]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - security/selinux/hooks.c
SELinux: Enable dynamic enable/disable of the network access checks
[mirror_ubuntu-zesty-kernel.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16 * Paul Moore, <paul.moore@hp.com>
17 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
18 * Yuichi Nakamura <ynakam@hitachisoft.jp>
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License version 2,
22 * as published by the Free Software Foundation.
23 */
24
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/security.h>
31 #include <linux/xattr.h>
32 #include <linux/capability.h>
33 #include <linux/unistd.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/slab.h>
37 #include <linux/pagemap.h>
38 #include <linux/swap.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <asm/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h> /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h> /* for Unix socket types */
67 #include <net/af_unix.h> /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78
79 #include "avc.h"
80 #include "objsec.h"
81 #include "netif.h"
82 #include "netnode.h"
83 #include "xfrm.h"
84 #include "netlabel.h"
85
86 #define XATTR_SELINUX_SUFFIX "selinux"
87 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
88
89 #define NUM_SEL_MNT_OPTS 4
90
91 extern unsigned int policydb_loaded_version;
92 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
93 extern int selinux_compat_net;
94 extern struct security_operations *security_ops;
95
96 /* SECMARK reference count */
97 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
98
99 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
100 int selinux_enforcing = 0;
101
102 static int __init enforcing_setup(char *str)
103 {
104 selinux_enforcing = simple_strtol(str,NULL,0);
105 return 1;
106 }
107 __setup("enforcing=", enforcing_setup);
108 #endif
109
110 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
111 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
112
113 static int __init selinux_enabled_setup(char *str)
114 {
115 selinux_enabled = simple_strtol(str, NULL, 0);
116 return 1;
117 }
118 __setup("selinux=", selinux_enabled_setup);
119 #else
120 int selinux_enabled = 1;
121 #endif
122
123 /* Original (dummy) security module. */
124 static struct security_operations *original_ops = NULL;
125
126 /* Minimal support for a secondary security module,
127 just to allow the use of the dummy or capability modules.
128 The owlsm module can alternatively be used as a secondary
129 module as long as CONFIG_OWLSM_FD is not enabled. */
130 static struct security_operations *secondary_ops = NULL;
131
132 /* Lists of inode and superblock security structures initialized
133 before the policy was loaded. */
134 static LIST_HEAD(superblock_security_head);
135 static DEFINE_SPINLOCK(sb_security_lock);
136
137 static struct kmem_cache *sel_inode_cache;
138
139 /* Return security context for a given sid or just the context
140 length if the buffer is null or length is 0 */
141 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
142 {
143 char *context;
144 unsigned len;
145 int rc;
146
147 rc = security_sid_to_context(sid, &context, &len);
148 if (rc)
149 return rc;
150
151 if (!buffer || !size)
152 goto getsecurity_exit;
153
154 if (size < len) {
155 len = -ERANGE;
156 goto getsecurity_exit;
157 }
158 memcpy(buffer, context, len);
159
160 getsecurity_exit:
161 kfree(context);
162 return len;
163 }
164
165 /**
166 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
167 *
168 * Description:
169 * This function checks the SECMARK reference counter to see if any SECMARK
170 * targets are currently configured, if the reference counter is greater than
171 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
172 * enabled, false (0) if SECMARK is disabled.
173 *
174 */
175 static int selinux_secmark_enabled(void)
176 {
177 return (atomic_read(&selinux_secmark_refcount) > 0);
178 }
179
180 /* Allocate and free functions for each kind of security blob. */
181
182 static int task_alloc_security(struct task_struct *task)
183 {
184 struct task_security_struct *tsec;
185
186 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
187 if (!tsec)
188 return -ENOMEM;
189
190 tsec->task = task;
191 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
192 task->security = tsec;
193
194 return 0;
195 }
196
197 static void task_free_security(struct task_struct *task)
198 {
199 struct task_security_struct *tsec = task->security;
200 task->security = NULL;
201 kfree(tsec);
202 }
203
204 static int inode_alloc_security(struct inode *inode)
205 {
206 struct task_security_struct *tsec = current->security;
207 struct inode_security_struct *isec;
208
209 isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
210 if (!isec)
211 return -ENOMEM;
212
213 mutex_init(&isec->lock);
214 INIT_LIST_HEAD(&isec->list);
215 isec->inode = inode;
216 isec->sid = SECINITSID_UNLABELED;
217 isec->sclass = SECCLASS_FILE;
218 isec->task_sid = tsec->sid;
219 inode->i_security = isec;
220
221 return 0;
222 }
223
224 static void inode_free_security(struct inode *inode)
225 {
226 struct inode_security_struct *isec = inode->i_security;
227 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
228
229 spin_lock(&sbsec->isec_lock);
230 if (!list_empty(&isec->list))
231 list_del_init(&isec->list);
232 spin_unlock(&sbsec->isec_lock);
233
234 inode->i_security = NULL;
235 kmem_cache_free(sel_inode_cache, isec);
236 }
237
238 static int file_alloc_security(struct file *file)
239 {
240 struct task_security_struct *tsec = current->security;
241 struct file_security_struct *fsec;
242
243 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
244 if (!fsec)
245 return -ENOMEM;
246
247 fsec->file = file;
248 fsec->sid = tsec->sid;
249 fsec->fown_sid = tsec->sid;
250 file->f_security = fsec;
251
252 return 0;
253 }
254
255 static void file_free_security(struct file *file)
256 {
257 struct file_security_struct *fsec = file->f_security;
258 file->f_security = NULL;
259 kfree(fsec);
260 }
261
262 static int superblock_alloc_security(struct super_block *sb)
263 {
264 struct superblock_security_struct *sbsec;
265
266 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
267 if (!sbsec)
268 return -ENOMEM;
269
270 mutex_init(&sbsec->lock);
271 INIT_LIST_HEAD(&sbsec->list);
272 INIT_LIST_HEAD(&sbsec->isec_head);
273 spin_lock_init(&sbsec->isec_lock);
274 sbsec->sb = sb;
275 sbsec->sid = SECINITSID_UNLABELED;
276 sbsec->def_sid = SECINITSID_FILE;
277 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
278 sb->s_security = sbsec;
279
280 return 0;
281 }
282
283 static void superblock_free_security(struct super_block *sb)
284 {
285 struct superblock_security_struct *sbsec = sb->s_security;
286
287 spin_lock(&sb_security_lock);
288 if (!list_empty(&sbsec->list))
289 list_del_init(&sbsec->list);
290 spin_unlock(&sb_security_lock);
291
292 sb->s_security = NULL;
293 kfree(sbsec);
294 }
295
296 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
297 {
298 struct sk_security_struct *ssec;
299
300 ssec = kzalloc(sizeof(*ssec), priority);
301 if (!ssec)
302 return -ENOMEM;
303
304 ssec->sk = sk;
305 ssec->peer_sid = SECINITSID_UNLABELED;
306 ssec->sid = SECINITSID_UNLABELED;
307 sk->sk_security = ssec;
308
309 selinux_netlbl_sk_security_init(ssec, family);
310
311 return 0;
312 }
313
314 static void sk_free_security(struct sock *sk)
315 {
316 struct sk_security_struct *ssec = sk->sk_security;
317
318 sk->sk_security = NULL;
319 kfree(ssec);
320 }
321
322 /* The security server must be initialized before
323 any labeling or access decisions can be provided. */
324 extern int ss_initialized;
325
326 /* The file system's label must be initialized prior to use. */
327
328 static char *labeling_behaviors[6] = {
329 "uses xattr",
330 "uses transition SIDs",
331 "uses task SIDs",
332 "uses genfs_contexts",
333 "not configured for labeling",
334 "uses mountpoint labeling",
335 };
336
337 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
338
339 static inline int inode_doinit(struct inode *inode)
340 {
341 return inode_doinit_with_dentry(inode, NULL);
342 }
343
344 enum {
345 Opt_error = -1,
346 Opt_context = 1,
347 Opt_fscontext = 2,
348 Opt_defcontext = 3,
349 Opt_rootcontext = 4,
350 };
351
352 static match_table_t tokens = {
353 {Opt_context, "context=%s"},
354 {Opt_fscontext, "fscontext=%s"},
355 {Opt_defcontext, "defcontext=%s"},
356 {Opt_rootcontext, "rootcontext=%s"},
357 {Opt_error, NULL},
358 };
359
360 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
361
362 static int may_context_mount_sb_relabel(u32 sid,
363 struct superblock_security_struct *sbsec,
364 struct task_security_struct *tsec)
365 {
366 int rc;
367
368 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
369 FILESYSTEM__RELABELFROM, NULL);
370 if (rc)
371 return rc;
372
373 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
374 FILESYSTEM__RELABELTO, NULL);
375 return rc;
376 }
377
378 static int may_context_mount_inode_relabel(u32 sid,
379 struct superblock_security_struct *sbsec,
380 struct task_security_struct *tsec)
381 {
382 int rc;
383 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
384 FILESYSTEM__RELABELFROM, NULL);
385 if (rc)
386 return rc;
387
388 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
389 FILESYSTEM__ASSOCIATE, NULL);
390 return rc;
391 }
392
393 static int sb_finish_set_opts(struct super_block *sb)
394 {
395 struct superblock_security_struct *sbsec = sb->s_security;
396 struct dentry *root = sb->s_root;
397 struct inode *root_inode = root->d_inode;
398 int rc = 0;
399
400 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
401 /* Make sure that the xattr handler exists and that no
402 error other than -ENODATA is returned by getxattr on
403 the root directory. -ENODATA is ok, as this may be
404 the first boot of the SELinux kernel before we have
405 assigned xattr values to the filesystem. */
406 if (!root_inode->i_op->getxattr) {
407 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
408 "xattr support\n", sb->s_id, sb->s_type->name);
409 rc = -EOPNOTSUPP;
410 goto out;
411 }
412 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
413 if (rc < 0 && rc != -ENODATA) {
414 if (rc == -EOPNOTSUPP)
415 printk(KERN_WARNING "SELinux: (dev %s, type "
416 "%s) has no security xattr handler\n",
417 sb->s_id, sb->s_type->name);
418 else
419 printk(KERN_WARNING "SELinux: (dev %s, type "
420 "%s) getxattr errno %d\n", sb->s_id,
421 sb->s_type->name, -rc);
422 goto out;
423 }
424 }
425
426 sbsec->initialized = 1;
427
428 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
429 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
430 sb->s_id, sb->s_type->name);
431 else
432 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
433 sb->s_id, sb->s_type->name,
434 labeling_behaviors[sbsec->behavior-1]);
435
436 /* Initialize the root inode. */
437 rc = inode_doinit_with_dentry(root_inode, root);
438
439 /* Initialize any other inodes associated with the superblock, e.g.
440 inodes created prior to initial policy load or inodes created
441 during get_sb by a pseudo filesystem that directly
442 populates itself. */
443 spin_lock(&sbsec->isec_lock);
444 next_inode:
445 if (!list_empty(&sbsec->isec_head)) {
446 struct inode_security_struct *isec =
447 list_entry(sbsec->isec_head.next,
448 struct inode_security_struct, list);
449 struct inode *inode = isec->inode;
450 spin_unlock(&sbsec->isec_lock);
451 inode = igrab(inode);
452 if (inode) {
453 if (!IS_PRIVATE(inode))
454 inode_doinit(inode);
455 iput(inode);
456 }
457 spin_lock(&sbsec->isec_lock);
458 list_del_init(&isec->list);
459 goto next_inode;
460 }
461 spin_unlock(&sbsec->isec_lock);
462 out:
463 return rc;
464 }
465
466 /*
467 * This function should allow an FS to ask what it's mount security
468 * options were so it can use those later for submounts, displaying
469 * mount options, or whatever.
470 */
471 static int selinux_get_mnt_opts(const struct super_block *sb,
472 char ***mount_options, int **mnt_opts_flags,
473 int *num_opts)
474 {
475 int rc = 0, i;
476 struct superblock_security_struct *sbsec = sb->s_security;
477 char *context = NULL;
478 u32 len;
479 char tmp;
480
481 *num_opts = 0;
482 *mount_options = NULL;
483 *mnt_opts_flags = NULL;
484
485 if (!sbsec->initialized)
486 return -EINVAL;
487
488 if (!ss_initialized)
489 return -EINVAL;
490
491 /*
492 * if we ever use sbsec flags for anything other than tracking mount
493 * settings this is going to need a mask
494 */
495 tmp = sbsec->flags;
496 /* count the number of mount options for this sb */
497 for (i = 0; i < 8; i++) {
498 if (tmp & 0x01)
499 (*num_opts)++;
500 tmp >>= 1;
501 }
502
503 *mount_options = kcalloc(*num_opts, sizeof(char *), GFP_ATOMIC);
504 if (!*mount_options) {
505 rc = -ENOMEM;
506 goto out_free;
507 }
508
509 *mnt_opts_flags = kcalloc(*num_opts, sizeof(int), GFP_ATOMIC);
510 if (!*mnt_opts_flags) {
511 rc = -ENOMEM;
512 goto out_free;
513 }
514
515 i = 0;
516 if (sbsec->flags & FSCONTEXT_MNT) {
517 rc = security_sid_to_context(sbsec->sid, &context, &len);
518 if (rc)
519 goto out_free;
520 (*mount_options)[i] = context;
521 (*mnt_opts_flags)[i++] = FSCONTEXT_MNT;
522 }
523 if (sbsec->flags & CONTEXT_MNT) {
524 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
525 if (rc)
526 goto out_free;
527 (*mount_options)[i] = context;
528 (*mnt_opts_flags)[i++] = CONTEXT_MNT;
529 }
530 if (sbsec->flags & DEFCONTEXT_MNT) {
531 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
532 if (rc)
533 goto out_free;
534 (*mount_options)[i] = context;
535 (*mnt_opts_flags)[i++] = DEFCONTEXT_MNT;
536 }
537 if (sbsec->flags & ROOTCONTEXT_MNT) {
538 struct inode *root = sbsec->sb->s_root->d_inode;
539 struct inode_security_struct *isec = root->i_security;
540
541 rc = security_sid_to_context(isec->sid, &context, &len);
542 if (rc)
543 goto out_free;
544 (*mount_options)[i] = context;
545 (*mnt_opts_flags)[i++] = ROOTCONTEXT_MNT;
546 }
547
548 BUG_ON(i != *num_opts);
549
550 return 0;
551
552 out_free:
553 /* don't leak context string if security_sid_to_context had an error */
554 if (*mount_options && i)
555 for (; i > 0; i--)
556 kfree((*mount_options)[i-1]);
557 kfree(*mount_options);
558 *mount_options = NULL;
559 kfree(*mnt_opts_flags);
560 *mnt_opts_flags = NULL;
561 *num_opts = 0;
562 return rc;
563 }
564
565 static int bad_option(struct superblock_security_struct *sbsec, char flag,
566 u32 old_sid, u32 new_sid)
567 {
568 /* check if the old mount command had the same options */
569 if (sbsec->initialized)
570 if (!(sbsec->flags & flag) ||
571 (old_sid != new_sid))
572 return 1;
573
574 /* check if we were passed the same options twice,
575 * aka someone passed context=a,context=b
576 */
577 if (!sbsec->initialized)
578 if (sbsec->flags & flag)
579 return 1;
580 return 0;
581 }
582 /*
583 * Allow filesystems with binary mount data to explicitly set mount point
584 * labeling information.
585 */
586 int selinux_set_mnt_opts(struct super_block *sb, char **mount_options,
587 int *flags, int num_opts)
588 {
589 int rc = 0, i;
590 struct task_security_struct *tsec = current->security;
591 struct superblock_security_struct *sbsec = sb->s_security;
592 const char *name = sb->s_type->name;
593 struct inode *inode = sbsec->sb->s_root->d_inode;
594 struct inode_security_struct *root_isec = inode->i_security;
595 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
596 u32 defcontext_sid = 0;
597
598 mutex_lock(&sbsec->lock);
599
600 if (!ss_initialized) {
601 if (!num_opts) {
602 /* Defer initialization until selinux_complete_init,
603 after the initial policy is loaded and the security
604 server is ready to handle calls. */
605 spin_lock(&sb_security_lock);
606 if (list_empty(&sbsec->list))
607 list_add(&sbsec->list, &superblock_security_head);
608 spin_unlock(&sb_security_lock);
609 goto out;
610 }
611 rc = -EINVAL;
612 printk(KERN_WARNING "Unable to set superblock options before "
613 "the security server is initialized\n");
614 goto out;
615 }
616
617 /*
618 * parse the mount options, check if they are valid sids.
619 * also check if someone is trying to mount the same sb more
620 * than once with different security options.
621 */
622 for (i = 0; i < num_opts; i++) {
623 u32 sid;
624 rc = security_context_to_sid(mount_options[i],
625 strlen(mount_options[i]), &sid);
626 if (rc) {
627 printk(KERN_WARNING "SELinux: security_context_to_sid"
628 "(%s) failed for (dev %s, type %s) errno=%d\n",
629 mount_options[i], sb->s_id, name, rc);
630 goto out;
631 }
632 switch (flags[i]) {
633 case FSCONTEXT_MNT:
634 fscontext_sid = sid;
635
636 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
637 fscontext_sid))
638 goto out_double_mount;
639
640 sbsec->flags |= FSCONTEXT_MNT;
641 break;
642 case CONTEXT_MNT:
643 context_sid = sid;
644
645 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
646 context_sid))
647 goto out_double_mount;
648
649 sbsec->flags |= CONTEXT_MNT;
650 break;
651 case ROOTCONTEXT_MNT:
652 rootcontext_sid = sid;
653
654 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
655 rootcontext_sid))
656 goto out_double_mount;
657
658 sbsec->flags |= ROOTCONTEXT_MNT;
659
660 break;
661 case DEFCONTEXT_MNT:
662 defcontext_sid = sid;
663
664 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
665 defcontext_sid))
666 goto out_double_mount;
667
668 sbsec->flags |= DEFCONTEXT_MNT;
669
670 break;
671 default:
672 rc = -EINVAL;
673 goto out;
674 }
675 }
676
677 if (sbsec->initialized) {
678 /* previously mounted with options, but not on this attempt? */
679 if (sbsec->flags && !num_opts)
680 goto out_double_mount;
681 rc = 0;
682 goto out;
683 }
684
685 if (strcmp(sb->s_type->name, "proc") == 0)
686 sbsec->proc = 1;
687
688 /* Determine the labeling behavior to use for this filesystem type. */
689 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
690 if (rc) {
691 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
692 __FUNCTION__, sb->s_type->name, rc);
693 goto out;
694 }
695
696 /* sets the context of the superblock for the fs being mounted. */
697 if (fscontext_sid) {
698
699 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
700 if (rc)
701 goto out;
702
703 sbsec->sid = fscontext_sid;
704 }
705
706 /*
707 * Switch to using mount point labeling behavior.
708 * sets the label used on all file below the mountpoint, and will set
709 * the superblock context if not already set.
710 */
711 if (context_sid) {
712 if (!fscontext_sid) {
713 rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
714 if (rc)
715 goto out;
716 sbsec->sid = context_sid;
717 } else {
718 rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
719 if (rc)
720 goto out;
721 }
722 if (!rootcontext_sid)
723 rootcontext_sid = context_sid;
724
725 sbsec->mntpoint_sid = context_sid;
726 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
727 }
728
729 if (rootcontext_sid) {
730 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
731 if (rc)
732 goto out;
733
734 root_isec->sid = rootcontext_sid;
735 root_isec->initialized = 1;
736 }
737
738 if (defcontext_sid) {
739 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
740 rc = -EINVAL;
741 printk(KERN_WARNING "SELinux: defcontext option is "
742 "invalid for this filesystem type\n");
743 goto out;
744 }
745
746 if (defcontext_sid != sbsec->def_sid) {
747 rc = may_context_mount_inode_relabel(defcontext_sid,
748 sbsec, tsec);
749 if (rc)
750 goto out;
751 }
752
753 sbsec->def_sid = defcontext_sid;
754 }
755
756 rc = sb_finish_set_opts(sb);
757 out:
758 mutex_unlock(&sbsec->lock);
759 return rc;
760 out_double_mount:
761 rc = -EINVAL;
762 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
763 "security settings for (dev %s, type %s)\n", sb->s_id, name);
764 goto out;
765 }
766
767 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
768 struct super_block *newsb)
769 {
770 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
771 struct superblock_security_struct *newsbsec = newsb->s_security;
772
773 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
774 int set_context = (oldsbsec->flags & CONTEXT_MNT);
775 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
776
777 /* we can't error, we can't save the info, this shouldn't get called
778 * this early in the boot process. */
779 BUG_ON(!ss_initialized);
780
781 /* this might go away sometime down the line if there is a new user
782 * of clone, but for now, nfs better not get here... */
783 BUG_ON(newsbsec->initialized);
784
785 /* how can we clone if the old one wasn't set up?? */
786 BUG_ON(!oldsbsec->initialized);
787
788 mutex_lock(&newsbsec->lock);
789
790 newsbsec->flags = oldsbsec->flags;
791
792 newsbsec->sid = oldsbsec->sid;
793 newsbsec->def_sid = oldsbsec->def_sid;
794 newsbsec->behavior = oldsbsec->behavior;
795
796 if (set_context) {
797 u32 sid = oldsbsec->mntpoint_sid;
798
799 if (!set_fscontext)
800 newsbsec->sid = sid;
801 if (!set_rootcontext) {
802 struct inode *newinode = newsb->s_root->d_inode;
803 struct inode_security_struct *newisec = newinode->i_security;
804 newisec->sid = sid;
805 }
806 newsbsec->mntpoint_sid = sid;
807 }
808 if (set_rootcontext) {
809 const struct inode *oldinode = oldsb->s_root->d_inode;
810 const struct inode_security_struct *oldisec = oldinode->i_security;
811 struct inode *newinode = newsb->s_root->d_inode;
812 struct inode_security_struct *newisec = newinode->i_security;
813
814 newisec->sid = oldisec->sid;
815 }
816
817 sb_finish_set_opts(newsb);
818 mutex_unlock(&newsbsec->lock);
819 }
820
821 /*
822 * string mount options parsing and call set the sbsec
823 */
824 static int superblock_doinit(struct super_block *sb, void *data)
825 {
826 char *context = NULL, *defcontext = NULL;
827 char *fscontext = NULL, *rootcontext = NULL;
828 int rc = 0;
829 char *p, *options = data;
830 /* selinux only know about a fixed number of mount options */
831 char *mnt_opts[NUM_SEL_MNT_OPTS];
832 int mnt_opts_flags[NUM_SEL_MNT_OPTS], num_mnt_opts = 0;
833
834 if (!data)
835 goto out;
836
837 /* with the nfs patch this will become a goto out; */
838 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
839 const char *name = sb->s_type->name;
840 /* NFS we understand. */
841 if (!strcmp(name, "nfs")) {
842 struct nfs_mount_data *d = data;
843
844 if (d->version != NFS_MOUNT_VERSION)
845 goto out;
846
847 if (d->context[0]) {
848 context = kstrdup(d->context, GFP_KERNEL);
849 if (!context) {
850 rc = -ENOMEM;
851 goto out;
852 }
853 }
854 goto build_flags;
855 } else
856 goto out;
857 }
858
859 /* Standard string-based options. */
860 while ((p = strsep(&options, "|")) != NULL) {
861 int token;
862 substring_t args[MAX_OPT_ARGS];
863
864 if (!*p)
865 continue;
866
867 token = match_token(p, tokens, args);
868
869 switch (token) {
870 case Opt_context:
871 if (context || defcontext) {
872 rc = -EINVAL;
873 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 goto out_err;
875 }
876 context = match_strdup(&args[0]);
877 if (!context) {
878 rc = -ENOMEM;
879 goto out_err;
880 }
881 break;
882
883 case Opt_fscontext:
884 if (fscontext) {
885 rc = -EINVAL;
886 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
887 goto out_err;
888 }
889 fscontext = match_strdup(&args[0]);
890 if (!fscontext) {
891 rc = -ENOMEM;
892 goto out_err;
893 }
894 break;
895
896 case Opt_rootcontext:
897 if (rootcontext) {
898 rc = -EINVAL;
899 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
900 goto out_err;
901 }
902 rootcontext = match_strdup(&args[0]);
903 if (!rootcontext) {
904 rc = -ENOMEM;
905 goto out_err;
906 }
907 break;
908
909 case Opt_defcontext:
910 if (context || defcontext) {
911 rc = -EINVAL;
912 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
913 goto out_err;
914 }
915 defcontext = match_strdup(&args[0]);
916 if (!defcontext) {
917 rc = -ENOMEM;
918 goto out_err;
919 }
920 break;
921
922 default:
923 rc = -EINVAL;
924 printk(KERN_WARNING "SELinux: unknown mount option\n");
925 goto out_err;
926
927 }
928 }
929
930 build_flags:
931 if (fscontext) {
932 mnt_opts[num_mnt_opts] = fscontext;
933 mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
934 }
935 if (context) {
936 mnt_opts[num_mnt_opts] = context;
937 mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
938 }
939 if (rootcontext) {
940 mnt_opts[num_mnt_opts] = rootcontext;
941 mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
942 }
943 if (defcontext) {
944 mnt_opts[num_mnt_opts] = defcontext;
945 mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
946 }
947
948 out:
949 rc = selinux_set_mnt_opts(sb, mnt_opts, mnt_opts_flags, num_mnt_opts);
950 out_err:
951 kfree(context);
952 kfree(defcontext);
953 kfree(fscontext);
954 kfree(rootcontext);
955 return rc;
956 }
957
958 static inline u16 inode_mode_to_security_class(umode_t mode)
959 {
960 switch (mode & S_IFMT) {
961 case S_IFSOCK:
962 return SECCLASS_SOCK_FILE;
963 case S_IFLNK:
964 return SECCLASS_LNK_FILE;
965 case S_IFREG:
966 return SECCLASS_FILE;
967 case S_IFBLK:
968 return SECCLASS_BLK_FILE;
969 case S_IFDIR:
970 return SECCLASS_DIR;
971 case S_IFCHR:
972 return SECCLASS_CHR_FILE;
973 case S_IFIFO:
974 return SECCLASS_FIFO_FILE;
975
976 }
977
978 return SECCLASS_FILE;
979 }
980
981 static inline int default_protocol_stream(int protocol)
982 {
983 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
984 }
985
986 static inline int default_protocol_dgram(int protocol)
987 {
988 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
989 }
990
991 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
992 {
993 switch (family) {
994 case PF_UNIX:
995 switch (type) {
996 case SOCK_STREAM:
997 case SOCK_SEQPACKET:
998 return SECCLASS_UNIX_STREAM_SOCKET;
999 case SOCK_DGRAM:
1000 return SECCLASS_UNIX_DGRAM_SOCKET;
1001 }
1002 break;
1003 case PF_INET:
1004 case PF_INET6:
1005 switch (type) {
1006 case SOCK_STREAM:
1007 if (default_protocol_stream(protocol))
1008 return SECCLASS_TCP_SOCKET;
1009 else
1010 return SECCLASS_RAWIP_SOCKET;
1011 case SOCK_DGRAM:
1012 if (default_protocol_dgram(protocol))
1013 return SECCLASS_UDP_SOCKET;
1014 else
1015 return SECCLASS_RAWIP_SOCKET;
1016 case SOCK_DCCP:
1017 return SECCLASS_DCCP_SOCKET;
1018 default:
1019 return SECCLASS_RAWIP_SOCKET;
1020 }
1021 break;
1022 case PF_NETLINK:
1023 switch (protocol) {
1024 case NETLINK_ROUTE:
1025 return SECCLASS_NETLINK_ROUTE_SOCKET;
1026 case NETLINK_FIREWALL:
1027 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1028 case NETLINK_INET_DIAG:
1029 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1030 case NETLINK_NFLOG:
1031 return SECCLASS_NETLINK_NFLOG_SOCKET;
1032 case NETLINK_XFRM:
1033 return SECCLASS_NETLINK_XFRM_SOCKET;
1034 case NETLINK_SELINUX:
1035 return SECCLASS_NETLINK_SELINUX_SOCKET;
1036 case NETLINK_AUDIT:
1037 return SECCLASS_NETLINK_AUDIT_SOCKET;
1038 case NETLINK_IP6_FW:
1039 return SECCLASS_NETLINK_IP6FW_SOCKET;
1040 case NETLINK_DNRTMSG:
1041 return SECCLASS_NETLINK_DNRT_SOCKET;
1042 case NETLINK_KOBJECT_UEVENT:
1043 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1044 default:
1045 return SECCLASS_NETLINK_SOCKET;
1046 }
1047 case PF_PACKET:
1048 return SECCLASS_PACKET_SOCKET;
1049 case PF_KEY:
1050 return SECCLASS_KEY_SOCKET;
1051 case PF_APPLETALK:
1052 return SECCLASS_APPLETALK_SOCKET;
1053 }
1054
1055 return SECCLASS_SOCKET;
1056 }
1057
1058 #ifdef CONFIG_PROC_FS
1059 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1060 u16 tclass,
1061 u32 *sid)
1062 {
1063 int buflen, rc;
1064 char *buffer, *path, *end;
1065
1066 buffer = (char*)__get_free_page(GFP_KERNEL);
1067 if (!buffer)
1068 return -ENOMEM;
1069
1070 buflen = PAGE_SIZE;
1071 end = buffer+buflen;
1072 *--end = '\0';
1073 buflen--;
1074 path = end-1;
1075 *path = '/';
1076 while (de && de != de->parent) {
1077 buflen -= de->namelen + 1;
1078 if (buflen < 0)
1079 break;
1080 end -= de->namelen;
1081 memcpy(end, de->name, de->namelen);
1082 *--end = '/';
1083 path = end;
1084 de = de->parent;
1085 }
1086 rc = security_genfs_sid("proc", path, tclass, sid);
1087 free_page((unsigned long)buffer);
1088 return rc;
1089 }
1090 #else
1091 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1092 u16 tclass,
1093 u32 *sid)
1094 {
1095 return -EINVAL;
1096 }
1097 #endif
1098
1099 /* The inode's security attributes must be initialized before first use. */
1100 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1101 {
1102 struct superblock_security_struct *sbsec = NULL;
1103 struct inode_security_struct *isec = inode->i_security;
1104 u32 sid;
1105 struct dentry *dentry;
1106 #define INITCONTEXTLEN 255
1107 char *context = NULL;
1108 unsigned len = 0;
1109 int rc = 0;
1110
1111 if (isec->initialized)
1112 goto out;
1113
1114 mutex_lock(&isec->lock);
1115 if (isec->initialized)
1116 goto out_unlock;
1117
1118 sbsec = inode->i_sb->s_security;
1119 if (!sbsec->initialized) {
1120 /* Defer initialization until selinux_complete_init,
1121 after the initial policy is loaded and the security
1122 server is ready to handle calls. */
1123 spin_lock(&sbsec->isec_lock);
1124 if (list_empty(&isec->list))
1125 list_add(&isec->list, &sbsec->isec_head);
1126 spin_unlock(&sbsec->isec_lock);
1127 goto out_unlock;
1128 }
1129
1130 switch (sbsec->behavior) {
1131 case SECURITY_FS_USE_XATTR:
1132 if (!inode->i_op->getxattr) {
1133 isec->sid = sbsec->def_sid;
1134 break;
1135 }
1136
1137 /* Need a dentry, since the xattr API requires one.
1138 Life would be simpler if we could just pass the inode. */
1139 if (opt_dentry) {
1140 /* Called from d_instantiate or d_splice_alias. */
1141 dentry = dget(opt_dentry);
1142 } else {
1143 /* Called from selinux_complete_init, try to find a dentry. */
1144 dentry = d_find_alias(inode);
1145 }
1146 if (!dentry) {
1147 printk(KERN_WARNING "%s: no dentry for dev=%s "
1148 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
1149 inode->i_ino);
1150 goto out_unlock;
1151 }
1152
1153 len = INITCONTEXTLEN;
1154 context = kmalloc(len, GFP_KERNEL);
1155 if (!context) {
1156 rc = -ENOMEM;
1157 dput(dentry);
1158 goto out_unlock;
1159 }
1160 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1161 context, len);
1162 if (rc == -ERANGE) {
1163 /* Need a larger buffer. Query for the right size. */
1164 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1165 NULL, 0);
1166 if (rc < 0) {
1167 dput(dentry);
1168 goto out_unlock;
1169 }
1170 kfree(context);
1171 len = rc;
1172 context = kmalloc(len, GFP_KERNEL);
1173 if (!context) {
1174 rc = -ENOMEM;
1175 dput(dentry);
1176 goto out_unlock;
1177 }
1178 rc = inode->i_op->getxattr(dentry,
1179 XATTR_NAME_SELINUX,
1180 context, len);
1181 }
1182 dput(dentry);
1183 if (rc < 0) {
1184 if (rc != -ENODATA) {
1185 printk(KERN_WARNING "%s: getxattr returned "
1186 "%d for dev=%s ino=%ld\n", __FUNCTION__,
1187 -rc, inode->i_sb->s_id, inode->i_ino);
1188 kfree(context);
1189 goto out_unlock;
1190 }
1191 /* Map ENODATA to the default file SID */
1192 sid = sbsec->def_sid;
1193 rc = 0;
1194 } else {
1195 rc = security_context_to_sid_default(context, rc, &sid,
1196 sbsec->def_sid);
1197 if (rc) {
1198 printk(KERN_WARNING "%s: context_to_sid(%s) "
1199 "returned %d for dev=%s ino=%ld\n",
1200 __FUNCTION__, context, -rc,
1201 inode->i_sb->s_id, inode->i_ino);
1202 kfree(context);
1203 /* Leave with the unlabeled SID */
1204 rc = 0;
1205 break;
1206 }
1207 }
1208 kfree(context);
1209 isec->sid = sid;
1210 break;
1211 case SECURITY_FS_USE_TASK:
1212 isec->sid = isec->task_sid;
1213 break;
1214 case SECURITY_FS_USE_TRANS:
1215 /* Default to the fs SID. */
1216 isec->sid = sbsec->sid;
1217
1218 /* Try to obtain a transition SID. */
1219 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1220 rc = security_transition_sid(isec->task_sid,
1221 sbsec->sid,
1222 isec->sclass,
1223 &sid);
1224 if (rc)
1225 goto out_unlock;
1226 isec->sid = sid;
1227 break;
1228 case SECURITY_FS_USE_MNTPOINT:
1229 isec->sid = sbsec->mntpoint_sid;
1230 break;
1231 default:
1232 /* Default to the fs superblock SID. */
1233 isec->sid = sbsec->sid;
1234
1235 if (sbsec->proc) {
1236 struct proc_inode *proci = PROC_I(inode);
1237 if (proci->pde) {
1238 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1239 rc = selinux_proc_get_sid(proci->pde,
1240 isec->sclass,
1241 &sid);
1242 if (rc)
1243 goto out_unlock;
1244 isec->sid = sid;
1245 }
1246 }
1247 break;
1248 }
1249
1250 isec->initialized = 1;
1251
1252 out_unlock:
1253 mutex_unlock(&isec->lock);
1254 out:
1255 if (isec->sclass == SECCLASS_FILE)
1256 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1257 return rc;
1258 }
1259
1260 /* Convert a Linux signal to an access vector. */
1261 static inline u32 signal_to_av(int sig)
1262 {
1263 u32 perm = 0;
1264
1265 switch (sig) {
1266 case SIGCHLD:
1267 /* Commonly granted from child to parent. */
1268 perm = PROCESS__SIGCHLD;
1269 break;
1270 case SIGKILL:
1271 /* Cannot be caught or ignored */
1272 perm = PROCESS__SIGKILL;
1273 break;
1274 case SIGSTOP:
1275 /* Cannot be caught or ignored */
1276 perm = PROCESS__SIGSTOP;
1277 break;
1278 default:
1279 /* All other signals. */
1280 perm = PROCESS__SIGNAL;
1281 break;
1282 }
1283
1284 return perm;
1285 }
1286
1287 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1288 fork check, ptrace check, etc. */
1289 static int task_has_perm(struct task_struct *tsk1,
1290 struct task_struct *tsk2,
1291 u32 perms)
1292 {
1293 struct task_security_struct *tsec1, *tsec2;
1294
1295 tsec1 = tsk1->security;
1296 tsec2 = tsk2->security;
1297 return avc_has_perm(tsec1->sid, tsec2->sid,
1298 SECCLASS_PROCESS, perms, NULL);
1299 }
1300
1301 /* Check whether a task is allowed to use a capability. */
1302 static int task_has_capability(struct task_struct *tsk,
1303 int cap)
1304 {
1305 struct task_security_struct *tsec;
1306 struct avc_audit_data ad;
1307
1308 tsec = tsk->security;
1309
1310 AVC_AUDIT_DATA_INIT(&ad,CAP);
1311 ad.tsk = tsk;
1312 ad.u.cap = cap;
1313
1314 return avc_has_perm(tsec->sid, tsec->sid,
1315 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1316 }
1317
1318 /* Check whether a task is allowed to use a system operation. */
1319 static int task_has_system(struct task_struct *tsk,
1320 u32 perms)
1321 {
1322 struct task_security_struct *tsec;
1323
1324 tsec = tsk->security;
1325
1326 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1327 SECCLASS_SYSTEM, perms, NULL);
1328 }
1329
1330 /* Check whether a task has a particular permission to an inode.
1331 The 'adp' parameter is optional and allows other audit
1332 data to be passed (e.g. the dentry). */
1333 static int inode_has_perm(struct task_struct *tsk,
1334 struct inode *inode,
1335 u32 perms,
1336 struct avc_audit_data *adp)
1337 {
1338 struct task_security_struct *tsec;
1339 struct inode_security_struct *isec;
1340 struct avc_audit_data ad;
1341
1342 if (unlikely (IS_PRIVATE (inode)))
1343 return 0;
1344
1345 tsec = tsk->security;
1346 isec = inode->i_security;
1347
1348 if (!adp) {
1349 adp = &ad;
1350 AVC_AUDIT_DATA_INIT(&ad, FS);
1351 ad.u.fs.inode = inode;
1352 }
1353
1354 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1355 }
1356
1357 /* Same as inode_has_perm, but pass explicit audit data containing
1358 the dentry to help the auditing code to more easily generate the
1359 pathname if needed. */
1360 static inline int dentry_has_perm(struct task_struct *tsk,
1361 struct vfsmount *mnt,
1362 struct dentry *dentry,
1363 u32 av)
1364 {
1365 struct inode *inode = dentry->d_inode;
1366 struct avc_audit_data ad;
1367 AVC_AUDIT_DATA_INIT(&ad,FS);
1368 ad.u.fs.mnt = mnt;
1369 ad.u.fs.dentry = dentry;
1370 return inode_has_perm(tsk, inode, av, &ad);
1371 }
1372
1373 /* Check whether a task can use an open file descriptor to
1374 access an inode in a given way. Check access to the
1375 descriptor itself, and then use dentry_has_perm to
1376 check a particular permission to the file.
1377 Access to the descriptor is implicitly granted if it
1378 has the same SID as the process. If av is zero, then
1379 access to the file is not checked, e.g. for cases
1380 where only the descriptor is affected like seek. */
1381 static int file_has_perm(struct task_struct *tsk,
1382 struct file *file,
1383 u32 av)
1384 {
1385 struct task_security_struct *tsec = tsk->security;
1386 struct file_security_struct *fsec = file->f_security;
1387 struct vfsmount *mnt = file->f_path.mnt;
1388 struct dentry *dentry = file->f_path.dentry;
1389 struct inode *inode = dentry->d_inode;
1390 struct avc_audit_data ad;
1391 int rc;
1392
1393 AVC_AUDIT_DATA_INIT(&ad, FS);
1394 ad.u.fs.mnt = mnt;
1395 ad.u.fs.dentry = dentry;
1396
1397 if (tsec->sid != fsec->sid) {
1398 rc = avc_has_perm(tsec->sid, fsec->sid,
1399 SECCLASS_FD,
1400 FD__USE,
1401 &ad);
1402 if (rc)
1403 return rc;
1404 }
1405
1406 /* av is zero if only checking access to the descriptor. */
1407 if (av)
1408 return inode_has_perm(tsk, inode, av, &ad);
1409
1410 return 0;
1411 }
1412
1413 /* Check whether a task can create a file. */
1414 static int may_create(struct inode *dir,
1415 struct dentry *dentry,
1416 u16 tclass)
1417 {
1418 struct task_security_struct *tsec;
1419 struct inode_security_struct *dsec;
1420 struct superblock_security_struct *sbsec;
1421 u32 newsid;
1422 struct avc_audit_data ad;
1423 int rc;
1424
1425 tsec = current->security;
1426 dsec = dir->i_security;
1427 sbsec = dir->i_sb->s_security;
1428
1429 AVC_AUDIT_DATA_INIT(&ad, FS);
1430 ad.u.fs.dentry = dentry;
1431
1432 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1433 DIR__ADD_NAME | DIR__SEARCH,
1434 &ad);
1435 if (rc)
1436 return rc;
1437
1438 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1439 newsid = tsec->create_sid;
1440 } else {
1441 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1442 &newsid);
1443 if (rc)
1444 return rc;
1445 }
1446
1447 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1448 if (rc)
1449 return rc;
1450
1451 return avc_has_perm(newsid, sbsec->sid,
1452 SECCLASS_FILESYSTEM,
1453 FILESYSTEM__ASSOCIATE, &ad);
1454 }
1455
1456 /* Check whether a task can create a key. */
1457 static int may_create_key(u32 ksid,
1458 struct task_struct *ctx)
1459 {
1460 struct task_security_struct *tsec;
1461
1462 tsec = ctx->security;
1463
1464 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1465 }
1466
1467 #define MAY_LINK 0
1468 #define MAY_UNLINK 1
1469 #define MAY_RMDIR 2
1470
1471 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1472 static int may_link(struct inode *dir,
1473 struct dentry *dentry,
1474 int kind)
1475
1476 {
1477 struct task_security_struct *tsec;
1478 struct inode_security_struct *dsec, *isec;
1479 struct avc_audit_data ad;
1480 u32 av;
1481 int rc;
1482
1483 tsec = current->security;
1484 dsec = dir->i_security;
1485 isec = dentry->d_inode->i_security;
1486
1487 AVC_AUDIT_DATA_INIT(&ad, FS);
1488 ad.u.fs.dentry = dentry;
1489
1490 av = DIR__SEARCH;
1491 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1492 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1493 if (rc)
1494 return rc;
1495
1496 switch (kind) {
1497 case MAY_LINK:
1498 av = FILE__LINK;
1499 break;
1500 case MAY_UNLINK:
1501 av = FILE__UNLINK;
1502 break;
1503 case MAY_RMDIR:
1504 av = DIR__RMDIR;
1505 break;
1506 default:
1507 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1508 return 0;
1509 }
1510
1511 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1512 return rc;
1513 }
1514
1515 static inline int may_rename(struct inode *old_dir,
1516 struct dentry *old_dentry,
1517 struct inode *new_dir,
1518 struct dentry *new_dentry)
1519 {
1520 struct task_security_struct *tsec;
1521 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1522 struct avc_audit_data ad;
1523 u32 av;
1524 int old_is_dir, new_is_dir;
1525 int rc;
1526
1527 tsec = current->security;
1528 old_dsec = old_dir->i_security;
1529 old_isec = old_dentry->d_inode->i_security;
1530 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1531 new_dsec = new_dir->i_security;
1532
1533 AVC_AUDIT_DATA_INIT(&ad, FS);
1534
1535 ad.u.fs.dentry = old_dentry;
1536 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1537 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1538 if (rc)
1539 return rc;
1540 rc = avc_has_perm(tsec->sid, old_isec->sid,
1541 old_isec->sclass, FILE__RENAME, &ad);
1542 if (rc)
1543 return rc;
1544 if (old_is_dir && new_dir != old_dir) {
1545 rc = avc_has_perm(tsec->sid, old_isec->sid,
1546 old_isec->sclass, DIR__REPARENT, &ad);
1547 if (rc)
1548 return rc;
1549 }
1550
1551 ad.u.fs.dentry = new_dentry;
1552 av = DIR__ADD_NAME | DIR__SEARCH;
1553 if (new_dentry->d_inode)
1554 av |= DIR__REMOVE_NAME;
1555 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1556 if (rc)
1557 return rc;
1558 if (new_dentry->d_inode) {
1559 new_isec = new_dentry->d_inode->i_security;
1560 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1561 rc = avc_has_perm(tsec->sid, new_isec->sid,
1562 new_isec->sclass,
1563 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1564 if (rc)
1565 return rc;
1566 }
1567
1568 return 0;
1569 }
1570
1571 /* Check whether a task can perform a filesystem operation. */
1572 static int superblock_has_perm(struct task_struct *tsk,
1573 struct super_block *sb,
1574 u32 perms,
1575 struct avc_audit_data *ad)
1576 {
1577 struct task_security_struct *tsec;
1578 struct superblock_security_struct *sbsec;
1579
1580 tsec = tsk->security;
1581 sbsec = sb->s_security;
1582 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1583 perms, ad);
1584 }
1585
1586 /* Convert a Linux mode and permission mask to an access vector. */
1587 static inline u32 file_mask_to_av(int mode, int mask)
1588 {
1589 u32 av = 0;
1590
1591 if ((mode & S_IFMT) != S_IFDIR) {
1592 if (mask & MAY_EXEC)
1593 av |= FILE__EXECUTE;
1594 if (mask & MAY_READ)
1595 av |= FILE__READ;
1596
1597 if (mask & MAY_APPEND)
1598 av |= FILE__APPEND;
1599 else if (mask & MAY_WRITE)
1600 av |= FILE__WRITE;
1601
1602 } else {
1603 if (mask & MAY_EXEC)
1604 av |= DIR__SEARCH;
1605 if (mask & MAY_WRITE)
1606 av |= DIR__WRITE;
1607 if (mask & MAY_READ)
1608 av |= DIR__READ;
1609 }
1610
1611 return av;
1612 }
1613
1614 /* Convert a Linux file to an access vector. */
1615 static inline u32 file_to_av(struct file *file)
1616 {
1617 u32 av = 0;
1618
1619 if (file->f_mode & FMODE_READ)
1620 av |= FILE__READ;
1621 if (file->f_mode & FMODE_WRITE) {
1622 if (file->f_flags & O_APPEND)
1623 av |= FILE__APPEND;
1624 else
1625 av |= FILE__WRITE;
1626 }
1627
1628 return av;
1629 }
1630
1631 /* Hook functions begin here. */
1632
1633 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1634 {
1635 struct task_security_struct *psec = parent->security;
1636 struct task_security_struct *csec = child->security;
1637 int rc;
1638
1639 rc = secondary_ops->ptrace(parent,child);
1640 if (rc)
1641 return rc;
1642
1643 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1644 /* Save the SID of the tracing process for later use in apply_creds. */
1645 if (!(child->ptrace & PT_PTRACED) && !rc)
1646 csec->ptrace_sid = psec->sid;
1647 return rc;
1648 }
1649
1650 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1651 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1652 {
1653 int error;
1654
1655 error = task_has_perm(current, target, PROCESS__GETCAP);
1656 if (error)
1657 return error;
1658
1659 return secondary_ops->capget(target, effective, inheritable, permitted);
1660 }
1661
1662 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1663 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1664 {
1665 int error;
1666
1667 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1668 if (error)
1669 return error;
1670
1671 return task_has_perm(current, target, PROCESS__SETCAP);
1672 }
1673
1674 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1675 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1676 {
1677 secondary_ops->capset_set(target, effective, inheritable, permitted);
1678 }
1679
1680 static int selinux_capable(struct task_struct *tsk, int cap)
1681 {
1682 int rc;
1683
1684 rc = secondary_ops->capable(tsk, cap);
1685 if (rc)
1686 return rc;
1687
1688 return task_has_capability(tsk,cap);
1689 }
1690
1691 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1692 {
1693 int buflen, rc;
1694 char *buffer, *path, *end;
1695
1696 rc = -ENOMEM;
1697 buffer = (char*)__get_free_page(GFP_KERNEL);
1698 if (!buffer)
1699 goto out;
1700
1701 buflen = PAGE_SIZE;
1702 end = buffer+buflen;
1703 *--end = '\0';
1704 buflen--;
1705 path = end-1;
1706 *path = '/';
1707 while (table) {
1708 const char *name = table->procname;
1709 size_t namelen = strlen(name);
1710 buflen -= namelen + 1;
1711 if (buflen < 0)
1712 goto out_free;
1713 end -= namelen;
1714 memcpy(end, name, namelen);
1715 *--end = '/';
1716 path = end;
1717 table = table->parent;
1718 }
1719 buflen -= 4;
1720 if (buflen < 0)
1721 goto out_free;
1722 end -= 4;
1723 memcpy(end, "/sys", 4);
1724 path = end;
1725 rc = security_genfs_sid("proc", path, tclass, sid);
1726 out_free:
1727 free_page((unsigned long)buffer);
1728 out:
1729 return rc;
1730 }
1731
1732 static int selinux_sysctl(ctl_table *table, int op)
1733 {
1734 int error = 0;
1735 u32 av;
1736 struct task_security_struct *tsec;
1737 u32 tsid;
1738 int rc;
1739
1740 rc = secondary_ops->sysctl(table, op);
1741 if (rc)
1742 return rc;
1743
1744 tsec = current->security;
1745
1746 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1747 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1748 if (rc) {
1749 /* Default to the well-defined sysctl SID. */
1750 tsid = SECINITSID_SYSCTL;
1751 }
1752
1753 /* The op values are "defined" in sysctl.c, thereby creating
1754 * a bad coupling between this module and sysctl.c */
1755 if(op == 001) {
1756 error = avc_has_perm(tsec->sid, tsid,
1757 SECCLASS_DIR, DIR__SEARCH, NULL);
1758 } else {
1759 av = 0;
1760 if (op & 004)
1761 av |= FILE__READ;
1762 if (op & 002)
1763 av |= FILE__WRITE;
1764 if (av)
1765 error = avc_has_perm(tsec->sid, tsid,
1766 SECCLASS_FILE, av, NULL);
1767 }
1768
1769 return error;
1770 }
1771
1772 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1773 {
1774 int rc = 0;
1775
1776 if (!sb)
1777 return 0;
1778
1779 switch (cmds) {
1780 case Q_SYNC:
1781 case Q_QUOTAON:
1782 case Q_QUOTAOFF:
1783 case Q_SETINFO:
1784 case Q_SETQUOTA:
1785 rc = superblock_has_perm(current,
1786 sb,
1787 FILESYSTEM__QUOTAMOD, NULL);
1788 break;
1789 case Q_GETFMT:
1790 case Q_GETINFO:
1791 case Q_GETQUOTA:
1792 rc = superblock_has_perm(current,
1793 sb,
1794 FILESYSTEM__QUOTAGET, NULL);
1795 break;
1796 default:
1797 rc = 0; /* let the kernel handle invalid cmds */
1798 break;
1799 }
1800 return rc;
1801 }
1802
1803 static int selinux_quota_on(struct dentry *dentry)
1804 {
1805 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1806 }
1807
1808 static int selinux_syslog(int type)
1809 {
1810 int rc;
1811
1812 rc = secondary_ops->syslog(type);
1813 if (rc)
1814 return rc;
1815
1816 switch (type) {
1817 case 3: /* Read last kernel messages */
1818 case 10: /* Return size of the log buffer */
1819 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1820 break;
1821 case 6: /* Disable logging to console */
1822 case 7: /* Enable logging to console */
1823 case 8: /* Set level of messages printed to console */
1824 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1825 break;
1826 case 0: /* Close log */
1827 case 1: /* Open log */
1828 case 2: /* Read from log */
1829 case 4: /* Read/clear last kernel messages */
1830 case 5: /* Clear ring buffer */
1831 default:
1832 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1833 break;
1834 }
1835 return rc;
1836 }
1837
1838 /*
1839 * Check that a process has enough memory to allocate a new virtual
1840 * mapping. 0 means there is enough memory for the allocation to
1841 * succeed and -ENOMEM implies there is not.
1842 *
1843 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1844 * if the capability is granted, but __vm_enough_memory requires 1 if
1845 * the capability is granted.
1846 *
1847 * Do not audit the selinux permission check, as this is applied to all
1848 * processes that allocate mappings.
1849 */
1850 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1851 {
1852 int rc, cap_sys_admin = 0;
1853 struct task_security_struct *tsec = current->security;
1854
1855 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1856 if (rc == 0)
1857 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1858 SECCLASS_CAPABILITY,
1859 CAP_TO_MASK(CAP_SYS_ADMIN),
1860 0,
1861 NULL);
1862
1863 if (rc == 0)
1864 cap_sys_admin = 1;
1865
1866 return __vm_enough_memory(mm, pages, cap_sys_admin);
1867 }
1868
1869 /* binprm security operations */
1870
1871 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1872 {
1873 struct bprm_security_struct *bsec;
1874
1875 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1876 if (!bsec)
1877 return -ENOMEM;
1878
1879 bsec->bprm = bprm;
1880 bsec->sid = SECINITSID_UNLABELED;
1881 bsec->set = 0;
1882
1883 bprm->security = bsec;
1884 return 0;
1885 }
1886
1887 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1888 {
1889 struct task_security_struct *tsec;
1890 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1891 struct inode_security_struct *isec;
1892 struct bprm_security_struct *bsec;
1893 u32 newsid;
1894 struct avc_audit_data ad;
1895 int rc;
1896
1897 rc = secondary_ops->bprm_set_security(bprm);
1898 if (rc)
1899 return rc;
1900
1901 bsec = bprm->security;
1902
1903 if (bsec->set)
1904 return 0;
1905
1906 tsec = current->security;
1907 isec = inode->i_security;
1908
1909 /* Default to the current task SID. */
1910 bsec->sid = tsec->sid;
1911
1912 /* Reset fs, key, and sock SIDs on execve. */
1913 tsec->create_sid = 0;
1914 tsec->keycreate_sid = 0;
1915 tsec->sockcreate_sid = 0;
1916
1917 if (tsec->exec_sid) {
1918 newsid = tsec->exec_sid;
1919 /* Reset exec SID on execve. */
1920 tsec->exec_sid = 0;
1921 } else {
1922 /* Check for a default transition on this program. */
1923 rc = security_transition_sid(tsec->sid, isec->sid,
1924 SECCLASS_PROCESS, &newsid);
1925 if (rc)
1926 return rc;
1927 }
1928
1929 AVC_AUDIT_DATA_INIT(&ad, FS);
1930 ad.u.fs.mnt = bprm->file->f_path.mnt;
1931 ad.u.fs.dentry = bprm->file->f_path.dentry;
1932
1933 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1934 newsid = tsec->sid;
1935
1936 if (tsec->sid == newsid) {
1937 rc = avc_has_perm(tsec->sid, isec->sid,
1938 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1939 if (rc)
1940 return rc;
1941 } else {
1942 /* Check permissions for the transition. */
1943 rc = avc_has_perm(tsec->sid, newsid,
1944 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1945 if (rc)
1946 return rc;
1947
1948 rc = avc_has_perm(newsid, isec->sid,
1949 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1950 if (rc)
1951 return rc;
1952
1953 /* Clear any possibly unsafe personality bits on exec: */
1954 current->personality &= ~PER_CLEAR_ON_SETID;
1955
1956 /* Set the security field to the new SID. */
1957 bsec->sid = newsid;
1958 }
1959
1960 bsec->set = 1;
1961 return 0;
1962 }
1963
1964 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1965 {
1966 return secondary_ops->bprm_check_security(bprm);
1967 }
1968
1969
1970 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1971 {
1972 struct task_security_struct *tsec = current->security;
1973 int atsecure = 0;
1974
1975 if (tsec->osid != tsec->sid) {
1976 /* Enable secure mode for SIDs transitions unless
1977 the noatsecure permission is granted between
1978 the two SIDs, i.e. ahp returns 0. */
1979 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1980 SECCLASS_PROCESS,
1981 PROCESS__NOATSECURE, NULL);
1982 }
1983
1984 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1985 }
1986
1987 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1988 {
1989 kfree(bprm->security);
1990 bprm->security = NULL;
1991 }
1992
1993 extern struct vfsmount *selinuxfs_mount;
1994 extern struct dentry *selinux_null;
1995
1996 /* Derived from fs/exec.c:flush_old_files. */
1997 static inline void flush_unauthorized_files(struct files_struct * files)
1998 {
1999 struct avc_audit_data ad;
2000 struct file *file, *devnull = NULL;
2001 struct tty_struct *tty;
2002 struct fdtable *fdt;
2003 long j = -1;
2004 int drop_tty = 0;
2005
2006 mutex_lock(&tty_mutex);
2007 tty = get_current_tty();
2008 if (tty) {
2009 file_list_lock();
2010 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2011 if (file) {
2012 /* Revalidate access to controlling tty.
2013 Use inode_has_perm on the tty inode directly rather
2014 than using file_has_perm, as this particular open
2015 file may belong to another process and we are only
2016 interested in the inode-based check here. */
2017 struct inode *inode = file->f_path.dentry->d_inode;
2018 if (inode_has_perm(current, inode,
2019 FILE__READ | FILE__WRITE, NULL)) {
2020 drop_tty = 1;
2021 }
2022 }
2023 file_list_unlock();
2024 }
2025 mutex_unlock(&tty_mutex);
2026 /* Reset controlling tty. */
2027 if (drop_tty)
2028 no_tty();
2029
2030 /* Revalidate access to inherited open files. */
2031
2032 AVC_AUDIT_DATA_INIT(&ad,FS);
2033
2034 spin_lock(&files->file_lock);
2035 for (;;) {
2036 unsigned long set, i;
2037 int fd;
2038
2039 j++;
2040 i = j * __NFDBITS;
2041 fdt = files_fdtable(files);
2042 if (i >= fdt->max_fds)
2043 break;
2044 set = fdt->open_fds->fds_bits[j];
2045 if (!set)
2046 continue;
2047 spin_unlock(&files->file_lock);
2048 for ( ; set ; i++,set >>= 1) {
2049 if (set & 1) {
2050 file = fget(i);
2051 if (!file)
2052 continue;
2053 if (file_has_perm(current,
2054 file,
2055 file_to_av(file))) {
2056 sys_close(i);
2057 fd = get_unused_fd();
2058 if (fd != i) {
2059 if (fd >= 0)
2060 put_unused_fd(fd);
2061 fput(file);
2062 continue;
2063 }
2064 if (devnull) {
2065 get_file(devnull);
2066 } else {
2067 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2068 if (IS_ERR(devnull)) {
2069 devnull = NULL;
2070 put_unused_fd(fd);
2071 fput(file);
2072 continue;
2073 }
2074 }
2075 fd_install(fd, devnull);
2076 }
2077 fput(file);
2078 }
2079 }
2080 spin_lock(&files->file_lock);
2081
2082 }
2083 spin_unlock(&files->file_lock);
2084 }
2085
2086 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2087 {
2088 struct task_security_struct *tsec;
2089 struct bprm_security_struct *bsec;
2090 u32 sid;
2091 int rc;
2092
2093 secondary_ops->bprm_apply_creds(bprm, unsafe);
2094
2095 tsec = current->security;
2096
2097 bsec = bprm->security;
2098 sid = bsec->sid;
2099
2100 tsec->osid = tsec->sid;
2101 bsec->unsafe = 0;
2102 if (tsec->sid != sid) {
2103 /* Check for shared state. If not ok, leave SID
2104 unchanged and kill. */
2105 if (unsafe & LSM_UNSAFE_SHARE) {
2106 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2107 PROCESS__SHARE, NULL);
2108 if (rc) {
2109 bsec->unsafe = 1;
2110 return;
2111 }
2112 }
2113
2114 /* Check for ptracing, and update the task SID if ok.
2115 Otherwise, leave SID unchanged and kill. */
2116 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2117 rc = avc_has_perm(tsec->ptrace_sid, sid,
2118 SECCLASS_PROCESS, PROCESS__PTRACE,
2119 NULL);
2120 if (rc) {
2121 bsec->unsafe = 1;
2122 return;
2123 }
2124 }
2125 tsec->sid = sid;
2126 }
2127 }
2128
2129 /*
2130 * called after apply_creds without the task lock held
2131 */
2132 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2133 {
2134 struct task_security_struct *tsec;
2135 struct rlimit *rlim, *initrlim;
2136 struct itimerval itimer;
2137 struct bprm_security_struct *bsec;
2138 int rc, i;
2139
2140 tsec = current->security;
2141 bsec = bprm->security;
2142
2143 if (bsec->unsafe) {
2144 force_sig_specific(SIGKILL, current);
2145 return;
2146 }
2147 if (tsec->osid == tsec->sid)
2148 return;
2149
2150 /* Close files for which the new task SID is not authorized. */
2151 flush_unauthorized_files(current->files);
2152
2153 /* Check whether the new SID can inherit signal state
2154 from the old SID. If not, clear itimers to avoid
2155 subsequent signal generation and flush and unblock
2156 signals. This must occur _after_ the task SID has
2157 been updated so that any kill done after the flush
2158 will be checked against the new SID. */
2159 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2160 PROCESS__SIGINH, NULL);
2161 if (rc) {
2162 memset(&itimer, 0, sizeof itimer);
2163 for (i = 0; i < 3; i++)
2164 do_setitimer(i, &itimer, NULL);
2165 flush_signals(current);
2166 spin_lock_irq(&current->sighand->siglock);
2167 flush_signal_handlers(current, 1);
2168 sigemptyset(&current->blocked);
2169 recalc_sigpending();
2170 spin_unlock_irq(&current->sighand->siglock);
2171 }
2172
2173 /* Always clear parent death signal on SID transitions. */
2174 current->pdeath_signal = 0;
2175
2176 /* Check whether the new SID can inherit resource limits
2177 from the old SID. If not, reset all soft limits to
2178 the lower of the current task's hard limit and the init
2179 task's soft limit. Note that the setting of hard limits
2180 (even to lower them) can be controlled by the setrlimit
2181 check. The inclusion of the init task's soft limit into
2182 the computation is to avoid resetting soft limits higher
2183 than the default soft limit for cases where the default
2184 is lower than the hard limit, e.g. RLIMIT_CORE or
2185 RLIMIT_STACK.*/
2186 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2187 PROCESS__RLIMITINH, NULL);
2188 if (rc) {
2189 for (i = 0; i < RLIM_NLIMITS; i++) {
2190 rlim = current->signal->rlim + i;
2191 initrlim = init_task.signal->rlim+i;
2192 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
2193 }
2194 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2195 /*
2196 * This will cause RLIMIT_CPU calculations
2197 * to be refigured.
2198 */
2199 current->it_prof_expires = jiffies_to_cputime(1);
2200 }
2201 }
2202
2203 /* Wake up the parent if it is waiting so that it can
2204 recheck wait permission to the new task SID. */
2205 wake_up_interruptible(&current->parent->signal->wait_chldexit);
2206 }
2207
2208 /* superblock security operations */
2209
2210 static int selinux_sb_alloc_security(struct super_block *sb)
2211 {
2212 return superblock_alloc_security(sb);
2213 }
2214
2215 static void selinux_sb_free_security(struct super_block *sb)
2216 {
2217 superblock_free_security(sb);
2218 }
2219
2220 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2221 {
2222 if (plen > olen)
2223 return 0;
2224
2225 return !memcmp(prefix, option, plen);
2226 }
2227
2228 static inline int selinux_option(char *option, int len)
2229 {
2230 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
2231 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
2232 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
2233 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
2234 }
2235
2236 static inline void take_option(char **to, char *from, int *first, int len)
2237 {
2238 if (!*first) {
2239 **to = ',';
2240 *to += 1;
2241 } else
2242 *first = 0;
2243 memcpy(*to, from, len);
2244 *to += len;
2245 }
2246
2247 static inline void take_selinux_option(char **to, char *from, int *first,
2248 int len)
2249 {
2250 int current_size = 0;
2251
2252 if (!*first) {
2253 **to = '|';
2254 *to += 1;
2255 }
2256 else
2257 *first = 0;
2258
2259 while (current_size < len) {
2260 if (*from != '"') {
2261 **to = *from;
2262 *to += 1;
2263 }
2264 from += 1;
2265 current_size += 1;
2266 }
2267 }
2268
2269 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
2270 {
2271 int fnosec, fsec, rc = 0;
2272 char *in_save, *in_curr, *in_end;
2273 char *sec_curr, *nosec_save, *nosec;
2274 int open_quote = 0;
2275
2276 in_curr = orig;
2277 sec_curr = copy;
2278
2279 /* Binary mount data: just copy */
2280 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2281 copy_page(sec_curr, in_curr);
2282 goto out;
2283 }
2284
2285 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2286 if (!nosec) {
2287 rc = -ENOMEM;
2288 goto out;
2289 }
2290
2291 nosec_save = nosec;
2292 fnosec = fsec = 1;
2293 in_save = in_end = orig;
2294
2295 do {
2296 if (*in_end == '"')
2297 open_quote = !open_quote;
2298 if ((*in_end == ',' && open_quote == 0) ||
2299 *in_end == '\0') {
2300 int len = in_end - in_curr;
2301
2302 if (selinux_option(in_curr, len))
2303 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2304 else
2305 take_option(&nosec, in_curr, &fnosec, len);
2306
2307 in_curr = in_end + 1;
2308 }
2309 } while (*in_end++);
2310
2311 strcpy(in_save, nosec_save);
2312 free_page((unsigned long)nosec_save);
2313 out:
2314 return rc;
2315 }
2316
2317 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2318 {
2319 struct avc_audit_data ad;
2320 int rc;
2321
2322 rc = superblock_doinit(sb, data);
2323 if (rc)
2324 return rc;
2325
2326 AVC_AUDIT_DATA_INIT(&ad,FS);
2327 ad.u.fs.dentry = sb->s_root;
2328 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2329 }
2330
2331 static int selinux_sb_statfs(struct dentry *dentry)
2332 {
2333 struct avc_audit_data ad;
2334
2335 AVC_AUDIT_DATA_INIT(&ad,FS);
2336 ad.u.fs.dentry = dentry->d_sb->s_root;
2337 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2338 }
2339
2340 static int selinux_mount(char * dev_name,
2341 struct nameidata *nd,
2342 char * type,
2343 unsigned long flags,
2344 void * data)
2345 {
2346 int rc;
2347
2348 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2349 if (rc)
2350 return rc;
2351
2352 if (flags & MS_REMOUNT)
2353 return superblock_has_perm(current, nd->mnt->mnt_sb,
2354 FILESYSTEM__REMOUNT, NULL);
2355 else
2356 return dentry_has_perm(current, nd->mnt, nd->dentry,
2357 FILE__MOUNTON);
2358 }
2359
2360 static int selinux_umount(struct vfsmount *mnt, int flags)
2361 {
2362 int rc;
2363
2364 rc = secondary_ops->sb_umount(mnt, flags);
2365 if (rc)
2366 return rc;
2367
2368 return superblock_has_perm(current,mnt->mnt_sb,
2369 FILESYSTEM__UNMOUNT,NULL);
2370 }
2371
2372 /* inode security operations */
2373
2374 static int selinux_inode_alloc_security(struct inode *inode)
2375 {
2376 return inode_alloc_security(inode);
2377 }
2378
2379 static void selinux_inode_free_security(struct inode *inode)
2380 {
2381 inode_free_security(inode);
2382 }
2383
2384 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2385 char **name, void **value,
2386 size_t *len)
2387 {
2388 struct task_security_struct *tsec;
2389 struct inode_security_struct *dsec;
2390 struct superblock_security_struct *sbsec;
2391 u32 newsid, clen;
2392 int rc;
2393 char *namep = NULL, *context;
2394
2395 tsec = current->security;
2396 dsec = dir->i_security;
2397 sbsec = dir->i_sb->s_security;
2398
2399 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2400 newsid = tsec->create_sid;
2401 } else {
2402 rc = security_transition_sid(tsec->sid, dsec->sid,
2403 inode_mode_to_security_class(inode->i_mode),
2404 &newsid);
2405 if (rc) {
2406 printk(KERN_WARNING "%s: "
2407 "security_transition_sid failed, rc=%d (dev=%s "
2408 "ino=%ld)\n",
2409 __FUNCTION__,
2410 -rc, inode->i_sb->s_id, inode->i_ino);
2411 return rc;
2412 }
2413 }
2414
2415 /* Possibly defer initialization to selinux_complete_init. */
2416 if (sbsec->initialized) {
2417 struct inode_security_struct *isec = inode->i_security;
2418 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2419 isec->sid = newsid;
2420 isec->initialized = 1;
2421 }
2422
2423 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2424 return -EOPNOTSUPP;
2425
2426 if (name) {
2427 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2428 if (!namep)
2429 return -ENOMEM;
2430 *name = namep;
2431 }
2432
2433 if (value && len) {
2434 rc = security_sid_to_context(newsid, &context, &clen);
2435 if (rc) {
2436 kfree(namep);
2437 return rc;
2438 }
2439 *value = context;
2440 *len = clen;
2441 }
2442
2443 return 0;
2444 }
2445
2446 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2447 {
2448 return may_create(dir, dentry, SECCLASS_FILE);
2449 }
2450
2451 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2452 {
2453 int rc;
2454
2455 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2456 if (rc)
2457 return rc;
2458 return may_link(dir, old_dentry, MAY_LINK);
2459 }
2460
2461 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2462 {
2463 int rc;
2464
2465 rc = secondary_ops->inode_unlink(dir, dentry);
2466 if (rc)
2467 return rc;
2468 return may_link(dir, dentry, MAY_UNLINK);
2469 }
2470
2471 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2472 {
2473 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2474 }
2475
2476 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2477 {
2478 return may_create(dir, dentry, SECCLASS_DIR);
2479 }
2480
2481 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2482 {
2483 return may_link(dir, dentry, MAY_RMDIR);
2484 }
2485
2486 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2487 {
2488 int rc;
2489
2490 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2491 if (rc)
2492 return rc;
2493
2494 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2495 }
2496
2497 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2498 struct inode *new_inode, struct dentry *new_dentry)
2499 {
2500 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2501 }
2502
2503 static int selinux_inode_readlink(struct dentry *dentry)
2504 {
2505 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2506 }
2507
2508 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2509 {
2510 int rc;
2511
2512 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2513 if (rc)
2514 return rc;
2515 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2516 }
2517
2518 static int selinux_inode_permission(struct inode *inode, int mask,
2519 struct nameidata *nd)
2520 {
2521 int rc;
2522
2523 rc = secondary_ops->inode_permission(inode, mask, nd);
2524 if (rc)
2525 return rc;
2526
2527 if (!mask) {
2528 /* No permission to check. Existence test. */
2529 return 0;
2530 }
2531
2532 return inode_has_perm(current, inode,
2533 file_mask_to_av(inode->i_mode, mask), NULL);
2534 }
2535
2536 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2537 {
2538 int rc;
2539
2540 rc = secondary_ops->inode_setattr(dentry, iattr);
2541 if (rc)
2542 return rc;
2543
2544 if (iattr->ia_valid & ATTR_FORCE)
2545 return 0;
2546
2547 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2548 ATTR_ATIME_SET | ATTR_MTIME_SET))
2549 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2550
2551 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2552 }
2553
2554 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2555 {
2556 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2557 }
2558
2559 static int selinux_inode_setotherxattr(struct dentry *dentry, char *name)
2560 {
2561 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2562 sizeof XATTR_SECURITY_PREFIX - 1)) {
2563 if (!strcmp(name, XATTR_NAME_CAPS)) {
2564 if (!capable(CAP_SETFCAP))
2565 return -EPERM;
2566 } else if (!capable(CAP_SYS_ADMIN)) {
2567 /* A different attribute in the security namespace.
2568 Restrict to administrator. */
2569 return -EPERM;
2570 }
2571 }
2572
2573 /* Not an attribute we recognize, so just check the
2574 ordinary setattr permission. */
2575 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2576 }
2577
2578 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2579 {
2580 struct task_security_struct *tsec = current->security;
2581 struct inode *inode = dentry->d_inode;
2582 struct inode_security_struct *isec = inode->i_security;
2583 struct superblock_security_struct *sbsec;
2584 struct avc_audit_data ad;
2585 u32 newsid;
2586 int rc = 0;
2587
2588 if (strcmp(name, XATTR_NAME_SELINUX))
2589 return selinux_inode_setotherxattr(dentry, name);
2590
2591 sbsec = inode->i_sb->s_security;
2592 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2593 return -EOPNOTSUPP;
2594
2595 if (!is_owner_or_cap(inode))
2596 return -EPERM;
2597
2598 AVC_AUDIT_DATA_INIT(&ad,FS);
2599 ad.u.fs.dentry = dentry;
2600
2601 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2602 FILE__RELABELFROM, &ad);
2603 if (rc)
2604 return rc;
2605
2606 rc = security_context_to_sid(value, size, &newsid);
2607 if (rc)
2608 return rc;
2609
2610 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2611 FILE__RELABELTO, &ad);
2612 if (rc)
2613 return rc;
2614
2615 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2616 isec->sclass);
2617 if (rc)
2618 return rc;
2619
2620 return avc_has_perm(newsid,
2621 sbsec->sid,
2622 SECCLASS_FILESYSTEM,
2623 FILESYSTEM__ASSOCIATE,
2624 &ad);
2625 }
2626
2627 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2628 void *value, size_t size, int flags)
2629 {
2630 struct inode *inode = dentry->d_inode;
2631 struct inode_security_struct *isec = inode->i_security;
2632 u32 newsid;
2633 int rc;
2634
2635 if (strcmp(name, XATTR_NAME_SELINUX)) {
2636 /* Not an attribute we recognize, so nothing to do. */
2637 return;
2638 }
2639
2640 rc = security_context_to_sid(value, size, &newsid);
2641 if (rc) {
2642 printk(KERN_WARNING "%s: unable to obtain SID for context "
2643 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2644 return;
2645 }
2646
2647 isec->sid = newsid;
2648 return;
2649 }
2650
2651 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2652 {
2653 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2654 }
2655
2656 static int selinux_inode_listxattr (struct dentry *dentry)
2657 {
2658 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2659 }
2660
2661 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2662 {
2663 if (strcmp(name, XATTR_NAME_SELINUX))
2664 return selinux_inode_setotherxattr(dentry, name);
2665
2666 /* No one is allowed to remove a SELinux security label.
2667 You can change the label, but all data must be labeled. */
2668 return -EACCES;
2669 }
2670
2671 /*
2672 * Copy the in-core inode security context value to the user. If the
2673 * getxattr() prior to this succeeded, check to see if we need to
2674 * canonicalize the value to be finally returned to the user.
2675 *
2676 * Permission check is handled by selinux_inode_getxattr hook.
2677 */
2678 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2679 {
2680 struct inode_security_struct *isec = inode->i_security;
2681
2682 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2683 return -EOPNOTSUPP;
2684
2685 return selinux_getsecurity(isec->sid, buffer, size);
2686 }
2687
2688 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2689 const void *value, size_t size, int flags)
2690 {
2691 struct inode_security_struct *isec = inode->i_security;
2692 u32 newsid;
2693 int rc;
2694
2695 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2696 return -EOPNOTSUPP;
2697
2698 if (!value || !size)
2699 return -EACCES;
2700
2701 rc = security_context_to_sid((void*)value, size, &newsid);
2702 if (rc)
2703 return rc;
2704
2705 isec->sid = newsid;
2706 return 0;
2707 }
2708
2709 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2710 {
2711 const int len = sizeof(XATTR_NAME_SELINUX);
2712 if (buffer && len <= buffer_size)
2713 memcpy(buffer, XATTR_NAME_SELINUX, len);
2714 return len;
2715 }
2716
2717 static int selinux_inode_need_killpriv(struct dentry *dentry)
2718 {
2719 return secondary_ops->inode_need_killpriv(dentry);
2720 }
2721
2722 static int selinux_inode_killpriv(struct dentry *dentry)
2723 {
2724 return secondary_ops->inode_killpriv(dentry);
2725 }
2726
2727 /* file security operations */
2728
2729 static int selinux_revalidate_file_permission(struct file *file, int mask)
2730 {
2731 int rc;
2732 struct inode *inode = file->f_path.dentry->d_inode;
2733
2734 if (!mask) {
2735 /* No permission to check. Existence test. */
2736 return 0;
2737 }
2738
2739 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2740 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2741 mask |= MAY_APPEND;
2742
2743 rc = file_has_perm(current, file,
2744 file_mask_to_av(inode->i_mode, mask));
2745 if (rc)
2746 return rc;
2747
2748 return selinux_netlbl_inode_permission(inode, mask);
2749 }
2750
2751 static int selinux_file_permission(struct file *file, int mask)
2752 {
2753 struct inode *inode = file->f_path.dentry->d_inode;
2754 struct task_security_struct *tsec = current->security;
2755 struct file_security_struct *fsec = file->f_security;
2756 struct inode_security_struct *isec = inode->i_security;
2757
2758 if (!mask) {
2759 /* No permission to check. Existence test. */
2760 return 0;
2761 }
2762
2763 if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2764 && fsec->pseqno == avc_policy_seqno())
2765 return selinux_netlbl_inode_permission(inode, mask);
2766
2767 return selinux_revalidate_file_permission(file, mask);
2768 }
2769
2770 static int selinux_file_alloc_security(struct file *file)
2771 {
2772 return file_alloc_security(file);
2773 }
2774
2775 static void selinux_file_free_security(struct file *file)
2776 {
2777 file_free_security(file);
2778 }
2779
2780 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2781 unsigned long arg)
2782 {
2783 int error = 0;
2784
2785 switch (cmd) {
2786 case FIONREAD:
2787 /* fall through */
2788 case FIBMAP:
2789 /* fall through */
2790 case FIGETBSZ:
2791 /* fall through */
2792 case EXT2_IOC_GETFLAGS:
2793 /* fall through */
2794 case EXT2_IOC_GETVERSION:
2795 error = file_has_perm(current, file, FILE__GETATTR);
2796 break;
2797
2798 case EXT2_IOC_SETFLAGS:
2799 /* fall through */
2800 case EXT2_IOC_SETVERSION:
2801 error = file_has_perm(current, file, FILE__SETATTR);
2802 break;
2803
2804 /* sys_ioctl() checks */
2805 case FIONBIO:
2806 /* fall through */
2807 case FIOASYNC:
2808 error = file_has_perm(current, file, 0);
2809 break;
2810
2811 case KDSKBENT:
2812 case KDSKBSENT:
2813 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2814 break;
2815
2816 /* default case assumes that the command will go
2817 * to the file's ioctl() function.
2818 */
2819 default:
2820 error = file_has_perm(current, file, FILE__IOCTL);
2821
2822 }
2823 return error;
2824 }
2825
2826 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2827 {
2828 #ifndef CONFIG_PPC32
2829 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2830 /*
2831 * We are making executable an anonymous mapping or a
2832 * private file mapping that will also be writable.
2833 * This has an additional check.
2834 */
2835 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2836 if (rc)
2837 return rc;
2838 }
2839 #endif
2840
2841 if (file) {
2842 /* read access is always possible with a mapping */
2843 u32 av = FILE__READ;
2844
2845 /* write access only matters if the mapping is shared */
2846 if (shared && (prot & PROT_WRITE))
2847 av |= FILE__WRITE;
2848
2849 if (prot & PROT_EXEC)
2850 av |= FILE__EXECUTE;
2851
2852 return file_has_perm(current, file, av);
2853 }
2854 return 0;
2855 }
2856
2857 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2858 unsigned long prot, unsigned long flags,
2859 unsigned long addr, unsigned long addr_only)
2860 {
2861 int rc = 0;
2862 u32 sid = ((struct task_security_struct*)(current->security))->sid;
2863
2864 if (addr < mmap_min_addr)
2865 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2866 MEMPROTECT__MMAP_ZERO, NULL);
2867 if (rc || addr_only)
2868 return rc;
2869
2870 if (selinux_checkreqprot)
2871 prot = reqprot;
2872
2873 return file_map_prot_check(file, prot,
2874 (flags & MAP_TYPE) == MAP_SHARED);
2875 }
2876
2877 static int selinux_file_mprotect(struct vm_area_struct *vma,
2878 unsigned long reqprot,
2879 unsigned long prot)
2880 {
2881 int rc;
2882
2883 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2884 if (rc)
2885 return rc;
2886
2887 if (selinux_checkreqprot)
2888 prot = reqprot;
2889
2890 #ifndef CONFIG_PPC32
2891 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2892 rc = 0;
2893 if (vma->vm_start >= vma->vm_mm->start_brk &&
2894 vma->vm_end <= vma->vm_mm->brk) {
2895 rc = task_has_perm(current, current,
2896 PROCESS__EXECHEAP);
2897 } else if (!vma->vm_file &&
2898 vma->vm_start <= vma->vm_mm->start_stack &&
2899 vma->vm_end >= vma->vm_mm->start_stack) {
2900 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2901 } else if (vma->vm_file && vma->anon_vma) {
2902 /*
2903 * We are making executable a file mapping that has
2904 * had some COW done. Since pages might have been
2905 * written, check ability to execute the possibly
2906 * modified content. This typically should only
2907 * occur for text relocations.
2908 */
2909 rc = file_has_perm(current, vma->vm_file,
2910 FILE__EXECMOD);
2911 }
2912 if (rc)
2913 return rc;
2914 }
2915 #endif
2916
2917 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2918 }
2919
2920 static int selinux_file_lock(struct file *file, unsigned int cmd)
2921 {
2922 return file_has_perm(current, file, FILE__LOCK);
2923 }
2924
2925 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2926 unsigned long arg)
2927 {
2928 int err = 0;
2929
2930 switch (cmd) {
2931 case F_SETFL:
2932 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2933 err = -EINVAL;
2934 break;
2935 }
2936
2937 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2938 err = file_has_perm(current, file,FILE__WRITE);
2939 break;
2940 }
2941 /* fall through */
2942 case F_SETOWN:
2943 case F_SETSIG:
2944 case F_GETFL:
2945 case F_GETOWN:
2946 case F_GETSIG:
2947 /* Just check FD__USE permission */
2948 err = file_has_perm(current, file, 0);
2949 break;
2950 case F_GETLK:
2951 case F_SETLK:
2952 case F_SETLKW:
2953 #if BITS_PER_LONG == 32
2954 case F_GETLK64:
2955 case F_SETLK64:
2956 case F_SETLKW64:
2957 #endif
2958 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2959 err = -EINVAL;
2960 break;
2961 }
2962 err = file_has_perm(current, file, FILE__LOCK);
2963 break;
2964 }
2965
2966 return err;
2967 }
2968
2969 static int selinux_file_set_fowner(struct file *file)
2970 {
2971 struct task_security_struct *tsec;
2972 struct file_security_struct *fsec;
2973
2974 tsec = current->security;
2975 fsec = file->f_security;
2976 fsec->fown_sid = tsec->sid;
2977
2978 return 0;
2979 }
2980
2981 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2982 struct fown_struct *fown, int signum)
2983 {
2984 struct file *file;
2985 u32 perm;
2986 struct task_security_struct *tsec;
2987 struct file_security_struct *fsec;
2988
2989 /* struct fown_struct is never outside the context of a struct file */
2990 file = container_of(fown, struct file, f_owner);
2991
2992 tsec = tsk->security;
2993 fsec = file->f_security;
2994
2995 if (!signum)
2996 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2997 else
2998 perm = signal_to_av(signum);
2999
3000 return avc_has_perm(fsec->fown_sid, tsec->sid,
3001 SECCLASS_PROCESS, perm, NULL);
3002 }
3003
3004 static int selinux_file_receive(struct file *file)
3005 {
3006 return file_has_perm(current, file, file_to_av(file));
3007 }
3008
3009 static int selinux_dentry_open(struct file *file)
3010 {
3011 struct file_security_struct *fsec;
3012 struct inode *inode;
3013 struct inode_security_struct *isec;
3014 inode = file->f_path.dentry->d_inode;
3015 fsec = file->f_security;
3016 isec = inode->i_security;
3017 /*
3018 * Save inode label and policy sequence number
3019 * at open-time so that selinux_file_permission
3020 * can determine whether revalidation is necessary.
3021 * Task label is already saved in the file security
3022 * struct as its SID.
3023 */
3024 fsec->isid = isec->sid;
3025 fsec->pseqno = avc_policy_seqno();
3026 /*
3027 * Since the inode label or policy seqno may have changed
3028 * between the selinux_inode_permission check and the saving
3029 * of state above, recheck that access is still permitted.
3030 * Otherwise, access might never be revalidated against the
3031 * new inode label or new policy.
3032 * This check is not redundant - do not remove.
3033 */
3034 return inode_has_perm(current, inode, file_to_av(file), NULL);
3035 }
3036
3037 /* task security operations */
3038
3039 static int selinux_task_create(unsigned long clone_flags)
3040 {
3041 int rc;
3042
3043 rc = secondary_ops->task_create(clone_flags);
3044 if (rc)
3045 return rc;
3046
3047 return task_has_perm(current, current, PROCESS__FORK);
3048 }
3049
3050 static int selinux_task_alloc_security(struct task_struct *tsk)
3051 {
3052 struct task_security_struct *tsec1, *tsec2;
3053 int rc;
3054
3055 tsec1 = current->security;
3056
3057 rc = task_alloc_security(tsk);
3058 if (rc)
3059 return rc;
3060 tsec2 = tsk->security;
3061
3062 tsec2->osid = tsec1->osid;
3063 tsec2->sid = tsec1->sid;
3064
3065 /* Retain the exec, fs, key, and sock SIDs across fork */
3066 tsec2->exec_sid = tsec1->exec_sid;
3067 tsec2->create_sid = tsec1->create_sid;
3068 tsec2->keycreate_sid = tsec1->keycreate_sid;
3069 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3070
3071 /* Retain ptracer SID across fork, if any.
3072 This will be reset by the ptrace hook upon any
3073 subsequent ptrace_attach operations. */
3074 tsec2->ptrace_sid = tsec1->ptrace_sid;
3075
3076 return 0;
3077 }
3078
3079 static void selinux_task_free_security(struct task_struct *tsk)
3080 {
3081 task_free_security(tsk);
3082 }
3083
3084 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3085 {
3086 /* Since setuid only affects the current process, and
3087 since the SELinux controls are not based on the Linux
3088 identity attributes, SELinux does not need to control
3089 this operation. However, SELinux does control the use
3090 of the CAP_SETUID and CAP_SETGID capabilities using the
3091 capable hook. */
3092 return 0;
3093 }
3094
3095 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3096 {
3097 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
3098 }
3099
3100 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3101 {
3102 /* See the comment for setuid above. */
3103 return 0;
3104 }
3105
3106 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3107 {
3108 return task_has_perm(current, p, PROCESS__SETPGID);
3109 }
3110
3111 static int selinux_task_getpgid(struct task_struct *p)
3112 {
3113 return task_has_perm(current, p, PROCESS__GETPGID);
3114 }
3115
3116 static int selinux_task_getsid(struct task_struct *p)
3117 {
3118 return task_has_perm(current, p, PROCESS__GETSESSION);
3119 }
3120
3121 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3122 {
3123 selinux_get_task_sid(p, secid);
3124 }
3125
3126 static int selinux_task_setgroups(struct group_info *group_info)
3127 {
3128 /* See the comment for setuid above. */
3129 return 0;
3130 }
3131
3132 static int selinux_task_setnice(struct task_struct *p, int nice)
3133 {
3134 int rc;
3135
3136 rc = secondary_ops->task_setnice(p, nice);
3137 if (rc)
3138 return rc;
3139
3140 return task_has_perm(current,p, PROCESS__SETSCHED);
3141 }
3142
3143 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3144 {
3145 int rc;
3146
3147 rc = secondary_ops->task_setioprio(p, ioprio);
3148 if (rc)
3149 return rc;
3150
3151 return task_has_perm(current, p, PROCESS__SETSCHED);
3152 }
3153
3154 static int selinux_task_getioprio(struct task_struct *p)
3155 {
3156 return task_has_perm(current, p, PROCESS__GETSCHED);
3157 }
3158
3159 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3160 {
3161 struct rlimit *old_rlim = current->signal->rlim + resource;
3162 int rc;
3163
3164 rc = secondary_ops->task_setrlimit(resource, new_rlim);
3165 if (rc)
3166 return rc;
3167
3168 /* Control the ability to change the hard limit (whether
3169 lowering or raising it), so that the hard limit can
3170 later be used as a safe reset point for the soft limit
3171 upon context transitions. See selinux_bprm_apply_creds. */
3172 if (old_rlim->rlim_max != new_rlim->rlim_max)
3173 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3174
3175 return 0;
3176 }
3177
3178 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3179 {
3180 int rc;
3181
3182 rc = secondary_ops->task_setscheduler(p, policy, lp);
3183 if (rc)
3184 return rc;
3185
3186 return task_has_perm(current, p, PROCESS__SETSCHED);
3187 }
3188
3189 static int selinux_task_getscheduler(struct task_struct *p)
3190 {
3191 return task_has_perm(current, p, PROCESS__GETSCHED);
3192 }
3193
3194 static int selinux_task_movememory(struct task_struct *p)
3195 {
3196 return task_has_perm(current, p, PROCESS__SETSCHED);
3197 }
3198
3199 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3200 int sig, u32 secid)
3201 {
3202 u32 perm;
3203 int rc;
3204 struct task_security_struct *tsec;
3205
3206 rc = secondary_ops->task_kill(p, info, sig, secid);
3207 if (rc)
3208 return rc;
3209
3210 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
3211 return 0;
3212
3213 if (!sig)
3214 perm = PROCESS__SIGNULL; /* null signal; existence test */
3215 else
3216 perm = signal_to_av(sig);
3217 tsec = p->security;
3218 if (secid)
3219 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3220 else
3221 rc = task_has_perm(current, p, perm);
3222 return rc;
3223 }
3224
3225 static int selinux_task_prctl(int option,
3226 unsigned long arg2,
3227 unsigned long arg3,
3228 unsigned long arg4,
3229 unsigned long arg5)
3230 {
3231 /* The current prctl operations do not appear to require
3232 any SELinux controls since they merely observe or modify
3233 the state of the current process. */
3234 return 0;
3235 }
3236
3237 static int selinux_task_wait(struct task_struct *p)
3238 {
3239 return task_has_perm(p, current, PROCESS__SIGCHLD);
3240 }
3241
3242 static void selinux_task_reparent_to_init(struct task_struct *p)
3243 {
3244 struct task_security_struct *tsec;
3245
3246 secondary_ops->task_reparent_to_init(p);
3247
3248 tsec = p->security;
3249 tsec->osid = tsec->sid;
3250 tsec->sid = SECINITSID_KERNEL;
3251 return;
3252 }
3253
3254 static void selinux_task_to_inode(struct task_struct *p,
3255 struct inode *inode)
3256 {
3257 struct task_security_struct *tsec = p->security;
3258 struct inode_security_struct *isec = inode->i_security;
3259
3260 isec->sid = tsec->sid;
3261 isec->initialized = 1;
3262 return;
3263 }
3264
3265 /* Returns error only if unable to parse addresses */
3266 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3267 struct avc_audit_data *ad, u8 *proto)
3268 {
3269 int offset, ihlen, ret = -EINVAL;
3270 struct iphdr _iph, *ih;
3271
3272 offset = skb_network_offset(skb);
3273 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3274 if (ih == NULL)
3275 goto out;
3276
3277 ihlen = ih->ihl * 4;
3278 if (ihlen < sizeof(_iph))
3279 goto out;
3280
3281 ad->u.net.v4info.saddr = ih->saddr;
3282 ad->u.net.v4info.daddr = ih->daddr;
3283 ret = 0;
3284
3285 if (proto)
3286 *proto = ih->protocol;
3287
3288 switch (ih->protocol) {
3289 case IPPROTO_TCP: {
3290 struct tcphdr _tcph, *th;
3291
3292 if (ntohs(ih->frag_off) & IP_OFFSET)
3293 break;
3294
3295 offset += ihlen;
3296 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3297 if (th == NULL)
3298 break;
3299
3300 ad->u.net.sport = th->source;
3301 ad->u.net.dport = th->dest;
3302 break;
3303 }
3304
3305 case IPPROTO_UDP: {
3306 struct udphdr _udph, *uh;
3307
3308 if (ntohs(ih->frag_off) & IP_OFFSET)
3309 break;
3310
3311 offset += ihlen;
3312 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3313 if (uh == NULL)
3314 break;
3315
3316 ad->u.net.sport = uh->source;
3317 ad->u.net.dport = uh->dest;
3318 break;
3319 }
3320
3321 case IPPROTO_DCCP: {
3322 struct dccp_hdr _dccph, *dh;
3323
3324 if (ntohs(ih->frag_off) & IP_OFFSET)
3325 break;
3326
3327 offset += ihlen;
3328 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3329 if (dh == NULL)
3330 break;
3331
3332 ad->u.net.sport = dh->dccph_sport;
3333 ad->u.net.dport = dh->dccph_dport;
3334 break;
3335 }
3336
3337 default:
3338 break;
3339 }
3340 out:
3341 return ret;
3342 }
3343
3344 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3345
3346 /* Returns error only if unable to parse addresses */
3347 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3348 struct avc_audit_data *ad, u8 *proto)
3349 {
3350 u8 nexthdr;
3351 int ret = -EINVAL, offset;
3352 struct ipv6hdr _ipv6h, *ip6;
3353
3354 offset = skb_network_offset(skb);
3355 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3356 if (ip6 == NULL)
3357 goto out;
3358
3359 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3360 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3361 ret = 0;
3362
3363 nexthdr = ip6->nexthdr;
3364 offset += sizeof(_ipv6h);
3365 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3366 if (offset < 0)
3367 goto out;
3368
3369 if (proto)
3370 *proto = nexthdr;
3371
3372 switch (nexthdr) {
3373 case IPPROTO_TCP: {
3374 struct tcphdr _tcph, *th;
3375
3376 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3377 if (th == NULL)
3378 break;
3379
3380 ad->u.net.sport = th->source;
3381 ad->u.net.dport = th->dest;
3382 break;
3383 }
3384
3385 case IPPROTO_UDP: {
3386 struct udphdr _udph, *uh;
3387
3388 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3389 if (uh == NULL)
3390 break;
3391
3392 ad->u.net.sport = uh->source;
3393 ad->u.net.dport = uh->dest;
3394 break;
3395 }
3396
3397 case IPPROTO_DCCP: {
3398 struct dccp_hdr _dccph, *dh;
3399
3400 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3401 if (dh == NULL)
3402 break;
3403
3404 ad->u.net.sport = dh->dccph_sport;
3405 ad->u.net.dport = dh->dccph_dport;
3406 break;
3407 }
3408
3409 /* includes fragments */
3410 default:
3411 break;
3412 }
3413 out:
3414 return ret;
3415 }
3416
3417 #endif /* IPV6 */
3418
3419 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3420 char **addrp, int src, u8 *proto)
3421 {
3422 int ret = 0;
3423
3424 switch (ad->u.net.family) {
3425 case PF_INET:
3426 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3427 if (ret || !addrp)
3428 break;
3429 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3430 &ad->u.net.v4info.daddr);
3431 break;
3432
3433 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3434 case PF_INET6:
3435 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3436 if (ret || !addrp)
3437 break;
3438 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3439 &ad->u.net.v6info.daddr);
3440 break;
3441 #endif /* IPV6 */
3442 default:
3443 break;
3444 }
3445
3446 return ret;
3447 }
3448
3449 /**
3450 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3451 * @skb: the packet
3452 * @family: protocol family
3453 * @sid: the packet's peer label SID
3454 *
3455 * Description:
3456 * Check the various different forms of network peer labeling and determine
3457 * the peer label/SID for the packet; most of the magic actually occurs in
3458 * the security server function security_net_peersid_cmp(). The function
3459 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3460 * or -EACCES if @sid is invalid due to inconsistencies with the different
3461 * peer labels.
3462 *
3463 */
3464 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3465 {
3466 u32 xfrm_sid;
3467 u32 nlbl_sid;
3468 u32 nlbl_type;
3469
3470 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3471 selinux_netlbl_skbuff_getsid(skb,
3472 family,
3473 SECINITSID_NETMSG,
3474 &nlbl_type,
3475 &nlbl_sid);
3476
3477 if (security_net_peersid_resolve(nlbl_sid, nlbl_type,
3478 xfrm_sid,
3479 sid) != 0)
3480 return -EACCES;
3481
3482 return 0;
3483 }
3484
3485 /* socket security operations */
3486 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3487 u32 perms)
3488 {
3489 struct inode_security_struct *isec;
3490 struct task_security_struct *tsec;
3491 struct avc_audit_data ad;
3492 int err = 0;
3493
3494 tsec = task->security;
3495 isec = SOCK_INODE(sock)->i_security;
3496
3497 if (isec->sid == SECINITSID_KERNEL)
3498 goto out;
3499
3500 AVC_AUDIT_DATA_INIT(&ad,NET);
3501 ad.u.net.sk = sock->sk;
3502 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3503
3504 out:
3505 return err;
3506 }
3507
3508 static int selinux_socket_create(int family, int type,
3509 int protocol, int kern)
3510 {
3511 int err = 0;
3512 struct task_security_struct *tsec;
3513 u32 newsid;
3514
3515 if (kern)
3516 goto out;
3517
3518 tsec = current->security;
3519 newsid = tsec->sockcreate_sid ? : tsec->sid;
3520 err = avc_has_perm(tsec->sid, newsid,
3521 socket_type_to_security_class(family, type,
3522 protocol), SOCKET__CREATE, NULL);
3523
3524 out:
3525 return err;
3526 }
3527
3528 static int selinux_socket_post_create(struct socket *sock, int family,
3529 int type, int protocol, int kern)
3530 {
3531 int err = 0;
3532 struct inode_security_struct *isec;
3533 struct task_security_struct *tsec;
3534 struct sk_security_struct *sksec;
3535 u32 newsid;
3536
3537 isec = SOCK_INODE(sock)->i_security;
3538
3539 tsec = current->security;
3540 newsid = tsec->sockcreate_sid ? : tsec->sid;
3541 isec->sclass = socket_type_to_security_class(family, type, protocol);
3542 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3543 isec->initialized = 1;
3544
3545 if (sock->sk) {
3546 sksec = sock->sk->sk_security;
3547 sksec->sid = isec->sid;
3548 sksec->sclass = isec->sclass;
3549 err = selinux_netlbl_socket_post_create(sock);
3550 }
3551
3552 return err;
3553 }
3554
3555 /* Range of port numbers used to automatically bind.
3556 Need to determine whether we should perform a name_bind
3557 permission check between the socket and the port number. */
3558
3559 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3560 {
3561 u16 family;
3562 int err;
3563
3564 err = socket_has_perm(current, sock, SOCKET__BIND);
3565 if (err)
3566 goto out;
3567
3568 /*
3569 * If PF_INET or PF_INET6, check name_bind permission for the port.
3570 * Multiple address binding for SCTP is not supported yet: we just
3571 * check the first address now.
3572 */
3573 family = sock->sk->sk_family;
3574 if (family == PF_INET || family == PF_INET6) {
3575 char *addrp;
3576 struct inode_security_struct *isec;
3577 struct task_security_struct *tsec;
3578 struct avc_audit_data ad;
3579 struct sockaddr_in *addr4 = NULL;
3580 struct sockaddr_in6 *addr6 = NULL;
3581 unsigned short snum;
3582 struct sock *sk = sock->sk;
3583 u32 sid, node_perm, addrlen;
3584
3585 tsec = current->security;
3586 isec = SOCK_INODE(sock)->i_security;
3587
3588 if (family == PF_INET) {
3589 addr4 = (struct sockaddr_in *)address;
3590 snum = ntohs(addr4->sin_port);
3591 addrlen = sizeof(addr4->sin_addr.s_addr);
3592 addrp = (char *)&addr4->sin_addr.s_addr;
3593 } else {
3594 addr6 = (struct sockaddr_in6 *)address;
3595 snum = ntohs(addr6->sin6_port);
3596 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3597 addrp = (char *)&addr6->sin6_addr.s6_addr;
3598 }
3599
3600 if (snum) {
3601 int low, high;
3602
3603 inet_get_local_port_range(&low, &high);
3604
3605 if (snum < max(PROT_SOCK, low) || snum > high) {
3606 err = security_port_sid(sk->sk_family,
3607 sk->sk_type,
3608 sk->sk_protocol, snum,
3609 &sid);
3610 if (err)
3611 goto out;
3612 AVC_AUDIT_DATA_INIT(&ad,NET);
3613 ad.u.net.sport = htons(snum);
3614 ad.u.net.family = family;
3615 err = avc_has_perm(isec->sid, sid,
3616 isec->sclass,
3617 SOCKET__NAME_BIND, &ad);
3618 if (err)
3619 goto out;
3620 }
3621 }
3622
3623 switch(isec->sclass) {
3624 case SECCLASS_TCP_SOCKET:
3625 node_perm = TCP_SOCKET__NODE_BIND;
3626 break;
3627
3628 case SECCLASS_UDP_SOCKET:
3629 node_perm = UDP_SOCKET__NODE_BIND;
3630 break;
3631
3632 case SECCLASS_DCCP_SOCKET:
3633 node_perm = DCCP_SOCKET__NODE_BIND;
3634 break;
3635
3636 default:
3637 node_perm = RAWIP_SOCKET__NODE_BIND;
3638 break;
3639 }
3640
3641 err = sel_netnode_sid(addrp, family, &sid);
3642 if (err)
3643 goto out;
3644
3645 AVC_AUDIT_DATA_INIT(&ad,NET);
3646 ad.u.net.sport = htons(snum);
3647 ad.u.net.family = family;
3648
3649 if (family == PF_INET)
3650 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3651 else
3652 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3653
3654 err = avc_has_perm(isec->sid, sid,
3655 isec->sclass, node_perm, &ad);
3656 if (err)
3657 goto out;
3658 }
3659 out:
3660 return err;
3661 }
3662
3663 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3664 {
3665 struct inode_security_struct *isec;
3666 int err;
3667
3668 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3669 if (err)
3670 return err;
3671
3672 /*
3673 * If a TCP or DCCP socket, check name_connect permission for the port.
3674 */
3675 isec = SOCK_INODE(sock)->i_security;
3676 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3677 isec->sclass == SECCLASS_DCCP_SOCKET) {
3678 struct sock *sk = sock->sk;
3679 struct avc_audit_data ad;
3680 struct sockaddr_in *addr4 = NULL;
3681 struct sockaddr_in6 *addr6 = NULL;
3682 unsigned short snum;
3683 u32 sid, perm;
3684
3685 if (sk->sk_family == PF_INET) {
3686 addr4 = (struct sockaddr_in *)address;
3687 if (addrlen < sizeof(struct sockaddr_in))
3688 return -EINVAL;
3689 snum = ntohs(addr4->sin_port);
3690 } else {
3691 addr6 = (struct sockaddr_in6 *)address;
3692 if (addrlen < SIN6_LEN_RFC2133)
3693 return -EINVAL;
3694 snum = ntohs(addr6->sin6_port);
3695 }
3696
3697 err = security_port_sid(sk->sk_family, sk->sk_type,
3698 sk->sk_protocol, snum, &sid);
3699 if (err)
3700 goto out;
3701
3702 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3703 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3704
3705 AVC_AUDIT_DATA_INIT(&ad,NET);
3706 ad.u.net.dport = htons(snum);
3707 ad.u.net.family = sk->sk_family;
3708 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3709 if (err)
3710 goto out;
3711 }
3712
3713 out:
3714 return err;
3715 }
3716
3717 static int selinux_socket_listen(struct socket *sock, int backlog)
3718 {
3719 return socket_has_perm(current, sock, SOCKET__LISTEN);
3720 }
3721
3722 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3723 {
3724 int err;
3725 struct inode_security_struct *isec;
3726 struct inode_security_struct *newisec;
3727
3728 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3729 if (err)
3730 return err;
3731
3732 newisec = SOCK_INODE(newsock)->i_security;
3733
3734 isec = SOCK_INODE(sock)->i_security;
3735 newisec->sclass = isec->sclass;
3736 newisec->sid = isec->sid;
3737 newisec->initialized = 1;
3738
3739 return 0;
3740 }
3741
3742 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3743 int size)
3744 {
3745 int rc;
3746
3747 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3748 if (rc)
3749 return rc;
3750
3751 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3752 }
3753
3754 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3755 int size, int flags)
3756 {
3757 return socket_has_perm(current, sock, SOCKET__READ);
3758 }
3759
3760 static int selinux_socket_getsockname(struct socket *sock)
3761 {
3762 return socket_has_perm(current, sock, SOCKET__GETATTR);
3763 }
3764
3765 static int selinux_socket_getpeername(struct socket *sock)
3766 {
3767 return socket_has_perm(current, sock, SOCKET__GETATTR);
3768 }
3769
3770 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3771 {
3772 int err;
3773
3774 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3775 if (err)
3776 return err;
3777
3778 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3779 }
3780
3781 static int selinux_socket_getsockopt(struct socket *sock, int level,
3782 int optname)
3783 {
3784 return socket_has_perm(current, sock, SOCKET__GETOPT);
3785 }
3786
3787 static int selinux_socket_shutdown(struct socket *sock, int how)
3788 {
3789 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3790 }
3791
3792 static int selinux_socket_unix_stream_connect(struct socket *sock,
3793 struct socket *other,
3794 struct sock *newsk)
3795 {
3796 struct sk_security_struct *ssec;
3797 struct inode_security_struct *isec;
3798 struct inode_security_struct *other_isec;
3799 struct avc_audit_data ad;
3800 int err;
3801
3802 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3803 if (err)
3804 return err;
3805
3806 isec = SOCK_INODE(sock)->i_security;
3807 other_isec = SOCK_INODE(other)->i_security;
3808
3809 AVC_AUDIT_DATA_INIT(&ad,NET);
3810 ad.u.net.sk = other->sk;
3811
3812 err = avc_has_perm(isec->sid, other_isec->sid,
3813 isec->sclass,
3814 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3815 if (err)
3816 return err;
3817
3818 /* connecting socket */
3819 ssec = sock->sk->sk_security;
3820 ssec->peer_sid = other_isec->sid;
3821
3822 /* server child socket */
3823 ssec = newsk->sk_security;
3824 ssec->peer_sid = isec->sid;
3825 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3826
3827 return err;
3828 }
3829
3830 static int selinux_socket_unix_may_send(struct socket *sock,
3831 struct socket *other)
3832 {
3833 struct inode_security_struct *isec;
3834 struct inode_security_struct *other_isec;
3835 struct avc_audit_data ad;
3836 int err;
3837
3838 isec = SOCK_INODE(sock)->i_security;
3839 other_isec = SOCK_INODE(other)->i_security;
3840
3841 AVC_AUDIT_DATA_INIT(&ad,NET);
3842 ad.u.net.sk = other->sk;
3843
3844 err = avc_has_perm(isec->sid, other_isec->sid,
3845 isec->sclass, SOCKET__SENDTO, &ad);
3846 if (err)
3847 return err;
3848
3849 return 0;
3850 }
3851
3852 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
3853 struct sk_buff *skb,
3854 struct avc_audit_data *ad,
3855 u16 family,
3856 char *addrp)
3857 {
3858 int err;
3859 struct sk_security_struct *sksec = sk->sk_security;
3860 u16 sk_class;
3861 u32 netif_perm, node_perm, recv_perm;
3862 u32 port_sid, node_sid, if_sid, sk_sid;
3863
3864 sk_sid = sksec->sid;
3865 sk_class = sksec->sclass;
3866
3867 switch (sk_class) {
3868 case SECCLASS_UDP_SOCKET:
3869 netif_perm = NETIF__UDP_RECV;
3870 node_perm = NODE__UDP_RECV;
3871 recv_perm = UDP_SOCKET__RECV_MSG;
3872 break;
3873 case SECCLASS_TCP_SOCKET:
3874 netif_perm = NETIF__TCP_RECV;
3875 node_perm = NODE__TCP_RECV;
3876 recv_perm = TCP_SOCKET__RECV_MSG;
3877 break;
3878 case SECCLASS_DCCP_SOCKET:
3879 netif_perm = NETIF__DCCP_RECV;
3880 node_perm = NODE__DCCP_RECV;
3881 recv_perm = DCCP_SOCKET__RECV_MSG;
3882 break;
3883 default:
3884 netif_perm = NETIF__RAWIP_RECV;
3885 node_perm = NODE__RAWIP_RECV;
3886 recv_perm = 0;
3887 break;
3888 }
3889
3890 err = sel_netif_sid(skb->iif, &if_sid);
3891 if (err)
3892 return err;
3893 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3894 if (err)
3895 return err;
3896
3897 err = sel_netnode_sid(addrp, family, &node_sid);
3898 if (err)
3899 return err;
3900 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3901 if (err)
3902 return err;
3903
3904 if (!recv_perm)
3905 return 0;
3906 err = security_port_sid(sk->sk_family, sk->sk_type,
3907 sk->sk_protocol, ntohs(ad->u.net.sport),
3908 &port_sid);
3909 if (err)
3910 return err;
3911 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
3912 }
3913
3914 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3915 struct avc_audit_data *ad,
3916 u16 family, char *addrp)
3917 {
3918 int err;
3919 struct sk_security_struct *sksec = sk->sk_security;
3920 u32 peer_sid;
3921 u32 sk_sid = sksec->sid;
3922
3923 if (selinux_compat_net)
3924 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad,
3925 family, addrp);
3926 else
3927 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
3928 PACKET__RECV, ad);
3929 if (err)
3930 return err;
3931
3932 if (selinux_policycap_netpeer) {
3933 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
3934 if (err)
3935 return err;
3936 err = avc_has_perm(sk_sid, peer_sid,
3937 SECCLASS_PEER, PEER__RECV, ad);
3938 } else {
3939 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad);
3940 if (err)
3941 return err;
3942 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad);
3943 }
3944
3945 return err;
3946 }
3947
3948 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3949 {
3950 int err;
3951 struct sk_security_struct *sksec = sk->sk_security;
3952 u16 family = sk->sk_family;
3953 u32 sk_sid = sksec->sid;
3954 struct avc_audit_data ad;
3955 char *addrp;
3956
3957 if (family != PF_INET && family != PF_INET6)
3958 return 0;
3959
3960 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3961 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3962 family = PF_INET;
3963
3964 AVC_AUDIT_DATA_INIT(&ad, NET);
3965 ad.u.net.netif = skb->iif;
3966 ad.u.net.family = family;
3967 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
3968 if (err)
3969 return err;
3970
3971 /* If any sort of compatibility mode is enabled then handoff processing
3972 * to the selinux_sock_rcv_skb_compat() function to deal with the
3973 * special handling. We do this in an attempt to keep this function
3974 * as fast and as clean as possible. */
3975 if (selinux_compat_net || !selinux_policycap_netpeer)
3976 return selinux_sock_rcv_skb_compat(sk, skb, &ad,
3977 family, addrp);
3978
3979 if (selinux_secmark_enabled()) {
3980 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
3981 PACKET__RECV, &ad);
3982 if (err)
3983 return err;
3984 }
3985
3986 if (netlbl_enabled() || selinux_xfrm_enabled()) {
3987 u32 peer_sid;
3988
3989 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
3990 if (err)
3991 return err;
3992 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
3993 PEER__RECV, &ad);
3994 }
3995
3996 return err;
3997 }
3998
3999 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4000 int __user *optlen, unsigned len)
4001 {
4002 int err = 0;
4003 char *scontext;
4004 u32 scontext_len;
4005 struct sk_security_struct *ssec;
4006 struct inode_security_struct *isec;
4007 u32 peer_sid = SECSID_NULL;
4008
4009 isec = SOCK_INODE(sock)->i_security;
4010
4011 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4012 isec->sclass == SECCLASS_TCP_SOCKET) {
4013 ssec = sock->sk->sk_security;
4014 peer_sid = ssec->peer_sid;
4015 }
4016 if (peer_sid == SECSID_NULL) {
4017 err = -ENOPROTOOPT;
4018 goto out;
4019 }
4020
4021 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4022
4023 if (err)
4024 goto out;
4025
4026 if (scontext_len > len) {
4027 err = -ERANGE;
4028 goto out_len;
4029 }
4030
4031 if (copy_to_user(optval, scontext, scontext_len))
4032 err = -EFAULT;
4033
4034 out_len:
4035 if (put_user(scontext_len, optlen))
4036 err = -EFAULT;
4037
4038 kfree(scontext);
4039 out:
4040 return err;
4041 }
4042
4043 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4044 {
4045 u32 peer_secid = SECSID_NULL;
4046 u16 family;
4047
4048 if (sock)
4049 family = sock->sk->sk_family;
4050 else if (skb && skb->sk)
4051 family = skb->sk->sk_family;
4052 else
4053 goto out;
4054
4055 if (sock && family == PF_UNIX)
4056 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
4057 else if (skb)
4058 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4059
4060 out:
4061 *secid = peer_secid;
4062 if (peer_secid == SECSID_NULL)
4063 return -EINVAL;
4064 return 0;
4065 }
4066
4067 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4068 {
4069 return sk_alloc_security(sk, family, priority);
4070 }
4071
4072 static void selinux_sk_free_security(struct sock *sk)
4073 {
4074 sk_free_security(sk);
4075 }
4076
4077 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4078 {
4079 struct sk_security_struct *ssec = sk->sk_security;
4080 struct sk_security_struct *newssec = newsk->sk_security;
4081
4082 newssec->sid = ssec->sid;
4083 newssec->peer_sid = ssec->peer_sid;
4084 newssec->sclass = ssec->sclass;
4085
4086 selinux_netlbl_sk_security_clone(ssec, newssec);
4087 }
4088
4089 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4090 {
4091 if (!sk)
4092 *secid = SECINITSID_ANY_SOCKET;
4093 else {
4094 struct sk_security_struct *sksec = sk->sk_security;
4095
4096 *secid = sksec->sid;
4097 }
4098 }
4099
4100 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
4101 {
4102 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4103 struct sk_security_struct *sksec = sk->sk_security;
4104
4105 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4106 sk->sk_family == PF_UNIX)
4107 isec->sid = sksec->sid;
4108 sksec->sclass = isec->sclass;
4109
4110 selinux_netlbl_sock_graft(sk, parent);
4111 }
4112
4113 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4114 struct request_sock *req)
4115 {
4116 struct sk_security_struct *sksec = sk->sk_security;
4117 int err;
4118 u32 newsid;
4119 u32 peersid;
4120
4121 err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid);
4122 if (err)
4123 return err;
4124 if (peersid == SECSID_NULL) {
4125 req->secid = sksec->sid;
4126 req->peer_secid = SECSID_NULL;
4127 return 0;
4128 }
4129
4130 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4131 if (err)
4132 return err;
4133
4134 req->secid = newsid;
4135 req->peer_secid = peersid;
4136 return 0;
4137 }
4138
4139 static void selinux_inet_csk_clone(struct sock *newsk,
4140 const struct request_sock *req)
4141 {
4142 struct sk_security_struct *newsksec = newsk->sk_security;
4143
4144 newsksec->sid = req->secid;
4145 newsksec->peer_sid = req->peer_secid;
4146 /* NOTE: Ideally, we should also get the isec->sid for the
4147 new socket in sync, but we don't have the isec available yet.
4148 So we will wait until sock_graft to do it, by which
4149 time it will have been created and available. */
4150
4151 /* We don't need to take any sort of lock here as we are the only
4152 * thread with access to newsksec */
4153 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4154 }
4155
4156 static void selinux_inet_conn_established(struct sock *sk,
4157 struct sk_buff *skb)
4158 {
4159 struct sk_security_struct *sksec = sk->sk_security;
4160
4161 selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid);
4162 }
4163
4164 static void selinux_req_classify_flow(const struct request_sock *req,
4165 struct flowi *fl)
4166 {
4167 fl->secid = req->secid;
4168 }
4169
4170 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4171 {
4172 int err = 0;
4173 u32 perm;
4174 struct nlmsghdr *nlh;
4175 struct socket *sock = sk->sk_socket;
4176 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4177
4178 if (skb->len < NLMSG_SPACE(0)) {
4179 err = -EINVAL;
4180 goto out;
4181 }
4182 nlh = nlmsg_hdr(skb);
4183
4184 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4185 if (err) {
4186 if (err == -EINVAL) {
4187 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4188 "SELinux: unrecognized netlink message"
4189 " type=%hu for sclass=%hu\n",
4190 nlh->nlmsg_type, isec->sclass);
4191 if (!selinux_enforcing)
4192 err = 0;
4193 }
4194
4195 /* Ignore */
4196 if (err == -ENOENT)
4197 err = 0;
4198 goto out;
4199 }
4200
4201 err = socket_has_perm(current, sock, perm);
4202 out:
4203 return err;
4204 }
4205
4206 #ifdef CONFIG_NETFILTER
4207
4208 static int selinux_ip_postroute_last_compat(struct sock *sk,
4209 struct net_device *dev,
4210 struct avc_audit_data *ad,
4211 u16 family,
4212 char *addrp)
4213 {
4214 int err = 0;
4215 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
4216 struct socket *sock;
4217 struct inode *inode;
4218 struct inode_security_struct *isec;
4219
4220 sock = sk->sk_socket;
4221 if (!sock)
4222 goto out;
4223
4224 inode = SOCK_INODE(sock);
4225 if (!inode)
4226 goto out;
4227
4228 isec = inode->i_security;
4229
4230 err = sel_netif_sid(dev->ifindex, &if_sid);
4231 if (err)
4232 goto out;
4233
4234 switch (isec->sclass) {
4235 case SECCLASS_UDP_SOCKET:
4236 netif_perm = NETIF__UDP_SEND;
4237 node_perm = NODE__UDP_SEND;
4238 send_perm = UDP_SOCKET__SEND_MSG;
4239 break;
4240
4241 case SECCLASS_TCP_SOCKET:
4242 netif_perm = NETIF__TCP_SEND;
4243 node_perm = NODE__TCP_SEND;
4244 send_perm = TCP_SOCKET__SEND_MSG;
4245 break;
4246
4247 case SECCLASS_DCCP_SOCKET:
4248 netif_perm = NETIF__DCCP_SEND;
4249 node_perm = NODE__DCCP_SEND;
4250 send_perm = DCCP_SOCKET__SEND_MSG;
4251 break;
4252
4253 default:
4254 netif_perm = NETIF__RAWIP_SEND;
4255 node_perm = NODE__RAWIP_SEND;
4256 break;
4257 }
4258
4259 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4260 if (err)
4261 goto out;
4262
4263 err = sel_netnode_sid(addrp, family, &node_sid);
4264 if (err)
4265 goto out;
4266
4267 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
4268 if (err)
4269 goto out;
4270
4271 if (send_perm) {
4272 u32 port_sid;
4273
4274 err = security_port_sid(sk->sk_family,
4275 sk->sk_type,
4276 sk->sk_protocol,
4277 ntohs(ad->u.net.dport),
4278 &port_sid);
4279 if (err)
4280 goto out;
4281
4282 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
4283 send_perm, ad);
4284 }
4285 out:
4286 return err;
4287 }
4288
4289 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
4290 struct sk_buff *skb,
4291 const struct net_device *in,
4292 const struct net_device *out,
4293 int (*okfn)(struct sk_buff *),
4294 u16 family)
4295 {
4296 char *addrp;
4297 int err = 0;
4298 struct sock *sk;
4299 struct avc_audit_data ad;
4300 struct net_device *dev = (struct net_device *)out;
4301 struct sk_security_struct *sksec;
4302 u8 proto;
4303
4304 sk = skb->sk;
4305 if (!sk)
4306 goto out;
4307
4308 sksec = sk->sk_security;
4309
4310 AVC_AUDIT_DATA_INIT(&ad, NET);
4311 ad.u.net.netif = dev->ifindex;
4312 ad.u.net.family = family;
4313
4314 err = selinux_parse_skb(skb, &ad, &addrp, 0, &proto);
4315 if (err)
4316 goto out;
4317
4318 if (selinux_compat_net)
4319 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
4320 family, addrp);
4321 else
4322 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
4323 PACKET__SEND, &ad);
4324
4325 if (err)
4326 goto out;
4327
4328 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
4329 out:
4330 return err ? NF_DROP : NF_ACCEPT;
4331 }
4332
4333 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
4334 struct sk_buff *skb,
4335 const struct net_device *in,
4336 const struct net_device *out,
4337 int (*okfn)(struct sk_buff *))
4338 {
4339 return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET);
4340 }
4341
4342 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4343
4344 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
4345 struct sk_buff *skb,
4346 const struct net_device *in,
4347 const struct net_device *out,
4348 int (*okfn)(struct sk_buff *))
4349 {
4350 return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET6);
4351 }
4352
4353 #endif /* IPV6 */
4354
4355 #endif /* CONFIG_NETFILTER */
4356
4357 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4358 {
4359 int err;
4360
4361 err = secondary_ops->netlink_send(sk, skb);
4362 if (err)
4363 return err;
4364
4365 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4366 err = selinux_nlmsg_perm(sk, skb);
4367
4368 return err;
4369 }
4370
4371 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4372 {
4373 int err;
4374 struct avc_audit_data ad;
4375
4376 err = secondary_ops->netlink_recv(skb, capability);
4377 if (err)
4378 return err;
4379
4380 AVC_AUDIT_DATA_INIT(&ad, CAP);
4381 ad.u.cap = capability;
4382
4383 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4384 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4385 }
4386
4387 static int ipc_alloc_security(struct task_struct *task,
4388 struct kern_ipc_perm *perm,
4389 u16 sclass)
4390 {
4391 struct task_security_struct *tsec = task->security;
4392 struct ipc_security_struct *isec;
4393
4394 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4395 if (!isec)
4396 return -ENOMEM;
4397
4398 isec->sclass = sclass;
4399 isec->ipc_perm = perm;
4400 isec->sid = tsec->sid;
4401 perm->security = isec;
4402
4403 return 0;
4404 }
4405
4406 static void ipc_free_security(struct kern_ipc_perm *perm)
4407 {
4408 struct ipc_security_struct *isec = perm->security;
4409 perm->security = NULL;
4410 kfree(isec);
4411 }
4412
4413 static int msg_msg_alloc_security(struct msg_msg *msg)
4414 {
4415 struct msg_security_struct *msec;
4416
4417 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4418 if (!msec)
4419 return -ENOMEM;
4420
4421 msec->msg = msg;
4422 msec->sid = SECINITSID_UNLABELED;
4423 msg->security = msec;
4424
4425 return 0;
4426 }
4427
4428 static void msg_msg_free_security(struct msg_msg *msg)
4429 {
4430 struct msg_security_struct *msec = msg->security;
4431
4432 msg->security = NULL;
4433 kfree(msec);
4434 }
4435
4436 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4437 u32 perms)
4438 {
4439 struct task_security_struct *tsec;
4440 struct ipc_security_struct *isec;
4441 struct avc_audit_data ad;
4442
4443 tsec = current->security;
4444 isec = ipc_perms->security;
4445
4446 AVC_AUDIT_DATA_INIT(&ad, IPC);
4447 ad.u.ipc_id = ipc_perms->key;
4448
4449 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4450 }
4451
4452 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4453 {
4454 return msg_msg_alloc_security(msg);
4455 }
4456
4457 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4458 {
4459 msg_msg_free_security(msg);
4460 }
4461
4462 /* message queue security operations */
4463 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4464 {
4465 struct task_security_struct *tsec;
4466 struct ipc_security_struct *isec;
4467 struct avc_audit_data ad;
4468 int rc;
4469
4470 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4471 if (rc)
4472 return rc;
4473
4474 tsec = current->security;
4475 isec = msq->q_perm.security;
4476
4477 AVC_AUDIT_DATA_INIT(&ad, IPC);
4478 ad.u.ipc_id = msq->q_perm.key;
4479
4480 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4481 MSGQ__CREATE, &ad);
4482 if (rc) {
4483 ipc_free_security(&msq->q_perm);
4484 return rc;
4485 }
4486 return 0;
4487 }
4488
4489 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4490 {
4491 ipc_free_security(&msq->q_perm);
4492 }
4493
4494 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4495 {
4496 struct task_security_struct *tsec;
4497 struct ipc_security_struct *isec;
4498 struct avc_audit_data ad;
4499
4500 tsec = current->security;
4501 isec = msq->q_perm.security;
4502
4503 AVC_AUDIT_DATA_INIT(&ad, IPC);
4504 ad.u.ipc_id = msq->q_perm.key;
4505
4506 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4507 MSGQ__ASSOCIATE, &ad);
4508 }
4509
4510 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4511 {
4512 int err;
4513 int perms;
4514
4515 switch(cmd) {
4516 case IPC_INFO:
4517 case MSG_INFO:
4518 /* No specific object, just general system-wide information. */
4519 return task_has_system(current, SYSTEM__IPC_INFO);
4520 case IPC_STAT:
4521 case MSG_STAT:
4522 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4523 break;
4524 case IPC_SET:
4525 perms = MSGQ__SETATTR;
4526 break;
4527 case IPC_RMID:
4528 perms = MSGQ__DESTROY;
4529 break;
4530 default:
4531 return 0;
4532 }
4533
4534 err = ipc_has_perm(&msq->q_perm, perms);
4535 return err;
4536 }
4537
4538 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4539 {
4540 struct task_security_struct *tsec;
4541 struct ipc_security_struct *isec;
4542 struct msg_security_struct *msec;
4543 struct avc_audit_data ad;
4544 int rc;
4545
4546 tsec = current->security;
4547 isec = msq->q_perm.security;
4548 msec = msg->security;
4549
4550 /*
4551 * First time through, need to assign label to the message
4552 */
4553 if (msec->sid == SECINITSID_UNLABELED) {
4554 /*
4555 * Compute new sid based on current process and
4556 * message queue this message will be stored in
4557 */
4558 rc = security_transition_sid(tsec->sid,
4559 isec->sid,
4560 SECCLASS_MSG,
4561 &msec->sid);
4562 if (rc)
4563 return rc;
4564 }
4565
4566 AVC_AUDIT_DATA_INIT(&ad, IPC);
4567 ad.u.ipc_id = msq->q_perm.key;
4568
4569 /* Can this process write to the queue? */
4570 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4571 MSGQ__WRITE, &ad);
4572 if (!rc)
4573 /* Can this process send the message */
4574 rc = avc_has_perm(tsec->sid, msec->sid,
4575 SECCLASS_MSG, MSG__SEND, &ad);
4576 if (!rc)
4577 /* Can the message be put in the queue? */
4578 rc = avc_has_perm(msec->sid, isec->sid,
4579 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4580
4581 return rc;
4582 }
4583
4584 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4585 struct task_struct *target,
4586 long type, int mode)
4587 {
4588 struct task_security_struct *tsec;
4589 struct ipc_security_struct *isec;
4590 struct msg_security_struct *msec;
4591 struct avc_audit_data ad;
4592 int rc;
4593
4594 tsec = target->security;
4595 isec = msq->q_perm.security;
4596 msec = msg->security;
4597
4598 AVC_AUDIT_DATA_INIT(&ad, IPC);
4599 ad.u.ipc_id = msq->q_perm.key;
4600
4601 rc = avc_has_perm(tsec->sid, isec->sid,
4602 SECCLASS_MSGQ, MSGQ__READ, &ad);
4603 if (!rc)
4604 rc = avc_has_perm(tsec->sid, msec->sid,
4605 SECCLASS_MSG, MSG__RECEIVE, &ad);
4606 return rc;
4607 }
4608
4609 /* Shared Memory security operations */
4610 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4611 {
4612 struct task_security_struct *tsec;
4613 struct ipc_security_struct *isec;
4614 struct avc_audit_data ad;
4615 int rc;
4616
4617 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4618 if (rc)
4619 return rc;
4620
4621 tsec = current->security;
4622 isec = shp->shm_perm.security;
4623
4624 AVC_AUDIT_DATA_INIT(&ad, IPC);
4625 ad.u.ipc_id = shp->shm_perm.key;
4626
4627 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4628 SHM__CREATE, &ad);
4629 if (rc) {
4630 ipc_free_security(&shp->shm_perm);
4631 return rc;
4632 }
4633 return 0;
4634 }
4635
4636 static void selinux_shm_free_security(struct shmid_kernel *shp)
4637 {
4638 ipc_free_security(&shp->shm_perm);
4639 }
4640
4641 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4642 {
4643 struct task_security_struct *tsec;
4644 struct ipc_security_struct *isec;
4645 struct avc_audit_data ad;
4646
4647 tsec = current->security;
4648 isec = shp->shm_perm.security;
4649
4650 AVC_AUDIT_DATA_INIT(&ad, IPC);
4651 ad.u.ipc_id = shp->shm_perm.key;
4652
4653 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4654 SHM__ASSOCIATE, &ad);
4655 }
4656
4657 /* Note, at this point, shp is locked down */
4658 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4659 {
4660 int perms;
4661 int err;
4662
4663 switch(cmd) {
4664 case IPC_INFO:
4665 case SHM_INFO:
4666 /* No specific object, just general system-wide information. */
4667 return task_has_system(current, SYSTEM__IPC_INFO);
4668 case IPC_STAT:
4669 case SHM_STAT:
4670 perms = SHM__GETATTR | SHM__ASSOCIATE;
4671 break;
4672 case IPC_SET:
4673 perms = SHM__SETATTR;
4674 break;
4675 case SHM_LOCK:
4676 case SHM_UNLOCK:
4677 perms = SHM__LOCK;
4678 break;
4679 case IPC_RMID:
4680 perms = SHM__DESTROY;
4681 break;
4682 default:
4683 return 0;
4684 }
4685
4686 err = ipc_has_perm(&shp->shm_perm, perms);
4687 return err;
4688 }
4689
4690 static int selinux_shm_shmat(struct shmid_kernel *shp,
4691 char __user *shmaddr, int shmflg)
4692 {
4693 u32 perms;
4694 int rc;
4695
4696 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4697 if (rc)
4698 return rc;
4699
4700 if (shmflg & SHM_RDONLY)
4701 perms = SHM__READ;
4702 else
4703 perms = SHM__READ | SHM__WRITE;
4704
4705 return ipc_has_perm(&shp->shm_perm, perms);
4706 }
4707
4708 /* Semaphore security operations */
4709 static int selinux_sem_alloc_security(struct sem_array *sma)
4710 {
4711 struct task_security_struct *tsec;
4712 struct ipc_security_struct *isec;
4713 struct avc_audit_data ad;
4714 int rc;
4715
4716 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4717 if (rc)
4718 return rc;
4719
4720 tsec = current->security;
4721 isec = sma->sem_perm.security;
4722
4723 AVC_AUDIT_DATA_INIT(&ad, IPC);
4724 ad.u.ipc_id = sma->sem_perm.key;
4725
4726 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4727 SEM__CREATE, &ad);
4728 if (rc) {
4729 ipc_free_security(&sma->sem_perm);
4730 return rc;
4731 }
4732 return 0;
4733 }
4734
4735 static void selinux_sem_free_security(struct sem_array *sma)
4736 {
4737 ipc_free_security(&sma->sem_perm);
4738 }
4739
4740 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4741 {
4742 struct task_security_struct *tsec;
4743 struct ipc_security_struct *isec;
4744 struct avc_audit_data ad;
4745
4746 tsec = current->security;
4747 isec = sma->sem_perm.security;
4748
4749 AVC_AUDIT_DATA_INIT(&ad, IPC);
4750 ad.u.ipc_id = sma->sem_perm.key;
4751
4752 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4753 SEM__ASSOCIATE, &ad);
4754 }
4755
4756 /* Note, at this point, sma is locked down */
4757 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4758 {
4759 int err;
4760 u32 perms;
4761
4762 switch(cmd) {
4763 case IPC_INFO:
4764 case SEM_INFO:
4765 /* No specific object, just general system-wide information. */
4766 return task_has_system(current, SYSTEM__IPC_INFO);
4767 case GETPID:
4768 case GETNCNT:
4769 case GETZCNT:
4770 perms = SEM__GETATTR;
4771 break;
4772 case GETVAL:
4773 case GETALL:
4774 perms = SEM__READ;
4775 break;
4776 case SETVAL:
4777 case SETALL:
4778 perms = SEM__WRITE;
4779 break;
4780 case IPC_RMID:
4781 perms = SEM__DESTROY;
4782 break;
4783 case IPC_SET:
4784 perms = SEM__SETATTR;
4785 break;
4786 case IPC_STAT:
4787 case SEM_STAT:
4788 perms = SEM__GETATTR | SEM__ASSOCIATE;
4789 break;
4790 default:
4791 return 0;
4792 }
4793
4794 err = ipc_has_perm(&sma->sem_perm, perms);
4795 return err;
4796 }
4797
4798 static int selinux_sem_semop(struct sem_array *sma,
4799 struct sembuf *sops, unsigned nsops, int alter)
4800 {
4801 u32 perms;
4802
4803 if (alter)
4804 perms = SEM__READ | SEM__WRITE;
4805 else
4806 perms = SEM__READ;
4807
4808 return ipc_has_perm(&sma->sem_perm, perms);
4809 }
4810
4811 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4812 {
4813 u32 av = 0;
4814
4815 av = 0;
4816 if (flag & S_IRUGO)
4817 av |= IPC__UNIX_READ;
4818 if (flag & S_IWUGO)
4819 av |= IPC__UNIX_WRITE;
4820
4821 if (av == 0)
4822 return 0;
4823
4824 return ipc_has_perm(ipcp, av);
4825 }
4826
4827 /* module stacking operations */
4828 static int selinux_register_security (const char *name, struct security_operations *ops)
4829 {
4830 if (secondary_ops != original_ops) {
4831 printk(KERN_ERR "%s: There is already a secondary security "
4832 "module registered.\n", __FUNCTION__);
4833 return -EINVAL;
4834 }
4835
4836 secondary_ops = ops;
4837
4838 printk(KERN_INFO "%s: Registering secondary module %s\n",
4839 __FUNCTION__,
4840 name);
4841
4842 return 0;
4843 }
4844
4845 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4846 {
4847 if (inode)
4848 inode_doinit_with_dentry(inode, dentry);
4849 }
4850
4851 static int selinux_getprocattr(struct task_struct *p,
4852 char *name, char **value)
4853 {
4854 struct task_security_struct *tsec;
4855 u32 sid;
4856 int error;
4857 unsigned len;
4858
4859 if (current != p) {
4860 error = task_has_perm(current, p, PROCESS__GETATTR);
4861 if (error)
4862 return error;
4863 }
4864
4865 tsec = p->security;
4866
4867 if (!strcmp(name, "current"))
4868 sid = tsec->sid;
4869 else if (!strcmp(name, "prev"))
4870 sid = tsec->osid;
4871 else if (!strcmp(name, "exec"))
4872 sid = tsec->exec_sid;
4873 else if (!strcmp(name, "fscreate"))
4874 sid = tsec->create_sid;
4875 else if (!strcmp(name, "keycreate"))
4876 sid = tsec->keycreate_sid;
4877 else if (!strcmp(name, "sockcreate"))
4878 sid = tsec->sockcreate_sid;
4879 else
4880 return -EINVAL;
4881
4882 if (!sid)
4883 return 0;
4884
4885 error = security_sid_to_context(sid, value, &len);
4886 if (error)
4887 return error;
4888 return len;
4889 }
4890
4891 static int selinux_setprocattr(struct task_struct *p,
4892 char *name, void *value, size_t size)
4893 {
4894 struct task_security_struct *tsec;
4895 u32 sid = 0;
4896 int error;
4897 char *str = value;
4898
4899 if (current != p) {
4900 /* SELinux only allows a process to change its own
4901 security attributes. */
4902 return -EACCES;
4903 }
4904
4905 /*
4906 * Basic control over ability to set these attributes at all.
4907 * current == p, but we'll pass them separately in case the
4908 * above restriction is ever removed.
4909 */
4910 if (!strcmp(name, "exec"))
4911 error = task_has_perm(current, p, PROCESS__SETEXEC);
4912 else if (!strcmp(name, "fscreate"))
4913 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4914 else if (!strcmp(name, "keycreate"))
4915 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4916 else if (!strcmp(name, "sockcreate"))
4917 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4918 else if (!strcmp(name, "current"))
4919 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4920 else
4921 error = -EINVAL;
4922 if (error)
4923 return error;
4924
4925 /* Obtain a SID for the context, if one was specified. */
4926 if (size && str[1] && str[1] != '\n') {
4927 if (str[size-1] == '\n') {
4928 str[size-1] = 0;
4929 size--;
4930 }
4931 error = security_context_to_sid(value, size, &sid);
4932 if (error)
4933 return error;
4934 }
4935
4936 /* Permission checking based on the specified context is
4937 performed during the actual operation (execve,
4938 open/mkdir/...), when we know the full context of the
4939 operation. See selinux_bprm_set_security for the execve
4940 checks and may_create for the file creation checks. The
4941 operation will then fail if the context is not permitted. */
4942 tsec = p->security;
4943 if (!strcmp(name, "exec"))
4944 tsec->exec_sid = sid;
4945 else if (!strcmp(name, "fscreate"))
4946 tsec->create_sid = sid;
4947 else if (!strcmp(name, "keycreate")) {
4948 error = may_create_key(sid, p);
4949 if (error)
4950 return error;
4951 tsec->keycreate_sid = sid;
4952 } else if (!strcmp(name, "sockcreate"))
4953 tsec->sockcreate_sid = sid;
4954 else if (!strcmp(name, "current")) {
4955 struct av_decision avd;
4956
4957 if (sid == 0)
4958 return -EINVAL;
4959
4960 /* Only allow single threaded processes to change context */
4961 if (atomic_read(&p->mm->mm_users) != 1) {
4962 struct task_struct *g, *t;
4963 struct mm_struct *mm = p->mm;
4964 read_lock(&tasklist_lock);
4965 do_each_thread(g, t)
4966 if (t->mm == mm && t != p) {
4967 read_unlock(&tasklist_lock);
4968 return -EPERM;
4969 }
4970 while_each_thread(g, t);
4971 read_unlock(&tasklist_lock);
4972 }
4973
4974 /* Check permissions for the transition. */
4975 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4976 PROCESS__DYNTRANSITION, NULL);
4977 if (error)
4978 return error;
4979
4980 /* Check for ptracing, and update the task SID if ok.
4981 Otherwise, leave SID unchanged and fail. */
4982 task_lock(p);
4983 if (p->ptrace & PT_PTRACED) {
4984 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4985 SECCLASS_PROCESS,
4986 PROCESS__PTRACE, 0, &avd);
4987 if (!error)
4988 tsec->sid = sid;
4989 task_unlock(p);
4990 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4991 PROCESS__PTRACE, &avd, error, NULL);
4992 if (error)
4993 return error;
4994 } else {
4995 tsec->sid = sid;
4996 task_unlock(p);
4997 }
4998 }
4999 else
5000 return -EINVAL;
5001
5002 return size;
5003 }
5004
5005 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5006 {
5007 return security_sid_to_context(secid, secdata, seclen);
5008 }
5009
5010 static int selinux_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
5011 {
5012 return security_context_to_sid(secdata, seclen, secid);
5013 }
5014
5015 static void selinux_release_secctx(char *secdata, u32 seclen)
5016 {
5017 kfree(secdata);
5018 }
5019
5020 #ifdef CONFIG_KEYS
5021
5022 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5023 unsigned long flags)
5024 {
5025 struct task_security_struct *tsec = tsk->security;
5026 struct key_security_struct *ksec;
5027
5028 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5029 if (!ksec)
5030 return -ENOMEM;
5031
5032 ksec->obj = k;
5033 if (tsec->keycreate_sid)
5034 ksec->sid = tsec->keycreate_sid;
5035 else
5036 ksec->sid = tsec->sid;
5037 k->security = ksec;
5038
5039 return 0;
5040 }
5041
5042 static void selinux_key_free(struct key *k)
5043 {
5044 struct key_security_struct *ksec = k->security;
5045
5046 k->security = NULL;
5047 kfree(ksec);
5048 }
5049
5050 static int selinux_key_permission(key_ref_t key_ref,
5051 struct task_struct *ctx,
5052 key_perm_t perm)
5053 {
5054 struct key *key;
5055 struct task_security_struct *tsec;
5056 struct key_security_struct *ksec;
5057
5058 key = key_ref_to_ptr(key_ref);
5059
5060 tsec = ctx->security;
5061 ksec = key->security;
5062
5063 /* if no specific permissions are requested, we skip the
5064 permission check. No serious, additional covert channels
5065 appear to be created. */
5066 if (perm == 0)
5067 return 0;
5068
5069 return avc_has_perm(tsec->sid, ksec->sid,
5070 SECCLASS_KEY, perm, NULL);
5071 }
5072
5073 #endif
5074
5075 static struct security_operations selinux_ops = {
5076 .ptrace = selinux_ptrace,
5077 .capget = selinux_capget,
5078 .capset_check = selinux_capset_check,
5079 .capset_set = selinux_capset_set,
5080 .sysctl = selinux_sysctl,
5081 .capable = selinux_capable,
5082 .quotactl = selinux_quotactl,
5083 .quota_on = selinux_quota_on,
5084 .syslog = selinux_syslog,
5085 .vm_enough_memory = selinux_vm_enough_memory,
5086
5087 .netlink_send = selinux_netlink_send,
5088 .netlink_recv = selinux_netlink_recv,
5089
5090 .bprm_alloc_security = selinux_bprm_alloc_security,
5091 .bprm_free_security = selinux_bprm_free_security,
5092 .bprm_apply_creds = selinux_bprm_apply_creds,
5093 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
5094 .bprm_set_security = selinux_bprm_set_security,
5095 .bprm_check_security = selinux_bprm_check_security,
5096 .bprm_secureexec = selinux_bprm_secureexec,
5097
5098 .sb_alloc_security = selinux_sb_alloc_security,
5099 .sb_free_security = selinux_sb_free_security,
5100 .sb_copy_data = selinux_sb_copy_data,
5101 .sb_kern_mount = selinux_sb_kern_mount,
5102 .sb_statfs = selinux_sb_statfs,
5103 .sb_mount = selinux_mount,
5104 .sb_umount = selinux_umount,
5105 .sb_get_mnt_opts = selinux_get_mnt_opts,
5106 .sb_set_mnt_opts = selinux_set_mnt_opts,
5107 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5108
5109 .inode_alloc_security = selinux_inode_alloc_security,
5110 .inode_free_security = selinux_inode_free_security,
5111 .inode_init_security = selinux_inode_init_security,
5112 .inode_create = selinux_inode_create,
5113 .inode_link = selinux_inode_link,
5114 .inode_unlink = selinux_inode_unlink,
5115 .inode_symlink = selinux_inode_symlink,
5116 .inode_mkdir = selinux_inode_mkdir,
5117 .inode_rmdir = selinux_inode_rmdir,
5118 .inode_mknod = selinux_inode_mknod,
5119 .inode_rename = selinux_inode_rename,
5120 .inode_readlink = selinux_inode_readlink,
5121 .inode_follow_link = selinux_inode_follow_link,
5122 .inode_permission = selinux_inode_permission,
5123 .inode_setattr = selinux_inode_setattr,
5124 .inode_getattr = selinux_inode_getattr,
5125 .inode_setxattr = selinux_inode_setxattr,
5126 .inode_post_setxattr = selinux_inode_post_setxattr,
5127 .inode_getxattr = selinux_inode_getxattr,
5128 .inode_listxattr = selinux_inode_listxattr,
5129 .inode_removexattr = selinux_inode_removexattr,
5130 .inode_getsecurity = selinux_inode_getsecurity,
5131 .inode_setsecurity = selinux_inode_setsecurity,
5132 .inode_listsecurity = selinux_inode_listsecurity,
5133 .inode_need_killpriv = selinux_inode_need_killpriv,
5134 .inode_killpriv = selinux_inode_killpriv,
5135
5136 .file_permission = selinux_file_permission,
5137 .file_alloc_security = selinux_file_alloc_security,
5138 .file_free_security = selinux_file_free_security,
5139 .file_ioctl = selinux_file_ioctl,
5140 .file_mmap = selinux_file_mmap,
5141 .file_mprotect = selinux_file_mprotect,
5142 .file_lock = selinux_file_lock,
5143 .file_fcntl = selinux_file_fcntl,
5144 .file_set_fowner = selinux_file_set_fowner,
5145 .file_send_sigiotask = selinux_file_send_sigiotask,
5146 .file_receive = selinux_file_receive,
5147
5148 .dentry_open = selinux_dentry_open,
5149
5150 .task_create = selinux_task_create,
5151 .task_alloc_security = selinux_task_alloc_security,
5152 .task_free_security = selinux_task_free_security,
5153 .task_setuid = selinux_task_setuid,
5154 .task_post_setuid = selinux_task_post_setuid,
5155 .task_setgid = selinux_task_setgid,
5156 .task_setpgid = selinux_task_setpgid,
5157 .task_getpgid = selinux_task_getpgid,
5158 .task_getsid = selinux_task_getsid,
5159 .task_getsecid = selinux_task_getsecid,
5160 .task_setgroups = selinux_task_setgroups,
5161 .task_setnice = selinux_task_setnice,
5162 .task_setioprio = selinux_task_setioprio,
5163 .task_getioprio = selinux_task_getioprio,
5164 .task_setrlimit = selinux_task_setrlimit,
5165 .task_setscheduler = selinux_task_setscheduler,
5166 .task_getscheduler = selinux_task_getscheduler,
5167 .task_movememory = selinux_task_movememory,
5168 .task_kill = selinux_task_kill,
5169 .task_wait = selinux_task_wait,
5170 .task_prctl = selinux_task_prctl,
5171 .task_reparent_to_init = selinux_task_reparent_to_init,
5172 .task_to_inode = selinux_task_to_inode,
5173
5174 .ipc_permission = selinux_ipc_permission,
5175
5176 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5177 .msg_msg_free_security = selinux_msg_msg_free_security,
5178
5179 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5180 .msg_queue_free_security = selinux_msg_queue_free_security,
5181 .msg_queue_associate = selinux_msg_queue_associate,
5182 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5183 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5184 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5185
5186 .shm_alloc_security = selinux_shm_alloc_security,
5187 .shm_free_security = selinux_shm_free_security,
5188 .shm_associate = selinux_shm_associate,
5189 .shm_shmctl = selinux_shm_shmctl,
5190 .shm_shmat = selinux_shm_shmat,
5191
5192 .sem_alloc_security = selinux_sem_alloc_security,
5193 .sem_free_security = selinux_sem_free_security,
5194 .sem_associate = selinux_sem_associate,
5195 .sem_semctl = selinux_sem_semctl,
5196 .sem_semop = selinux_sem_semop,
5197
5198 .register_security = selinux_register_security,
5199
5200 .d_instantiate = selinux_d_instantiate,
5201
5202 .getprocattr = selinux_getprocattr,
5203 .setprocattr = selinux_setprocattr,
5204
5205 .secid_to_secctx = selinux_secid_to_secctx,
5206 .secctx_to_secid = selinux_secctx_to_secid,
5207 .release_secctx = selinux_release_secctx,
5208
5209 .unix_stream_connect = selinux_socket_unix_stream_connect,
5210 .unix_may_send = selinux_socket_unix_may_send,
5211
5212 .socket_create = selinux_socket_create,
5213 .socket_post_create = selinux_socket_post_create,
5214 .socket_bind = selinux_socket_bind,
5215 .socket_connect = selinux_socket_connect,
5216 .socket_listen = selinux_socket_listen,
5217 .socket_accept = selinux_socket_accept,
5218 .socket_sendmsg = selinux_socket_sendmsg,
5219 .socket_recvmsg = selinux_socket_recvmsg,
5220 .socket_getsockname = selinux_socket_getsockname,
5221 .socket_getpeername = selinux_socket_getpeername,
5222 .socket_getsockopt = selinux_socket_getsockopt,
5223 .socket_setsockopt = selinux_socket_setsockopt,
5224 .socket_shutdown = selinux_socket_shutdown,
5225 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5226 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5227 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5228 .sk_alloc_security = selinux_sk_alloc_security,
5229 .sk_free_security = selinux_sk_free_security,
5230 .sk_clone_security = selinux_sk_clone_security,
5231 .sk_getsecid = selinux_sk_getsecid,
5232 .sock_graft = selinux_sock_graft,
5233 .inet_conn_request = selinux_inet_conn_request,
5234 .inet_csk_clone = selinux_inet_csk_clone,
5235 .inet_conn_established = selinux_inet_conn_established,
5236 .req_classify_flow = selinux_req_classify_flow,
5237
5238 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5239 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5240 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5241 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5242 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5243 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5244 .xfrm_state_free_security = selinux_xfrm_state_free,
5245 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5246 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5247 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5248 .xfrm_decode_session = selinux_xfrm_decode_session,
5249 #endif
5250
5251 #ifdef CONFIG_KEYS
5252 .key_alloc = selinux_key_alloc,
5253 .key_free = selinux_key_free,
5254 .key_permission = selinux_key_permission,
5255 #endif
5256 };
5257
5258 static __init int selinux_init(void)
5259 {
5260 struct task_security_struct *tsec;
5261
5262 if (!selinux_enabled) {
5263 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5264 return 0;
5265 }
5266
5267 printk(KERN_INFO "SELinux: Initializing.\n");
5268
5269 /* Set the security state for the initial task. */
5270 if (task_alloc_security(current))
5271 panic("SELinux: Failed to initialize initial task.\n");
5272 tsec = current->security;
5273 tsec->osid = tsec->sid = SECINITSID_KERNEL;
5274
5275 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5276 sizeof(struct inode_security_struct),
5277 0, SLAB_PANIC, NULL);
5278 avc_init();
5279
5280 original_ops = secondary_ops = security_ops;
5281 if (!secondary_ops)
5282 panic ("SELinux: No initial security operations\n");
5283 if (register_security (&selinux_ops))
5284 panic("SELinux: Unable to register with kernel.\n");
5285
5286 if (selinux_enforcing) {
5287 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5288 } else {
5289 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5290 }
5291
5292 #ifdef CONFIG_KEYS
5293 /* Add security information to initial keyrings */
5294 selinux_key_alloc(&root_user_keyring, current,
5295 KEY_ALLOC_NOT_IN_QUOTA);
5296 selinux_key_alloc(&root_session_keyring, current,
5297 KEY_ALLOC_NOT_IN_QUOTA);
5298 #endif
5299
5300 return 0;
5301 }
5302
5303 void selinux_complete_init(void)
5304 {
5305 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5306
5307 /* Set up any superblocks initialized prior to the policy load. */
5308 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5309 spin_lock(&sb_lock);
5310 spin_lock(&sb_security_lock);
5311 next_sb:
5312 if (!list_empty(&superblock_security_head)) {
5313 struct superblock_security_struct *sbsec =
5314 list_entry(superblock_security_head.next,
5315 struct superblock_security_struct,
5316 list);
5317 struct super_block *sb = sbsec->sb;
5318 sb->s_count++;
5319 spin_unlock(&sb_security_lock);
5320 spin_unlock(&sb_lock);
5321 down_read(&sb->s_umount);
5322 if (sb->s_root)
5323 superblock_doinit(sb, NULL);
5324 drop_super(sb);
5325 spin_lock(&sb_lock);
5326 spin_lock(&sb_security_lock);
5327 list_del_init(&sbsec->list);
5328 goto next_sb;
5329 }
5330 spin_unlock(&sb_security_lock);
5331 spin_unlock(&sb_lock);
5332 }
5333
5334 /* SELinux requires early initialization in order to label
5335 all processes and objects when they are created. */
5336 security_initcall(selinux_init);
5337
5338 #if defined(CONFIG_NETFILTER)
5339
5340 static struct nf_hook_ops selinux_ipv4_op = {
5341 .hook = selinux_ipv4_postroute_last,
5342 .owner = THIS_MODULE,
5343 .pf = PF_INET,
5344 .hooknum = NF_INET_POST_ROUTING,
5345 .priority = NF_IP_PRI_SELINUX_LAST,
5346 };
5347
5348 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5349
5350 static struct nf_hook_ops selinux_ipv6_op = {
5351 .hook = selinux_ipv6_postroute_last,
5352 .owner = THIS_MODULE,
5353 .pf = PF_INET6,
5354 .hooknum = NF_INET_POST_ROUTING,
5355 .priority = NF_IP6_PRI_SELINUX_LAST,
5356 };
5357
5358 #endif /* IPV6 */
5359
5360 static int __init selinux_nf_ip_init(void)
5361 {
5362 int err = 0;
5363
5364 if (!selinux_enabled)
5365 goto out;
5366
5367 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5368
5369 err = nf_register_hook(&selinux_ipv4_op);
5370 if (err)
5371 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
5372
5373 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5374
5375 err = nf_register_hook(&selinux_ipv6_op);
5376 if (err)
5377 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
5378
5379 #endif /* IPV6 */
5380
5381 out:
5382 return err;
5383 }
5384
5385 __initcall(selinux_nf_ip_init);
5386
5387 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5388 static void selinux_nf_ip_exit(void)
5389 {
5390 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5391
5392 nf_unregister_hook(&selinux_ipv4_op);
5393 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5394 nf_unregister_hook(&selinux_ipv6_op);
5395 #endif /* IPV6 */
5396 }
5397 #endif
5398
5399 #else /* CONFIG_NETFILTER */
5400
5401 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5402 #define selinux_nf_ip_exit()
5403 #endif
5404
5405 #endif /* CONFIG_NETFILTER */
5406
5407 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5408 int selinux_disable(void)
5409 {
5410 extern void exit_sel_fs(void);
5411 static int selinux_disabled = 0;
5412
5413 if (ss_initialized) {
5414 /* Not permitted after initial policy load. */
5415 return -EINVAL;
5416 }
5417
5418 if (selinux_disabled) {
5419 /* Only do this once. */
5420 return -EINVAL;
5421 }
5422
5423 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5424
5425 selinux_disabled = 1;
5426 selinux_enabled = 0;
5427
5428 /* Reset security_ops to the secondary module, dummy or capability. */
5429 security_ops = secondary_ops;
5430
5431 /* Unregister netfilter hooks. */
5432 selinux_nf_ip_exit();
5433
5434 /* Unregister selinuxfs. */
5435 exit_sel_fs();
5436
5437 return 0;
5438 }
5439 #endif
5440
5441