd) {
3772 case IPC_INFO:
3773 case MSG_INFO:
3774 /* No specific object, just general system-wide information. */
3775 return task_has_system(current, SYSTEM__IPC_INFO);
3776 case IPC_STAT:
3777 case MSG_STAT:
3778 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
3779 break;
3780 case IPC_SET:
3781 perms = MSGQ__SETATTR;
3782 break;
3783 case IPC_RMID:
3784 perms = MSGQ__DESTROY;
3785 break;
3786 default:
3787 return 0;
3788 }
3789
3790 err = ipc_has_perm(&msq->q_perm, perms);
3791 return err;
3792 }
3793
3794 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
3795 {
3796 struct task_security_struct *tsec;
3797 struct ipc_security_struct *isec;
3798 struct msg_security_struct *msec;
3799 struct avc_audit_data ad;
3800 int rc;
3801
3802 tsec = current->security;
3803 isec = msq->q_perm.security;
3804 msec = msg->security;
3805
3806 /*
3807 * First time through, need to assign label to the message
3808 */
3809 if (msec->sid == SECINITSID_UNLABELED) {
3810 /*
3811 * Compute new sid based on current process and
3812 * message queue this message will be stored in
3813 */
3814 rc = security_transition_sid(tsec->sid,
3815 isec->sid,
3816 SECCLASS_MSG,
3817 &msec->sid);
3818 if (rc)
3819 return rc;
3820 }
3821
3822 AVC_AUDIT_DATA_INIT(&ad, IPC);
3823 ad.u.ipc_id = msq->q_perm.key;
3824
3825 /* Can this process write to the queue? */
3826 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3827 MSGQ__WRITE, &ad);
3828 if (!rc)
3829 /* Can this process send the message */
3830 rc = avc_has_perm(tsec->sid, msec->sid,
3831 SECCLASS_MSG, MSG__SEND, &ad);
3832 if (!rc)
3833 /* Can the message be put in the queue? */
3834 rc = avc_has_perm(msec->sid, isec->sid,
3835 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
3836
3837 return rc;
3838 }
3839
3840 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
3841 struct task_struct *target,
3842 long type, int mode)
3843 {
3844 struct task_security_struct *tsec;
3845 struct ipc_security_struct *isec;
3846 struct msg_security_struct *msec;
3847 struct avc_audit_data ad;
3848 int rc;
3849
3850 tsec = target->security;
3851 isec = msq->q_perm.security;
3852 msec = msg->security;
3853
3854 AVC_AUDIT_DATA_INIT(&ad, IPC);
3855 ad.u.ipc_id = msq->q_perm.key;
3856
3857 rc = avc_has_perm(tsec->sid, isec->sid,
3858 SECCLASS_MSGQ, MSGQ__READ, &ad);
3859 if (!rc)
3860 rc = avc_has_perm(tsec->sid, msec->sid,
3861 SECCLASS_MSG, MSG__RECEIVE, &ad);
3862 return rc;
3863 }
3864
3865 /* Shared Memory security operations */
3866 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
3867 {
3868 struct task_security_struct *tsec;
3869 struct ipc_security_struct *isec;
3870 struct avc_audit_data ad;
3871 int rc;
3872
3873 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
3874 if (rc)
3875 return rc;
3876
3877 tsec = current->security;
3878 isec = shp->shm_perm.security;
3879
3880 AVC_AUDIT_DATA_INIT(&ad, IPC);
3881 ad.u.ipc_id = shp->shm_perm.key;
3882
3883 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
3884 SHM__CREATE, &ad);
3885 if (rc) {
3886 ipc_free_security(&shp->shm_perm);
3887 return rc;
3888 }
3889 return 0;
3890 }
3891
3892 static void selinux_shm_free_security(struct shmid_kernel *shp)
3893 {
3894 ipc_free_security(&shp->shm_perm);
3895 }
3896
3897 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
3898 {
3899 struct task_security_struct *tsec;
3900 struct ipc_security_struct *isec;
3901 struct avc_audit_data ad;
3902
3903 tsec = current->security;
3904 isec = shp->shm_perm.security;
3905
3906 AVC_AUDIT_DATA_INIT(&ad, IPC);
3907 ad.u.ipc_id = shp->shm_perm.key;
3908
3909 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
3910 SHM__ASSOCIATE, &ad);
3911 }
3912
3913 /* Note, at this point, shp is locked down */
3914 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
3915 {
3916 int perms;
3917 int err;
3918
3919 switch(cmd) {
3920 case IPC_INFO:
3921 case SHM_INFO:
3922 /* No specific object, just general system-wide information. */
3923 return task_has_system(current, SYSTEM__IPC_INFO);
3924 case IPC_STAT:
3925 case SHM_STAT:
3926 perms = SHM__GETATTR | SHM__ASSOCIATE;
3927 break;
3928 case IPC_SET:
3929 perms = SHM__SETATTR;
3930 break;
3931 case SHM_LOCK:
3932 case SHM_UNLOCK:
3933 perms = SHM__LOCK;
3934 break;
3935 case IPC_RMID:
3936 perms = SHM__DESTROY;
3937 break;
3938 default:
3939 return 0;
3940 }
3941
3942 err = ipc_has_perm(&shp->shm_perm, perms);
3943 return err;
3944 }
3945
3946 static int selinux_shm_shmat(struct shmid_kernel *shp,
3947 char __user *shmaddr, int shmflg)
3948 {
3949 u32 perms;
3950 int rc;
3951
3952 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
3953 if (rc)
3954 return rc;
3955
3956 if (shmflg & SHM_RDONLY)
3957 perms = SHM__READ;
3958 else
3959 perms = SHM__READ | SHM__WRITE;
3960
3961 return ipc_has_perm(&shp->shm_perm, perms);
3962 }
3963
3964 /* Semaphore security operations */
3965 static int selinux_sem_alloc_security(struct sem_array *sma)
3966 {
3967 struct task_security_struct *tsec;
3968 struct ipc_security_struct *isec;
3969 struct avc_audit_data ad;
3970 int rc;
3971
3972 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
3973 if (rc)
3974 return rc;
3975
3976 tsec = current->security;
3977 isec = sma->sem_perm.security;
3978
3979 AVC_AUDIT_DATA_INIT(&ad, IPC);
3980 ad.u.ipc_id = sma->sem_perm.key;
3981
3982 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
3983 SEM__CREATE, &ad);
3984 if (rc) {
3985 ipc_free_security(&sma->sem_perm);
3986 return rc;
3987 }
3988 return 0;
3989 }
3990
3991 static void selinux_sem_free_security(struct sem_array *sma)
3992 {
3993 ipc_free_security(&sma->sem_perm);
3994 }
3995
3996 static int selinux_sem_associate(struct sem_array *sma, int semflg)
3997 {
3998 struct task_security_struct *tsec;
3999 struct ipc_security_struct *isec;
4000 struct avc_audit_data ad;
4001
4002 tsec = current->security;
4003 isec = sma->sem_perm.security;
4004
4005 AVC_AUDIT_DATA_INIT(&ad, IPC);
4006 ad.u.ipc_id = sma->sem_perm.key;
4007
4008 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4009 SEM__ASSOCIATE, &ad);
4010 }
4011
4012 /* Note, at this point, sma is locked down */
4013 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4014 {
4015 int err;
4016 u32 perms;
4017
4018 switch(cmd) {
4019 case IPC_INFO:
4020 case SEM_INFO:
4021 /* No specific object, just general system-wide information. */
4022 return task_has_system(current, SYSTEM__IPC_INFO);
4023 case GETPID:
4024 case GETNCNT:
4025 case GETZCNT:
4026 perms = SEM__GETATTR;
4027 break;
4028 case GETVAL:
4029 case GETALL:
4030 perms = SEM__READ;
4031 break;
4032 case SETVAL:
4033 case SETALL:
4034 perms = SEM__WRITE;
4035 break;
4036 case IPC_RMID:
4037 perms = SEM__DESTROY;
4038 break;
4039 case IPC_SET:
4040 perms = SEM__SETATTR;
4041 break;
4042 case IPC_STAT:
4043 case SEM_STAT:
4044 perms = SEM__GETATTR | SEM__ASSOCIATE;
4045 break;
4046 default:
4047 return 0;
4048 }
4049
4050 err = ipc_has_perm(&sma->sem_perm, perms);
4051 return err;
4052 }
4053
4054 static int selinux_sem_semop(struct sem_array *sma,
4055 struct sembuf *sops, unsigned nsops, int alter)
4056 {
4057 u32 perms;
4058
4059 if (alter)
4060 perms = SEM__READ | SEM__WRITE;
4061 else
4062 perms = SEM__READ;
4063
4064 return ipc_has_perm(&sma->sem_perm, perms);
4065 }
4066
4067 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4068 {
4069 u32 av = 0;
4070
4071 av = 0;
4072 if (flag & S_IRUGO)
4073 av |= IPC__UNIX_READ;
4074 if (flag & S_IWUGO)
4075 av |= IPC__UNIX_WRITE;
4076
4077 if (av == 0)
4078 return 0;
4079
4080 return ipc_has_perm(ipcp, av);
4081 }
4082
4083 /* module stacking operations */
4084 static int selinux_register_security (const char *name, struct security_operations *ops)
4085 {
4086 if (secondary_ops != original_ops) {
4087 printk(KERN_INFO "%s: There is already a secondary security "
4088 "module registered.\n", __FUNCTION__);
4089 return -EINVAL;
4090 }
4091
4092 secondary_ops = ops;
4093
4094 printk(KERN_INFO "%s: Registering secondary module %s\n",
4095 __FUNCTION__,
4096 name);
4097
4098 return 0;
4099 }
4100
4101 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4102 {
4103 if (ops != secondary_ops) {
4104 printk (KERN_INFO "%s: trying to unregister a security module "
4105 "that is not registered.\n", __FUNCTION__);
4106 return -EINVAL;
4107 }
4108
4109 secondary_ops = original_ops;
4110
4111 return 0;
4112 }
4113
4114 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4115 {
4116 if (inode)
4117 inode_doinit_with_dentry(inode, dentry);
4118 }
4119
4120 static int selinux_getprocattr(struct task_struct *p,
4121 char *name, void *value, size_t size)
4122 {
4123 struct task_security_struct *tsec;
4124 u32 sid;
4125 int error;
4126
4127 if (current != p) {
4128 error = task_has_perm(current, p, PROCESS__GETATTR);
4129 if (error)
4130 return error;
4131 }
4132
4133 tsec = p->security;
4134
4135 if (!strcmp(name, "current"))
4136 sid = tsec->sid;
4137 else if (!strcmp(name, "prev"))
4138 sid = tsec->osid;
4139 else if (!strcmp(name, "exec"))
4140 sid = tsec->exec_sid;
4141 else if (!strcmp(name, "fscreate"))
4142 sid = tsec->create_sid;
4143 else
4144 return -EINVAL;
4145
4146 if (!sid)
4147 return 0;
4148
4149 return selinux_getsecurity(sid, value, size);
4150 }
4151
4152 static int selinux_setprocattr(struct task_struct *p,
4153 char *name, void *value, size_t size)
4154 {
4155 struct task_security_struct *tsec;
4156 u32 sid = 0;
4157 int error;
4158 char *str = value;
4159
4160 if (current != p) {
4161 /* SELinux only allows a process to change its own
4162 security attributes. */
4163 return -EACCES;
4164 }
4165
4166 /*
4167 * Basic control over ability to set these attributes at all.
4168 * current == p, but we'll pass them separately in case the
4169 * above restriction is ever removed.
4170 */
4171 if (!strcmp(name, "exec"))
4172 error = task_has_perm(current, p, PROCESS__SETEXEC);
4173 else if (!strcmp(name, "fscreate"))
4174 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4175 else if (!strcmp(name, "current"))
4176 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4177 else
4178 error = -EINVAL;
4179 if (error)
4180 return error;
4181
4182 /* Obtain a SID for the context, if one was specified. */
4183 if (size && str[1] && str[1] != '\n') {
4184 if (str[size-1] == '\n') {
4185 str[size-1] = 0;
4186 size--;
4187 }
4188 error = security_context_to_sid(value, size, &sid);
4189 if (error)
4190 return error;
4191 }
4192
4193 /* Permission checking based on the specified context is
4194 performed during the actual operation (execve,
4195 open/mkdir/...), when we know the full context of the
4196 operation. See selinux_bprm_set_security for the execve
4197 checks and may_create for the file creation checks. The
4198 operation will then fail if the context is not permitted. */
4199 tsec = p->security;
4200 if (!strcmp(name, "exec"))
4201 tsec->exec_sid = sid;
4202 else if (!strcmp(name, "fscreate"))
4203 tsec->create_sid = sid;
4204 else if (!strcmp(name, "current")) {
4205 struct av_decision avd;
4206
4207 if (sid == 0)
4208 return -EINVAL;
4209
4210 /* Only allow single threaded processes to change context */
4211 if (atomic_read(&p->mm->mm_users) != 1) {
4212 struct task_struct *g, *t;
4213 struct mm_struct *mm = p->mm;
4214 read_lock(&tasklist_lock);
4215 do_each_thread(g, t)
4216 if (t->mm == mm && t != p) {
4217 read_unlock(&tasklist_lock);
4218 return -EPERM;
4219 }
4220 while_each_thread(g, t);
4221 read_unlock(&tasklist_lock);
4222 }
4223
4224 /* Check permissions for the transition. */
4225 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4226 PROCESS__DYNTRANSITION, NULL);
4227 if (error)
4228 return error;
4229
4230 /* Check for ptracing, and update the task SID if ok.
4231 Otherwise, leave SID unchanged and fail. */
4232 task_lock(p);
4233 if (p->ptrace & PT_PTRACED) {
4234 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4235 SECCLASS_PROCESS,
4236 PROCESS__PTRACE, &avd);
4237 if (!error)
4238 tsec->sid = sid;
4239 task_unlock(p);
4240 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4241 PROCESS__PTRACE, &avd, error, NULL);
4242 if (error)
4243 return error;
4244 } else {
4245 tsec->sid = sid;
4246 task_unlock(p);
4247 }
4248 }
4249 else
4250 return -EINVAL;
4251
4252 return size;
4253 }
4254
4255 #ifdef CONFIG_KEYS
4256
4257 static int selinux_key_alloc(struct key *k, struct task_struct *tsk)
4258 {
4259 struct task_security_struct *tsec = tsk->security;
4260 struct key_security_struct *ksec;
4261
4262 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4263 if (!ksec)
4264 return -ENOMEM;
4265
4266 ksec->obj = k;
4267 ksec->sid = tsec->sid;
4268 k->security = ksec;
4269
4270 return 0;
4271 }
4272
4273 static void selinux_key_free(struct key *k)
4274 {
4275 struct key_security_struct *ksec = k->security;
4276
4277 k->security = NULL;
4278 kfree(ksec);
4279 }
4280
4281 static int selinux_key_permission(key_ref_t key_ref,
4282 struct task_struct *ctx,
4283 key_perm_t perm)
4284 {
4285 struct key *key;
4286 struct task_security_struct *tsec;
4287 struct key_security_struct *ksec;
4288
4289 key = key_ref_to_ptr(key_ref);
4290
4291 tsec = ctx->security;
4292 ksec = key->security;
4293
4294 /* if no specific permissions are requested, we skip the
4295 permission check. No serious, additional covert channels
4296 appear to be created. */
4297 if (perm == 0)
4298 return 0;
4299
4300 return avc_has_perm(tsec->sid, ksec->sid,
4301 SECCLASS_KEY, perm, NULL);
4302 }
4303
4304 #endif
4305
4306 static struct security_operations selinux_ops = {
4307 .ptrace = selinux_ptrace,
4308 .capget = selinux_capget,
4309 .capset_check = selinux_capset_check,
4310 .capset_set = selinux_capset_set,
4311 .sysctl = selinux_sysctl,
4312 .capable = selinux_capable,
4313 .quotactl = selinux_quotactl,
4314 .quota_on = selinux_quota_on,
4315 .syslog = selinux_syslog,
4316 .vm_enough_memory = selinux_vm_enough_memory,
4317
4318 .netlink_send = selinux_netlink_send,
4319 .netlink_recv = selinux_netlink_recv,
4320
4321 .bprm_alloc_security = selinux_bprm_alloc_security,
4322 .bprm_free_security = selinux_bprm_free_security,
4323 .bprm_apply_creds = selinux_bprm_apply_creds,
4324 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4325 .bprm_set_security = selinux_bprm_set_security,
4326 .bprm_check_security = selinux_bprm_check_security,
4327 .bprm_secureexec = selinux_bprm_secureexec,
4328
4329 .sb_alloc_security = selinux_sb_alloc_security,
4330 .sb_free_security = selinux_sb_free_security,
4331 .sb_copy_data = selinux_sb_copy_data,
4332 .sb_kern_mount = selinux_sb_kern_mount,
4333 .sb_statfs = selinux_sb_statfs,
4334 .sb_mount = selinux_mount,
4335 .sb_umount = selinux_umount,
4336
4337 .inode_alloc_security = selinux_inode_alloc_security,
4338 .inode_free_security = selinux_inode_free_security,
4339 .inode_init_security = selinux_inode_init_security,
4340 .inode_create = selinux_inode_create,
4341 .inode_link = selinux_inode_link,
4342 .inode_unlink = selinux_inode_unlink,
4343 .inode_symlink = selinux_inode_symlink,
4344 .inode_mkdir = selinux_inode_mkdir,
4345 .inode_rmdir = selinux_inode_rmdir,
4346 .inode_mknod = selinux_inode_mknod,
4347 .inode_rename = selinux_inode_rename,
4348 .inode_readlink = selinux_inode_readlink,
4349 .inode_follow_link = selinux_inode_follow_link,
4350 .inode_permission = selinux_inode_permission,
4351 .inode_setattr = selinux_inode_setattr,
4352 .inode_getattr = selinux_inode_getattr,
4353 .inode_setxattr = selinux_inode_setxattr,
4354 .inode_post_setxattr = selinux_inode_post_setxattr,
4355 .inode_getxattr = selinux_inode_getxattr,
4356 .inode_listxattr = selinux_inode_listxattr,
4357 .inode_removexattr = selinux_inode_removexattr,
4358 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix,
4359 .inode_getsecurity = selinux_inode_getsecurity,
4360 .inode_setsecurity = selinux_inode_setsecurity,
4361 .inode_listsecurity = selinux_inode_listsecurity,
4362
4363 .file_permission = selinux_file_permission,
4364 .file_alloc_security = selinux_file_alloc_security,
4365 .file_free_security = selinux_file_free_security,
4366 .file_ioctl = selinux_file_ioctl,
4367 .file_mmap = selinux_file_mmap,
4368 .file_mprotect = selinux_file_mprotect,
4369 .file_lock = selinux_file_lock,
4370 .file_fcntl = selinux_file_fcntl,
4371 .file_set_fowner = selinux_file_set_fowner,
4372 .file_send_sigiotask = selinux_file_send_sigiotask,
4373 .file_receive = selinux_file_receive,
4374
4375 .task_create = selinux_task_create,
4376 .task_alloc_security = selinux_task_alloc_security,
4377 .task_free_security = selinux_task_free_security,
4378 .task_setuid = selinux_task_setuid,
4379 .task_post_setuid = selinux_task_post_setuid,
4380 .task_setgid = selinux_task_setgid,
4381 .task_setpgid = selinux_task_setpgid,
4382 .task_getpgid = selinux_task_getpgid,
4383 .task_getsid = selinux_task_getsid,
4384 .task_setgroups = selinux_task_setgroups,
4385 .task_setnice = selinux_task_setnice,
4386 .task_setrlimit = selinux_task_setrlimit,
4387 .task_setscheduler = selinux_task_setscheduler,
4388 .task_getscheduler = selinux_task_getscheduler,
4389 .task_kill = selinux_task_kill,
4390 .task_wait = selinux_task_wait,
4391 .task_prctl = selinux_task_prctl,
4392 .task_reparent_to_init = selinux_task_reparent_to_init,
4393 .task_to_inode = selinux_task_to_inode,
4394
4395 .ipc_permission = selinux_ipc_permission,
4396
4397 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4398 .msg_msg_free_security = selinux_msg_msg_free_security,
4399
4400 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4401 .msg_queue_free_security = selinux_msg_queue_free_security,
4402 .msg_queue_associate = selinux_msg_queue_associate,
4403 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4404 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4405 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4406
4407 .shm_alloc_security = selinux_shm_alloc_security,
4408 .shm_free_security = selinux_shm_free_security,
4409 .shm_associate = selinux_shm_associate,
4410 .shm_shmctl = selinux_shm_shmctl,
4411 .shm_shmat = selinux_shm_shmat,
4412
4413 .sem_alloc_security = selinux_sem_alloc_security,
4414 .sem_free_security = selinux_sem_free_security,
4415 .sem_associate = selinux_sem_associate,
4416 .sem_semctl = selinux_sem_semctl,
4417 .sem_semop = selinux_sem_semop,
4418
4419 .register_security = selinux_register_security,
4420 .unregister_security = selinux_unregister_security,
4421
4422 .d_instantiate = selinux_d_instantiate,
4423
4424 .getprocattr = selinux_getprocattr,
4425 .setprocattr = selinux_setprocattr,
4426
4427 .unix_stream_connect = selinux_socket_unix_stream_connect,
4428 .unix_may_send = selinux_socket_unix_may_send,
4429
4430 .socket_create = selinux_socket_create,
4431 .socket_post_create = selinux_socket_post_create,
4432 .socket_bind = selinux_socket_bind,
4433 .socket_connect = selinux_socket_connect,
4434 .socket_listen = selinux_socket_listen,
4435 .socket_accept = selinux_socket_accept,
4436 .socket_sendmsg = selinux_socket_sendmsg,
4437 .socket_recvmsg = selinux_socket_recvmsg,
4438 .socket_getsockname = selinux_socket_getsockname,
4439 .socket_getpeername = selinux_socket_getpeername,
4440 .socket_getsockopt = selinux_socket_getsockopt,
4441 .socket_setsockopt = selinux_socket_setsockopt,
4442 .socket_shutdown = selinux_socket_shutdown,
4443 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4444 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4445 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4446 .sk_alloc_security = selinux_sk_alloc_security,
4447 .sk_free_security = selinux_sk_free_security,
4448 .sk_getsid = selinux_sk_getsid_security,
4449
4450 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4451 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
4452 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
4453 .xfrm_policy_free_security = selinux_xfrm_policy_free,
4454 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
4455 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
4456 .xfrm_state_free_security = selinux_xfrm_state_free,
4457 .xfrm_state_delete_security = selinux_xfrm_state_delete,
4458 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
4459 #endif
4460
4461 #ifdef CONFIG_KEYS
4462 .key_alloc = selinux_key_alloc,
4463 .key_free = selinux_key_free,
4464 .key_permission = selinux_key_permission,
4465 #endif
4466 };
4467
4468 static __init int selinux_init(void)
4469 {
4470 struct task_security_struct *tsec;
4471
4472 if (!selinux_enabled) {
4473 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4474 return 0;
4475 }
4476
4477 printk(KERN_INFO "SELinux: Initializing.\n");
4478
4479 /* Set the security state for the initial task. */
4480 if (task_alloc_security(current))
4481 panic("SELinux: Failed to initialize initial task.\n");
4482 tsec = current->security;
4483 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4484
4485 sel_inode_cache = kmem_cache_create("selinux_inode_security",
4486 sizeof(struct inode_security_struct),
4487 0, SLAB_PANIC, NULL, NULL);
4488 avc_init();
4489
4490 original_ops = secondary_ops = security_ops;
4491 if (!secondary_ops)
4492 panic ("SELinux: No initial security operations\n");
4493 if (register_security (&selinux_ops))
4494 panic("SELinux: Unable to register with kernel.\n");
4495
4496 if (selinux_enforcing) {
4497 printk(KERN_INFO "SELinux: Starting in enforcing mode\n");
4498 } else {
4499 printk(KERN_INFO "SELinux: Starting in permissive mode\n");
4500 }
4501
4502 #ifdef CONFIG_KEYS
4503 /* Add security information to initial keyrings */
4504 security_key_alloc(&root_user_keyring, current);
4505 security_key_alloc(&root_session_keyring, current);
4506 #endif
4507
4508 return 0;
4509 }
4510
4511 void selinux_complete_init(void)
4512 {
4513 printk(KERN_INFO "SELinux: Completing initialization.\n");
4514
4515 /* Set up any superblocks initialized prior to the policy load. */
4516 printk(KERN_INFO "SELinux: Setting up existing superblocks.\n");
4517 spin_lock(&sb_lock);
4518 spin_lock(&sb_security_lock);
4519 next_sb:
4520 if (!list_empty(&superblock_security_head)) {
4521 struct superblock_security_struct *sbsec =
4522 list_entry(superblock_security_head.next,
4523 struct superblock_security_struct,
4524 list);
4525 struct super_block *sb = sbsec->sb;
4526 sb->s_count++;
4527 spin_unlock(&sb_security_lock);
4528 spin_unlock(&sb_lock);
4529 down_read(&sb->s_umount);
4530 if (sb->s_root)
4531 superblock_doinit(sb, NULL);
4532 drop_super(sb);
4533 spin_lock(&sb_lock);
4534 spin_lock(&sb_security_lock);
4535 list_del_init(&sbsec->list);
4536 goto next_sb;
4537 }
4538 spin_unlock(&sb_security_lock);
4539 spin_unlock(&sb_lock);
4540 }
4541
4542 /* SELinux requires early initialization in order to label
4543 all processes and objects when they are created. */
4544 security_initcall(selinux_init);
4545
4546 #if defined(CONFIG_NETFILTER)
4547
4548 static struct nf_hook_ops selinux_ipv4_op = {
4549 .hook = selinux_ipv4_postroute_last,
4550 .owner = THIS_MODULE,
4551 .pf = PF_INET,
4552 .hooknum = NF_IP_POST_ROUTING,
4553 .priority = NF_IP_PRI_SELINUX_LAST,
4554 };
4555
4556 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4557
4558 static struct nf_hook_ops selinux_ipv6_op = {
4559 .hook = selinux_ipv6_postroute_last,
4560 .owner = THIS_MODULE,
4561 .pf = PF_INET6,
4562 .hooknum = NF_IP6_POST_ROUTING,
4563 .priority = NF_IP6_PRI_SELINUX_LAST,
4564 };
4565
4566 #endif /* IPV6 */
4567
4568 static int __init selinux_nf_ip_init(void)
4569 {
4570 int err = 0;
4571
4572 if (!selinux_enabled)
4573 goto out;
4574
4575 printk(KERN_INFO "SELinux: Registering netfilter hooks\n");
4576
4577 err = nf_register_hook(&selinux_ipv4_op);
4578 if (err)
4579 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4580
4581 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4582
4583 err = nf_register_hook(&selinux_ipv6_op);
4584 if (err)
4585 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4586
4587 #endif /* IPV6 */
4588
4589 out:
4590 return err;
4591 }
4592
4593 __initcall(selinux_nf_ip_init);
4594
4595 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4596 static void selinux_nf_ip_exit(void)
4597 {
4598 printk(KERN_INFO "SELinux: Unregistering netfilter hooks\n");
4599
4600 nf_unregister_hook(&selinux_ipv4_op);
4601 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4602 nf_unregister_hook(&selinux_ipv6_op);
4603 #endif /* IPV6 */
4604 }
4605 #endif
4606
4607 #else /* CONFIG_NETFILTER */
4608
4609 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4610 #define selinux_nf_ip_exit()
4611 #endif
4612
4613 #endif /* CONFIG_NETFILTER */
4614
4615 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4616 int selinux_disable(void)
4617 {
4618 extern void exit_sel_fs(void);
4619 static int selinux_disabled = 0;
4620
4621 if (ss_initialized) {
4622 /* Not permitted after initial policy load. */
4623 return -EINVAL;
4624 }
4625
4626 if (selinux_disabled) {
4627 /* Only do this once. */
4628 return -EINVAL;
4629 }
4630
4631 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
4632
4633 selinux_disabled = 1;
4634 selinux_enabled = 0;
4635
4636 /* Reset security_ops to the secondary module, dummy or capability. */
4637 security_ops = secondary_ops;
4638
4639 /* Unregister netfilter hooks. */
4640 selinux_nf_ip_exit();
4641
4642 /* Unregister selinuxfs. */
4643 exit_sel_fs();
4644
4645 return 0;
4646 }
4647 #endif
4648
4649