]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - security/selinux/hooks.c
Revert "selinux: consider filesystem subtype in policies"
[mirror_ubuntu-zesty-kernel.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h> /* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h> /* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h> /* for Unix socket types */
70 #include <net/af_unix.h> /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/security.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97
98 extern struct security_operations *security_ops;
99
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105
106 static int __init enforcing_setup(char *str)
107 {
108 unsigned long enforcing;
109 if (!strict_strtoul(str, 0, &enforcing))
110 selinux_enforcing = enforcing ? 1 : 0;
111 return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119 static int __init selinux_enabled_setup(char *str)
120 {
121 unsigned long enabled;
122 if (!strict_strtoul(str, 0, &enabled))
123 selinux_enabled = enabled ? 1 : 0;
124 return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130
131 static struct kmem_cache *sel_inode_cache;
132
133 /**
134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135 *
136 * Description:
137 * This function checks the SECMARK reference counter to see if any SECMARK
138 * targets are currently configured, if the reference counter is greater than
139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
140 * enabled, false (0) if SECMARK is disabled. If the always_check_network
141 * policy capability is enabled, SECMARK is always considered enabled.
142 *
143 */
144 static int selinux_secmark_enabled(void)
145 {
146 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
147 }
148
149 /**
150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
151 *
152 * Description:
153 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
154 * (1) if any are enabled or false (0) if neither are enabled. If the
155 * always_check_network policy capability is enabled, peer labeling
156 * is always considered enabled.
157 *
158 */
159 static int selinux_peerlbl_enabled(void)
160 {
161 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
162 }
163
164 /*
165 * initialise the security for the init task
166 */
167 static void cred_init_security(void)
168 {
169 struct cred *cred = (struct cred *) current->real_cred;
170 struct task_security_struct *tsec;
171
172 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
173 if (!tsec)
174 panic("SELinux: Failed to initialize initial task.\n");
175
176 tsec->osid = tsec->sid = SECINITSID_KERNEL;
177 cred->security = tsec;
178 }
179
180 /*
181 * get the security ID of a set of credentials
182 */
183 static inline u32 cred_sid(const struct cred *cred)
184 {
185 const struct task_security_struct *tsec;
186
187 tsec = cred->security;
188 return tsec->sid;
189 }
190
191 /*
192 * get the objective security ID of a task
193 */
194 static inline u32 task_sid(const struct task_struct *task)
195 {
196 u32 sid;
197
198 rcu_read_lock();
199 sid = cred_sid(__task_cred(task));
200 rcu_read_unlock();
201 return sid;
202 }
203
204 /*
205 * get the subjective security ID of the current task
206 */
207 static inline u32 current_sid(void)
208 {
209 const struct task_security_struct *tsec = current_security();
210
211 return tsec->sid;
212 }
213
214 /* Allocate and free functions for each kind of security blob. */
215
216 static int inode_alloc_security(struct inode *inode)
217 {
218 struct inode_security_struct *isec;
219 u32 sid = current_sid();
220
221 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
222 if (!isec)
223 return -ENOMEM;
224
225 mutex_init(&isec->lock);
226 INIT_LIST_HEAD(&isec->list);
227 isec->inode = inode;
228 isec->sid = SECINITSID_UNLABELED;
229 isec->sclass = SECCLASS_FILE;
230 isec->task_sid = sid;
231 inode->i_security = isec;
232
233 return 0;
234 }
235
236 static void inode_free_security(struct inode *inode)
237 {
238 struct inode_security_struct *isec = inode->i_security;
239 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
240
241 spin_lock(&sbsec->isec_lock);
242 if (!list_empty(&isec->list))
243 list_del_init(&isec->list);
244 spin_unlock(&sbsec->isec_lock);
245
246 inode->i_security = NULL;
247 kmem_cache_free(sel_inode_cache, isec);
248 }
249
250 static int file_alloc_security(struct file *file)
251 {
252 struct file_security_struct *fsec;
253 u32 sid = current_sid();
254
255 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
256 if (!fsec)
257 return -ENOMEM;
258
259 fsec->sid = sid;
260 fsec->fown_sid = sid;
261 file->f_security = fsec;
262
263 return 0;
264 }
265
266 static void file_free_security(struct file *file)
267 {
268 struct file_security_struct *fsec = file->f_security;
269 file->f_security = NULL;
270 kfree(fsec);
271 }
272
273 static int superblock_alloc_security(struct super_block *sb)
274 {
275 struct superblock_security_struct *sbsec;
276
277 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
278 if (!sbsec)
279 return -ENOMEM;
280
281 mutex_init(&sbsec->lock);
282 INIT_LIST_HEAD(&sbsec->isec_head);
283 spin_lock_init(&sbsec->isec_lock);
284 sbsec->sb = sb;
285 sbsec->sid = SECINITSID_UNLABELED;
286 sbsec->def_sid = SECINITSID_FILE;
287 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
288 sb->s_security = sbsec;
289
290 return 0;
291 }
292
293 static void superblock_free_security(struct super_block *sb)
294 {
295 struct superblock_security_struct *sbsec = sb->s_security;
296 sb->s_security = NULL;
297 kfree(sbsec);
298 }
299
300 /* The file system's label must be initialized prior to use. */
301
302 static const char *labeling_behaviors[7] = {
303 "uses xattr",
304 "uses transition SIDs",
305 "uses task SIDs",
306 "uses genfs_contexts",
307 "not configured for labeling",
308 "uses mountpoint labeling",
309 "uses native labeling",
310 };
311
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314 static inline int inode_doinit(struct inode *inode)
315 {
316 return inode_doinit_with_dentry(inode, NULL);
317 }
318
319 enum {
320 Opt_error = -1,
321 Opt_context = 1,
322 Opt_fscontext = 2,
323 Opt_defcontext = 3,
324 Opt_rootcontext = 4,
325 Opt_labelsupport = 5,
326 Opt_nextmntopt = 6,
327 };
328
329 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
330
331 static const match_table_t tokens = {
332 {Opt_context, CONTEXT_STR "%s"},
333 {Opt_fscontext, FSCONTEXT_STR "%s"},
334 {Opt_defcontext, DEFCONTEXT_STR "%s"},
335 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
336 {Opt_labelsupport, LABELSUPP_STR},
337 {Opt_error, NULL},
338 };
339
340 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
341
342 static int may_context_mount_sb_relabel(u32 sid,
343 struct superblock_security_struct *sbsec,
344 const struct cred *cred)
345 {
346 const struct task_security_struct *tsec = cred->security;
347 int rc;
348
349 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
350 FILESYSTEM__RELABELFROM, NULL);
351 if (rc)
352 return rc;
353
354 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
355 FILESYSTEM__RELABELTO, NULL);
356 return rc;
357 }
358
359 static int may_context_mount_inode_relabel(u32 sid,
360 struct superblock_security_struct *sbsec,
361 const struct cred *cred)
362 {
363 const struct task_security_struct *tsec = cred->security;
364 int rc;
365 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
366 FILESYSTEM__RELABELFROM, NULL);
367 if (rc)
368 return rc;
369
370 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
371 FILESYSTEM__ASSOCIATE, NULL);
372 return rc;
373 }
374
375 static int selinux_is_sblabel_mnt(struct super_block *sb)
376 {
377 struct superblock_security_struct *sbsec = sb->s_security;
378
379 if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
380 sbsec->behavior == SECURITY_FS_USE_TRANS ||
381 sbsec->behavior == SECURITY_FS_USE_TASK)
382 return 1;
383
384 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
385 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
386 return 1;
387
388 /*
389 * Special handling for rootfs. Is genfs but supports
390 * setting SELinux context on in-core inodes.
391 */
392 if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
393 return 1;
394
395 return 0;
396 }
397
398 static int sb_finish_set_opts(struct super_block *sb)
399 {
400 struct superblock_security_struct *sbsec = sb->s_security;
401 struct dentry *root = sb->s_root;
402 struct inode *root_inode = root->d_inode;
403 int rc = 0;
404
405 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
406 /* Make sure that the xattr handler exists and that no
407 error other than -ENODATA is returned by getxattr on
408 the root directory. -ENODATA is ok, as this may be
409 the first boot of the SELinux kernel before we have
410 assigned xattr values to the filesystem. */
411 if (!root_inode->i_op->getxattr) {
412 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
413 "xattr support\n", sb->s_id, sb->s_type->name);
414 rc = -EOPNOTSUPP;
415 goto out;
416 }
417 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
418 if (rc < 0 && rc != -ENODATA) {
419 if (rc == -EOPNOTSUPP)
420 printk(KERN_WARNING "SELinux: (dev %s, type "
421 "%s) has no security xattr handler\n",
422 sb->s_id, sb->s_type->name);
423 else
424 printk(KERN_WARNING "SELinux: (dev %s, type "
425 "%s) getxattr errno %d\n", sb->s_id,
426 sb->s_type->name, -rc);
427 goto out;
428 }
429 }
430
431 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
432 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
433 sb->s_id, sb->s_type->name);
434 else
435 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
436 sb->s_id, sb->s_type->name,
437 labeling_behaviors[sbsec->behavior-1]);
438
439 sbsec->flags |= SE_SBINITIALIZED;
440 if (selinux_is_sblabel_mnt(sb))
441 sbsec->flags |= SBLABEL_MNT;
442
443 /* Initialize the root inode. */
444 rc = inode_doinit_with_dentry(root_inode, root);
445
446 /* Initialize any other inodes associated with the superblock, e.g.
447 inodes created prior to initial policy load or inodes created
448 during get_sb by a pseudo filesystem that directly
449 populates itself. */
450 spin_lock(&sbsec->isec_lock);
451 next_inode:
452 if (!list_empty(&sbsec->isec_head)) {
453 struct inode_security_struct *isec =
454 list_entry(sbsec->isec_head.next,
455 struct inode_security_struct, list);
456 struct inode *inode = isec->inode;
457 spin_unlock(&sbsec->isec_lock);
458 inode = igrab(inode);
459 if (inode) {
460 if (!IS_PRIVATE(inode))
461 inode_doinit(inode);
462 iput(inode);
463 }
464 spin_lock(&sbsec->isec_lock);
465 list_del_init(&isec->list);
466 goto next_inode;
467 }
468 spin_unlock(&sbsec->isec_lock);
469 out:
470 return rc;
471 }
472
473 /*
474 * This function should allow an FS to ask what it's mount security
475 * options were so it can use those later for submounts, displaying
476 * mount options, or whatever.
477 */
478 static int selinux_get_mnt_opts(const struct super_block *sb,
479 struct security_mnt_opts *opts)
480 {
481 int rc = 0, i;
482 struct superblock_security_struct *sbsec = sb->s_security;
483 char *context = NULL;
484 u32 len;
485 char tmp;
486
487 security_init_mnt_opts(opts);
488
489 if (!(sbsec->flags & SE_SBINITIALIZED))
490 return -EINVAL;
491
492 if (!ss_initialized)
493 return -EINVAL;
494
495 /* make sure we always check enough bits to cover the mask */
496 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
497
498 tmp = sbsec->flags & SE_MNTMASK;
499 /* count the number of mount options for this sb */
500 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
501 if (tmp & 0x01)
502 opts->num_mnt_opts++;
503 tmp >>= 1;
504 }
505 /* Check if the Label support flag is set */
506 if (sbsec->flags & SBLABEL_MNT)
507 opts->num_mnt_opts++;
508
509 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
510 if (!opts->mnt_opts) {
511 rc = -ENOMEM;
512 goto out_free;
513 }
514
515 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
516 if (!opts->mnt_opts_flags) {
517 rc = -ENOMEM;
518 goto out_free;
519 }
520
521 i = 0;
522 if (sbsec->flags & FSCONTEXT_MNT) {
523 rc = security_sid_to_context(sbsec->sid, &context, &len);
524 if (rc)
525 goto out_free;
526 opts->mnt_opts[i] = context;
527 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
528 }
529 if (sbsec->flags & CONTEXT_MNT) {
530 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
531 if (rc)
532 goto out_free;
533 opts->mnt_opts[i] = context;
534 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
535 }
536 if (sbsec->flags & DEFCONTEXT_MNT) {
537 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
538 if (rc)
539 goto out_free;
540 opts->mnt_opts[i] = context;
541 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
542 }
543 if (sbsec->flags & ROOTCONTEXT_MNT) {
544 struct inode *root = sbsec->sb->s_root->d_inode;
545 struct inode_security_struct *isec = root->i_security;
546
547 rc = security_sid_to_context(isec->sid, &context, &len);
548 if (rc)
549 goto out_free;
550 opts->mnt_opts[i] = context;
551 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
552 }
553 if (sbsec->flags & SBLABEL_MNT) {
554 opts->mnt_opts[i] = NULL;
555 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
556 }
557
558 BUG_ON(i != opts->num_mnt_opts);
559
560 return 0;
561
562 out_free:
563 security_free_mnt_opts(opts);
564 return rc;
565 }
566
567 static int bad_option(struct superblock_security_struct *sbsec, char flag,
568 u32 old_sid, u32 new_sid)
569 {
570 char mnt_flags = sbsec->flags & SE_MNTMASK;
571
572 /* check if the old mount command had the same options */
573 if (sbsec->flags & SE_SBINITIALIZED)
574 if (!(sbsec->flags & flag) ||
575 (old_sid != new_sid))
576 return 1;
577
578 /* check if we were passed the same options twice,
579 * aka someone passed context=a,context=b
580 */
581 if (!(sbsec->flags & SE_SBINITIALIZED))
582 if (mnt_flags & flag)
583 return 1;
584 return 0;
585 }
586
587 /*
588 * Allow filesystems with binary mount data to explicitly set mount point
589 * labeling information.
590 */
591 static int selinux_set_mnt_opts(struct super_block *sb,
592 struct security_mnt_opts *opts,
593 unsigned long kern_flags,
594 unsigned long *set_kern_flags)
595 {
596 const struct cred *cred = current_cred();
597 int rc = 0, i;
598 struct superblock_security_struct *sbsec = sb->s_security;
599 const char *name = sb->s_type->name;
600 struct inode *inode = sbsec->sb->s_root->d_inode;
601 struct inode_security_struct *root_isec = inode->i_security;
602 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
603 u32 defcontext_sid = 0;
604 char **mount_options = opts->mnt_opts;
605 int *flags = opts->mnt_opts_flags;
606 int num_opts = opts->num_mnt_opts;
607
608 mutex_lock(&sbsec->lock);
609
610 if (!ss_initialized) {
611 if (!num_opts) {
612 /* Defer initialization until selinux_complete_init,
613 after the initial policy is loaded and the security
614 server is ready to handle calls. */
615 goto out;
616 }
617 rc = -EINVAL;
618 printk(KERN_WARNING "SELinux: Unable to set superblock options "
619 "before the security server is initialized\n");
620 goto out;
621 }
622 if (kern_flags && !set_kern_flags) {
623 /* Specifying internal flags without providing a place to
624 * place the results is not allowed */
625 rc = -EINVAL;
626 goto out;
627 }
628
629 /*
630 * Binary mount data FS will come through this function twice. Once
631 * from an explicit call and once from the generic calls from the vfs.
632 * Since the generic VFS calls will not contain any security mount data
633 * we need to skip the double mount verification.
634 *
635 * This does open a hole in which we will not notice if the first
636 * mount using this sb set explict options and a second mount using
637 * this sb does not set any security options. (The first options
638 * will be used for both mounts)
639 */
640 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
641 && (num_opts == 0))
642 goto out;
643
644 /*
645 * parse the mount options, check if they are valid sids.
646 * also check if someone is trying to mount the same sb more
647 * than once with different security options.
648 */
649 for (i = 0; i < num_opts; i++) {
650 u32 sid;
651
652 if (flags[i] == SBLABEL_MNT)
653 continue;
654 rc = security_context_to_sid(mount_options[i],
655 strlen(mount_options[i]), &sid);
656 if (rc) {
657 printk(KERN_WARNING "SELinux: security_context_to_sid"
658 "(%s) failed for (dev %s, type %s) errno=%d\n",
659 mount_options[i], sb->s_id, name, rc);
660 goto out;
661 }
662 switch (flags[i]) {
663 case FSCONTEXT_MNT:
664 fscontext_sid = sid;
665
666 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
667 fscontext_sid))
668 goto out_double_mount;
669
670 sbsec->flags |= FSCONTEXT_MNT;
671 break;
672 case CONTEXT_MNT:
673 context_sid = sid;
674
675 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
676 context_sid))
677 goto out_double_mount;
678
679 sbsec->flags |= CONTEXT_MNT;
680 break;
681 case ROOTCONTEXT_MNT:
682 rootcontext_sid = sid;
683
684 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
685 rootcontext_sid))
686 goto out_double_mount;
687
688 sbsec->flags |= ROOTCONTEXT_MNT;
689
690 break;
691 case DEFCONTEXT_MNT:
692 defcontext_sid = sid;
693
694 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
695 defcontext_sid))
696 goto out_double_mount;
697
698 sbsec->flags |= DEFCONTEXT_MNT;
699
700 break;
701 default:
702 rc = -EINVAL;
703 goto out;
704 }
705 }
706
707 if (sbsec->flags & SE_SBINITIALIZED) {
708 /* previously mounted with options, but not on this attempt? */
709 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
710 goto out_double_mount;
711 rc = 0;
712 goto out;
713 }
714
715 if (strcmp(sb->s_type->name, "proc") == 0)
716 sbsec->flags |= SE_SBPROC;
717
718 if (!sbsec->behavior) {
719 /*
720 * Determine the labeling behavior to use for this
721 * filesystem type.
722 */
723 rc = security_fs_use(sb);
724 if (rc) {
725 printk(KERN_WARNING
726 "%s: security_fs_use(%s) returned %d\n",
727 __func__, sb->s_type->name, rc);
728 goto out;
729 }
730 }
731 /* sets the context of the superblock for the fs being mounted. */
732 if (fscontext_sid) {
733 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
734 if (rc)
735 goto out;
736
737 sbsec->sid = fscontext_sid;
738 }
739
740 /*
741 * Switch to using mount point labeling behavior.
742 * sets the label used on all file below the mountpoint, and will set
743 * the superblock context if not already set.
744 */
745 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
746 sbsec->behavior = SECURITY_FS_USE_NATIVE;
747 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
748 }
749
750 if (context_sid) {
751 if (!fscontext_sid) {
752 rc = may_context_mount_sb_relabel(context_sid, sbsec,
753 cred);
754 if (rc)
755 goto out;
756 sbsec->sid = context_sid;
757 } else {
758 rc = may_context_mount_inode_relabel(context_sid, sbsec,
759 cred);
760 if (rc)
761 goto out;
762 }
763 if (!rootcontext_sid)
764 rootcontext_sid = context_sid;
765
766 sbsec->mntpoint_sid = context_sid;
767 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
768 }
769
770 if (rootcontext_sid) {
771 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
772 cred);
773 if (rc)
774 goto out;
775
776 root_isec->sid = rootcontext_sid;
777 root_isec->initialized = 1;
778 }
779
780 if (defcontext_sid) {
781 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
782 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
783 rc = -EINVAL;
784 printk(KERN_WARNING "SELinux: defcontext option is "
785 "invalid for this filesystem type\n");
786 goto out;
787 }
788
789 if (defcontext_sid != sbsec->def_sid) {
790 rc = may_context_mount_inode_relabel(defcontext_sid,
791 sbsec, cred);
792 if (rc)
793 goto out;
794 }
795
796 sbsec->def_sid = defcontext_sid;
797 }
798
799 rc = sb_finish_set_opts(sb);
800 out:
801 mutex_unlock(&sbsec->lock);
802 return rc;
803 out_double_mount:
804 rc = -EINVAL;
805 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
806 "security settings for (dev %s, type %s)\n", sb->s_id, name);
807 goto out;
808 }
809
810 static int selinux_cmp_sb_context(const struct super_block *oldsb,
811 const struct super_block *newsb)
812 {
813 struct superblock_security_struct *old = oldsb->s_security;
814 struct superblock_security_struct *new = newsb->s_security;
815 char oldflags = old->flags & SE_MNTMASK;
816 char newflags = new->flags & SE_MNTMASK;
817
818 if (oldflags != newflags)
819 goto mismatch;
820 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
821 goto mismatch;
822 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
823 goto mismatch;
824 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
825 goto mismatch;
826 if (oldflags & ROOTCONTEXT_MNT) {
827 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
828 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
829 if (oldroot->sid != newroot->sid)
830 goto mismatch;
831 }
832 return 0;
833 mismatch:
834 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
835 "different security settings for (dev %s, "
836 "type %s)\n", newsb->s_id, newsb->s_type->name);
837 return -EBUSY;
838 }
839
840 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
841 struct super_block *newsb)
842 {
843 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
844 struct superblock_security_struct *newsbsec = newsb->s_security;
845
846 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
847 int set_context = (oldsbsec->flags & CONTEXT_MNT);
848 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
849
850 /*
851 * if the parent was able to be mounted it clearly had no special lsm
852 * mount options. thus we can safely deal with this superblock later
853 */
854 if (!ss_initialized)
855 return 0;
856
857 /* how can we clone if the old one wasn't set up?? */
858 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
859
860 /* if fs is reusing a sb, make sure that the contexts match */
861 if (newsbsec->flags & SE_SBINITIALIZED)
862 return selinux_cmp_sb_context(oldsb, newsb);
863
864 mutex_lock(&newsbsec->lock);
865
866 newsbsec->flags = oldsbsec->flags;
867
868 newsbsec->sid = oldsbsec->sid;
869 newsbsec->def_sid = oldsbsec->def_sid;
870 newsbsec->behavior = oldsbsec->behavior;
871
872 if (set_context) {
873 u32 sid = oldsbsec->mntpoint_sid;
874
875 if (!set_fscontext)
876 newsbsec->sid = sid;
877 if (!set_rootcontext) {
878 struct inode *newinode = newsb->s_root->d_inode;
879 struct inode_security_struct *newisec = newinode->i_security;
880 newisec->sid = sid;
881 }
882 newsbsec->mntpoint_sid = sid;
883 }
884 if (set_rootcontext) {
885 const struct inode *oldinode = oldsb->s_root->d_inode;
886 const struct inode_security_struct *oldisec = oldinode->i_security;
887 struct inode *newinode = newsb->s_root->d_inode;
888 struct inode_security_struct *newisec = newinode->i_security;
889
890 newisec->sid = oldisec->sid;
891 }
892
893 sb_finish_set_opts(newsb);
894 mutex_unlock(&newsbsec->lock);
895 return 0;
896 }
897
898 static int selinux_parse_opts_str(char *options,
899 struct security_mnt_opts *opts)
900 {
901 char *p;
902 char *context = NULL, *defcontext = NULL;
903 char *fscontext = NULL, *rootcontext = NULL;
904 int rc, num_mnt_opts = 0;
905
906 opts->num_mnt_opts = 0;
907
908 /* Standard string-based options. */
909 while ((p = strsep(&options, "|")) != NULL) {
910 int token;
911 substring_t args[MAX_OPT_ARGS];
912
913 if (!*p)
914 continue;
915
916 token = match_token(p, tokens, args);
917
918 switch (token) {
919 case Opt_context:
920 if (context || defcontext) {
921 rc = -EINVAL;
922 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
923 goto out_err;
924 }
925 context = match_strdup(&args[0]);
926 if (!context) {
927 rc = -ENOMEM;
928 goto out_err;
929 }
930 break;
931
932 case Opt_fscontext:
933 if (fscontext) {
934 rc = -EINVAL;
935 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
936 goto out_err;
937 }
938 fscontext = match_strdup(&args[0]);
939 if (!fscontext) {
940 rc = -ENOMEM;
941 goto out_err;
942 }
943 break;
944
945 case Opt_rootcontext:
946 if (rootcontext) {
947 rc = -EINVAL;
948 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
949 goto out_err;
950 }
951 rootcontext = match_strdup(&args[0]);
952 if (!rootcontext) {
953 rc = -ENOMEM;
954 goto out_err;
955 }
956 break;
957
958 case Opt_defcontext:
959 if (context || defcontext) {
960 rc = -EINVAL;
961 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
962 goto out_err;
963 }
964 defcontext = match_strdup(&args[0]);
965 if (!defcontext) {
966 rc = -ENOMEM;
967 goto out_err;
968 }
969 break;
970 case Opt_labelsupport:
971 break;
972 default:
973 rc = -EINVAL;
974 printk(KERN_WARNING "SELinux: unknown mount option\n");
975 goto out_err;
976
977 }
978 }
979
980 rc = -ENOMEM;
981 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
982 if (!opts->mnt_opts)
983 goto out_err;
984
985 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
986 if (!opts->mnt_opts_flags) {
987 kfree(opts->mnt_opts);
988 goto out_err;
989 }
990
991 if (fscontext) {
992 opts->mnt_opts[num_mnt_opts] = fscontext;
993 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
994 }
995 if (context) {
996 opts->mnt_opts[num_mnt_opts] = context;
997 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
998 }
999 if (rootcontext) {
1000 opts->mnt_opts[num_mnt_opts] = rootcontext;
1001 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1002 }
1003 if (defcontext) {
1004 opts->mnt_opts[num_mnt_opts] = defcontext;
1005 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1006 }
1007
1008 opts->num_mnt_opts = num_mnt_opts;
1009 return 0;
1010
1011 out_err:
1012 kfree(context);
1013 kfree(defcontext);
1014 kfree(fscontext);
1015 kfree(rootcontext);
1016 return rc;
1017 }
1018 /*
1019 * string mount options parsing and call set the sbsec
1020 */
1021 static int superblock_doinit(struct super_block *sb, void *data)
1022 {
1023 int rc = 0;
1024 char *options = data;
1025 struct security_mnt_opts opts;
1026
1027 security_init_mnt_opts(&opts);
1028
1029 if (!data)
1030 goto out;
1031
1032 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1033
1034 rc = selinux_parse_opts_str(options, &opts);
1035 if (rc)
1036 goto out_err;
1037
1038 out:
1039 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1040
1041 out_err:
1042 security_free_mnt_opts(&opts);
1043 return rc;
1044 }
1045
1046 static void selinux_write_opts(struct seq_file *m,
1047 struct security_mnt_opts *opts)
1048 {
1049 int i;
1050 char *prefix;
1051
1052 for (i = 0; i < opts->num_mnt_opts; i++) {
1053 char *has_comma;
1054
1055 if (opts->mnt_opts[i])
1056 has_comma = strchr(opts->mnt_opts[i], ',');
1057 else
1058 has_comma = NULL;
1059
1060 switch (opts->mnt_opts_flags[i]) {
1061 case CONTEXT_MNT:
1062 prefix = CONTEXT_STR;
1063 break;
1064 case FSCONTEXT_MNT:
1065 prefix = FSCONTEXT_STR;
1066 break;
1067 case ROOTCONTEXT_MNT:
1068 prefix = ROOTCONTEXT_STR;
1069 break;
1070 case DEFCONTEXT_MNT:
1071 prefix = DEFCONTEXT_STR;
1072 break;
1073 case SBLABEL_MNT:
1074 seq_putc(m, ',');
1075 seq_puts(m, LABELSUPP_STR);
1076 continue;
1077 default:
1078 BUG();
1079 return;
1080 };
1081 /* we need a comma before each option */
1082 seq_putc(m, ',');
1083 seq_puts(m, prefix);
1084 if (has_comma)
1085 seq_putc(m, '\"');
1086 seq_puts(m, opts->mnt_opts[i]);
1087 if (has_comma)
1088 seq_putc(m, '\"');
1089 }
1090 }
1091
1092 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1093 {
1094 struct security_mnt_opts opts;
1095 int rc;
1096
1097 rc = selinux_get_mnt_opts(sb, &opts);
1098 if (rc) {
1099 /* before policy load we may get EINVAL, don't show anything */
1100 if (rc == -EINVAL)
1101 rc = 0;
1102 return rc;
1103 }
1104
1105 selinux_write_opts(m, &opts);
1106
1107 security_free_mnt_opts(&opts);
1108
1109 return rc;
1110 }
1111
1112 static inline u16 inode_mode_to_security_class(umode_t mode)
1113 {
1114 switch (mode & S_IFMT) {
1115 case S_IFSOCK:
1116 return SECCLASS_SOCK_FILE;
1117 case S_IFLNK:
1118 return SECCLASS_LNK_FILE;
1119 case S_IFREG:
1120 return SECCLASS_FILE;
1121 case S_IFBLK:
1122 return SECCLASS_BLK_FILE;
1123 case S_IFDIR:
1124 return SECCLASS_DIR;
1125 case S_IFCHR:
1126 return SECCLASS_CHR_FILE;
1127 case S_IFIFO:
1128 return SECCLASS_FIFO_FILE;
1129
1130 }
1131
1132 return SECCLASS_FILE;
1133 }
1134
1135 static inline int default_protocol_stream(int protocol)
1136 {
1137 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1138 }
1139
1140 static inline int default_protocol_dgram(int protocol)
1141 {
1142 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1143 }
1144
1145 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1146 {
1147 switch (family) {
1148 case PF_UNIX:
1149 switch (type) {
1150 case SOCK_STREAM:
1151 case SOCK_SEQPACKET:
1152 return SECCLASS_UNIX_STREAM_SOCKET;
1153 case SOCK_DGRAM:
1154 return SECCLASS_UNIX_DGRAM_SOCKET;
1155 }
1156 break;
1157 case PF_INET:
1158 case PF_INET6:
1159 switch (type) {
1160 case SOCK_STREAM:
1161 if (default_protocol_stream(protocol))
1162 return SECCLASS_TCP_SOCKET;
1163 else
1164 return SECCLASS_RAWIP_SOCKET;
1165 case SOCK_DGRAM:
1166 if (default_protocol_dgram(protocol))
1167 return SECCLASS_UDP_SOCKET;
1168 else
1169 return SECCLASS_RAWIP_SOCKET;
1170 case SOCK_DCCP:
1171 return SECCLASS_DCCP_SOCKET;
1172 default:
1173 return SECCLASS_RAWIP_SOCKET;
1174 }
1175 break;
1176 case PF_NETLINK:
1177 switch (protocol) {
1178 case NETLINK_ROUTE:
1179 return SECCLASS_NETLINK_ROUTE_SOCKET;
1180 case NETLINK_FIREWALL:
1181 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1182 case NETLINK_SOCK_DIAG:
1183 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1184 case NETLINK_NFLOG:
1185 return SECCLASS_NETLINK_NFLOG_SOCKET;
1186 case NETLINK_XFRM:
1187 return SECCLASS_NETLINK_XFRM_SOCKET;
1188 case NETLINK_SELINUX:
1189 return SECCLASS_NETLINK_SELINUX_SOCKET;
1190 case NETLINK_AUDIT:
1191 return SECCLASS_NETLINK_AUDIT_SOCKET;
1192 case NETLINK_IP6_FW:
1193 return SECCLASS_NETLINK_IP6FW_SOCKET;
1194 case NETLINK_DNRTMSG:
1195 return SECCLASS_NETLINK_DNRT_SOCKET;
1196 case NETLINK_KOBJECT_UEVENT:
1197 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1198 default:
1199 return SECCLASS_NETLINK_SOCKET;
1200 }
1201 case PF_PACKET:
1202 return SECCLASS_PACKET_SOCKET;
1203 case PF_KEY:
1204 return SECCLASS_KEY_SOCKET;
1205 case PF_APPLETALK:
1206 return SECCLASS_APPLETALK_SOCKET;
1207 }
1208
1209 return SECCLASS_SOCKET;
1210 }
1211
1212 #ifdef CONFIG_PROC_FS
1213 static int selinux_proc_get_sid(struct dentry *dentry,
1214 u16 tclass,
1215 u32 *sid)
1216 {
1217 int rc;
1218 char *buffer, *path;
1219
1220 buffer = (char *)__get_free_page(GFP_KERNEL);
1221 if (!buffer)
1222 return -ENOMEM;
1223
1224 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1225 if (IS_ERR(path))
1226 rc = PTR_ERR(path);
1227 else {
1228 /* each process gets a /proc/PID/ entry. Strip off the
1229 * PID part to get a valid selinux labeling.
1230 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1231 while (path[1] >= '0' && path[1] <= '9') {
1232 path[1] = '/';
1233 path++;
1234 }
1235 rc = security_genfs_sid("proc", path, tclass, sid);
1236 }
1237 free_page((unsigned long)buffer);
1238 return rc;
1239 }
1240 #else
1241 static int selinux_proc_get_sid(struct dentry *dentry,
1242 u16 tclass,
1243 u32 *sid)
1244 {
1245 return -EINVAL;
1246 }
1247 #endif
1248
1249 /* The inode's security attributes must be initialized before first use. */
1250 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1251 {
1252 struct superblock_security_struct *sbsec = NULL;
1253 struct inode_security_struct *isec = inode->i_security;
1254 u32 sid;
1255 struct dentry *dentry;
1256 #define INITCONTEXTLEN 255
1257 char *context = NULL;
1258 unsigned len = 0;
1259 int rc = 0;
1260
1261 if (isec->initialized)
1262 goto out;
1263
1264 mutex_lock(&isec->lock);
1265 if (isec->initialized)
1266 goto out_unlock;
1267
1268 sbsec = inode->i_sb->s_security;
1269 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1270 /* Defer initialization until selinux_complete_init,
1271 after the initial policy is loaded and the security
1272 server is ready to handle calls. */
1273 spin_lock(&sbsec->isec_lock);
1274 if (list_empty(&isec->list))
1275 list_add(&isec->list, &sbsec->isec_head);
1276 spin_unlock(&sbsec->isec_lock);
1277 goto out_unlock;
1278 }
1279
1280 switch (sbsec->behavior) {
1281 case SECURITY_FS_USE_NATIVE:
1282 break;
1283 case SECURITY_FS_USE_XATTR:
1284 if (!inode->i_op->getxattr) {
1285 isec->sid = sbsec->def_sid;
1286 break;
1287 }
1288
1289 /* Need a dentry, since the xattr API requires one.
1290 Life would be simpler if we could just pass the inode. */
1291 if (opt_dentry) {
1292 /* Called from d_instantiate or d_splice_alias. */
1293 dentry = dget(opt_dentry);
1294 } else {
1295 /* Called from selinux_complete_init, try to find a dentry. */
1296 dentry = d_find_alias(inode);
1297 }
1298 if (!dentry) {
1299 /*
1300 * this is can be hit on boot when a file is accessed
1301 * before the policy is loaded. When we load policy we
1302 * may find inodes that have no dentry on the
1303 * sbsec->isec_head list. No reason to complain as these
1304 * will get fixed up the next time we go through
1305 * inode_doinit with a dentry, before these inodes could
1306 * be used again by userspace.
1307 */
1308 goto out_unlock;
1309 }
1310
1311 len = INITCONTEXTLEN;
1312 context = kmalloc(len+1, GFP_NOFS);
1313 if (!context) {
1314 rc = -ENOMEM;
1315 dput(dentry);
1316 goto out_unlock;
1317 }
1318 context[len] = '\0';
1319 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1320 context, len);
1321 if (rc == -ERANGE) {
1322 kfree(context);
1323
1324 /* Need a larger buffer. Query for the right size. */
1325 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1326 NULL, 0);
1327 if (rc < 0) {
1328 dput(dentry);
1329 goto out_unlock;
1330 }
1331 len = rc;
1332 context = kmalloc(len+1, GFP_NOFS);
1333 if (!context) {
1334 rc = -ENOMEM;
1335 dput(dentry);
1336 goto out_unlock;
1337 }
1338 context[len] = '\0';
1339 rc = inode->i_op->getxattr(dentry,
1340 XATTR_NAME_SELINUX,
1341 context, len);
1342 }
1343 dput(dentry);
1344 if (rc < 0) {
1345 if (rc != -ENODATA) {
1346 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1347 "%d for dev=%s ino=%ld\n", __func__,
1348 -rc, inode->i_sb->s_id, inode->i_ino);
1349 kfree(context);
1350 goto out_unlock;
1351 }
1352 /* Map ENODATA to the default file SID */
1353 sid = sbsec->def_sid;
1354 rc = 0;
1355 } else {
1356 rc = security_context_to_sid_default(context, rc, &sid,
1357 sbsec->def_sid,
1358 GFP_NOFS);
1359 if (rc) {
1360 char *dev = inode->i_sb->s_id;
1361 unsigned long ino = inode->i_ino;
1362
1363 if (rc == -EINVAL) {
1364 if (printk_ratelimit())
1365 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1366 "context=%s. This indicates you may need to relabel the inode or the "
1367 "filesystem in question.\n", ino, dev, context);
1368 } else {
1369 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1370 "returned %d for dev=%s ino=%ld\n",
1371 __func__, context, -rc, dev, ino);
1372 }
1373 kfree(context);
1374 /* Leave with the unlabeled SID */
1375 rc = 0;
1376 break;
1377 }
1378 }
1379 kfree(context);
1380 isec->sid = sid;
1381 break;
1382 case SECURITY_FS_USE_TASK:
1383 isec->sid = isec->task_sid;
1384 break;
1385 case SECURITY_FS_USE_TRANS:
1386 /* Default to the fs SID. */
1387 isec->sid = sbsec->sid;
1388
1389 /* Try to obtain a transition SID. */
1390 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1391 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1392 isec->sclass, NULL, &sid);
1393 if (rc)
1394 goto out_unlock;
1395 isec->sid = sid;
1396 break;
1397 case SECURITY_FS_USE_MNTPOINT:
1398 isec->sid = sbsec->mntpoint_sid;
1399 break;
1400 default:
1401 /* Default to the fs superblock SID. */
1402 isec->sid = sbsec->sid;
1403
1404 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1405 if (opt_dentry) {
1406 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407 rc = selinux_proc_get_sid(opt_dentry,
1408 isec->sclass,
1409 &sid);
1410 if (rc)
1411 goto out_unlock;
1412 isec->sid = sid;
1413 }
1414 }
1415 break;
1416 }
1417
1418 isec->initialized = 1;
1419
1420 out_unlock:
1421 mutex_unlock(&isec->lock);
1422 out:
1423 if (isec->sclass == SECCLASS_FILE)
1424 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1425 return rc;
1426 }
1427
1428 /* Convert a Linux signal to an access vector. */
1429 static inline u32 signal_to_av(int sig)
1430 {
1431 u32 perm = 0;
1432
1433 switch (sig) {
1434 case SIGCHLD:
1435 /* Commonly granted from child to parent. */
1436 perm = PROCESS__SIGCHLD;
1437 break;
1438 case SIGKILL:
1439 /* Cannot be caught or ignored */
1440 perm = PROCESS__SIGKILL;
1441 break;
1442 case SIGSTOP:
1443 /* Cannot be caught or ignored */
1444 perm = PROCESS__SIGSTOP;
1445 break;
1446 default:
1447 /* All other signals. */
1448 perm = PROCESS__SIGNAL;
1449 break;
1450 }
1451
1452 return perm;
1453 }
1454
1455 /*
1456 * Check permission between a pair of credentials
1457 * fork check, ptrace check, etc.
1458 */
1459 static int cred_has_perm(const struct cred *actor,
1460 const struct cred *target,
1461 u32 perms)
1462 {
1463 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1464
1465 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1466 }
1467
1468 /*
1469 * Check permission between a pair of tasks, e.g. signal checks,
1470 * fork check, ptrace check, etc.
1471 * tsk1 is the actor and tsk2 is the target
1472 * - this uses the default subjective creds of tsk1
1473 */
1474 static int task_has_perm(const struct task_struct *tsk1,
1475 const struct task_struct *tsk2,
1476 u32 perms)
1477 {
1478 const struct task_security_struct *__tsec1, *__tsec2;
1479 u32 sid1, sid2;
1480
1481 rcu_read_lock();
1482 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1483 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1484 rcu_read_unlock();
1485 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1486 }
1487
1488 /*
1489 * Check permission between current and another task, e.g. signal checks,
1490 * fork check, ptrace check, etc.
1491 * current is the actor and tsk2 is the target
1492 * - this uses current's subjective creds
1493 */
1494 static int current_has_perm(const struct task_struct *tsk,
1495 u32 perms)
1496 {
1497 u32 sid, tsid;
1498
1499 sid = current_sid();
1500 tsid = task_sid(tsk);
1501 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1502 }
1503
1504 #if CAP_LAST_CAP > 63
1505 #error Fix SELinux to handle capabilities > 63.
1506 #endif
1507
1508 /* Check whether a task is allowed to use a capability. */
1509 static int cred_has_capability(const struct cred *cred,
1510 int cap, int audit)
1511 {
1512 struct common_audit_data ad;
1513 struct av_decision avd;
1514 u16 sclass;
1515 u32 sid = cred_sid(cred);
1516 u32 av = CAP_TO_MASK(cap);
1517 int rc;
1518
1519 ad.type = LSM_AUDIT_DATA_CAP;
1520 ad.u.cap = cap;
1521
1522 switch (CAP_TO_INDEX(cap)) {
1523 case 0:
1524 sclass = SECCLASS_CAPABILITY;
1525 break;
1526 case 1:
1527 sclass = SECCLASS_CAPABILITY2;
1528 break;
1529 default:
1530 printk(KERN_ERR
1531 "SELinux: out of range capability %d\n", cap);
1532 BUG();
1533 return -EINVAL;
1534 }
1535
1536 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1537 if (audit == SECURITY_CAP_AUDIT) {
1538 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1539 if (rc2)
1540 return rc2;
1541 }
1542 return rc;
1543 }
1544
1545 /* Check whether a task is allowed to use a system operation. */
1546 static int task_has_system(struct task_struct *tsk,
1547 u32 perms)
1548 {
1549 u32 sid = task_sid(tsk);
1550
1551 return avc_has_perm(sid, SECINITSID_KERNEL,
1552 SECCLASS_SYSTEM, perms, NULL);
1553 }
1554
1555 /* Check whether a task has a particular permission to an inode.
1556 The 'adp' parameter is optional and allows other audit
1557 data to be passed (e.g. the dentry). */
1558 static int inode_has_perm(const struct cred *cred,
1559 struct inode *inode,
1560 u32 perms,
1561 struct common_audit_data *adp)
1562 {
1563 struct inode_security_struct *isec;
1564 u32 sid;
1565
1566 validate_creds(cred);
1567
1568 if (unlikely(IS_PRIVATE(inode)))
1569 return 0;
1570
1571 sid = cred_sid(cred);
1572 isec = inode->i_security;
1573
1574 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1575 }
1576
1577 /* Same as inode_has_perm, but pass explicit audit data containing
1578 the dentry to help the auditing code to more easily generate the
1579 pathname if needed. */
1580 static inline int dentry_has_perm(const struct cred *cred,
1581 struct dentry *dentry,
1582 u32 av)
1583 {
1584 struct inode *inode = dentry->d_inode;
1585 struct common_audit_data ad;
1586
1587 ad.type = LSM_AUDIT_DATA_DENTRY;
1588 ad.u.dentry = dentry;
1589 return inode_has_perm(cred, inode, av, &ad);
1590 }
1591
1592 /* Same as inode_has_perm, but pass explicit audit data containing
1593 the path to help the auditing code to more easily generate the
1594 pathname if needed. */
1595 static inline int path_has_perm(const struct cred *cred,
1596 struct path *path,
1597 u32 av)
1598 {
1599 struct inode *inode = path->dentry->d_inode;
1600 struct common_audit_data ad;
1601
1602 ad.type = LSM_AUDIT_DATA_PATH;
1603 ad.u.path = *path;
1604 return inode_has_perm(cred, inode, av, &ad);
1605 }
1606
1607 /* Same as path_has_perm, but uses the inode from the file struct. */
1608 static inline int file_path_has_perm(const struct cred *cred,
1609 struct file *file,
1610 u32 av)
1611 {
1612 struct common_audit_data ad;
1613
1614 ad.type = LSM_AUDIT_DATA_PATH;
1615 ad.u.path = file->f_path;
1616 return inode_has_perm(cred, file_inode(file), av, &ad);
1617 }
1618
1619 /* Check whether a task can use an open file descriptor to
1620 access an inode in a given way. Check access to the
1621 descriptor itself, and then use dentry_has_perm to
1622 check a particular permission to the file.
1623 Access to the descriptor is implicitly granted if it
1624 has the same SID as the process. If av is zero, then
1625 access to the file is not checked, e.g. for cases
1626 where only the descriptor is affected like seek. */
1627 static int file_has_perm(const struct cred *cred,
1628 struct file *file,
1629 u32 av)
1630 {
1631 struct file_security_struct *fsec = file->f_security;
1632 struct inode *inode = file_inode(file);
1633 struct common_audit_data ad;
1634 u32 sid = cred_sid(cred);
1635 int rc;
1636
1637 ad.type = LSM_AUDIT_DATA_PATH;
1638 ad.u.path = file->f_path;
1639
1640 if (sid != fsec->sid) {
1641 rc = avc_has_perm(sid, fsec->sid,
1642 SECCLASS_FD,
1643 FD__USE,
1644 &ad);
1645 if (rc)
1646 goto out;
1647 }
1648
1649 /* av is zero if only checking access to the descriptor. */
1650 rc = 0;
1651 if (av)
1652 rc = inode_has_perm(cred, inode, av, &ad);
1653
1654 out:
1655 return rc;
1656 }
1657
1658 /* Check whether a task can create a file. */
1659 static int may_create(struct inode *dir,
1660 struct dentry *dentry,
1661 u16 tclass)
1662 {
1663 const struct task_security_struct *tsec = current_security();
1664 struct inode_security_struct *dsec;
1665 struct superblock_security_struct *sbsec;
1666 u32 sid, newsid;
1667 struct common_audit_data ad;
1668 int rc;
1669
1670 dsec = dir->i_security;
1671 sbsec = dir->i_sb->s_security;
1672
1673 sid = tsec->sid;
1674 newsid = tsec->create_sid;
1675
1676 ad.type = LSM_AUDIT_DATA_DENTRY;
1677 ad.u.dentry = dentry;
1678
1679 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1680 DIR__ADD_NAME | DIR__SEARCH,
1681 &ad);
1682 if (rc)
1683 return rc;
1684
1685 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1686 rc = security_transition_sid(sid, dsec->sid, tclass,
1687 &dentry->d_name, &newsid);
1688 if (rc)
1689 return rc;
1690 }
1691
1692 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1693 if (rc)
1694 return rc;
1695
1696 return avc_has_perm(newsid, sbsec->sid,
1697 SECCLASS_FILESYSTEM,
1698 FILESYSTEM__ASSOCIATE, &ad);
1699 }
1700
1701 /* Check whether a task can create a key. */
1702 static int may_create_key(u32 ksid,
1703 struct task_struct *ctx)
1704 {
1705 u32 sid = task_sid(ctx);
1706
1707 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1708 }
1709
1710 #define MAY_LINK 0
1711 #define MAY_UNLINK 1
1712 #define MAY_RMDIR 2
1713
1714 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1715 static int may_link(struct inode *dir,
1716 struct dentry *dentry,
1717 int kind)
1718
1719 {
1720 struct inode_security_struct *dsec, *isec;
1721 struct common_audit_data ad;
1722 u32 sid = current_sid();
1723 u32 av;
1724 int rc;
1725
1726 dsec = dir->i_security;
1727 isec = dentry->d_inode->i_security;
1728
1729 ad.type = LSM_AUDIT_DATA_DENTRY;
1730 ad.u.dentry = dentry;
1731
1732 av = DIR__SEARCH;
1733 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1734 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1735 if (rc)
1736 return rc;
1737
1738 switch (kind) {
1739 case MAY_LINK:
1740 av = FILE__LINK;
1741 break;
1742 case MAY_UNLINK:
1743 av = FILE__UNLINK;
1744 break;
1745 case MAY_RMDIR:
1746 av = DIR__RMDIR;
1747 break;
1748 default:
1749 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1750 __func__, kind);
1751 return 0;
1752 }
1753
1754 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1755 return rc;
1756 }
1757
1758 static inline int may_rename(struct inode *old_dir,
1759 struct dentry *old_dentry,
1760 struct inode *new_dir,
1761 struct dentry *new_dentry)
1762 {
1763 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1764 struct common_audit_data ad;
1765 u32 sid = current_sid();
1766 u32 av;
1767 int old_is_dir, new_is_dir;
1768 int rc;
1769
1770 old_dsec = old_dir->i_security;
1771 old_isec = old_dentry->d_inode->i_security;
1772 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1773 new_dsec = new_dir->i_security;
1774
1775 ad.type = LSM_AUDIT_DATA_DENTRY;
1776
1777 ad.u.dentry = old_dentry;
1778 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1779 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1780 if (rc)
1781 return rc;
1782 rc = avc_has_perm(sid, old_isec->sid,
1783 old_isec->sclass, FILE__RENAME, &ad);
1784 if (rc)
1785 return rc;
1786 if (old_is_dir && new_dir != old_dir) {
1787 rc = avc_has_perm(sid, old_isec->sid,
1788 old_isec->sclass, DIR__REPARENT, &ad);
1789 if (rc)
1790 return rc;
1791 }
1792
1793 ad.u.dentry = new_dentry;
1794 av = DIR__ADD_NAME | DIR__SEARCH;
1795 if (new_dentry->d_inode)
1796 av |= DIR__REMOVE_NAME;
1797 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1798 if (rc)
1799 return rc;
1800 if (new_dentry->d_inode) {
1801 new_isec = new_dentry->d_inode->i_security;
1802 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1803 rc = avc_has_perm(sid, new_isec->sid,
1804 new_isec->sclass,
1805 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1806 if (rc)
1807 return rc;
1808 }
1809
1810 return 0;
1811 }
1812
1813 /* Check whether a task can perform a filesystem operation. */
1814 static int superblock_has_perm(const struct cred *cred,
1815 struct super_block *sb,
1816 u32 perms,
1817 struct common_audit_data *ad)
1818 {
1819 struct superblock_security_struct *sbsec;
1820 u32 sid = cred_sid(cred);
1821
1822 sbsec = sb->s_security;
1823 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1824 }
1825
1826 /* Convert a Linux mode and permission mask to an access vector. */
1827 static inline u32 file_mask_to_av(int mode, int mask)
1828 {
1829 u32 av = 0;
1830
1831 if (!S_ISDIR(mode)) {
1832 if (mask & MAY_EXEC)
1833 av |= FILE__EXECUTE;
1834 if (mask & MAY_READ)
1835 av |= FILE__READ;
1836
1837 if (mask & MAY_APPEND)
1838 av |= FILE__APPEND;
1839 else if (mask & MAY_WRITE)
1840 av |= FILE__WRITE;
1841
1842 } else {
1843 if (mask & MAY_EXEC)
1844 av |= DIR__SEARCH;
1845 if (mask & MAY_WRITE)
1846 av |= DIR__WRITE;
1847 if (mask & MAY_READ)
1848 av |= DIR__READ;
1849 }
1850
1851 return av;
1852 }
1853
1854 /* Convert a Linux file to an access vector. */
1855 static inline u32 file_to_av(struct file *file)
1856 {
1857 u32 av = 0;
1858
1859 if (file->f_mode & FMODE_READ)
1860 av |= FILE__READ;
1861 if (file->f_mode & FMODE_WRITE) {
1862 if (file->f_flags & O_APPEND)
1863 av |= FILE__APPEND;
1864 else
1865 av |= FILE__WRITE;
1866 }
1867 if (!av) {
1868 /*
1869 * Special file opened with flags 3 for ioctl-only use.
1870 */
1871 av = FILE__IOCTL;
1872 }
1873
1874 return av;
1875 }
1876
1877 /*
1878 * Convert a file to an access vector and include the correct open
1879 * open permission.
1880 */
1881 static inline u32 open_file_to_av(struct file *file)
1882 {
1883 u32 av = file_to_av(file);
1884
1885 if (selinux_policycap_openperm)
1886 av |= FILE__OPEN;
1887
1888 return av;
1889 }
1890
1891 /* Hook functions begin here. */
1892
1893 static int selinux_ptrace_access_check(struct task_struct *child,
1894 unsigned int mode)
1895 {
1896 int rc;
1897
1898 rc = cap_ptrace_access_check(child, mode);
1899 if (rc)
1900 return rc;
1901
1902 if (mode & PTRACE_MODE_READ) {
1903 u32 sid = current_sid();
1904 u32 csid = task_sid(child);
1905 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1906 }
1907
1908 return current_has_perm(child, PROCESS__PTRACE);
1909 }
1910
1911 static int selinux_ptrace_traceme(struct task_struct *parent)
1912 {
1913 int rc;
1914
1915 rc = cap_ptrace_traceme(parent);
1916 if (rc)
1917 return rc;
1918
1919 return task_has_perm(parent, current, PROCESS__PTRACE);
1920 }
1921
1922 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1923 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1924 {
1925 int error;
1926
1927 error = current_has_perm(target, PROCESS__GETCAP);
1928 if (error)
1929 return error;
1930
1931 return cap_capget(target, effective, inheritable, permitted);
1932 }
1933
1934 static int selinux_capset(struct cred *new, const struct cred *old,
1935 const kernel_cap_t *effective,
1936 const kernel_cap_t *inheritable,
1937 const kernel_cap_t *permitted)
1938 {
1939 int error;
1940
1941 error = cap_capset(new, old,
1942 effective, inheritable, permitted);
1943 if (error)
1944 return error;
1945
1946 return cred_has_perm(old, new, PROCESS__SETCAP);
1947 }
1948
1949 /*
1950 * (This comment used to live with the selinux_task_setuid hook,
1951 * which was removed).
1952 *
1953 * Since setuid only affects the current process, and since the SELinux
1954 * controls are not based on the Linux identity attributes, SELinux does not
1955 * need to control this operation. However, SELinux does control the use of
1956 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1957 */
1958
1959 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1960 int cap, int audit)
1961 {
1962 int rc;
1963
1964 rc = cap_capable(cred, ns, cap, audit);
1965 if (rc)
1966 return rc;
1967
1968 return cred_has_capability(cred, cap, audit);
1969 }
1970
1971 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1972 {
1973 const struct cred *cred = current_cred();
1974 int rc = 0;
1975
1976 if (!sb)
1977 return 0;
1978
1979 switch (cmds) {
1980 case Q_SYNC:
1981 case Q_QUOTAON:
1982 case Q_QUOTAOFF:
1983 case Q_SETINFO:
1984 case Q_SETQUOTA:
1985 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1986 break;
1987 case Q_GETFMT:
1988 case Q_GETINFO:
1989 case Q_GETQUOTA:
1990 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1991 break;
1992 default:
1993 rc = 0; /* let the kernel handle invalid cmds */
1994 break;
1995 }
1996 return rc;
1997 }
1998
1999 static int selinux_quota_on(struct dentry *dentry)
2000 {
2001 const struct cred *cred = current_cred();
2002
2003 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2004 }
2005
2006 static int selinux_syslog(int type)
2007 {
2008 int rc;
2009
2010 switch (type) {
2011 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2012 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2013 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2014 break;
2015 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2016 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2017 /* Set level of messages printed to console */
2018 case SYSLOG_ACTION_CONSOLE_LEVEL:
2019 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2020 break;
2021 case SYSLOG_ACTION_CLOSE: /* Close log */
2022 case SYSLOG_ACTION_OPEN: /* Open log */
2023 case SYSLOG_ACTION_READ: /* Read from log */
2024 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2025 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2026 default:
2027 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2028 break;
2029 }
2030 return rc;
2031 }
2032
2033 /*
2034 * Check that a process has enough memory to allocate a new virtual
2035 * mapping. 0 means there is enough memory for the allocation to
2036 * succeed and -ENOMEM implies there is not.
2037 *
2038 * Do not audit the selinux permission check, as this is applied to all
2039 * processes that allocate mappings.
2040 */
2041 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2042 {
2043 int rc, cap_sys_admin = 0;
2044
2045 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2046 SECURITY_CAP_NOAUDIT);
2047 if (rc == 0)
2048 cap_sys_admin = 1;
2049
2050 return __vm_enough_memory(mm, pages, cap_sys_admin);
2051 }
2052
2053 /* binprm security operations */
2054
2055 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2056 {
2057 const struct task_security_struct *old_tsec;
2058 struct task_security_struct *new_tsec;
2059 struct inode_security_struct *isec;
2060 struct common_audit_data ad;
2061 struct inode *inode = file_inode(bprm->file);
2062 int rc;
2063
2064 rc = cap_bprm_set_creds(bprm);
2065 if (rc)
2066 return rc;
2067
2068 /* SELinux context only depends on initial program or script and not
2069 * the script interpreter */
2070 if (bprm->cred_prepared)
2071 return 0;
2072
2073 old_tsec = current_security();
2074 new_tsec = bprm->cred->security;
2075 isec = inode->i_security;
2076
2077 /* Default to the current task SID. */
2078 new_tsec->sid = old_tsec->sid;
2079 new_tsec->osid = old_tsec->sid;
2080
2081 /* Reset fs, key, and sock SIDs on execve. */
2082 new_tsec->create_sid = 0;
2083 new_tsec->keycreate_sid = 0;
2084 new_tsec->sockcreate_sid = 0;
2085
2086 if (old_tsec->exec_sid) {
2087 new_tsec->sid = old_tsec->exec_sid;
2088 /* Reset exec SID on execve. */
2089 new_tsec->exec_sid = 0;
2090
2091 /*
2092 * Minimize confusion: if no_new_privs and a transition is
2093 * explicitly requested, then fail the exec.
2094 */
2095 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2096 return -EPERM;
2097 } else {
2098 /* Check for a default transition on this program. */
2099 rc = security_transition_sid(old_tsec->sid, isec->sid,
2100 SECCLASS_PROCESS, NULL,
2101 &new_tsec->sid);
2102 if (rc)
2103 return rc;
2104 }
2105
2106 ad.type = LSM_AUDIT_DATA_PATH;
2107 ad.u.path = bprm->file->f_path;
2108
2109 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2110 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2111 new_tsec->sid = old_tsec->sid;
2112
2113 if (new_tsec->sid == old_tsec->sid) {
2114 rc = avc_has_perm(old_tsec->sid, isec->sid,
2115 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2116 if (rc)
2117 return rc;
2118 } else {
2119 /* Check permissions for the transition. */
2120 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2121 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2122 if (rc)
2123 return rc;
2124
2125 rc = avc_has_perm(new_tsec->sid, isec->sid,
2126 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2127 if (rc)
2128 return rc;
2129
2130 /* Check for shared state */
2131 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2132 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2133 SECCLASS_PROCESS, PROCESS__SHARE,
2134 NULL);
2135 if (rc)
2136 return -EPERM;
2137 }
2138
2139 /* Make sure that anyone attempting to ptrace over a task that
2140 * changes its SID has the appropriate permit */
2141 if (bprm->unsafe &
2142 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2143 struct task_struct *tracer;
2144 struct task_security_struct *sec;
2145 u32 ptsid = 0;
2146
2147 rcu_read_lock();
2148 tracer = ptrace_parent(current);
2149 if (likely(tracer != NULL)) {
2150 sec = __task_cred(tracer)->security;
2151 ptsid = sec->sid;
2152 }
2153 rcu_read_unlock();
2154
2155 if (ptsid != 0) {
2156 rc = avc_has_perm(ptsid, new_tsec->sid,
2157 SECCLASS_PROCESS,
2158 PROCESS__PTRACE, NULL);
2159 if (rc)
2160 return -EPERM;
2161 }
2162 }
2163
2164 /* Clear any possibly unsafe personality bits on exec: */
2165 bprm->per_clear |= PER_CLEAR_ON_SETID;
2166 }
2167
2168 return 0;
2169 }
2170
2171 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2172 {
2173 const struct task_security_struct *tsec = current_security();
2174 u32 sid, osid;
2175 int atsecure = 0;
2176
2177 sid = tsec->sid;
2178 osid = tsec->osid;
2179
2180 if (osid != sid) {
2181 /* Enable secure mode for SIDs transitions unless
2182 the noatsecure permission is granted between
2183 the two SIDs, i.e. ahp returns 0. */
2184 atsecure = avc_has_perm(osid, sid,
2185 SECCLASS_PROCESS,
2186 PROCESS__NOATSECURE, NULL);
2187 }
2188
2189 return (atsecure || cap_bprm_secureexec(bprm));
2190 }
2191
2192 static int match_file(const void *p, struct file *file, unsigned fd)
2193 {
2194 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2195 }
2196
2197 /* Derived from fs/exec.c:flush_old_files. */
2198 static inline void flush_unauthorized_files(const struct cred *cred,
2199 struct files_struct *files)
2200 {
2201 struct file *file, *devnull = NULL;
2202 struct tty_struct *tty;
2203 int drop_tty = 0;
2204 unsigned n;
2205
2206 tty = get_current_tty();
2207 if (tty) {
2208 spin_lock(&tty_files_lock);
2209 if (!list_empty(&tty->tty_files)) {
2210 struct tty_file_private *file_priv;
2211
2212 /* Revalidate access to controlling tty.
2213 Use file_path_has_perm on the tty path directly
2214 rather than using file_has_perm, as this particular
2215 open file may belong to another process and we are
2216 only interested in the inode-based check here. */
2217 file_priv = list_first_entry(&tty->tty_files,
2218 struct tty_file_private, list);
2219 file = file_priv->file;
2220 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2221 drop_tty = 1;
2222 }
2223 spin_unlock(&tty_files_lock);
2224 tty_kref_put(tty);
2225 }
2226 /* Reset controlling tty. */
2227 if (drop_tty)
2228 no_tty();
2229
2230 /* Revalidate access to inherited open files. */
2231 n = iterate_fd(files, 0, match_file, cred);
2232 if (!n) /* none found? */
2233 return;
2234
2235 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2236 if (IS_ERR(devnull))
2237 devnull = NULL;
2238 /* replace all the matching ones with this */
2239 do {
2240 replace_fd(n - 1, devnull, 0);
2241 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2242 if (devnull)
2243 fput(devnull);
2244 }
2245
2246 /*
2247 * Prepare a process for imminent new credential changes due to exec
2248 */
2249 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2250 {
2251 struct task_security_struct *new_tsec;
2252 struct rlimit *rlim, *initrlim;
2253 int rc, i;
2254
2255 new_tsec = bprm->cred->security;
2256 if (new_tsec->sid == new_tsec->osid)
2257 return;
2258
2259 /* Close files for which the new task SID is not authorized. */
2260 flush_unauthorized_files(bprm->cred, current->files);
2261
2262 /* Always clear parent death signal on SID transitions. */
2263 current->pdeath_signal = 0;
2264
2265 /* Check whether the new SID can inherit resource limits from the old
2266 * SID. If not, reset all soft limits to the lower of the current
2267 * task's hard limit and the init task's soft limit.
2268 *
2269 * Note that the setting of hard limits (even to lower them) can be
2270 * controlled by the setrlimit check. The inclusion of the init task's
2271 * soft limit into the computation is to avoid resetting soft limits
2272 * higher than the default soft limit for cases where the default is
2273 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2274 */
2275 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2276 PROCESS__RLIMITINH, NULL);
2277 if (rc) {
2278 /* protect against do_prlimit() */
2279 task_lock(current);
2280 for (i = 0; i < RLIM_NLIMITS; i++) {
2281 rlim = current->signal->rlim + i;
2282 initrlim = init_task.signal->rlim + i;
2283 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2284 }
2285 task_unlock(current);
2286 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2287 }
2288 }
2289
2290 /*
2291 * Clean up the process immediately after the installation of new credentials
2292 * due to exec
2293 */
2294 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2295 {
2296 const struct task_security_struct *tsec = current_security();
2297 struct itimerval itimer;
2298 u32 osid, sid;
2299 int rc, i;
2300
2301 osid = tsec->osid;
2302 sid = tsec->sid;
2303
2304 if (sid == osid)
2305 return;
2306
2307 /* Check whether the new SID can inherit signal state from the old SID.
2308 * If not, clear itimers to avoid subsequent signal generation and
2309 * flush and unblock signals.
2310 *
2311 * This must occur _after_ the task SID has been updated so that any
2312 * kill done after the flush will be checked against the new SID.
2313 */
2314 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2315 if (rc) {
2316 memset(&itimer, 0, sizeof itimer);
2317 for (i = 0; i < 3; i++)
2318 do_setitimer(i, &itimer, NULL);
2319 spin_lock_irq(&current->sighand->siglock);
2320 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2321 __flush_signals(current);
2322 flush_signal_handlers(current, 1);
2323 sigemptyset(&current->blocked);
2324 }
2325 spin_unlock_irq(&current->sighand->siglock);
2326 }
2327
2328 /* Wake up the parent if it is waiting so that it can recheck
2329 * wait permission to the new task SID. */
2330 read_lock(&tasklist_lock);
2331 __wake_up_parent(current, current->real_parent);
2332 read_unlock(&tasklist_lock);
2333 }
2334
2335 /* superblock security operations */
2336
2337 static int selinux_sb_alloc_security(struct super_block *sb)
2338 {
2339 return superblock_alloc_security(sb);
2340 }
2341
2342 static void selinux_sb_free_security(struct super_block *sb)
2343 {
2344 superblock_free_security(sb);
2345 }
2346
2347 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2348 {
2349 if (plen > olen)
2350 return 0;
2351
2352 return !memcmp(prefix, option, plen);
2353 }
2354
2355 static inline int selinux_option(char *option, int len)
2356 {
2357 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2358 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2359 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2360 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2361 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2362 }
2363
2364 static inline void take_option(char **to, char *from, int *first, int len)
2365 {
2366 if (!*first) {
2367 **to = ',';
2368 *to += 1;
2369 } else
2370 *first = 0;
2371 memcpy(*to, from, len);
2372 *to += len;
2373 }
2374
2375 static inline void take_selinux_option(char **to, char *from, int *first,
2376 int len)
2377 {
2378 int current_size = 0;
2379
2380 if (!*first) {
2381 **to = '|';
2382 *to += 1;
2383 } else
2384 *first = 0;
2385
2386 while (current_size < len) {
2387 if (*from != '"') {
2388 **to = *from;
2389 *to += 1;
2390 }
2391 from += 1;
2392 current_size += 1;
2393 }
2394 }
2395
2396 static int selinux_sb_copy_data(char *orig, char *copy)
2397 {
2398 int fnosec, fsec, rc = 0;
2399 char *in_save, *in_curr, *in_end;
2400 char *sec_curr, *nosec_save, *nosec;
2401 int open_quote = 0;
2402
2403 in_curr = orig;
2404 sec_curr = copy;
2405
2406 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2407 if (!nosec) {
2408 rc = -ENOMEM;
2409 goto out;
2410 }
2411
2412 nosec_save = nosec;
2413 fnosec = fsec = 1;
2414 in_save = in_end = orig;
2415
2416 do {
2417 if (*in_end == '"')
2418 open_quote = !open_quote;
2419 if ((*in_end == ',' && open_quote == 0) ||
2420 *in_end == '\0') {
2421 int len = in_end - in_curr;
2422
2423 if (selinux_option(in_curr, len))
2424 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2425 else
2426 take_option(&nosec, in_curr, &fnosec, len);
2427
2428 in_curr = in_end + 1;
2429 }
2430 } while (*in_end++);
2431
2432 strcpy(in_save, nosec_save);
2433 free_page((unsigned long)nosec_save);
2434 out:
2435 return rc;
2436 }
2437
2438 static int selinux_sb_remount(struct super_block *sb, void *data)
2439 {
2440 int rc, i, *flags;
2441 struct security_mnt_opts opts;
2442 char *secdata, **mount_options;
2443 struct superblock_security_struct *sbsec = sb->s_security;
2444
2445 if (!(sbsec->flags & SE_SBINITIALIZED))
2446 return 0;
2447
2448 if (!data)
2449 return 0;
2450
2451 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2452 return 0;
2453
2454 security_init_mnt_opts(&opts);
2455 secdata = alloc_secdata();
2456 if (!secdata)
2457 return -ENOMEM;
2458 rc = selinux_sb_copy_data(data, secdata);
2459 if (rc)
2460 goto out_free_secdata;
2461
2462 rc = selinux_parse_opts_str(secdata, &opts);
2463 if (rc)
2464 goto out_free_secdata;
2465
2466 mount_options = opts.mnt_opts;
2467 flags = opts.mnt_opts_flags;
2468
2469 for (i = 0; i < opts.num_mnt_opts; i++) {
2470 u32 sid;
2471 size_t len;
2472
2473 if (flags[i] == SBLABEL_MNT)
2474 continue;
2475 len = strlen(mount_options[i]);
2476 rc = security_context_to_sid(mount_options[i], len, &sid);
2477 if (rc) {
2478 printk(KERN_WARNING "SELinux: security_context_to_sid"
2479 "(%s) failed for (dev %s, type %s) errno=%d\n",
2480 mount_options[i], sb->s_id, sb->s_type->name, rc);
2481 goto out_free_opts;
2482 }
2483 rc = -EINVAL;
2484 switch (flags[i]) {
2485 case FSCONTEXT_MNT:
2486 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2487 goto out_bad_option;
2488 break;
2489 case CONTEXT_MNT:
2490 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2491 goto out_bad_option;
2492 break;
2493 case ROOTCONTEXT_MNT: {
2494 struct inode_security_struct *root_isec;
2495 root_isec = sb->s_root->d_inode->i_security;
2496
2497 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2498 goto out_bad_option;
2499 break;
2500 }
2501 case DEFCONTEXT_MNT:
2502 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2503 goto out_bad_option;
2504 break;
2505 default:
2506 goto out_free_opts;
2507 }
2508 }
2509
2510 rc = 0;
2511 out_free_opts:
2512 security_free_mnt_opts(&opts);
2513 out_free_secdata:
2514 free_secdata(secdata);
2515 return rc;
2516 out_bad_option:
2517 printk(KERN_WARNING "SELinux: unable to change security options "
2518 "during remount (dev %s, type=%s)\n", sb->s_id,
2519 sb->s_type->name);
2520 goto out_free_opts;
2521 }
2522
2523 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2524 {
2525 const struct cred *cred = current_cred();
2526 struct common_audit_data ad;
2527 int rc;
2528
2529 rc = superblock_doinit(sb, data);
2530 if (rc)
2531 return rc;
2532
2533 /* Allow all mounts performed by the kernel */
2534 if (flags & MS_KERNMOUNT)
2535 return 0;
2536
2537 ad.type = LSM_AUDIT_DATA_DENTRY;
2538 ad.u.dentry = sb->s_root;
2539 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2540 }
2541
2542 static int selinux_sb_statfs(struct dentry *dentry)
2543 {
2544 const struct cred *cred = current_cred();
2545 struct common_audit_data ad;
2546
2547 ad.type = LSM_AUDIT_DATA_DENTRY;
2548 ad.u.dentry = dentry->d_sb->s_root;
2549 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2550 }
2551
2552 static int selinux_mount(const char *dev_name,
2553 struct path *path,
2554 const char *type,
2555 unsigned long flags,
2556 void *data)
2557 {
2558 const struct cred *cred = current_cred();
2559
2560 if (flags & MS_REMOUNT)
2561 return superblock_has_perm(cred, path->dentry->d_sb,
2562 FILESYSTEM__REMOUNT, NULL);
2563 else
2564 return path_has_perm(cred, path, FILE__MOUNTON);
2565 }
2566
2567 static int selinux_umount(struct vfsmount *mnt, int flags)
2568 {
2569 const struct cred *cred = current_cred();
2570
2571 return superblock_has_perm(cred, mnt->mnt_sb,
2572 FILESYSTEM__UNMOUNT, NULL);
2573 }
2574
2575 /* inode security operations */
2576
2577 static int selinux_inode_alloc_security(struct inode *inode)
2578 {
2579 return inode_alloc_security(inode);
2580 }
2581
2582 static void selinux_inode_free_security(struct inode *inode)
2583 {
2584 inode_free_security(inode);
2585 }
2586
2587 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2588 struct qstr *name, void **ctx,
2589 u32 *ctxlen)
2590 {
2591 const struct cred *cred = current_cred();
2592 struct task_security_struct *tsec;
2593 struct inode_security_struct *dsec;
2594 struct superblock_security_struct *sbsec;
2595 struct inode *dir = dentry->d_parent->d_inode;
2596 u32 newsid;
2597 int rc;
2598
2599 tsec = cred->security;
2600 dsec = dir->i_security;
2601 sbsec = dir->i_sb->s_security;
2602
2603 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2604 newsid = tsec->create_sid;
2605 } else {
2606 rc = security_transition_sid(tsec->sid, dsec->sid,
2607 inode_mode_to_security_class(mode),
2608 name,
2609 &newsid);
2610 if (rc) {
2611 printk(KERN_WARNING
2612 "%s: security_transition_sid failed, rc=%d\n",
2613 __func__, -rc);
2614 return rc;
2615 }
2616 }
2617
2618 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2619 }
2620
2621 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2622 const struct qstr *qstr,
2623 const char **name,
2624 void **value, size_t *len)
2625 {
2626 const struct task_security_struct *tsec = current_security();
2627 struct inode_security_struct *dsec;
2628 struct superblock_security_struct *sbsec;
2629 u32 sid, newsid, clen;
2630 int rc;
2631 char *context;
2632
2633 dsec = dir->i_security;
2634 sbsec = dir->i_sb->s_security;
2635
2636 sid = tsec->sid;
2637 newsid = tsec->create_sid;
2638
2639 if ((sbsec->flags & SE_SBINITIALIZED) &&
2640 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2641 newsid = sbsec->mntpoint_sid;
2642 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2643 rc = security_transition_sid(sid, dsec->sid,
2644 inode_mode_to_security_class(inode->i_mode),
2645 qstr, &newsid);
2646 if (rc) {
2647 printk(KERN_WARNING "%s: "
2648 "security_transition_sid failed, rc=%d (dev=%s "
2649 "ino=%ld)\n",
2650 __func__,
2651 -rc, inode->i_sb->s_id, inode->i_ino);
2652 return rc;
2653 }
2654 }
2655
2656 /* Possibly defer initialization to selinux_complete_init. */
2657 if (sbsec->flags & SE_SBINITIALIZED) {
2658 struct inode_security_struct *isec = inode->i_security;
2659 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2660 isec->sid = newsid;
2661 isec->initialized = 1;
2662 }
2663
2664 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2665 return -EOPNOTSUPP;
2666
2667 if (name)
2668 *name = XATTR_SELINUX_SUFFIX;
2669
2670 if (value && len) {
2671 rc = security_sid_to_context_force(newsid, &context, &clen);
2672 if (rc)
2673 return rc;
2674 *value = context;
2675 *len = clen;
2676 }
2677
2678 return 0;
2679 }
2680
2681 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2682 {
2683 return may_create(dir, dentry, SECCLASS_FILE);
2684 }
2685
2686 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2687 {
2688 return may_link(dir, old_dentry, MAY_LINK);
2689 }
2690
2691 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2692 {
2693 return may_link(dir, dentry, MAY_UNLINK);
2694 }
2695
2696 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2697 {
2698 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2699 }
2700
2701 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2702 {
2703 return may_create(dir, dentry, SECCLASS_DIR);
2704 }
2705
2706 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2707 {
2708 return may_link(dir, dentry, MAY_RMDIR);
2709 }
2710
2711 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2712 {
2713 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2714 }
2715
2716 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2717 struct inode *new_inode, struct dentry *new_dentry)
2718 {
2719 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2720 }
2721
2722 static int selinux_inode_readlink(struct dentry *dentry)
2723 {
2724 const struct cred *cred = current_cred();
2725
2726 return dentry_has_perm(cred, dentry, FILE__READ);
2727 }
2728
2729 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2730 {
2731 const struct cred *cred = current_cred();
2732
2733 return dentry_has_perm(cred, dentry, FILE__READ);
2734 }
2735
2736 static noinline int audit_inode_permission(struct inode *inode,
2737 u32 perms, u32 audited, u32 denied,
2738 unsigned flags)
2739 {
2740 struct common_audit_data ad;
2741 struct inode_security_struct *isec = inode->i_security;
2742 int rc;
2743
2744 ad.type = LSM_AUDIT_DATA_INODE;
2745 ad.u.inode = inode;
2746
2747 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2748 audited, denied, &ad, flags);
2749 if (rc)
2750 return rc;
2751 return 0;
2752 }
2753
2754 static int selinux_inode_permission(struct inode *inode, int mask)
2755 {
2756 const struct cred *cred = current_cred();
2757 u32 perms;
2758 bool from_access;
2759 unsigned flags = mask & MAY_NOT_BLOCK;
2760 struct inode_security_struct *isec;
2761 u32 sid;
2762 struct av_decision avd;
2763 int rc, rc2;
2764 u32 audited, denied;
2765
2766 from_access = mask & MAY_ACCESS;
2767 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2768
2769 /* No permission to check. Existence test. */
2770 if (!mask)
2771 return 0;
2772
2773 validate_creds(cred);
2774
2775 if (unlikely(IS_PRIVATE(inode)))
2776 return 0;
2777
2778 perms = file_mask_to_av(inode->i_mode, mask);
2779
2780 sid = cred_sid(cred);
2781 isec = inode->i_security;
2782
2783 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2784 audited = avc_audit_required(perms, &avd, rc,
2785 from_access ? FILE__AUDIT_ACCESS : 0,
2786 &denied);
2787 if (likely(!audited))
2788 return rc;
2789
2790 rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2791 if (rc2)
2792 return rc2;
2793 return rc;
2794 }
2795
2796 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2797 {
2798 const struct cred *cred = current_cred();
2799 unsigned int ia_valid = iattr->ia_valid;
2800 __u32 av = FILE__WRITE;
2801
2802 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2803 if (ia_valid & ATTR_FORCE) {
2804 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2805 ATTR_FORCE);
2806 if (!ia_valid)
2807 return 0;
2808 }
2809
2810 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2811 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2812 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2813
2814 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2815 av |= FILE__OPEN;
2816
2817 return dentry_has_perm(cred, dentry, av);
2818 }
2819
2820 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2821 {
2822 const struct cred *cred = current_cred();
2823 struct path path;
2824
2825 path.dentry = dentry;
2826 path.mnt = mnt;
2827
2828 return path_has_perm(cred, &path, FILE__GETATTR);
2829 }
2830
2831 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2832 {
2833 const struct cred *cred = current_cred();
2834
2835 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2836 sizeof XATTR_SECURITY_PREFIX - 1)) {
2837 if (!strcmp(name, XATTR_NAME_CAPS)) {
2838 if (!capable(CAP_SETFCAP))
2839 return -EPERM;
2840 } else if (!capable(CAP_SYS_ADMIN)) {
2841 /* A different attribute in the security namespace.
2842 Restrict to administrator. */
2843 return -EPERM;
2844 }
2845 }
2846
2847 /* Not an attribute we recognize, so just check the
2848 ordinary setattr permission. */
2849 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2850 }
2851
2852 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2853 const void *value, size_t size, int flags)
2854 {
2855 struct inode *inode = dentry->d_inode;
2856 struct inode_security_struct *isec = inode->i_security;
2857 struct superblock_security_struct *sbsec;
2858 struct common_audit_data ad;
2859 u32 newsid, sid = current_sid();
2860 int rc = 0;
2861
2862 if (strcmp(name, XATTR_NAME_SELINUX))
2863 return selinux_inode_setotherxattr(dentry, name);
2864
2865 sbsec = inode->i_sb->s_security;
2866 if (!(sbsec->flags & SBLABEL_MNT))
2867 return -EOPNOTSUPP;
2868
2869 if (!inode_owner_or_capable(inode))
2870 return -EPERM;
2871
2872 ad.type = LSM_AUDIT_DATA_DENTRY;
2873 ad.u.dentry = dentry;
2874
2875 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2876 FILE__RELABELFROM, &ad);
2877 if (rc)
2878 return rc;
2879
2880 rc = security_context_to_sid(value, size, &newsid);
2881 if (rc == -EINVAL) {
2882 if (!capable(CAP_MAC_ADMIN)) {
2883 struct audit_buffer *ab;
2884 size_t audit_size;
2885 const char *str;
2886
2887 /* We strip a nul only if it is at the end, otherwise the
2888 * context contains a nul and we should audit that */
2889 if (value) {
2890 str = value;
2891 if (str[size - 1] == '\0')
2892 audit_size = size - 1;
2893 else
2894 audit_size = size;
2895 } else {
2896 str = "";
2897 audit_size = 0;
2898 }
2899 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2900 audit_log_format(ab, "op=setxattr invalid_context=");
2901 audit_log_n_untrustedstring(ab, value, audit_size);
2902 audit_log_end(ab);
2903
2904 return rc;
2905 }
2906 rc = security_context_to_sid_force(value, size, &newsid);
2907 }
2908 if (rc)
2909 return rc;
2910
2911 rc = avc_has_perm(sid, newsid, isec->sclass,
2912 FILE__RELABELTO, &ad);
2913 if (rc)
2914 return rc;
2915
2916 rc = security_validate_transition(isec->sid, newsid, sid,
2917 isec->sclass);
2918 if (rc)
2919 return rc;
2920
2921 return avc_has_perm(newsid,
2922 sbsec->sid,
2923 SECCLASS_FILESYSTEM,
2924 FILESYSTEM__ASSOCIATE,
2925 &ad);
2926 }
2927
2928 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2929 const void *value, size_t size,
2930 int flags)
2931 {
2932 struct inode *inode = dentry->d_inode;
2933 struct inode_security_struct *isec = inode->i_security;
2934 u32 newsid;
2935 int rc;
2936
2937 if (strcmp(name, XATTR_NAME_SELINUX)) {
2938 /* Not an attribute we recognize, so nothing to do. */
2939 return;
2940 }
2941
2942 rc = security_context_to_sid_force(value, size, &newsid);
2943 if (rc) {
2944 printk(KERN_ERR "SELinux: unable to map context to SID"
2945 "for (%s, %lu), rc=%d\n",
2946 inode->i_sb->s_id, inode->i_ino, -rc);
2947 return;
2948 }
2949
2950 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2951 isec->sid = newsid;
2952 isec->initialized = 1;
2953
2954 return;
2955 }
2956
2957 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2958 {
2959 const struct cred *cred = current_cred();
2960
2961 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2962 }
2963
2964 static int selinux_inode_listxattr(struct dentry *dentry)
2965 {
2966 const struct cred *cred = current_cred();
2967
2968 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2969 }
2970
2971 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2972 {
2973 if (strcmp(name, XATTR_NAME_SELINUX))
2974 return selinux_inode_setotherxattr(dentry, name);
2975
2976 /* No one is allowed to remove a SELinux security label.
2977 You can change the label, but all data must be labeled. */
2978 return -EACCES;
2979 }
2980
2981 /*
2982 * Copy the inode security context value to the user.
2983 *
2984 * Permission check is handled by selinux_inode_getxattr hook.
2985 */
2986 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2987 {
2988 u32 size;
2989 int error;
2990 char *context = NULL;
2991 struct inode_security_struct *isec = inode->i_security;
2992
2993 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2994 return -EOPNOTSUPP;
2995
2996 /*
2997 * If the caller has CAP_MAC_ADMIN, then get the raw context
2998 * value even if it is not defined by current policy; otherwise,
2999 * use the in-core value under current policy.
3000 * Use the non-auditing forms of the permission checks since
3001 * getxattr may be called by unprivileged processes commonly
3002 * and lack of permission just means that we fall back to the
3003 * in-core context value, not a denial.
3004 */
3005 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3006 SECURITY_CAP_NOAUDIT);
3007 if (!error)
3008 error = security_sid_to_context_force(isec->sid, &context,
3009 &size);
3010 else
3011 error = security_sid_to_context(isec->sid, &context, &size);
3012 if (error)
3013 return error;
3014 error = size;
3015 if (alloc) {
3016 *buffer = context;
3017 goto out_nofree;
3018 }
3019 kfree(context);
3020 out_nofree:
3021 return error;
3022 }
3023
3024 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3025 const void *value, size_t size, int flags)
3026 {
3027 struct inode_security_struct *isec = inode->i_security;
3028 u32 newsid;
3029 int rc;
3030
3031 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3032 return -EOPNOTSUPP;
3033
3034 if (!value || !size)
3035 return -EACCES;
3036
3037 rc = security_context_to_sid((void *)value, size, &newsid);
3038 if (rc)
3039 return rc;
3040
3041 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3042 isec->sid = newsid;
3043 isec->initialized = 1;
3044 return 0;
3045 }
3046
3047 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3048 {
3049 const int len = sizeof(XATTR_NAME_SELINUX);
3050 if (buffer && len <= buffer_size)
3051 memcpy(buffer, XATTR_NAME_SELINUX, len);
3052 return len;
3053 }
3054
3055 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3056 {
3057 struct inode_security_struct *isec = inode->i_security;
3058 *secid = isec->sid;
3059 }
3060
3061 /* file security operations */
3062
3063 static int selinux_revalidate_file_permission(struct file *file, int mask)
3064 {
3065 const struct cred *cred = current_cred();
3066 struct inode *inode = file_inode(file);
3067
3068 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3069 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3070 mask |= MAY_APPEND;
3071
3072 return file_has_perm(cred, file,
3073 file_mask_to_av(inode->i_mode, mask));
3074 }
3075
3076 static int selinux_file_permission(struct file *file, int mask)
3077 {
3078 struct inode *inode = file_inode(file);
3079 struct file_security_struct *fsec = file->f_security;
3080 struct inode_security_struct *isec = inode->i_security;
3081 u32 sid = current_sid();
3082
3083 if (!mask)
3084 /* No permission to check. Existence test. */
3085 return 0;
3086
3087 if (sid == fsec->sid && fsec->isid == isec->sid &&
3088 fsec->pseqno == avc_policy_seqno())
3089 /* No change since file_open check. */
3090 return 0;
3091
3092 return selinux_revalidate_file_permission(file, mask);
3093 }
3094
3095 static int selinux_file_alloc_security(struct file *file)
3096 {
3097 return file_alloc_security(file);
3098 }
3099
3100 static void selinux_file_free_security(struct file *file)
3101 {
3102 file_free_security(file);
3103 }
3104
3105 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3106 unsigned long arg)
3107 {
3108 const struct cred *cred = current_cred();
3109 int error = 0;
3110
3111 switch (cmd) {
3112 case FIONREAD:
3113 /* fall through */
3114 case FIBMAP:
3115 /* fall through */
3116 case FIGETBSZ:
3117 /* fall through */
3118 case FS_IOC_GETFLAGS:
3119 /* fall through */
3120 case FS_IOC_GETVERSION:
3121 error = file_has_perm(cred, file, FILE__GETATTR);
3122 break;
3123
3124 case FS_IOC_SETFLAGS:
3125 /* fall through */
3126 case FS_IOC_SETVERSION:
3127 error = file_has_perm(cred, file, FILE__SETATTR);
3128 break;
3129
3130 /* sys_ioctl() checks */
3131 case FIONBIO:
3132 /* fall through */
3133 case FIOASYNC:
3134 error = file_has_perm(cred, file, 0);
3135 break;
3136
3137 case KDSKBENT:
3138 case KDSKBSENT:
3139 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3140 SECURITY_CAP_AUDIT);
3141 break;
3142
3143 /* default case assumes that the command will go
3144 * to the file's ioctl() function.
3145 */
3146 default:
3147 error = file_has_perm(cred, file, FILE__IOCTL);
3148 }
3149 return error;
3150 }
3151
3152 static int default_noexec;
3153
3154 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3155 {
3156 const struct cred *cred = current_cred();
3157 int rc = 0;
3158
3159 if (default_noexec &&
3160 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3161 /*
3162 * We are making executable an anonymous mapping or a
3163 * private file mapping that will also be writable.
3164 * This has an additional check.
3165 */
3166 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3167 if (rc)
3168 goto error;
3169 }
3170
3171 if (file) {
3172 /* read access is always possible with a mapping */
3173 u32 av = FILE__READ;
3174
3175 /* write access only matters if the mapping is shared */
3176 if (shared && (prot & PROT_WRITE))
3177 av |= FILE__WRITE;
3178
3179 if (prot & PROT_EXEC)
3180 av |= FILE__EXECUTE;
3181
3182 return file_has_perm(cred, file, av);
3183 }
3184
3185 error:
3186 return rc;
3187 }
3188
3189 static int selinux_mmap_addr(unsigned long addr)
3190 {
3191 int rc = 0;
3192 u32 sid = current_sid();
3193
3194 /*
3195 * notice that we are intentionally putting the SELinux check before
3196 * the secondary cap_file_mmap check. This is such a likely attempt
3197 * at bad behaviour/exploit that we always want to get the AVC, even
3198 * if DAC would have also denied the operation.
3199 */
3200 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3201 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3202 MEMPROTECT__MMAP_ZERO, NULL);
3203 if (rc)
3204 return rc;
3205 }
3206
3207 /* do DAC check on address space usage */
3208 return cap_mmap_addr(addr);
3209 }
3210
3211 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3212 unsigned long prot, unsigned long flags)
3213 {
3214 if (selinux_checkreqprot)
3215 prot = reqprot;
3216
3217 return file_map_prot_check(file, prot,
3218 (flags & MAP_TYPE) == MAP_SHARED);
3219 }
3220
3221 static int selinux_file_mprotect(struct vm_area_struct *vma,
3222 unsigned long reqprot,
3223 unsigned long prot)
3224 {
3225 const struct cred *cred = current_cred();
3226
3227 if (selinux_checkreqprot)
3228 prot = reqprot;
3229
3230 if (default_noexec &&
3231 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3232 int rc = 0;
3233 if (vma->vm_start >= vma->vm_mm->start_brk &&
3234 vma->vm_end <= vma->vm_mm->brk) {
3235 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3236 } else if (!vma->vm_file &&
3237 vma->vm_start <= vma->vm_mm->start_stack &&
3238 vma->vm_end >= vma->vm_mm->start_stack) {
3239 rc = current_has_perm(current, PROCESS__EXECSTACK);
3240 } else if (vma->vm_file && vma->anon_vma) {
3241 /*
3242 * We are making executable a file mapping that has
3243 * had some COW done. Since pages might have been
3244 * written, check ability to execute the possibly
3245 * modified content. This typically should only
3246 * occur for text relocations.
3247 */
3248 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3249 }
3250 if (rc)
3251 return rc;
3252 }
3253
3254 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3255 }
3256
3257 static int selinux_file_lock(struct file *file, unsigned int cmd)
3258 {
3259 const struct cred *cred = current_cred();
3260
3261 return file_has_perm(cred, file, FILE__LOCK);
3262 }
3263
3264 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3265 unsigned long arg)
3266 {
3267 const struct cred *cred = current_cred();
3268 int err = 0;
3269
3270 switch (cmd) {
3271 case F_SETFL:
3272 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3273 err = file_has_perm(cred, file, FILE__WRITE);
3274 break;
3275 }
3276 /* fall through */
3277 case F_SETOWN:
3278 case F_SETSIG:
3279 case F_GETFL:
3280 case F_GETOWN:
3281 case F_GETSIG:
3282 case F_GETOWNER_UIDS:
3283 /* Just check FD__USE permission */
3284 err = file_has_perm(cred, file, 0);
3285 break;
3286 case F_GETLK:
3287 case F_SETLK:
3288 case F_SETLKW:
3289 #if BITS_PER_LONG == 32
3290 case F_GETLK64:
3291 case F_SETLK64:
3292 case F_SETLKW64:
3293 #endif
3294 err = file_has_perm(cred, file, FILE__LOCK);
3295 break;
3296 }
3297
3298 return err;
3299 }
3300
3301 static int selinux_file_set_fowner(struct file *file)
3302 {
3303 struct file_security_struct *fsec;
3304
3305 fsec = file->f_security;
3306 fsec->fown_sid = current_sid();
3307
3308 return 0;
3309 }
3310
3311 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3312 struct fown_struct *fown, int signum)
3313 {
3314 struct file *file;
3315 u32 sid = task_sid(tsk);
3316 u32 perm;
3317 struct file_security_struct *fsec;
3318
3319 /* struct fown_struct is never outside the context of a struct file */
3320 file = container_of(fown, struct file, f_owner);
3321
3322 fsec = file->f_security;
3323
3324 if (!signum)
3325 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3326 else
3327 perm = signal_to_av(signum);
3328
3329 return avc_has_perm(fsec->fown_sid, sid,
3330 SECCLASS_PROCESS, perm, NULL);
3331 }
3332
3333 static int selinux_file_receive(struct file *file)
3334 {
3335 const struct cred *cred = current_cred();
3336
3337 return file_has_perm(cred, file, file_to_av(file));
3338 }
3339
3340 static int selinux_file_open(struct file *file, const struct cred *cred)
3341 {
3342 struct file_security_struct *fsec;
3343 struct inode_security_struct *isec;
3344
3345 fsec = file->f_security;
3346 isec = file_inode(file)->i_security;
3347 /*
3348 * Save inode label and policy sequence number
3349 * at open-time so that selinux_file_permission
3350 * can determine whether revalidation is necessary.
3351 * Task label is already saved in the file security
3352 * struct as its SID.
3353 */
3354 fsec->isid = isec->sid;
3355 fsec->pseqno = avc_policy_seqno();
3356 /*
3357 * Since the inode label or policy seqno may have changed
3358 * between the selinux_inode_permission check and the saving
3359 * of state above, recheck that access is still permitted.
3360 * Otherwise, access might never be revalidated against the
3361 * new inode label or new policy.
3362 * This check is not redundant - do not remove.
3363 */
3364 return file_path_has_perm(cred, file, open_file_to_av(file));
3365 }
3366
3367 /* task security operations */
3368
3369 static int selinux_task_create(unsigned long clone_flags)
3370 {
3371 return current_has_perm(current, PROCESS__FORK);
3372 }
3373
3374 /*
3375 * allocate the SELinux part of blank credentials
3376 */
3377 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3378 {
3379 struct task_security_struct *tsec;
3380
3381 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3382 if (!tsec)
3383 return -ENOMEM;
3384
3385 cred->security = tsec;
3386 return 0;
3387 }
3388
3389 /*
3390 * detach and free the LSM part of a set of credentials
3391 */
3392 static void selinux_cred_free(struct cred *cred)
3393 {
3394 struct task_security_struct *tsec = cred->security;
3395
3396 /*
3397 * cred->security == NULL if security_cred_alloc_blank() or
3398 * security_prepare_creds() returned an error.
3399 */
3400 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3401 cred->security = (void *) 0x7UL;
3402 kfree(tsec);
3403 }
3404
3405 /*
3406 * prepare a new set of credentials for modification
3407 */
3408 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3409 gfp_t gfp)
3410 {
3411 const struct task_security_struct *old_tsec;
3412 struct task_security_struct *tsec;
3413
3414 old_tsec = old->security;
3415
3416 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3417 if (!tsec)
3418 return -ENOMEM;
3419
3420 new->security = tsec;
3421 return 0;
3422 }
3423
3424 /*
3425 * transfer the SELinux data to a blank set of creds
3426 */
3427 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3428 {
3429 const struct task_security_struct *old_tsec = old->security;
3430 struct task_security_struct *tsec = new->security;
3431
3432 *tsec = *old_tsec;
3433 }
3434
3435 /*
3436 * set the security data for a kernel service
3437 * - all the creation contexts are set to unlabelled
3438 */
3439 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3440 {
3441 struct task_security_struct *tsec = new->security;
3442 u32 sid = current_sid();
3443 int ret;
3444
3445 ret = avc_has_perm(sid, secid,
3446 SECCLASS_KERNEL_SERVICE,
3447 KERNEL_SERVICE__USE_AS_OVERRIDE,
3448 NULL);
3449 if (ret == 0) {
3450 tsec->sid = secid;
3451 tsec->create_sid = 0;
3452 tsec->keycreate_sid = 0;
3453 tsec->sockcreate_sid = 0;
3454 }
3455 return ret;
3456 }
3457
3458 /*
3459 * set the file creation context in a security record to the same as the
3460 * objective context of the specified inode
3461 */
3462 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3463 {
3464 struct inode_security_struct *isec = inode->i_security;
3465 struct task_security_struct *tsec = new->security;
3466 u32 sid = current_sid();
3467 int ret;
3468
3469 ret = avc_has_perm(sid, isec->sid,
3470 SECCLASS_KERNEL_SERVICE,
3471 KERNEL_SERVICE__CREATE_FILES_AS,
3472 NULL);
3473
3474 if (ret == 0)
3475 tsec->create_sid = isec->sid;
3476 return ret;
3477 }
3478
3479 static int selinux_kernel_module_request(char *kmod_name)
3480 {
3481 u32 sid;
3482 struct common_audit_data ad;
3483
3484 sid = task_sid(current);
3485
3486 ad.type = LSM_AUDIT_DATA_KMOD;
3487 ad.u.kmod_name = kmod_name;
3488
3489 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3490 SYSTEM__MODULE_REQUEST, &ad);
3491 }
3492
3493 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3494 {
3495 return current_has_perm(p, PROCESS__SETPGID);
3496 }
3497
3498 static int selinux_task_getpgid(struct task_struct *p)
3499 {
3500 return current_has_perm(p, PROCESS__GETPGID);
3501 }
3502
3503 static int selinux_task_getsid(struct task_struct *p)
3504 {
3505 return current_has_perm(p, PROCESS__GETSESSION);
3506 }
3507
3508 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3509 {
3510 *secid = task_sid(p);
3511 }
3512
3513 static int selinux_task_setnice(struct task_struct *p, int nice)
3514 {
3515 int rc;
3516
3517 rc = cap_task_setnice(p, nice);
3518 if (rc)
3519 return rc;
3520
3521 return current_has_perm(p, PROCESS__SETSCHED);
3522 }
3523
3524 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3525 {
3526 int rc;
3527
3528 rc = cap_task_setioprio(p, ioprio);
3529 if (rc)
3530 return rc;
3531
3532 return current_has_perm(p, PROCESS__SETSCHED);
3533 }
3534
3535 static int selinux_task_getioprio(struct task_struct *p)
3536 {
3537 return current_has_perm(p, PROCESS__GETSCHED);
3538 }
3539
3540 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3541 struct rlimit *new_rlim)
3542 {
3543 struct rlimit *old_rlim = p->signal->rlim + resource;
3544
3545 /* Control the ability to change the hard limit (whether
3546 lowering or raising it), so that the hard limit can
3547 later be used as a safe reset point for the soft limit
3548 upon context transitions. See selinux_bprm_committing_creds. */
3549 if (old_rlim->rlim_max != new_rlim->rlim_max)
3550 return current_has_perm(p, PROCESS__SETRLIMIT);
3551
3552 return 0;
3553 }
3554
3555 static int selinux_task_setscheduler(struct task_struct *p)
3556 {
3557 int rc;
3558
3559 rc = cap_task_setscheduler(p);
3560 if (rc)
3561 return rc;
3562
3563 return current_has_perm(p, PROCESS__SETSCHED);
3564 }
3565
3566 static int selinux_task_getscheduler(struct task_struct *p)
3567 {
3568 return current_has_perm(p, PROCESS__GETSCHED);
3569 }
3570
3571 static int selinux_task_movememory(struct task_struct *p)
3572 {
3573 return current_has_perm(p, PROCESS__SETSCHED);
3574 }
3575
3576 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3577 int sig, u32 secid)
3578 {
3579 u32 perm;
3580 int rc;
3581
3582 if (!sig)
3583 perm = PROCESS__SIGNULL; /* null signal; existence test */
3584 else
3585 perm = signal_to_av(sig);
3586 if (secid)
3587 rc = avc_has_perm(secid, task_sid(p),
3588 SECCLASS_PROCESS, perm, NULL);
3589 else
3590 rc = current_has_perm(p, perm);
3591 return rc;
3592 }
3593
3594 static int selinux_task_wait(struct task_struct *p)
3595 {
3596 return task_has_perm(p, current, PROCESS__SIGCHLD);
3597 }
3598
3599 static void selinux_task_to_inode(struct task_struct *p,
3600 struct inode *inode)
3601 {
3602 struct inode_security_struct *isec = inode->i_security;
3603 u32 sid = task_sid(p);
3604
3605 isec->sid = sid;
3606 isec->initialized = 1;
3607 }
3608
3609 /* Returns error only if unable to parse addresses */
3610 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3611 struct common_audit_data *ad, u8 *proto)
3612 {
3613 int offset, ihlen, ret = -EINVAL;
3614 struct iphdr _iph, *ih;
3615
3616 offset = skb_network_offset(skb);
3617 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3618 if (ih == NULL)
3619 goto out;
3620
3621 ihlen = ih->ihl * 4;
3622 if (ihlen < sizeof(_iph))
3623 goto out;
3624
3625 ad->u.net->v4info.saddr = ih->saddr;
3626 ad->u.net->v4info.daddr = ih->daddr;
3627 ret = 0;
3628
3629 if (proto)
3630 *proto = ih->protocol;
3631
3632 switch (ih->protocol) {
3633 case IPPROTO_TCP: {
3634 struct tcphdr _tcph, *th;
3635
3636 if (ntohs(ih->frag_off) & IP_OFFSET)
3637 break;
3638
3639 offset += ihlen;
3640 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3641 if (th == NULL)
3642 break;
3643
3644 ad->u.net->sport = th->source;
3645 ad->u.net->dport = th->dest;
3646 break;
3647 }
3648
3649 case IPPROTO_UDP: {
3650 struct udphdr _udph, *uh;
3651
3652 if (ntohs(ih->frag_off) & IP_OFFSET)
3653 break;
3654
3655 offset += ihlen;
3656 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3657 if (uh == NULL)
3658 break;
3659
3660 ad->u.net->sport = uh->source;
3661 ad->u.net->dport = uh->dest;
3662 break;
3663 }
3664
3665 case IPPROTO_DCCP: {
3666 struct dccp_hdr _dccph, *dh;
3667
3668 if (ntohs(ih->frag_off) & IP_OFFSET)
3669 break;
3670
3671 offset += ihlen;
3672 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3673 if (dh == NULL)
3674 break;
3675
3676 ad->u.net->sport = dh->dccph_sport;
3677 ad->u.net->dport = dh->dccph_dport;
3678 break;
3679 }
3680
3681 default:
3682 break;
3683 }
3684 out:
3685 return ret;
3686 }
3687
3688 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3689
3690 /* Returns error only if unable to parse addresses */
3691 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3692 struct common_audit_data *ad, u8 *proto)
3693 {
3694 u8 nexthdr;
3695 int ret = -EINVAL, offset;
3696 struct ipv6hdr _ipv6h, *ip6;
3697 __be16 frag_off;
3698
3699 offset = skb_network_offset(skb);
3700 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3701 if (ip6 == NULL)
3702 goto out;
3703
3704 ad->u.net->v6info.saddr = ip6->saddr;
3705 ad->u.net->v6info.daddr = ip6->daddr;
3706 ret = 0;
3707
3708 nexthdr = ip6->nexthdr;
3709 offset += sizeof(_ipv6h);
3710 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3711 if (offset < 0)
3712 goto out;
3713
3714 if (proto)
3715 *proto = nexthdr;
3716
3717 switch (nexthdr) {
3718 case IPPROTO_TCP: {
3719 struct tcphdr _tcph, *th;
3720
3721 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3722 if (th == NULL)
3723 break;
3724
3725 ad->u.net->sport = th->source;
3726 ad->u.net->dport = th->dest;
3727 break;
3728 }
3729
3730 case IPPROTO_UDP: {
3731 struct udphdr _udph, *uh;
3732
3733 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3734 if (uh == NULL)
3735 break;
3736
3737 ad->u.net->sport = uh->source;
3738 ad->u.net->dport = uh->dest;
3739 break;
3740 }
3741
3742 case IPPROTO_DCCP: {
3743 struct dccp_hdr _dccph, *dh;
3744
3745 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3746 if (dh == NULL)
3747 break;
3748
3749 ad->u.net->sport = dh->dccph_sport;
3750 ad->u.net->dport = dh->dccph_dport;
3751 break;
3752 }
3753
3754 /* includes fragments */
3755 default:
3756 break;
3757 }
3758 out:
3759 return ret;
3760 }
3761
3762 #endif /* IPV6 */
3763
3764 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3765 char **_addrp, int src, u8 *proto)
3766 {
3767 char *addrp;
3768 int ret;
3769
3770 switch (ad->u.net->family) {
3771 case PF_INET:
3772 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3773 if (ret)
3774 goto parse_error;
3775 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3776 &ad->u.net->v4info.daddr);
3777 goto okay;
3778
3779 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3780 case PF_INET6:
3781 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3782 if (ret)
3783 goto parse_error;
3784 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3785 &ad->u.net->v6info.daddr);
3786 goto okay;
3787 #endif /* IPV6 */
3788 default:
3789 addrp = NULL;
3790 goto okay;
3791 }
3792
3793 parse_error:
3794 printk(KERN_WARNING
3795 "SELinux: failure in selinux_parse_skb(),"
3796 " unable to parse packet\n");
3797 return ret;
3798
3799 okay:
3800 if (_addrp)
3801 *_addrp = addrp;
3802 return 0;
3803 }
3804
3805 /**
3806 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3807 * @skb: the packet
3808 * @family: protocol family
3809 * @sid: the packet's peer label SID
3810 *
3811 * Description:
3812 * Check the various different forms of network peer labeling and determine
3813 * the peer label/SID for the packet; most of the magic actually occurs in
3814 * the security server function security_net_peersid_cmp(). The function
3815 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3816 * or -EACCES if @sid is invalid due to inconsistencies with the different
3817 * peer labels.
3818 *
3819 */
3820 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3821 {
3822 int err;
3823 u32 xfrm_sid;
3824 u32 nlbl_sid;
3825 u32 nlbl_type;
3826
3827 err = selinux_skb_xfrm_sid(skb, &xfrm_sid);
3828 if (unlikely(err))
3829 return -EACCES;
3830 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3831 if (unlikely(err))
3832 return -EACCES;
3833
3834 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3835 if (unlikely(err)) {
3836 printk(KERN_WARNING
3837 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3838 " unable to determine packet's peer label\n");
3839 return -EACCES;
3840 }
3841
3842 return 0;
3843 }
3844
3845 /* socket security operations */
3846
3847 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3848 u16 secclass, u32 *socksid)
3849 {
3850 if (tsec->sockcreate_sid > SECSID_NULL) {
3851 *socksid = tsec->sockcreate_sid;
3852 return 0;
3853 }
3854
3855 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3856 socksid);
3857 }
3858
3859 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3860 {
3861 struct sk_security_struct *sksec = sk->sk_security;
3862 struct common_audit_data ad;
3863 struct lsm_network_audit net = {0,};
3864 u32 tsid = task_sid(task);
3865
3866 if (sksec->sid == SECINITSID_KERNEL)
3867 return 0;
3868
3869 ad.type = LSM_AUDIT_DATA_NET;
3870 ad.u.net = &net;
3871 ad.u.net->sk = sk;
3872
3873 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3874 }
3875
3876 static int selinux_socket_create(int family, int type,
3877 int protocol, int kern)
3878 {
3879 const struct task_security_struct *tsec = current_security();
3880 u32 newsid;
3881 u16 secclass;
3882 int rc;
3883
3884 if (kern)
3885 return 0;
3886
3887 secclass = socket_type_to_security_class(family, type, protocol);
3888 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3889 if (rc)
3890 return rc;
3891
3892 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3893 }
3894
3895 static int selinux_socket_post_create(struct socket *sock, int family,
3896 int type, int protocol, int kern)
3897 {
3898 const struct task_security_struct *tsec = current_security();
3899 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3900 struct sk_security_struct *sksec;
3901 int err = 0;
3902
3903 isec->sclass = socket_type_to_security_class(family, type, protocol);
3904
3905 if (kern)
3906 isec->sid = SECINITSID_KERNEL;
3907 else {
3908 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3909 if (err)
3910 return err;
3911 }
3912
3913 isec->initialized = 1;
3914
3915 if (sock->sk) {
3916 sksec = sock->sk->sk_security;
3917 sksec->sid = isec->sid;
3918 sksec->sclass = isec->sclass;
3919 err = selinux_netlbl_socket_post_create(sock->sk, family);
3920 }
3921
3922 return err;
3923 }
3924
3925 /* Range of port numbers used to automatically bind.
3926 Need to determine whether we should perform a name_bind
3927 permission check between the socket and the port number. */
3928
3929 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3930 {
3931 struct sock *sk = sock->sk;
3932 u16 family;
3933 int err;
3934
3935 err = sock_has_perm(current, sk, SOCKET__BIND);
3936 if (err)
3937 goto out;
3938
3939 /*
3940 * If PF_INET or PF_INET6, check name_bind permission for the port.
3941 * Multiple address binding for SCTP is not supported yet: we just
3942 * check the first address now.
3943 */
3944 family = sk->sk_family;
3945 if (family == PF_INET || family == PF_INET6) {
3946 char *addrp;
3947 struct sk_security_struct *sksec = sk->sk_security;
3948 struct common_audit_data ad;
3949 struct lsm_network_audit net = {0,};
3950 struct sockaddr_in *addr4 = NULL;
3951 struct sockaddr_in6 *addr6 = NULL;
3952 unsigned short snum;
3953 u32 sid, node_perm;
3954
3955 if (family == PF_INET) {
3956 addr4 = (struct sockaddr_in *)address;
3957 snum = ntohs(addr4->sin_port);
3958 addrp = (char *)&addr4->sin_addr.s_addr;
3959 } else {
3960 addr6 = (struct sockaddr_in6 *)address;
3961 snum = ntohs(addr6->sin6_port);
3962 addrp = (char *)&addr6->sin6_addr.s6_addr;
3963 }
3964
3965 if (snum) {
3966 int low, high;
3967
3968 inet_get_local_port_range(sock_net(sk), &low, &high);
3969
3970 if (snum < max(PROT_SOCK, low) || snum > high) {
3971 err = sel_netport_sid(sk->sk_protocol,
3972 snum, &sid);
3973 if (err)
3974 goto out;
3975 ad.type = LSM_AUDIT_DATA_NET;
3976 ad.u.net = &net;
3977 ad.u.net->sport = htons(snum);
3978 ad.u.net->family = family;
3979 err = avc_has_perm(sksec->sid, sid,
3980 sksec->sclass,
3981 SOCKET__NAME_BIND, &ad);
3982 if (err)
3983 goto out;
3984 }
3985 }
3986
3987 switch (sksec->sclass) {
3988 case SECCLASS_TCP_SOCKET:
3989 node_perm = TCP_SOCKET__NODE_BIND;
3990 break;
3991
3992 case SECCLASS_UDP_SOCKET:
3993 node_perm = UDP_SOCKET__NODE_BIND;
3994 break;
3995
3996 case SECCLASS_DCCP_SOCKET:
3997 node_perm = DCCP_SOCKET__NODE_BIND;
3998 break;
3999
4000 default:
4001 node_perm = RAWIP_SOCKET__NODE_BIND;
4002 break;
4003 }
4004
4005 err = sel_netnode_sid(addrp, family, &sid);
4006 if (err)
4007 goto out;
4008
4009 ad.type = LSM_AUDIT_DATA_NET;
4010 ad.u.net = &net;
4011 ad.u.net->sport = htons(snum);
4012 ad.u.net->family = family;
4013
4014 if (family == PF_INET)
4015 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4016 else
4017 ad.u.net->v6info.saddr = addr6->sin6_addr;
4018
4019 err = avc_has_perm(sksec->sid, sid,
4020 sksec->sclass, node_perm, &ad);
4021 if (err)
4022 goto out;
4023 }
4024 out:
4025 return err;
4026 }
4027
4028 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4029 {
4030 struct sock *sk = sock->sk;
4031 struct sk_security_struct *sksec = sk->sk_security;
4032 int err;
4033
4034 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4035 if (err)
4036 return err;
4037
4038 /*
4039 * If a TCP or DCCP socket, check name_connect permission for the port.
4040 */
4041 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4042 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4043 struct common_audit_data ad;
4044 struct lsm_network_audit net = {0,};
4045 struct sockaddr_in *addr4 = NULL;
4046 struct sockaddr_in6 *addr6 = NULL;
4047 unsigned short snum;
4048 u32 sid, perm;
4049
4050 if (sk->sk_family == PF_INET) {
4051 addr4 = (struct sockaddr_in *)address;
4052 if (addrlen < sizeof(struct sockaddr_in))
4053 return -EINVAL;
4054 snum = ntohs(addr4->sin_port);
4055 } else {
4056 addr6 = (struct sockaddr_in6 *)address;
4057 if (addrlen < SIN6_LEN_RFC2133)
4058 return -EINVAL;
4059 snum = ntohs(addr6->sin6_port);
4060 }
4061
4062 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4063 if (err)
4064 goto out;
4065
4066 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4067 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4068
4069 ad.type = LSM_AUDIT_DATA_NET;
4070 ad.u.net = &net;
4071 ad.u.net->dport = htons(snum);
4072 ad.u.net->family = sk->sk_family;
4073 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4074 if (err)
4075 goto out;
4076 }
4077
4078 err = selinux_netlbl_socket_connect(sk, address);
4079
4080 out:
4081 return err;
4082 }
4083
4084 static int selinux_socket_listen(struct socket *sock, int backlog)
4085 {
4086 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4087 }
4088
4089 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4090 {
4091 int err;
4092 struct inode_security_struct *isec;
4093 struct inode_security_struct *newisec;
4094
4095 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4096 if (err)
4097 return err;
4098
4099 newisec = SOCK_INODE(newsock)->i_security;
4100
4101 isec = SOCK_INODE(sock)->i_security;
4102 newisec->sclass = isec->sclass;
4103 newisec->sid = isec->sid;
4104 newisec->initialized = 1;
4105
4106 return 0;
4107 }
4108
4109 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4110 int size)
4111 {
4112 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4113 }
4114
4115 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4116 int size, int flags)
4117 {
4118 return sock_has_perm(current, sock->sk, SOCKET__READ);
4119 }
4120
4121 static int selinux_socket_getsockname(struct socket *sock)
4122 {
4123 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4124 }
4125
4126 static int selinux_socket_getpeername(struct socket *sock)
4127 {
4128 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4129 }
4130
4131 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4132 {
4133 int err;
4134
4135 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4136 if (err)
4137 return err;
4138
4139 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4140 }
4141
4142 static int selinux_socket_getsockopt(struct socket *sock, int level,
4143 int optname)
4144 {
4145 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4146 }
4147
4148 static int selinux_socket_shutdown(struct socket *sock, int how)
4149 {
4150 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4151 }
4152
4153 static int selinux_socket_unix_stream_connect(struct sock *sock,
4154 struct sock *other,
4155 struct sock *newsk)
4156 {
4157 struct sk_security_struct *sksec_sock = sock->sk_security;
4158 struct sk_security_struct *sksec_other = other->sk_security;
4159 struct sk_security_struct *sksec_new = newsk->sk_security;
4160 struct common_audit_data ad;
4161 struct lsm_network_audit net = {0,};
4162 int err;
4163
4164 ad.type = LSM_AUDIT_DATA_NET;
4165 ad.u.net = &net;
4166 ad.u.net->sk = other;
4167
4168 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4169 sksec_other->sclass,
4170 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4171 if (err)
4172 return err;
4173
4174 /* server child socket */
4175 sksec_new->peer_sid = sksec_sock->sid;
4176 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4177 &sksec_new->sid);
4178 if (err)
4179 return err;
4180
4181 /* connecting socket */
4182 sksec_sock->peer_sid = sksec_new->sid;
4183
4184 return 0;
4185 }
4186
4187 static int selinux_socket_unix_may_send(struct socket *sock,
4188 struct socket *other)
4189 {
4190 struct sk_security_struct *ssec = sock->sk->sk_security;
4191 struct sk_security_struct *osec = other->sk->sk_security;
4192 struct common_audit_data ad;
4193 struct lsm_network_audit net = {0,};
4194
4195 ad.type = LSM_AUDIT_DATA_NET;
4196 ad.u.net = &net;
4197 ad.u.net->sk = other->sk;
4198
4199 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4200 &ad);
4201 }
4202
4203 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4204 u32 peer_sid,
4205 struct common_audit_data *ad)
4206 {
4207 int err;
4208 u32 if_sid;
4209 u32 node_sid;
4210
4211 err = sel_netif_sid(ifindex, &if_sid);
4212 if (err)
4213 return err;
4214 err = avc_has_perm(peer_sid, if_sid,
4215 SECCLASS_NETIF, NETIF__INGRESS, ad);
4216 if (err)
4217 return err;
4218
4219 err = sel_netnode_sid(addrp, family, &node_sid);
4220 if (err)
4221 return err;
4222 return avc_has_perm(peer_sid, node_sid,
4223 SECCLASS_NODE, NODE__RECVFROM, ad);
4224 }
4225
4226 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4227 u16 family)
4228 {
4229 int err = 0;
4230 struct sk_security_struct *sksec = sk->sk_security;
4231 u32 sk_sid = sksec->sid;
4232 struct common_audit_data ad;
4233 struct lsm_network_audit net = {0,};
4234 char *addrp;
4235
4236 ad.type = LSM_AUDIT_DATA_NET;
4237 ad.u.net = &net;
4238 ad.u.net->netif = skb->skb_iif;
4239 ad.u.net->family = family;
4240 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4241 if (err)
4242 return err;
4243
4244 if (selinux_secmark_enabled()) {
4245 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4246 PACKET__RECV, &ad);
4247 if (err)
4248 return err;
4249 }
4250
4251 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4252 if (err)
4253 return err;
4254 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4255
4256 return err;
4257 }
4258
4259 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4260 {
4261 int err;
4262 struct sk_security_struct *sksec = sk->sk_security;
4263 u16 family = sk->sk_family;
4264 u32 sk_sid = sksec->sid;
4265 struct common_audit_data ad;
4266 struct lsm_network_audit net = {0,};
4267 char *addrp;
4268 u8 secmark_active;
4269 u8 peerlbl_active;
4270
4271 if (family != PF_INET && family != PF_INET6)
4272 return 0;
4273
4274 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4275 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4276 family = PF_INET;
4277
4278 /* If any sort of compatibility mode is enabled then handoff processing
4279 * to the selinux_sock_rcv_skb_compat() function to deal with the
4280 * special handling. We do this in an attempt to keep this function
4281 * as fast and as clean as possible. */
4282 if (!selinux_policycap_netpeer)
4283 return selinux_sock_rcv_skb_compat(sk, skb, family);
4284
4285 secmark_active = selinux_secmark_enabled();
4286 peerlbl_active = selinux_peerlbl_enabled();
4287 if (!secmark_active && !peerlbl_active)
4288 return 0;
4289
4290 ad.type = LSM_AUDIT_DATA_NET;
4291 ad.u.net = &net;
4292 ad.u.net->netif = skb->skb_iif;
4293 ad.u.net->family = family;
4294 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4295 if (err)
4296 return err;
4297
4298 if (peerlbl_active) {
4299 u32 peer_sid;
4300
4301 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4302 if (err)
4303 return err;
4304 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4305 peer_sid, &ad);
4306 if (err) {
4307 selinux_netlbl_err(skb, err, 0);
4308 return err;
4309 }
4310 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4311 PEER__RECV, &ad);
4312 if (err)
4313 selinux_netlbl_err(skb, err, 0);
4314 }
4315
4316 if (secmark_active) {
4317 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4318 PACKET__RECV, &ad);
4319 if (err)
4320 return err;
4321 }
4322
4323 return err;
4324 }
4325
4326 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4327 int __user *optlen, unsigned len)
4328 {
4329 int err = 0;
4330 char *scontext;
4331 u32 scontext_len;
4332 struct sk_security_struct *sksec = sock->sk->sk_security;
4333 u32 peer_sid = SECSID_NULL;
4334
4335 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4336 sksec->sclass == SECCLASS_TCP_SOCKET)
4337 peer_sid = sksec->peer_sid;
4338 if (peer_sid == SECSID_NULL)
4339 return -ENOPROTOOPT;
4340
4341 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4342 if (err)
4343 return err;
4344
4345 if (scontext_len > len) {
4346 err = -ERANGE;
4347 goto out_len;
4348 }
4349
4350 if (copy_to_user(optval, scontext, scontext_len))
4351 err = -EFAULT;
4352
4353 out_len:
4354 if (put_user(scontext_len, optlen))
4355 err = -EFAULT;
4356 kfree(scontext);
4357 return err;
4358 }
4359
4360 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4361 {
4362 u32 peer_secid = SECSID_NULL;
4363 u16 family;
4364
4365 if (skb && skb->protocol == htons(ETH_P_IP))
4366 family = PF_INET;
4367 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4368 family = PF_INET6;
4369 else if (sock)
4370 family = sock->sk->sk_family;
4371 else
4372 goto out;
4373
4374 if (sock && family == PF_UNIX)
4375 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4376 else if (skb)
4377 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4378
4379 out:
4380 *secid = peer_secid;
4381 if (peer_secid == SECSID_NULL)
4382 return -EINVAL;
4383 return 0;
4384 }
4385
4386 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4387 {
4388 struct sk_security_struct *sksec;
4389
4390 sksec = kzalloc(sizeof(*sksec), priority);
4391 if (!sksec)
4392 return -ENOMEM;
4393
4394 sksec->peer_sid = SECINITSID_UNLABELED;
4395 sksec->sid = SECINITSID_UNLABELED;
4396 selinux_netlbl_sk_security_reset(sksec);
4397 sk->sk_security = sksec;
4398
4399 return 0;
4400 }
4401
4402 static void selinux_sk_free_security(struct sock *sk)
4403 {
4404 struct sk_security_struct *sksec = sk->sk_security;
4405
4406 sk->sk_security = NULL;
4407 selinux_netlbl_sk_security_free(sksec);
4408 kfree(sksec);
4409 }
4410
4411 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4412 {
4413 struct sk_security_struct *sksec = sk->sk_security;
4414 struct sk_security_struct *newsksec = newsk->sk_security;
4415
4416 newsksec->sid = sksec->sid;
4417 newsksec->peer_sid = sksec->peer_sid;
4418 newsksec->sclass = sksec->sclass;
4419
4420 selinux_netlbl_sk_security_reset(newsksec);
4421 }
4422
4423 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4424 {
4425 if (!sk)
4426 *secid = SECINITSID_ANY_SOCKET;
4427 else {
4428 struct sk_security_struct *sksec = sk->sk_security;
4429
4430 *secid = sksec->sid;
4431 }
4432 }
4433
4434 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4435 {
4436 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4437 struct sk_security_struct *sksec = sk->sk_security;
4438
4439 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4440 sk->sk_family == PF_UNIX)
4441 isec->sid = sksec->sid;
4442 sksec->sclass = isec->sclass;
4443 }
4444
4445 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4446 struct request_sock *req)
4447 {
4448 struct sk_security_struct *sksec = sk->sk_security;
4449 int err;
4450 u16 family = sk->sk_family;
4451 u32 newsid;
4452 u32 peersid;
4453
4454 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4455 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4456 family = PF_INET;
4457
4458 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4459 if (err)
4460 return err;
4461 if (peersid == SECSID_NULL) {
4462 req->secid = sksec->sid;
4463 req->peer_secid = SECSID_NULL;
4464 } else {
4465 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4466 if (err)
4467 return err;
4468 req->secid = newsid;
4469 req->peer_secid = peersid;
4470 }
4471
4472 return selinux_netlbl_inet_conn_request(req, family);
4473 }
4474
4475 static void selinux_inet_csk_clone(struct sock *newsk,
4476 const struct request_sock *req)
4477 {
4478 struct sk_security_struct *newsksec = newsk->sk_security;
4479
4480 newsksec->sid = req->secid;
4481 newsksec->peer_sid = req->peer_secid;
4482 /* NOTE: Ideally, we should also get the isec->sid for the
4483 new socket in sync, but we don't have the isec available yet.
4484 So we will wait until sock_graft to do it, by which
4485 time it will have been created and available. */
4486
4487 /* We don't need to take any sort of lock here as we are the only
4488 * thread with access to newsksec */
4489 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4490 }
4491
4492 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4493 {
4494 u16 family = sk->sk_family;
4495 struct sk_security_struct *sksec = sk->sk_security;
4496
4497 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4498 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4499 family = PF_INET;
4500
4501 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4502 }
4503
4504 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4505 {
4506 skb_set_owner_w(skb, sk);
4507 }
4508
4509 static int selinux_secmark_relabel_packet(u32 sid)
4510 {
4511 const struct task_security_struct *__tsec;
4512 u32 tsid;
4513
4514 __tsec = current_security();
4515 tsid = __tsec->sid;
4516
4517 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4518 }
4519
4520 static void selinux_secmark_refcount_inc(void)
4521 {
4522 atomic_inc(&selinux_secmark_refcount);
4523 }
4524
4525 static void selinux_secmark_refcount_dec(void)
4526 {
4527 atomic_dec(&selinux_secmark_refcount);
4528 }
4529
4530 static void selinux_req_classify_flow(const struct request_sock *req,
4531 struct flowi *fl)
4532 {
4533 fl->flowi_secid = req->secid;
4534 }
4535
4536 static int selinux_tun_dev_alloc_security(void **security)
4537 {
4538 struct tun_security_struct *tunsec;
4539
4540 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4541 if (!tunsec)
4542 return -ENOMEM;
4543 tunsec->sid = current_sid();
4544
4545 *security = tunsec;
4546 return 0;
4547 }
4548
4549 static void selinux_tun_dev_free_security(void *security)
4550 {
4551 kfree(security);
4552 }
4553
4554 static int selinux_tun_dev_create(void)
4555 {
4556 u32 sid = current_sid();
4557
4558 /* we aren't taking into account the "sockcreate" SID since the socket
4559 * that is being created here is not a socket in the traditional sense,
4560 * instead it is a private sock, accessible only to the kernel, and
4561 * representing a wide range of network traffic spanning multiple
4562 * connections unlike traditional sockets - check the TUN driver to
4563 * get a better understanding of why this socket is special */
4564
4565 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4566 NULL);
4567 }
4568
4569 static int selinux_tun_dev_attach_queue(void *security)
4570 {
4571 struct tun_security_struct *tunsec = security;
4572
4573 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4574 TUN_SOCKET__ATTACH_QUEUE, NULL);
4575 }
4576
4577 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4578 {
4579 struct tun_security_struct *tunsec = security;
4580 struct sk_security_struct *sksec = sk->sk_security;
4581
4582 /* we don't currently perform any NetLabel based labeling here and it
4583 * isn't clear that we would want to do so anyway; while we could apply
4584 * labeling without the support of the TUN user the resulting labeled
4585 * traffic from the other end of the connection would almost certainly
4586 * cause confusion to the TUN user that had no idea network labeling
4587 * protocols were being used */
4588
4589 sksec->sid = tunsec->sid;
4590 sksec->sclass = SECCLASS_TUN_SOCKET;
4591
4592 return 0;
4593 }
4594
4595 static int selinux_tun_dev_open(void *security)
4596 {
4597 struct tun_security_struct *tunsec = security;
4598 u32 sid = current_sid();
4599 int err;
4600
4601 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4602 TUN_SOCKET__RELABELFROM, NULL);
4603 if (err)
4604 return err;
4605 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4606 TUN_SOCKET__RELABELTO, NULL);
4607 if (err)
4608 return err;
4609 tunsec->sid = sid;
4610
4611 return 0;
4612 }
4613
4614 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4615 {
4616 int err = 0;
4617 u32 perm;
4618 struct nlmsghdr *nlh;
4619 struct sk_security_struct *sksec = sk->sk_security;
4620
4621 if (skb->len < NLMSG_HDRLEN) {
4622 err = -EINVAL;
4623 goto out;
4624 }
4625 nlh = nlmsg_hdr(skb);
4626
4627 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4628 if (err) {
4629 if (err == -EINVAL) {
4630 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4631 "SELinux: unrecognized netlink message"
4632 " type=%hu for sclass=%hu\n",
4633 nlh->nlmsg_type, sksec->sclass);
4634 if (!selinux_enforcing || security_get_allow_unknown())
4635 err = 0;
4636 }
4637
4638 /* Ignore */
4639 if (err == -ENOENT)
4640 err = 0;
4641 goto out;
4642 }
4643
4644 err = sock_has_perm(current, sk, perm);
4645 out:
4646 return err;
4647 }
4648
4649 #ifdef CONFIG_NETFILTER
4650
4651 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4652 u16 family)
4653 {
4654 int err;
4655 char *addrp;
4656 u32 peer_sid;
4657 struct common_audit_data ad;
4658 struct lsm_network_audit net = {0,};
4659 u8 secmark_active;
4660 u8 netlbl_active;
4661 u8 peerlbl_active;
4662
4663 if (!selinux_policycap_netpeer)
4664 return NF_ACCEPT;
4665
4666 secmark_active = selinux_secmark_enabled();
4667 netlbl_active = netlbl_enabled();
4668 peerlbl_active = selinux_peerlbl_enabled();
4669 if (!secmark_active && !peerlbl_active)
4670 return NF_ACCEPT;
4671
4672 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4673 return NF_DROP;
4674
4675 ad.type = LSM_AUDIT_DATA_NET;
4676 ad.u.net = &net;
4677 ad.u.net->netif = ifindex;
4678 ad.u.net->family = family;
4679 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4680 return NF_DROP;
4681
4682 if (peerlbl_active) {
4683 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4684 peer_sid, &ad);
4685 if (err) {
4686 selinux_netlbl_err(skb, err, 1);
4687 return NF_DROP;
4688 }
4689 }
4690
4691 if (secmark_active)
4692 if (avc_has_perm(peer_sid, skb->secmark,
4693 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4694 return NF_DROP;
4695
4696 if (netlbl_active)
4697 /* we do this in the FORWARD path and not the POST_ROUTING
4698 * path because we want to make sure we apply the necessary
4699 * labeling before IPsec is applied so we can leverage AH
4700 * protection */
4701 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4702 return NF_DROP;
4703
4704 return NF_ACCEPT;
4705 }
4706
4707 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4708 struct sk_buff *skb,
4709 const struct net_device *in,
4710 const struct net_device *out,
4711 int (*okfn)(struct sk_buff *))
4712 {
4713 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4714 }
4715
4716 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4717 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4718 struct sk_buff *skb,
4719 const struct net_device *in,
4720 const struct net_device *out,
4721 int (*okfn)(struct sk_buff *))
4722 {
4723 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4724 }
4725 #endif /* IPV6 */
4726
4727 static unsigned int selinux_ip_output(struct sk_buff *skb,
4728 u16 family)
4729 {
4730 u32 sid;
4731
4732 if (!netlbl_enabled())
4733 return NF_ACCEPT;
4734
4735 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4736 * because we want to make sure we apply the necessary labeling
4737 * before IPsec is applied so we can leverage AH protection */
4738 if (skb->sk) {
4739 struct sk_security_struct *sksec = skb->sk->sk_security;
4740 sid = sksec->sid;
4741 } else
4742 sid = SECINITSID_KERNEL;
4743 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4744 return NF_DROP;
4745
4746 return NF_ACCEPT;
4747 }
4748
4749 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4750 struct sk_buff *skb,
4751 const struct net_device *in,
4752 const struct net_device *out,
4753 int (*okfn)(struct sk_buff *))
4754 {
4755 return selinux_ip_output(skb, PF_INET);
4756 }
4757
4758 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4759 int ifindex,
4760 u16 family)
4761 {
4762 struct sock *sk = skb->sk;
4763 struct sk_security_struct *sksec;
4764 struct common_audit_data ad;
4765 struct lsm_network_audit net = {0,};
4766 char *addrp;
4767 u8 proto;
4768
4769 if (sk == NULL)
4770 return NF_ACCEPT;
4771 sksec = sk->sk_security;
4772
4773 ad.type = LSM_AUDIT_DATA_NET;
4774 ad.u.net = &net;
4775 ad.u.net->netif = ifindex;
4776 ad.u.net->family = family;
4777 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4778 return NF_DROP;
4779
4780 if (selinux_secmark_enabled())
4781 if (avc_has_perm(sksec->sid, skb->secmark,
4782 SECCLASS_PACKET, PACKET__SEND, &ad))
4783 return NF_DROP_ERR(-ECONNREFUSED);
4784
4785 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4786 return NF_DROP_ERR(-ECONNREFUSED);
4787
4788 return NF_ACCEPT;
4789 }
4790
4791 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4792 u16 family)
4793 {
4794 u32 secmark_perm;
4795 u32 peer_sid;
4796 struct sock *sk;
4797 struct common_audit_data ad;
4798 struct lsm_network_audit net = {0,};
4799 char *addrp;
4800 u8 secmark_active;
4801 u8 peerlbl_active;
4802
4803 /* If any sort of compatibility mode is enabled then handoff processing
4804 * to the selinux_ip_postroute_compat() function to deal with the
4805 * special handling. We do this in an attempt to keep this function
4806 * as fast and as clean as possible. */
4807 if (!selinux_policycap_netpeer)
4808 return selinux_ip_postroute_compat(skb, ifindex, family);
4809 #ifdef CONFIG_XFRM
4810 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4811 * packet transformation so allow the packet to pass without any checks
4812 * since we'll have another chance to perform access control checks
4813 * when the packet is on it's final way out.
4814 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4815 * is NULL, in this case go ahead and apply access control. */
4816 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4817 return NF_ACCEPT;
4818 #endif
4819 secmark_active = selinux_secmark_enabled();
4820 peerlbl_active = selinux_peerlbl_enabled();
4821 if (!secmark_active && !peerlbl_active)
4822 return NF_ACCEPT;
4823
4824 /* if the packet is being forwarded then get the peer label from the
4825 * packet itself; otherwise check to see if it is from a local
4826 * application or the kernel, if from an application get the peer label
4827 * from the sending socket, otherwise use the kernel's sid */
4828 sk = skb->sk;
4829 if (sk == NULL) {
4830 if (skb->skb_iif) {
4831 secmark_perm = PACKET__FORWARD_OUT;
4832 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4833 return NF_DROP;
4834 } else {
4835 secmark_perm = PACKET__SEND;
4836 peer_sid = SECINITSID_KERNEL;
4837 }
4838 } else {
4839 struct sk_security_struct *sksec = sk->sk_security;
4840 peer_sid = sksec->sid;
4841 secmark_perm = PACKET__SEND;
4842 }
4843
4844 ad.type = LSM_AUDIT_DATA_NET;
4845 ad.u.net = &net;
4846 ad.u.net->netif = ifindex;
4847 ad.u.net->family = family;
4848 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4849 return NF_DROP;
4850
4851 if (secmark_active)
4852 if (avc_has_perm(peer_sid, skb->secmark,
4853 SECCLASS_PACKET, secmark_perm, &ad))
4854 return NF_DROP_ERR(-ECONNREFUSED);
4855
4856 if (peerlbl_active) {
4857 u32 if_sid;
4858 u32 node_sid;
4859
4860 if (sel_netif_sid(ifindex, &if_sid))
4861 return NF_DROP;
4862 if (avc_has_perm(peer_sid, if_sid,
4863 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4864 return NF_DROP_ERR(-ECONNREFUSED);
4865
4866 if (sel_netnode_sid(addrp, family, &node_sid))
4867 return NF_DROP;
4868 if (avc_has_perm(peer_sid, node_sid,
4869 SECCLASS_NODE, NODE__SENDTO, &ad))
4870 return NF_DROP_ERR(-ECONNREFUSED);
4871 }
4872
4873 return NF_ACCEPT;
4874 }
4875
4876 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
4877 struct sk_buff *skb,
4878 const struct net_device *in,
4879 const struct net_device *out,
4880 int (*okfn)(struct sk_buff *))
4881 {
4882 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4883 }
4884
4885 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4886 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
4887 struct sk_buff *skb,
4888 const struct net_device *in,
4889 const struct net_device *out,
4890 int (*okfn)(struct sk_buff *))
4891 {
4892 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4893 }
4894 #endif /* IPV6 */
4895
4896 #endif /* CONFIG_NETFILTER */
4897
4898 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4899 {
4900 int err;
4901
4902 err = cap_netlink_send(sk, skb);
4903 if (err)
4904 return err;
4905
4906 return selinux_nlmsg_perm(sk, skb);
4907 }
4908
4909 static int ipc_alloc_security(struct task_struct *task,
4910 struct kern_ipc_perm *perm,
4911 u16 sclass)
4912 {
4913 struct ipc_security_struct *isec;
4914 u32 sid;
4915
4916 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4917 if (!isec)
4918 return -ENOMEM;
4919
4920 sid = task_sid(task);
4921 isec->sclass = sclass;
4922 isec->sid = sid;
4923 perm->security = isec;
4924
4925 return 0;
4926 }
4927
4928 static void ipc_free_security(struct kern_ipc_perm *perm)
4929 {
4930 struct ipc_security_struct *isec = perm->security;
4931 perm->security = NULL;
4932 kfree(isec);
4933 }
4934
4935 static int msg_msg_alloc_security(struct msg_msg *msg)
4936 {
4937 struct msg_security_struct *msec;
4938
4939 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4940 if (!msec)
4941 return -ENOMEM;
4942
4943 msec->sid = SECINITSID_UNLABELED;
4944 msg->security = msec;
4945
4946 return 0;
4947 }
4948
4949 static void msg_msg_free_security(struct msg_msg *msg)
4950 {
4951 struct msg_security_struct *msec = msg->security;
4952
4953 msg->security = NULL;
4954 kfree(msec);
4955 }
4956
4957 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4958 u32 perms)
4959 {
4960 struct ipc_security_struct *isec;
4961 struct common_audit_data ad;
4962 u32 sid = current_sid();
4963
4964 isec = ipc_perms->security;
4965
4966 ad.type = LSM_AUDIT_DATA_IPC;
4967 ad.u.ipc_id = ipc_perms->key;
4968
4969 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4970 }
4971
4972 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4973 {
4974 return msg_msg_alloc_security(msg);
4975 }
4976
4977 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4978 {
4979 msg_msg_free_security(msg);
4980 }
4981
4982 /* message queue security operations */
4983 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4984 {
4985 struct ipc_security_struct *isec;
4986 struct common_audit_data ad;
4987 u32 sid = current_sid();
4988 int rc;
4989
4990 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4991 if (rc)
4992 return rc;
4993
4994 isec = msq->q_perm.security;
4995
4996 ad.type = LSM_AUDIT_DATA_IPC;
4997 ad.u.ipc_id = msq->q_perm.key;
4998
4999 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5000 MSGQ__CREATE, &ad);
5001 if (rc) {
5002 ipc_free_security(&msq->q_perm);
5003 return rc;
5004 }
5005 return 0;
5006 }
5007
5008 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5009 {
5010 ipc_free_security(&msq->q_perm);
5011 }
5012
5013 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5014 {
5015 struct ipc_security_struct *isec;
5016 struct common_audit_data ad;
5017 u32 sid = current_sid();
5018
5019 isec = msq->q_perm.security;
5020
5021 ad.type = LSM_AUDIT_DATA_IPC;
5022 ad.u.ipc_id = msq->q_perm.key;
5023
5024 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5025 MSGQ__ASSOCIATE, &ad);
5026 }
5027
5028 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5029 {
5030 int err;
5031 int perms;
5032
5033 switch (cmd) {
5034 case IPC_INFO:
5035 case MSG_INFO:
5036 /* No specific object, just general system-wide information. */
5037 return task_has_system(current, SYSTEM__IPC_INFO);
5038 case IPC_STAT:
5039 case MSG_STAT:
5040 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5041 break;
5042 case IPC_SET:
5043 perms = MSGQ__SETATTR;
5044 break;
5045 case IPC_RMID:
5046 perms = MSGQ__DESTROY;
5047 break;
5048 default:
5049 return 0;
5050 }
5051
5052 err = ipc_has_perm(&msq->q_perm, perms);
5053 return err;
5054 }
5055
5056 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5057 {
5058 struct ipc_security_struct *isec;
5059 struct msg_security_struct *msec;
5060 struct common_audit_data ad;
5061 u32 sid = current_sid();
5062 int rc;
5063
5064 isec = msq->q_perm.security;
5065 msec = msg->security;
5066
5067 /*
5068 * First time through, need to assign label to the message
5069 */
5070 if (msec->sid == SECINITSID_UNLABELED) {
5071 /*
5072 * Compute new sid based on current process and
5073 * message queue this message will be stored in
5074 */
5075 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5076 NULL, &msec->sid);
5077 if (rc)
5078 return rc;
5079 }
5080
5081 ad.type = LSM_AUDIT_DATA_IPC;
5082 ad.u.ipc_id = msq->q_perm.key;
5083
5084 /* Can this process write to the queue? */
5085 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5086 MSGQ__WRITE, &ad);
5087 if (!rc)
5088 /* Can this process send the message */
5089 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5090 MSG__SEND, &ad);
5091 if (!rc)
5092 /* Can the message be put in the queue? */
5093 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5094 MSGQ__ENQUEUE, &ad);
5095
5096 return rc;
5097 }
5098
5099 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5100 struct task_struct *target,
5101 long type, int mode)
5102 {
5103 struct ipc_security_struct *isec;
5104 struct msg_security_struct *msec;
5105 struct common_audit_data ad;
5106 u32 sid = task_sid(target);
5107 int rc;
5108
5109 isec = msq->q_perm.security;
5110 msec = msg->security;
5111
5112 ad.type = LSM_AUDIT_DATA_IPC;
5113 ad.u.ipc_id = msq->q_perm.key;
5114
5115 rc = avc_has_perm(sid, isec->sid,
5116 SECCLASS_MSGQ, MSGQ__READ, &ad);
5117 if (!rc)
5118 rc = avc_has_perm(sid, msec->sid,
5119 SECCLASS_MSG, MSG__RECEIVE, &ad);
5120 return rc;
5121 }
5122
5123 /* Shared Memory security operations */
5124 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5125 {
5126 struct ipc_security_struct *isec;
5127 struct common_audit_data ad;
5128 u32 sid = current_sid();
5129 int rc;
5130
5131 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5132 if (rc)
5133 return rc;
5134
5135 isec = shp->shm_perm.security;
5136
5137 ad.type = LSM_AUDIT_DATA_IPC;
5138 ad.u.ipc_id = shp->shm_perm.key;
5139
5140 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5141 SHM__CREATE, &ad);
5142 if (rc) {
5143 ipc_free_security(&shp->shm_perm);
5144 return rc;
5145 }
5146 return 0;
5147 }
5148
5149 static void selinux_shm_free_security(struct shmid_kernel *shp)
5150 {
5151 ipc_free_security(&shp->shm_perm);
5152 }
5153
5154 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5155 {
5156 struct ipc_security_struct *isec;
5157 struct common_audit_data ad;
5158 u32 sid = current_sid();
5159
5160 isec = shp->shm_perm.security;
5161
5162 ad.type = LSM_AUDIT_DATA_IPC;
5163 ad.u.ipc_id = shp->shm_perm.key;
5164
5165 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5166 SHM__ASSOCIATE, &ad);
5167 }
5168
5169 /* Note, at this point, shp is locked down */
5170 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5171 {
5172 int perms;
5173 int err;
5174
5175 switch (cmd) {
5176 case IPC_INFO:
5177 case SHM_INFO:
5178 /* No specific object, just general system-wide information. */
5179 return task_has_system(current, SYSTEM__IPC_INFO);
5180 case IPC_STAT:
5181 case SHM_STAT:
5182 perms = SHM__GETATTR | SHM__ASSOCIATE;
5183 break;
5184 case IPC_SET:
5185 perms = SHM__SETATTR;
5186 break;
5187 case SHM_LOCK:
5188 case SHM_UNLOCK:
5189 perms = SHM__LOCK;
5190 break;
5191 case IPC_RMID:
5192 perms = SHM__DESTROY;
5193 break;
5194 default:
5195 return 0;
5196 }
5197
5198 err = ipc_has_perm(&shp->shm_perm, perms);
5199 return err;
5200 }
5201
5202 static int selinux_shm_shmat(struct shmid_kernel *shp,
5203 char __user *shmaddr, int shmflg)
5204 {
5205 u32 perms;
5206
5207 if (shmflg & SHM_RDONLY)
5208 perms = SHM__READ;
5209 else
5210 perms = SHM__READ | SHM__WRITE;
5211
5212 return ipc_has_perm(&shp->shm_perm, perms);
5213 }
5214
5215 /* Semaphore security operations */
5216 static int selinux_sem_alloc_security(struct sem_array *sma)
5217 {
5218 struct ipc_security_struct *isec;
5219 struct common_audit_data ad;
5220 u32 sid = current_sid();
5221 int rc;
5222
5223 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5224 if (rc)
5225 return rc;
5226
5227 isec = sma->sem_perm.security;
5228
5229 ad.type = LSM_AUDIT_DATA_IPC;
5230 ad.u.ipc_id = sma->sem_perm.key;
5231
5232 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5233 SEM__CREATE, &ad);
5234 if (rc) {
5235 ipc_free_security(&sma->sem_perm);
5236 return rc;
5237 }
5238 return 0;
5239 }
5240
5241 static void selinux_sem_free_security(struct sem_array *sma)
5242 {
5243 ipc_free_security(&sma->sem_perm);
5244 }
5245
5246 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5247 {
5248 struct ipc_security_struct *isec;
5249 struct common_audit_data ad;
5250 u32 sid = current_sid();
5251
5252 isec = sma->sem_perm.security;
5253
5254 ad.type = LSM_AUDIT_DATA_IPC;
5255 ad.u.ipc_id = sma->sem_perm.key;
5256
5257 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5258 SEM__ASSOCIATE, &ad);
5259 }
5260
5261 /* Note, at this point, sma is locked down */
5262 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5263 {
5264 int err;
5265 u32 perms;
5266
5267 switch (cmd) {
5268 case IPC_INFO:
5269 case SEM_INFO:
5270 /* No specific object, just general system-wide information. */
5271 return task_has_system(current, SYSTEM__IPC_INFO);
5272 case GETPID:
5273 case GETNCNT:
5274 case GETZCNT:
5275 perms = SEM__GETATTR;
5276 break;
5277 case GETVAL:
5278 case GETALL:
5279 perms = SEM__READ;
5280 break;
5281 case SETVAL:
5282 case SETALL:
5283 perms = SEM__WRITE;
5284 break;
5285 case IPC_RMID:
5286 perms = SEM__DESTROY;
5287 break;
5288 case IPC_SET:
5289 perms = SEM__SETATTR;
5290 break;
5291 case IPC_STAT:
5292 case SEM_STAT:
5293 perms = SEM__GETATTR | SEM__ASSOCIATE;
5294 break;
5295 default:
5296 return 0;
5297 }
5298
5299 err = ipc_has_perm(&sma->sem_perm, perms);
5300 return err;
5301 }
5302
5303 static int selinux_sem_semop(struct sem_array *sma,
5304 struct sembuf *sops, unsigned nsops, int alter)
5305 {
5306 u32 perms;
5307
5308 if (alter)
5309 perms = SEM__READ | SEM__WRITE;
5310 else
5311 perms = SEM__READ;
5312
5313 return ipc_has_perm(&sma->sem_perm, perms);
5314 }
5315
5316 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5317 {
5318 u32 av = 0;
5319
5320 av = 0;
5321 if (flag & S_IRUGO)
5322 av |= IPC__UNIX_READ;
5323 if (flag & S_IWUGO)
5324 av |= IPC__UNIX_WRITE;
5325
5326 if (av == 0)
5327 return 0;
5328
5329 return ipc_has_perm(ipcp, av);
5330 }
5331
5332 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5333 {
5334 struct ipc_security_struct *isec = ipcp->security;
5335 *secid = isec->sid;
5336 }
5337
5338 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5339 {
5340 if (inode)
5341 inode_doinit_with_dentry(inode, dentry);
5342 }
5343
5344 static int selinux_getprocattr(struct task_struct *p,
5345 char *name, char **value)
5346 {
5347 const struct task_security_struct *__tsec;
5348 u32 sid;
5349 int error;
5350 unsigned len;
5351
5352 if (current != p) {
5353 error = current_has_perm(p, PROCESS__GETATTR);
5354 if (error)
5355 return error;
5356 }
5357
5358 rcu_read_lock();
5359 __tsec = __task_cred(p)->security;
5360
5361 if (!strcmp(name, "current"))
5362 sid = __tsec->sid;
5363 else if (!strcmp(name, "prev"))
5364 sid = __tsec->osid;
5365 else if (!strcmp(name, "exec"))
5366 sid = __tsec->exec_sid;
5367 else if (!strcmp(name, "fscreate"))
5368 sid = __tsec->create_sid;
5369 else if (!strcmp(name, "keycreate"))
5370 sid = __tsec->keycreate_sid;
5371 else if (!strcmp(name, "sockcreate"))
5372 sid = __tsec->sockcreate_sid;
5373 else
5374 goto invalid;
5375 rcu_read_unlock();
5376
5377 if (!sid)
5378 return 0;
5379
5380 error = security_sid_to_context(sid, value, &len);
5381 if (error)
5382 return error;
5383 return len;
5384
5385 invalid:
5386 rcu_read_unlock();
5387 return -EINVAL;
5388 }
5389
5390 static int selinux_setprocattr(struct task_struct *p,
5391 char *name, void *value, size_t size)
5392 {
5393 struct task_security_struct *tsec;
5394 struct task_struct *tracer;
5395 struct cred *new;
5396 u32 sid = 0, ptsid;
5397 int error;
5398 char *str = value;
5399
5400 if (current != p) {
5401 /* SELinux only allows a process to change its own
5402 security attributes. */
5403 return -EACCES;
5404 }
5405
5406 /*
5407 * Basic control over ability to set these attributes at all.
5408 * current == p, but we'll pass them separately in case the
5409 * above restriction is ever removed.
5410 */
5411 if (!strcmp(name, "exec"))
5412 error = current_has_perm(p, PROCESS__SETEXEC);
5413 else if (!strcmp(name, "fscreate"))
5414 error = current_has_perm(p, PROCESS__SETFSCREATE);
5415 else if (!strcmp(name, "keycreate"))
5416 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5417 else if (!strcmp(name, "sockcreate"))
5418 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5419 else if (!strcmp(name, "current"))
5420 error = current_has_perm(p, PROCESS__SETCURRENT);
5421 else
5422 error = -EINVAL;
5423 if (error)
5424 return error;
5425
5426 /* Obtain a SID for the context, if one was specified. */
5427 if (size && str[1] && str[1] != '\n') {
5428 if (str[size-1] == '\n') {
5429 str[size-1] = 0;
5430 size--;
5431 }
5432 error = security_context_to_sid(value, size, &sid);
5433 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5434 if (!capable(CAP_MAC_ADMIN)) {
5435 struct audit_buffer *ab;
5436 size_t audit_size;
5437
5438 /* We strip a nul only if it is at the end, otherwise the
5439 * context contains a nul and we should audit that */
5440 if (str[size - 1] == '\0')
5441 audit_size = size - 1;
5442 else
5443 audit_size = size;
5444 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5445 audit_log_format(ab, "op=fscreate invalid_context=");
5446 audit_log_n_untrustedstring(ab, value, audit_size);
5447 audit_log_end(ab);
5448
5449 return error;
5450 }
5451 error = security_context_to_sid_force(value, size,
5452 &sid);
5453 }
5454 if (error)
5455 return error;
5456 }
5457
5458 new = prepare_creds();
5459 if (!new)
5460 return -ENOMEM;
5461
5462 /* Permission checking based on the specified context is
5463 performed during the actual operation (execve,
5464 open/mkdir/...), when we know the full context of the
5465 operation. See selinux_bprm_set_creds for the execve
5466 checks and may_create for the file creation checks. The
5467 operation will then fail if the context is not permitted. */
5468 tsec = new->security;
5469 if (!strcmp(name, "exec")) {
5470 tsec->exec_sid = sid;
5471 } else if (!strcmp(name, "fscreate")) {
5472 tsec->create_sid = sid;
5473 } else if (!strcmp(name, "keycreate")) {
5474 error = may_create_key(sid, p);
5475 if (error)
5476 goto abort_change;
5477 tsec->keycreate_sid = sid;
5478 } else if (!strcmp(name, "sockcreate")) {
5479 tsec->sockcreate_sid = sid;
5480 } else if (!strcmp(name, "current")) {
5481 error = -EINVAL;
5482 if (sid == 0)
5483 goto abort_change;
5484
5485 /* Only allow single threaded processes to change context */
5486 error = -EPERM;
5487 if (!current_is_single_threaded()) {
5488 error = security_bounded_transition(tsec->sid, sid);
5489 if (error)
5490 goto abort_change;
5491 }
5492
5493 /* Check permissions for the transition. */
5494 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5495 PROCESS__DYNTRANSITION, NULL);
5496 if (error)
5497 goto abort_change;
5498
5499 /* Check for ptracing, and update the task SID if ok.
5500 Otherwise, leave SID unchanged and fail. */
5501 ptsid = 0;
5502 task_lock(p);
5503 tracer = ptrace_parent(p);
5504 if (tracer)
5505 ptsid = task_sid(tracer);
5506 task_unlock(p);
5507
5508 if (tracer) {
5509 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5510 PROCESS__PTRACE, NULL);
5511 if (error)
5512 goto abort_change;
5513 }
5514
5515 tsec->sid = sid;
5516 } else {
5517 error = -EINVAL;
5518 goto abort_change;
5519 }
5520
5521 commit_creds(new);
5522 return size;
5523
5524 abort_change:
5525 abort_creds(new);
5526 return error;
5527 }
5528
5529 static int selinux_ismaclabel(const char *name)
5530 {
5531 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5532 }
5533
5534 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5535 {
5536 return security_sid_to_context(secid, secdata, seclen);
5537 }
5538
5539 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5540 {
5541 return security_context_to_sid(secdata, seclen, secid);
5542 }
5543
5544 static void selinux_release_secctx(char *secdata, u32 seclen)
5545 {
5546 kfree(secdata);
5547 }
5548
5549 /*
5550 * called with inode->i_mutex locked
5551 */
5552 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5553 {
5554 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5555 }
5556
5557 /*
5558 * called with inode->i_mutex locked
5559 */
5560 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5561 {
5562 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5563 }
5564
5565 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5566 {
5567 int len = 0;
5568 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5569 ctx, true);
5570 if (len < 0)
5571 return len;
5572 *ctxlen = len;
5573 return 0;
5574 }
5575 #ifdef CONFIG_KEYS
5576
5577 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5578 unsigned long flags)
5579 {
5580 const struct task_security_struct *tsec;
5581 struct key_security_struct *ksec;
5582
5583 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5584 if (!ksec)
5585 return -ENOMEM;
5586
5587 tsec = cred->security;
5588 if (tsec->keycreate_sid)
5589 ksec->sid = tsec->keycreate_sid;
5590 else
5591 ksec->sid = tsec->sid;
5592
5593 k->security = ksec;
5594 return 0;
5595 }
5596
5597 static void selinux_key_free(struct key *k)
5598 {
5599 struct key_security_struct *ksec = k->security;
5600
5601 k->security = NULL;
5602 kfree(ksec);
5603 }
5604
5605 static int selinux_key_permission(key_ref_t key_ref,
5606 const struct cred *cred,
5607 key_perm_t perm)
5608 {
5609 struct key *key;
5610 struct key_security_struct *ksec;
5611 u32 sid;
5612
5613 /* if no specific permissions are requested, we skip the
5614 permission check. No serious, additional covert channels
5615 appear to be created. */
5616 if (perm == 0)
5617 return 0;
5618
5619 sid = cred_sid(cred);
5620
5621 key = key_ref_to_ptr(key_ref);
5622 ksec = key->security;
5623
5624 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5625 }
5626
5627 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5628 {
5629 struct key_security_struct *ksec = key->security;
5630 char *context = NULL;
5631 unsigned len;
5632 int rc;
5633
5634 rc = security_sid_to_context(ksec->sid, &context, &len);
5635 if (!rc)
5636 rc = len;
5637 *_buffer = context;
5638 return rc;
5639 }
5640
5641 #endif
5642
5643 static struct security_operations selinux_ops = {
5644 .name = "selinux",
5645
5646 .ptrace_access_check = selinux_ptrace_access_check,
5647 .ptrace_traceme = selinux_ptrace_traceme,
5648 .capget = selinux_capget,
5649 .capset = selinux_capset,
5650 .capable = selinux_capable,
5651 .quotactl = selinux_quotactl,
5652 .quota_on = selinux_quota_on,
5653 .syslog = selinux_syslog,
5654 .vm_enough_memory = selinux_vm_enough_memory,
5655
5656 .netlink_send = selinux_netlink_send,
5657
5658 .bprm_set_creds = selinux_bprm_set_creds,
5659 .bprm_committing_creds = selinux_bprm_committing_creds,
5660 .bprm_committed_creds = selinux_bprm_committed_creds,
5661 .bprm_secureexec = selinux_bprm_secureexec,
5662
5663 .sb_alloc_security = selinux_sb_alloc_security,
5664 .sb_free_security = selinux_sb_free_security,
5665 .sb_copy_data = selinux_sb_copy_data,
5666 .sb_remount = selinux_sb_remount,
5667 .sb_kern_mount = selinux_sb_kern_mount,
5668 .sb_show_options = selinux_sb_show_options,
5669 .sb_statfs = selinux_sb_statfs,
5670 .sb_mount = selinux_mount,
5671 .sb_umount = selinux_umount,
5672 .sb_set_mnt_opts = selinux_set_mnt_opts,
5673 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5674 .sb_parse_opts_str = selinux_parse_opts_str,
5675
5676 .dentry_init_security = selinux_dentry_init_security,
5677
5678 .inode_alloc_security = selinux_inode_alloc_security,
5679 .inode_free_security = selinux_inode_free_security,
5680 .inode_init_security = selinux_inode_init_security,
5681 .inode_create = selinux_inode_create,
5682 .inode_link = selinux_inode_link,
5683 .inode_unlink = selinux_inode_unlink,
5684 .inode_symlink = selinux_inode_symlink,
5685 .inode_mkdir = selinux_inode_mkdir,
5686 .inode_rmdir = selinux_inode_rmdir,
5687 .inode_mknod = selinux_inode_mknod,
5688 .inode_rename = selinux_inode_rename,
5689 .inode_readlink = selinux_inode_readlink,
5690 .inode_follow_link = selinux_inode_follow_link,
5691 .inode_permission = selinux_inode_permission,
5692 .inode_setattr = selinux_inode_setattr,
5693 .inode_getattr = selinux_inode_getattr,
5694 .inode_setxattr = selinux_inode_setxattr,
5695 .inode_post_setxattr = selinux_inode_post_setxattr,
5696 .inode_getxattr = selinux_inode_getxattr,
5697 .inode_listxattr = selinux_inode_listxattr,
5698 .inode_removexattr = selinux_inode_removexattr,
5699 .inode_getsecurity = selinux_inode_getsecurity,
5700 .inode_setsecurity = selinux_inode_setsecurity,
5701 .inode_listsecurity = selinux_inode_listsecurity,
5702 .inode_getsecid = selinux_inode_getsecid,
5703
5704 .file_permission = selinux_file_permission,
5705 .file_alloc_security = selinux_file_alloc_security,
5706 .file_free_security = selinux_file_free_security,
5707 .file_ioctl = selinux_file_ioctl,
5708 .mmap_file = selinux_mmap_file,
5709 .mmap_addr = selinux_mmap_addr,
5710 .file_mprotect = selinux_file_mprotect,
5711 .file_lock = selinux_file_lock,
5712 .file_fcntl = selinux_file_fcntl,
5713 .file_set_fowner = selinux_file_set_fowner,
5714 .file_send_sigiotask = selinux_file_send_sigiotask,
5715 .file_receive = selinux_file_receive,
5716
5717 .file_open = selinux_file_open,
5718
5719 .task_create = selinux_task_create,
5720 .cred_alloc_blank = selinux_cred_alloc_blank,
5721 .cred_free = selinux_cred_free,
5722 .cred_prepare = selinux_cred_prepare,
5723 .cred_transfer = selinux_cred_transfer,
5724 .kernel_act_as = selinux_kernel_act_as,
5725 .kernel_create_files_as = selinux_kernel_create_files_as,
5726 .kernel_module_request = selinux_kernel_module_request,
5727 .task_setpgid = selinux_task_setpgid,
5728 .task_getpgid = selinux_task_getpgid,
5729 .task_getsid = selinux_task_getsid,
5730 .task_getsecid = selinux_task_getsecid,
5731 .task_setnice = selinux_task_setnice,
5732 .task_setioprio = selinux_task_setioprio,
5733 .task_getioprio = selinux_task_getioprio,
5734 .task_setrlimit = selinux_task_setrlimit,
5735 .task_setscheduler = selinux_task_setscheduler,
5736 .task_getscheduler = selinux_task_getscheduler,
5737 .task_movememory = selinux_task_movememory,
5738 .task_kill = selinux_task_kill,
5739 .task_wait = selinux_task_wait,
5740 .task_to_inode = selinux_task_to_inode,
5741
5742 .ipc_permission = selinux_ipc_permission,
5743 .ipc_getsecid = selinux_ipc_getsecid,
5744
5745 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5746 .msg_msg_free_security = selinux_msg_msg_free_security,
5747
5748 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5749 .msg_queue_free_security = selinux_msg_queue_free_security,
5750 .msg_queue_associate = selinux_msg_queue_associate,
5751 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5752 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5753 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5754
5755 .shm_alloc_security = selinux_shm_alloc_security,
5756 .shm_free_security = selinux_shm_free_security,
5757 .shm_associate = selinux_shm_associate,
5758 .shm_shmctl = selinux_shm_shmctl,
5759 .shm_shmat = selinux_shm_shmat,
5760
5761 .sem_alloc_security = selinux_sem_alloc_security,
5762 .sem_free_security = selinux_sem_free_security,
5763 .sem_associate = selinux_sem_associate,
5764 .sem_semctl = selinux_sem_semctl,
5765 .sem_semop = selinux_sem_semop,
5766
5767 .d_instantiate = selinux_d_instantiate,
5768
5769 .getprocattr = selinux_getprocattr,
5770 .setprocattr = selinux_setprocattr,
5771
5772 .ismaclabel = selinux_ismaclabel,
5773 .secid_to_secctx = selinux_secid_to_secctx,
5774 .secctx_to_secid = selinux_secctx_to_secid,
5775 .release_secctx = selinux_release_secctx,
5776 .inode_notifysecctx = selinux_inode_notifysecctx,
5777 .inode_setsecctx = selinux_inode_setsecctx,
5778 .inode_getsecctx = selinux_inode_getsecctx,
5779
5780 .unix_stream_connect = selinux_socket_unix_stream_connect,
5781 .unix_may_send = selinux_socket_unix_may_send,
5782
5783 .socket_create = selinux_socket_create,
5784 .socket_post_create = selinux_socket_post_create,
5785 .socket_bind = selinux_socket_bind,
5786 .socket_connect = selinux_socket_connect,
5787 .socket_listen = selinux_socket_listen,
5788 .socket_accept = selinux_socket_accept,
5789 .socket_sendmsg = selinux_socket_sendmsg,
5790 .socket_recvmsg = selinux_socket_recvmsg,
5791 .socket_getsockname = selinux_socket_getsockname,
5792 .socket_getpeername = selinux_socket_getpeername,
5793 .socket_getsockopt = selinux_socket_getsockopt,
5794 .socket_setsockopt = selinux_socket_setsockopt,
5795 .socket_shutdown = selinux_socket_shutdown,
5796 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5797 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5798 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5799 .sk_alloc_security = selinux_sk_alloc_security,
5800 .sk_free_security = selinux_sk_free_security,
5801 .sk_clone_security = selinux_sk_clone_security,
5802 .sk_getsecid = selinux_sk_getsecid,
5803 .sock_graft = selinux_sock_graft,
5804 .inet_conn_request = selinux_inet_conn_request,
5805 .inet_csk_clone = selinux_inet_csk_clone,
5806 .inet_conn_established = selinux_inet_conn_established,
5807 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5808 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5809 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5810 .req_classify_flow = selinux_req_classify_flow,
5811 .tun_dev_alloc_security = selinux_tun_dev_alloc_security,
5812 .tun_dev_free_security = selinux_tun_dev_free_security,
5813 .tun_dev_create = selinux_tun_dev_create,
5814 .tun_dev_attach_queue = selinux_tun_dev_attach_queue,
5815 .tun_dev_attach = selinux_tun_dev_attach,
5816 .tun_dev_open = selinux_tun_dev_open,
5817 .skb_owned_by = selinux_skb_owned_by,
5818
5819 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5820 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5821 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5822 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5823 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5824 .xfrm_state_alloc = selinux_xfrm_state_alloc,
5825 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire,
5826 .xfrm_state_free_security = selinux_xfrm_state_free,
5827 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5828 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5829 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5830 .xfrm_decode_session = selinux_xfrm_decode_session,
5831 #endif
5832
5833 #ifdef CONFIG_KEYS
5834 .key_alloc = selinux_key_alloc,
5835 .key_free = selinux_key_free,
5836 .key_permission = selinux_key_permission,
5837 .key_getsecurity = selinux_key_getsecurity,
5838 #endif
5839
5840 #ifdef CONFIG_AUDIT
5841 .audit_rule_init = selinux_audit_rule_init,
5842 .audit_rule_known = selinux_audit_rule_known,
5843 .audit_rule_match = selinux_audit_rule_match,
5844 .audit_rule_free = selinux_audit_rule_free,
5845 #endif
5846 };
5847
5848 static __init int selinux_init(void)
5849 {
5850 if (!security_module_enable(&selinux_ops)) {
5851 selinux_enabled = 0;
5852 return 0;
5853 }
5854
5855 if (!selinux_enabled) {
5856 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5857 return 0;
5858 }
5859
5860 printk(KERN_INFO "SELinux: Initializing.\n");
5861
5862 /* Set the security state for the initial task. */
5863 cred_init_security();
5864
5865 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5866
5867 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5868 sizeof(struct inode_security_struct),
5869 0, SLAB_PANIC, NULL);
5870 avc_init();
5871
5872 if (register_security(&selinux_ops))
5873 panic("SELinux: Unable to register with kernel.\n");
5874
5875 if (selinux_enforcing)
5876 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5877 else
5878 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5879
5880 return 0;
5881 }
5882
5883 static void delayed_superblock_init(struct super_block *sb, void *unused)
5884 {
5885 superblock_doinit(sb, NULL);
5886 }
5887
5888 void selinux_complete_init(void)
5889 {
5890 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5891
5892 /* Set up any superblocks initialized prior to the policy load. */
5893 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5894 iterate_supers(delayed_superblock_init, NULL);
5895 }
5896
5897 /* SELinux requires early initialization in order to label
5898 all processes and objects when they are created. */
5899 security_initcall(selinux_init);
5900
5901 #if defined(CONFIG_NETFILTER)
5902
5903 static struct nf_hook_ops selinux_ipv4_ops[] = {
5904 {
5905 .hook = selinux_ipv4_postroute,
5906 .owner = THIS_MODULE,
5907 .pf = NFPROTO_IPV4,
5908 .hooknum = NF_INET_POST_ROUTING,
5909 .priority = NF_IP_PRI_SELINUX_LAST,
5910 },
5911 {
5912 .hook = selinux_ipv4_forward,
5913 .owner = THIS_MODULE,
5914 .pf = NFPROTO_IPV4,
5915 .hooknum = NF_INET_FORWARD,
5916 .priority = NF_IP_PRI_SELINUX_FIRST,
5917 },
5918 {
5919 .hook = selinux_ipv4_output,
5920 .owner = THIS_MODULE,
5921 .pf = NFPROTO_IPV4,
5922 .hooknum = NF_INET_LOCAL_OUT,
5923 .priority = NF_IP_PRI_SELINUX_FIRST,
5924 }
5925 };
5926
5927 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5928
5929 static struct nf_hook_ops selinux_ipv6_ops[] = {
5930 {
5931 .hook = selinux_ipv6_postroute,
5932 .owner = THIS_MODULE,
5933 .pf = NFPROTO_IPV6,
5934 .hooknum = NF_INET_POST_ROUTING,
5935 .priority = NF_IP6_PRI_SELINUX_LAST,
5936 },
5937 {
5938 .hook = selinux_ipv6_forward,
5939 .owner = THIS_MODULE,
5940 .pf = NFPROTO_IPV6,
5941 .hooknum = NF_INET_FORWARD,
5942 .priority = NF_IP6_PRI_SELINUX_FIRST,
5943 }
5944 };
5945
5946 #endif /* IPV6 */
5947
5948 static int __init selinux_nf_ip_init(void)
5949 {
5950 int err = 0;
5951
5952 if (!selinux_enabled)
5953 goto out;
5954
5955 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5956
5957 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5958 if (err)
5959 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5960
5961 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5962 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5963 if (err)
5964 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5965 #endif /* IPV6 */
5966
5967 out:
5968 return err;
5969 }
5970
5971 __initcall(selinux_nf_ip_init);
5972
5973 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5974 static void selinux_nf_ip_exit(void)
5975 {
5976 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5977
5978 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5979 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5980 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5981 #endif /* IPV6 */
5982 }
5983 #endif
5984
5985 #else /* CONFIG_NETFILTER */
5986
5987 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5988 #define selinux_nf_ip_exit()
5989 #endif
5990
5991 #endif /* CONFIG_NETFILTER */
5992
5993 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5994 static int selinux_disabled;
5995
5996 int selinux_disable(void)
5997 {
5998 if (ss_initialized) {
5999 /* Not permitted after initial policy load. */
6000 return -EINVAL;
6001 }
6002
6003 if (selinux_disabled) {
6004 /* Only do this once. */
6005 return -EINVAL;
6006 }
6007
6008 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6009
6010 selinux_disabled = 1;
6011 selinux_enabled = 0;
6012
6013 reset_security_ops();
6014
6015 /* Try to destroy the avc node cache */
6016 avc_disable();
6017
6018 /* Unregister netfilter hooks. */
6019 selinux_nf_ip_exit();
6020
6021 /* Unregister selinuxfs. */
6022 exit_sel_fs();
6023
6024 return 0;
6025 }
6026 #endif