]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/selinux/hooks.c
Merge branch 'stable-3.16' of git://git.infradead.org/users/pcmoore/selinux into...
[mirror_ubuntu-bionic-kernel.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h> /* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h> /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/quota.h>
70 #include <linux/un.h> /* for Unix socket types */
71 #include <net/af_unix.h> /* for Unix socket types */
72 #include <linux/parser.h>
73 #include <linux/nfs_mount.h>
74 #include <net/ipv6.h>
75 #include <linux/hugetlb.h>
76 #include <linux/personality.h>
77 #include <linux/audit.h>
78 #include <linux/string.h>
79 #include <linux/selinux.h>
80 #include <linux/mutex.h>
81 #include <linux/posix-timers.h>
82 #include <linux/syslog.h>
83 #include <linux/user_namespace.h>
84 #include <linux/export.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97
98 extern struct security_operations *security_ops;
99
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105
106 static int __init enforcing_setup(char *str)
107 {
108 unsigned long enforcing;
109 if (!kstrtoul(str, 0, &enforcing))
110 selinux_enforcing = enforcing ? 1 : 0;
111 return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119 static int __init selinux_enabled_setup(char *str)
120 {
121 unsigned long enabled;
122 if (!kstrtoul(str, 0, &enabled))
123 selinux_enabled = enabled ? 1 : 0;
124 return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130
131 static struct kmem_cache *sel_inode_cache;
132
133 /**
134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135 *
136 * Description:
137 * This function checks the SECMARK reference counter to see if any SECMARK
138 * targets are currently configured, if the reference counter is greater than
139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
140 * enabled, false (0) if SECMARK is disabled. If the always_check_network
141 * policy capability is enabled, SECMARK is always considered enabled.
142 *
143 */
144 static int selinux_secmark_enabled(void)
145 {
146 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
147 }
148
149 /**
150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
151 *
152 * Description:
153 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
154 * (1) if any are enabled or false (0) if neither are enabled. If the
155 * always_check_network policy capability is enabled, peer labeling
156 * is always considered enabled.
157 *
158 */
159 static int selinux_peerlbl_enabled(void)
160 {
161 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
162 }
163
164 /*
165 * initialise the security for the init task
166 */
167 static void cred_init_security(void)
168 {
169 struct cred *cred = (struct cred *) current->real_cred;
170 struct task_security_struct *tsec;
171
172 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
173 if (!tsec)
174 panic("SELinux: Failed to initialize initial task.\n");
175
176 tsec->osid = tsec->sid = SECINITSID_KERNEL;
177 cred->security = tsec;
178 }
179
180 /*
181 * get the security ID of a set of credentials
182 */
183 static inline u32 cred_sid(const struct cred *cred)
184 {
185 const struct task_security_struct *tsec;
186
187 tsec = cred->security;
188 return tsec->sid;
189 }
190
191 /*
192 * get the objective security ID of a task
193 */
194 static inline u32 task_sid(const struct task_struct *task)
195 {
196 u32 sid;
197
198 rcu_read_lock();
199 sid = cred_sid(__task_cred(task));
200 rcu_read_unlock();
201 return sid;
202 }
203
204 /*
205 * get the subjective security ID of the current task
206 */
207 static inline u32 current_sid(void)
208 {
209 const struct task_security_struct *tsec = current_security();
210
211 return tsec->sid;
212 }
213
214 /* Allocate and free functions for each kind of security blob. */
215
216 static int inode_alloc_security(struct inode *inode)
217 {
218 struct inode_security_struct *isec;
219 u32 sid = current_sid();
220
221 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
222 if (!isec)
223 return -ENOMEM;
224
225 mutex_init(&isec->lock);
226 INIT_LIST_HEAD(&isec->list);
227 isec->inode = inode;
228 isec->sid = SECINITSID_UNLABELED;
229 isec->sclass = SECCLASS_FILE;
230 isec->task_sid = sid;
231 inode->i_security = isec;
232
233 return 0;
234 }
235
236 static void inode_free_rcu(struct rcu_head *head)
237 {
238 struct inode_security_struct *isec;
239
240 isec = container_of(head, struct inode_security_struct, rcu);
241 kmem_cache_free(sel_inode_cache, isec);
242 }
243
244 static void inode_free_security(struct inode *inode)
245 {
246 struct inode_security_struct *isec = inode->i_security;
247 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
248
249 spin_lock(&sbsec->isec_lock);
250 if (!list_empty(&isec->list))
251 list_del_init(&isec->list);
252 spin_unlock(&sbsec->isec_lock);
253
254 /*
255 * The inode may still be referenced in a path walk and
256 * a call to selinux_inode_permission() can be made
257 * after inode_free_security() is called. Ideally, the VFS
258 * wouldn't do this, but fixing that is a much harder
259 * job. For now, simply free the i_security via RCU, and
260 * leave the current inode->i_security pointer intact.
261 * The inode will be freed after the RCU grace period too.
262 */
263 call_rcu(&isec->rcu, inode_free_rcu);
264 }
265
266 static int file_alloc_security(struct file *file)
267 {
268 struct file_security_struct *fsec;
269 u32 sid = current_sid();
270
271 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
272 if (!fsec)
273 return -ENOMEM;
274
275 fsec->sid = sid;
276 fsec->fown_sid = sid;
277 file->f_security = fsec;
278
279 return 0;
280 }
281
282 static void file_free_security(struct file *file)
283 {
284 struct file_security_struct *fsec = file->f_security;
285 file->f_security = NULL;
286 kfree(fsec);
287 }
288
289 static int superblock_alloc_security(struct super_block *sb)
290 {
291 struct superblock_security_struct *sbsec;
292
293 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
294 if (!sbsec)
295 return -ENOMEM;
296
297 mutex_init(&sbsec->lock);
298 INIT_LIST_HEAD(&sbsec->isec_head);
299 spin_lock_init(&sbsec->isec_lock);
300 sbsec->sb = sb;
301 sbsec->sid = SECINITSID_UNLABELED;
302 sbsec->def_sid = SECINITSID_FILE;
303 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
304 sb->s_security = sbsec;
305
306 return 0;
307 }
308
309 static void superblock_free_security(struct super_block *sb)
310 {
311 struct superblock_security_struct *sbsec = sb->s_security;
312 sb->s_security = NULL;
313 kfree(sbsec);
314 }
315
316 /* The file system's label must be initialized prior to use. */
317
318 static const char *labeling_behaviors[7] = {
319 "uses xattr",
320 "uses transition SIDs",
321 "uses task SIDs",
322 "uses genfs_contexts",
323 "not configured for labeling",
324 "uses mountpoint labeling",
325 "uses native labeling",
326 };
327
328 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
329
330 static inline int inode_doinit(struct inode *inode)
331 {
332 return inode_doinit_with_dentry(inode, NULL);
333 }
334
335 enum {
336 Opt_error = -1,
337 Opt_context = 1,
338 Opt_fscontext = 2,
339 Opt_defcontext = 3,
340 Opt_rootcontext = 4,
341 Opt_labelsupport = 5,
342 Opt_nextmntopt = 6,
343 };
344
345 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
346
347 static const match_table_t tokens = {
348 {Opt_context, CONTEXT_STR "%s"},
349 {Opt_fscontext, FSCONTEXT_STR "%s"},
350 {Opt_defcontext, DEFCONTEXT_STR "%s"},
351 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
352 {Opt_labelsupport, LABELSUPP_STR},
353 {Opt_error, NULL},
354 };
355
356 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
357
358 static int may_context_mount_sb_relabel(u32 sid,
359 struct superblock_security_struct *sbsec,
360 const struct cred *cred)
361 {
362 const struct task_security_struct *tsec = cred->security;
363 int rc;
364
365 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
366 FILESYSTEM__RELABELFROM, NULL);
367 if (rc)
368 return rc;
369
370 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
371 FILESYSTEM__RELABELTO, NULL);
372 return rc;
373 }
374
375 static int may_context_mount_inode_relabel(u32 sid,
376 struct superblock_security_struct *sbsec,
377 const struct cred *cred)
378 {
379 const struct task_security_struct *tsec = cred->security;
380 int rc;
381 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
382 FILESYSTEM__RELABELFROM, NULL);
383 if (rc)
384 return rc;
385
386 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
387 FILESYSTEM__ASSOCIATE, NULL);
388 return rc;
389 }
390
391 static int selinux_is_sblabel_mnt(struct super_block *sb)
392 {
393 struct superblock_security_struct *sbsec = sb->s_security;
394
395 if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
396 sbsec->behavior == SECURITY_FS_USE_TRANS ||
397 sbsec->behavior == SECURITY_FS_USE_TASK)
398 return 1;
399
400 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
401 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
402 return 1;
403
404 /*
405 * Special handling for rootfs. Is genfs but supports
406 * setting SELinux context on in-core inodes.
407 */
408 if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
409 return 1;
410
411 return 0;
412 }
413
414 static int sb_finish_set_opts(struct super_block *sb)
415 {
416 struct superblock_security_struct *sbsec = sb->s_security;
417 struct dentry *root = sb->s_root;
418 struct inode *root_inode = root->d_inode;
419 int rc = 0;
420
421 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422 /* Make sure that the xattr handler exists and that no
423 error other than -ENODATA is returned by getxattr on
424 the root directory. -ENODATA is ok, as this may be
425 the first boot of the SELinux kernel before we have
426 assigned xattr values to the filesystem. */
427 if (!root_inode->i_op->getxattr) {
428 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429 "xattr support\n", sb->s_id, sb->s_type->name);
430 rc = -EOPNOTSUPP;
431 goto out;
432 }
433 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434 if (rc < 0 && rc != -ENODATA) {
435 if (rc == -EOPNOTSUPP)
436 printk(KERN_WARNING "SELinux: (dev %s, type "
437 "%s) has no security xattr handler\n",
438 sb->s_id, sb->s_type->name);
439 else
440 printk(KERN_WARNING "SELinux: (dev %s, type "
441 "%s) getxattr errno %d\n", sb->s_id,
442 sb->s_type->name, -rc);
443 goto out;
444 }
445 }
446
447 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449 sb->s_id, sb->s_type->name);
450 else
451 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
452 sb->s_id, sb->s_type->name,
453 labeling_behaviors[sbsec->behavior-1]);
454
455 sbsec->flags |= SE_SBINITIALIZED;
456 if (selinux_is_sblabel_mnt(sb))
457 sbsec->flags |= SBLABEL_MNT;
458
459 /* Initialize the root inode. */
460 rc = inode_doinit_with_dentry(root_inode, root);
461
462 /* Initialize any other inodes associated with the superblock, e.g.
463 inodes created prior to initial policy load or inodes created
464 during get_sb by a pseudo filesystem that directly
465 populates itself. */
466 spin_lock(&sbsec->isec_lock);
467 next_inode:
468 if (!list_empty(&sbsec->isec_head)) {
469 struct inode_security_struct *isec =
470 list_entry(sbsec->isec_head.next,
471 struct inode_security_struct, list);
472 struct inode *inode = isec->inode;
473 spin_unlock(&sbsec->isec_lock);
474 inode = igrab(inode);
475 if (inode) {
476 if (!IS_PRIVATE(inode))
477 inode_doinit(inode);
478 iput(inode);
479 }
480 spin_lock(&sbsec->isec_lock);
481 list_del_init(&isec->list);
482 goto next_inode;
483 }
484 spin_unlock(&sbsec->isec_lock);
485 out:
486 return rc;
487 }
488
489 /*
490 * This function should allow an FS to ask what it's mount security
491 * options were so it can use those later for submounts, displaying
492 * mount options, or whatever.
493 */
494 static int selinux_get_mnt_opts(const struct super_block *sb,
495 struct security_mnt_opts *opts)
496 {
497 int rc = 0, i;
498 struct superblock_security_struct *sbsec = sb->s_security;
499 char *context = NULL;
500 u32 len;
501 char tmp;
502
503 security_init_mnt_opts(opts);
504
505 if (!(sbsec->flags & SE_SBINITIALIZED))
506 return -EINVAL;
507
508 if (!ss_initialized)
509 return -EINVAL;
510
511 /* make sure we always check enough bits to cover the mask */
512 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
513
514 tmp = sbsec->flags & SE_MNTMASK;
515 /* count the number of mount options for this sb */
516 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
517 if (tmp & 0x01)
518 opts->num_mnt_opts++;
519 tmp >>= 1;
520 }
521 /* Check if the Label support flag is set */
522 if (sbsec->flags & SBLABEL_MNT)
523 opts->num_mnt_opts++;
524
525 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
526 if (!opts->mnt_opts) {
527 rc = -ENOMEM;
528 goto out_free;
529 }
530
531 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
532 if (!opts->mnt_opts_flags) {
533 rc = -ENOMEM;
534 goto out_free;
535 }
536
537 i = 0;
538 if (sbsec->flags & FSCONTEXT_MNT) {
539 rc = security_sid_to_context(sbsec->sid, &context, &len);
540 if (rc)
541 goto out_free;
542 opts->mnt_opts[i] = context;
543 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
544 }
545 if (sbsec->flags & CONTEXT_MNT) {
546 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
547 if (rc)
548 goto out_free;
549 opts->mnt_opts[i] = context;
550 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
551 }
552 if (sbsec->flags & DEFCONTEXT_MNT) {
553 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
554 if (rc)
555 goto out_free;
556 opts->mnt_opts[i] = context;
557 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
558 }
559 if (sbsec->flags & ROOTCONTEXT_MNT) {
560 struct inode *root = sbsec->sb->s_root->d_inode;
561 struct inode_security_struct *isec = root->i_security;
562
563 rc = security_sid_to_context(isec->sid, &context, &len);
564 if (rc)
565 goto out_free;
566 opts->mnt_opts[i] = context;
567 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
568 }
569 if (sbsec->flags & SBLABEL_MNT) {
570 opts->mnt_opts[i] = NULL;
571 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
572 }
573
574 BUG_ON(i != opts->num_mnt_opts);
575
576 return 0;
577
578 out_free:
579 security_free_mnt_opts(opts);
580 return rc;
581 }
582
583 static int bad_option(struct superblock_security_struct *sbsec, char flag,
584 u32 old_sid, u32 new_sid)
585 {
586 char mnt_flags = sbsec->flags & SE_MNTMASK;
587
588 /* check if the old mount command had the same options */
589 if (sbsec->flags & SE_SBINITIALIZED)
590 if (!(sbsec->flags & flag) ||
591 (old_sid != new_sid))
592 return 1;
593
594 /* check if we were passed the same options twice,
595 * aka someone passed context=a,context=b
596 */
597 if (!(sbsec->flags & SE_SBINITIALIZED))
598 if (mnt_flags & flag)
599 return 1;
600 return 0;
601 }
602
603 /*
604 * Allow filesystems with binary mount data to explicitly set mount point
605 * labeling information.
606 */
607 static int selinux_set_mnt_opts(struct super_block *sb,
608 struct security_mnt_opts *opts,
609 unsigned long kern_flags,
610 unsigned long *set_kern_flags)
611 {
612 const struct cred *cred = current_cred();
613 int rc = 0, i;
614 struct superblock_security_struct *sbsec = sb->s_security;
615 const char *name = sb->s_type->name;
616 struct inode *inode = sbsec->sb->s_root->d_inode;
617 struct inode_security_struct *root_isec = inode->i_security;
618 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
619 u32 defcontext_sid = 0;
620 char **mount_options = opts->mnt_opts;
621 int *flags = opts->mnt_opts_flags;
622 int num_opts = opts->num_mnt_opts;
623
624 mutex_lock(&sbsec->lock);
625
626 if (!ss_initialized) {
627 if (!num_opts) {
628 /* Defer initialization until selinux_complete_init,
629 after the initial policy is loaded and the security
630 server is ready to handle calls. */
631 goto out;
632 }
633 rc = -EINVAL;
634 printk(KERN_WARNING "SELinux: Unable to set superblock options "
635 "before the security server is initialized\n");
636 goto out;
637 }
638 if (kern_flags && !set_kern_flags) {
639 /* Specifying internal flags without providing a place to
640 * place the results is not allowed */
641 rc = -EINVAL;
642 goto out;
643 }
644
645 /*
646 * Binary mount data FS will come through this function twice. Once
647 * from an explicit call and once from the generic calls from the vfs.
648 * Since the generic VFS calls will not contain any security mount data
649 * we need to skip the double mount verification.
650 *
651 * This does open a hole in which we will not notice if the first
652 * mount using this sb set explict options and a second mount using
653 * this sb does not set any security options. (The first options
654 * will be used for both mounts)
655 */
656 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
657 && (num_opts == 0))
658 goto out;
659
660 /*
661 * parse the mount options, check if they are valid sids.
662 * also check if someone is trying to mount the same sb more
663 * than once with different security options.
664 */
665 for (i = 0; i < num_opts; i++) {
666 u32 sid;
667
668 if (flags[i] == SBLABEL_MNT)
669 continue;
670 rc = security_context_to_sid(mount_options[i],
671 strlen(mount_options[i]), &sid, GFP_KERNEL);
672 if (rc) {
673 printk(KERN_WARNING "SELinux: security_context_to_sid"
674 "(%s) failed for (dev %s, type %s) errno=%d\n",
675 mount_options[i], sb->s_id, name, rc);
676 goto out;
677 }
678 switch (flags[i]) {
679 case FSCONTEXT_MNT:
680 fscontext_sid = sid;
681
682 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
683 fscontext_sid))
684 goto out_double_mount;
685
686 sbsec->flags |= FSCONTEXT_MNT;
687 break;
688 case CONTEXT_MNT:
689 context_sid = sid;
690
691 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
692 context_sid))
693 goto out_double_mount;
694
695 sbsec->flags |= CONTEXT_MNT;
696 break;
697 case ROOTCONTEXT_MNT:
698 rootcontext_sid = sid;
699
700 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
701 rootcontext_sid))
702 goto out_double_mount;
703
704 sbsec->flags |= ROOTCONTEXT_MNT;
705
706 break;
707 case DEFCONTEXT_MNT:
708 defcontext_sid = sid;
709
710 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
711 defcontext_sid))
712 goto out_double_mount;
713
714 sbsec->flags |= DEFCONTEXT_MNT;
715
716 break;
717 default:
718 rc = -EINVAL;
719 goto out;
720 }
721 }
722
723 if (sbsec->flags & SE_SBINITIALIZED) {
724 /* previously mounted with options, but not on this attempt? */
725 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
726 goto out_double_mount;
727 rc = 0;
728 goto out;
729 }
730
731 if (strcmp(sb->s_type->name, "proc") == 0)
732 sbsec->flags |= SE_SBPROC;
733
734 if (!sbsec->behavior) {
735 /*
736 * Determine the labeling behavior to use for this
737 * filesystem type.
738 */
739 rc = security_fs_use(sb);
740 if (rc) {
741 printk(KERN_WARNING
742 "%s: security_fs_use(%s) returned %d\n",
743 __func__, sb->s_type->name, rc);
744 goto out;
745 }
746 }
747 /* sets the context of the superblock for the fs being mounted. */
748 if (fscontext_sid) {
749 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
750 if (rc)
751 goto out;
752
753 sbsec->sid = fscontext_sid;
754 }
755
756 /*
757 * Switch to using mount point labeling behavior.
758 * sets the label used on all file below the mountpoint, and will set
759 * the superblock context if not already set.
760 */
761 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
762 sbsec->behavior = SECURITY_FS_USE_NATIVE;
763 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
764 }
765
766 if (context_sid) {
767 if (!fscontext_sid) {
768 rc = may_context_mount_sb_relabel(context_sid, sbsec,
769 cred);
770 if (rc)
771 goto out;
772 sbsec->sid = context_sid;
773 } else {
774 rc = may_context_mount_inode_relabel(context_sid, sbsec,
775 cred);
776 if (rc)
777 goto out;
778 }
779 if (!rootcontext_sid)
780 rootcontext_sid = context_sid;
781
782 sbsec->mntpoint_sid = context_sid;
783 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
784 }
785
786 if (rootcontext_sid) {
787 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
788 cred);
789 if (rc)
790 goto out;
791
792 root_isec->sid = rootcontext_sid;
793 root_isec->initialized = 1;
794 }
795
796 if (defcontext_sid) {
797 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
798 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
799 rc = -EINVAL;
800 printk(KERN_WARNING "SELinux: defcontext option is "
801 "invalid for this filesystem type\n");
802 goto out;
803 }
804
805 if (defcontext_sid != sbsec->def_sid) {
806 rc = may_context_mount_inode_relabel(defcontext_sid,
807 sbsec, cred);
808 if (rc)
809 goto out;
810 }
811
812 sbsec->def_sid = defcontext_sid;
813 }
814
815 rc = sb_finish_set_opts(sb);
816 out:
817 mutex_unlock(&sbsec->lock);
818 return rc;
819 out_double_mount:
820 rc = -EINVAL;
821 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
822 "security settings for (dev %s, type %s)\n", sb->s_id, name);
823 goto out;
824 }
825
826 static int selinux_cmp_sb_context(const struct super_block *oldsb,
827 const struct super_block *newsb)
828 {
829 struct superblock_security_struct *old = oldsb->s_security;
830 struct superblock_security_struct *new = newsb->s_security;
831 char oldflags = old->flags & SE_MNTMASK;
832 char newflags = new->flags & SE_MNTMASK;
833
834 if (oldflags != newflags)
835 goto mismatch;
836 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
837 goto mismatch;
838 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
839 goto mismatch;
840 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
841 goto mismatch;
842 if (oldflags & ROOTCONTEXT_MNT) {
843 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
844 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
845 if (oldroot->sid != newroot->sid)
846 goto mismatch;
847 }
848 return 0;
849 mismatch:
850 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
851 "different security settings for (dev %s, "
852 "type %s)\n", newsb->s_id, newsb->s_type->name);
853 return -EBUSY;
854 }
855
856 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
857 struct super_block *newsb)
858 {
859 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
860 struct superblock_security_struct *newsbsec = newsb->s_security;
861
862 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
863 int set_context = (oldsbsec->flags & CONTEXT_MNT);
864 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
865
866 /*
867 * if the parent was able to be mounted it clearly had no special lsm
868 * mount options. thus we can safely deal with this superblock later
869 */
870 if (!ss_initialized)
871 return 0;
872
873 /* how can we clone if the old one wasn't set up?? */
874 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
875
876 /* if fs is reusing a sb, make sure that the contexts match */
877 if (newsbsec->flags & SE_SBINITIALIZED)
878 return selinux_cmp_sb_context(oldsb, newsb);
879
880 mutex_lock(&newsbsec->lock);
881
882 newsbsec->flags = oldsbsec->flags;
883
884 newsbsec->sid = oldsbsec->sid;
885 newsbsec->def_sid = oldsbsec->def_sid;
886 newsbsec->behavior = oldsbsec->behavior;
887
888 if (set_context) {
889 u32 sid = oldsbsec->mntpoint_sid;
890
891 if (!set_fscontext)
892 newsbsec->sid = sid;
893 if (!set_rootcontext) {
894 struct inode *newinode = newsb->s_root->d_inode;
895 struct inode_security_struct *newisec = newinode->i_security;
896 newisec->sid = sid;
897 }
898 newsbsec->mntpoint_sid = sid;
899 }
900 if (set_rootcontext) {
901 const struct inode *oldinode = oldsb->s_root->d_inode;
902 const struct inode_security_struct *oldisec = oldinode->i_security;
903 struct inode *newinode = newsb->s_root->d_inode;
904 struct inode_security_struct *newisec = newinode->i_security;
905
906 newisec->sid = oldisec->sid;
907 }
908
909 sb_finish_set_opts(newsb);
910 mutex_unlock(&newsbsec->lock);
911 return 0;
912 }
913
914 static int selinux_parse_opts_str(char *options,
915 struct security_mnt_opts *opts)
916 {
917 char *p;
918 char *context = NULL, *defcontext = NULL;
919 char *fscontext = NULL, *rootcontext = NULL;
920 int rc, num_mnt_opts = 0;
921
922 opts->num_mnt_opts = 0;
923
924 /* Standard string-based options. */
925 while ((p = strsep(&options, "|")) != NULL) {
926 int token;
927 substring_t args[MAX_OPT_ARGS];
928
929 if (!*p)
930 continue;
931
932 token = match_token(p, tokens, args);
933
934 switch (token) {
935 case Opt_context:
936 if (context || defcontext) {
937 rc = -EINVAL;
938 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
939 goto out_err;
940 }
941 context = match_strdup(&args[0]);
942 if (!context) {
943 rc = -ENOMEM;
944 goto out_err;
945 }
946 break;
947
948 case Opt_fscontext:
949 if (fscontext) {
950 rc = -EINVAL;
951 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
952 goto out_err;
953 }
954 fscontext = match_strdup(&args[0]);
955 if (!fscontext) {
956 rc = -ENOMEM;
957 goto out_err;
958 }
959 break;
960
961 case Opt_rootcontext:
962 if (rootcontext) {
963 rc = -EINVAL;
964 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
965 goto out_err;
966 }
967 rootcontext = match_strdup(&args[0]);
968 if (!rootcontext) {
969 rc = -ENOMEM;
970 goto out_err;
971 }
972 break;
973
974 case Opt_defcontext:
975 if (context || defcontext) {
976 rc = -EINVAL;
977 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
978 goto out_err;
979 }
980 defcontext = match_strdup(&args[0]);
981 if (!defcontext) {
982 rc = -ENOMEM;
983 goto out_err;
984 }
985 break;
986 case Opt_labelsupport:
987 break;
988 default:
989 rc = -EINVAL;
990 printk(KERN_WARNING "SELinux: unknown mount option\n");
991 goto out_err;
992
993 }
994 }
995
996 rc = -ENOMEM;
997 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
998 if (!opts->mnt_opts)
999 goto out_err;
1000
1001 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1002 if (!opts->mnt_opts_flags) {
1003 kfree(opts->mnt_opts);
1004 goto out_err;
1005 }
1006
1007 if (fscontext) {
1008 opts->mnt_opts[num_mnt_opts] = fscontext;
1009 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1010 }
1011 if (context) {
1012 opts->mnt_opts[num_mnt_opts] = context;
1013 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1014 }
1015 if (rootcontext) {
1016 opts->mnt_opts[num_mnt_opts] = rootcontext;
1017 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1018 }
1019 if (defcontext) {
1020 opts->mnt_opts[num_mnt_opts] = defcontext;
1021 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1022 }
1023
1024 opts->num_mnt_opts = num_mnt_opts;
1025 return 0;
1026
1027 out_err:
1028 kfree(context);
1029 kfree(defcontext);
1030 kfree(fscontext);
1031 kfree(rootcontext);
1032 return rc;
1033 }
1034 /*
1035 * string mount options parsing and call set the sbsec
1036 */
1037 static int superblock_doinit(struct super_block *sb, void *data)
1038 {
1039 int rc = 0;
1040 char *options = data;
1041 struct security_mnt_opts opts;
1042
1043 security_init_mnt_opts(&opts);
1044
1045 if (!data)
1046 goto out;
1047
1048 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1049
1050 rc = selinux_parse_opts_str(options, &opts);
1051 if (rc)
1052 goto out_err;
1053
1054 out:
1055 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1056
1057 out_err:
1058 security_free_mnt_opts(&opts);
1059 return rc;
1060 }
1061
1062 static void selinux_write_opts(struct seq_file *m,
1063 struct security_mnt_opts *opts)
1064 {
1065 int i;
1066 char *prefix;
1067
1068 for (i = 0; i < opts->num_mnt_opts; i++) {
1069 char *has_comma;
1070
1071 if (opts->mnt_opts[i])
1072 has_comma = strchr(opts->mnt_opts[i], ',');
1073 else
1074 has_comma = NULL;
1075
1076 switch (opts->mnt_opts_flags[i]) {
1077 case CONTEXT_MNT:
1078 prefix = CONTEXT_STR;
1079 break;
1080 case FSCONTEXT_MNT:
1081 prefix = FSCONTEXT_STR;
1082 break;
1083 case ROOTCONTEXT_MNT:
1084 prefix = ROOTCONTEXT_STR;
1085 break;
1086 case DEFCONTEXT_MNT:
1087 prefix = DEFCONTEXT_STR;
1088 break;
1089 case SBLABEL_MNT:
1090 seq_putc(m, ',');
1091 seq_puts(m, LABELSUPP_STR);
1092 continue;
1093 default:
1094 BUG();
1095 return;
1096 };
1097 /* we need a comma before each option */
1098 seq_putc(m, ',');
1099 seq_puts(m, prefix);
1100 if (has_comma)
1101 seq_putc(m, '\"');
1102 seq_puts(m, opts->mnt_opts[i]);
1103 if (has_comma)
1104 seq_putc(m, '\"');
1105 }
1106 }
1107
1108 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109 {
1110 struct security_mnt_opts opts;
1111 int rc;
1112
1113 rc = selinux_get_mnt_opts(sb, &opts);
1114 if (rc) {
1115 /* before policy load we may get EINVAL, don't show anything */
1116 if (rc == -EINVAL)
1117 rc = 0;
1118 return rc;
1119 }
1120
1121 selinux_write_opts(m, &opts);
1122
1123 security_free_mnt_opts(&opts);
1124
1125 return rc;
1126 }
1127
1128 static inline u16 inode_mode_to_security_class(umode_t mode)
1129 {
1130 switch (mode & S_IFMT) {
1131 case S_IFSOCK:
1132 return SECCLASS_SOCK_FILE;
1133 case S_IFLNK:
1134 return SECCLASS_LNK_FILE;
1135 case S_IFREG:
1136 return SECCLASS_FILE;
1137 case S_IFBLK:
1138 return SECCLASS_BLK_FILE;
1139 case S_IFDIR:
1140 return SECCLASS_DIR;
1141 case S_IFCHR:
1142 return SECCLASS_CHR_FILE;
1143 case S_IFIFO:
1144 return SECCLASS_FIFO_FILE;
1145
1146 }
1147
1148 return SECCLASS_FILE;
1149 }
1150
1151 static inline int default_protocol_stream(int protocol)
1152 {
1153 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1154 }
1155
1156 static inline int default_protocol_dgram(int protocol)
1157 {
1158 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1159 }
1160
1161 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1162 {
1163 switch (family) {
1164 case PF_UNIX:
1165 switch (type) {
1166 case SOCK_STREAM:
1167 case SOCK_SEQPACKET:
1168 return SECCLASS_UNIX_STREAM_SOCKET;
1169 case SOCK_DGRAM:
1170 return SECCLASS_UNIX_DGRAM_SOCKET;
1171 }
1172 break;
1173 case PF_INET:
1174 case PF_INET6:
1175 switch (type) {
1176 case SOCK_STREAM:
1177 if (default_protocol_stream(protocol))
1178 return SECCLASS_TCP_SOCKET;
1179 else
1180 return SECCLASS_RAWIP_SOCKET;
1181 case SOCK_DGRAM:
1182 if (default_protocol_dgram(protocol))
1183 return SECCLASS_UDP_SOCKET;
1184 else
1185 return SECCLASS_RAWIP_SOCKET;
1186 case SOCK_DCCP:
1187 return SECCLASS_DCCP_SOCKET;
1188 default:
1189 return SECCLASS_RAWIP_SOCKET;
1190 }
1191 break;
1192 case PF_NETLINK:
1193 switch (protocol) {
1194 case NETLINK_ROUTE:
1195 return SECCLASS_NETLINK_ROUTE_SOCKET;
1196 case NETLINK_FIREWALL:
1197 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1198 case NETLINK_SOCK_DIAG:
1199 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1200 case NETLINK_NFLOG:
1201 return SECCLASS_NETLINK_NFLOG_SOCKET;
1202 case NETLINK_XFRM:
1203 return SECCLASS_NETLINK_XFRM_SOCKET;
1204 case NETLINK_SELINUX:
1205 return SECCLASS_NETLINK_SELINUX_SOCKET;
1206 case NETLINK_AUDIT:
1207 return SECCLASS_NETLINK_AUDIT_SOCKET;
1208 case NETLINK_IP6_FW:
1209 return SECCLASS_NETLINK_IP6FW_SOCKET;
1210 case NETLINK_DNRTMSG:
1211 return SECCLASS_NETLINK_DNRT_SOCKET;
1212 case NETLINK_KOBJECT_UEVENT:
1213 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1214 default:
1215 return SECCLASS_NETLINK_SOCKET;
1216 }
1217 case PF_PACKET:
1218 return SECCLASS_PACKET_SOCKET;
1219 case PF_KEY:
1220 return SECCLASS_KEY_SOCKET;
1221 case PF_APPLETALK:
1222 return SECCLASS_APPLETALK_SOCKET;
1223 }
1224
1225 return SECCLASS_SOCKET;
1226 }
1227
1228 #ifdef CONFIG_PROC_FS
1229 static int selinux_proc_get_sid(struct dentry *dentry,
1230 u16 tclass,
1231 u32 *sid)
1232 {
1233 int rc;
1234 char *buffer, *path;
1235
1236 buffer = (char *)__get_free_page(GFP_KERNEL);
1237 if (!buffer)
1238 return -ENOMEM;
1239
1240 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1241 if (IS_ERR(path))
1242 rc = PTR_ERR(path);
1243 else {
1244 /* each process gets a /proc/PID/ entry. Strip off the
1245 * PID part to get a valid selinux labeling.
1246 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1247 while (path[1] >= '0' && path[1] <= '9') {
1248 path[1] = '/';
1249 path++;
1250 }
1251 rc = security_genfs_sid("proc", path, tclass, sid);
1252 }
1253 free_page((unsigned long)buffer);
1254 return rc;
1255 }
1256 #else
1257 static int selinux_proc_get_sid(struct dentry *dentry,
1258 u16 tclass,
1259 u32 *sid)
1260 {
1261 return -EINVAL;
1262 }
1263 #endif
1264
1265 /* The inode's security attributes must be initialized before first use. */
1266 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1267 {
1268 struct superblock_security_struct *sbsec = NULL;
1269 struct inode_security_struct *isec = inode->i_security;
1270 u32 sid;
1271 struct dentry *dentry;
1272 #define INITCONTEXTLEN 255
1273 char *context = NULL;
1274 unsigned len = 0;
1275 int rc = 0;
1276
1277 if (isec->initialized)
1278 goto out;
1279
1280 mutex_lock(&isec->lock);
1281 if (isec->initialized)
1282 goto out_unlock;
1283
1284 sbsec = inode->i_sb->s_security;
1285 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1286 /* Defer initialization until selinux_complete_init,
1287 after the initial policy is loaded and the security
1288 server is ready to handle calls. */
1289 spin_lock(&sbsec->isec_lock);
1290 if (list_empty(&isec->list))
1291 list_add(&isec->list, &sbsec->isec_head);
1292 spin_unlock(&sbsec->isec_lock);
1293 goto out_unlock;
1294 }
1295
1296 switch (sbsec->behavior) {
1297 case SECURITY_FS_USE_NATIVE:
1298 break;
1299 case SECURITY_FS_USE_XATTR:
1300 if (!inode->i_op->getxattr) {
1301 isec->sid = sbsec->def_sid;
1302 break;
1303 }
1304
1305 /* Need a dentry, since the xattr API requires one.
1306 Life would be simpler if we could just pass the inode. */
1307 if (opt_dentry) {
1308 /* Called from d_instantiate or d_splice_alias. */
1309 dentry = dget(opt_dentry);
1310 } else {
1311 /* Called from selinux_complete_init, try to find a dentry. */
1312 dentry = d_find_alias(inode);
1313 }
1314 if (!dentry) {
1315 /*
1316 * this is can be hit on boot when a file is accessed
1317 * before the policy is loaded. When we load policy we
1318 * may find inodes that have no dentry on the
1319 * sbsec->isec_head list. No reason to complain as these
1320 * will get fixed up the next time we go through
1321 * inode_doinit with a dentry, before these inodes could
1322 * be used again by userspace.
1323 */
1324 goto out_unlock;
1325 }
1326
1327 len = INITCONTEXTLEN;
1328 context = kmalloc(len+1, GFP_NOFS);
1329 if (!context) {
1330 rc = -ENOMEM;
1331 dput(dentry);
1332 goto out_unlock;
1333 }
1334 context[len] = '\0';
1335 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1336 context, len);
1337 if (rc == -ERANGE) {
1338 kfree(context);
1339
1340 /* Need a larger buffer. Query for the right size. */
1341 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1342 NULL, 0);
1343 if (rc < 0) {
1344 dput(dentry);
1345 goto out_unlock;
1346 }
1347 len = rc;
1348 context = kmalloc(len+1, GFP_NOFS);
1349 if (!context) {
1350 rc = -ENOMEM;
1351 dput(dentry);
1352 goto out_unlock;
1353 }
1354 context[len] = '\0';
1355 rc = inode->i_op->getxattr(dentry,
1356 XATTR_NAME_SELINUX,
1357 context, len);
1358 }
1359 dput(dentry);
1360 if (rc < 0) {
1361 if (rc != -ENODATA) {
1362 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1363 "%d for dev=%s ino=%ld\n", __func__,
1364 -rc, inode->i_sb->s_id, inode->i_ino);
1365 kfree(context);
1366 goto out_unlock;
1367 }
1368 /* Map ENODATA to the default file SID */
1369 sid = sbsec->def_sid;
1370 rc = 0;
1371 } else {
1372 rc = security_context_to_sid_default(context, rc, &sid,
1373 sbsec->def_sid,
1374 GFP_NOFS);
1375 if (rc) {
1376 char *dev = inode->i_sb->s_id;
1377 unsigned long ino = inode->i_ino;
1378
1379 if (rc == -EINVAL) {
1380 if (printk_ratelimit())
1381 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1382 "context=%s. This indicates you may need to relabel the inode or the "
1383 "filesystem in question.\n", ino, dev, context);
1384 } else {
1385 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1386 "returned %d for dev=%s ino=%ld\n",
1387 __func__, context, -rc, dev, ino);
1388 }
1389 kfree(context);
1390 /* Leave with the unlabeled SID */
1391 rc = 0;
1392 break;
1393 }
1394 }
1395 kfree(context);
1396 isec->sid = sid;
1397 break;
1398 case SECURITY_FS_USE_TASK:
1399 isec->sid = isec->task_sid;
1400 break;
1401 case SECURITY_FS_USE_TRANS:
1402 /* Default to the fs SID. */
1403 isec->sid = sbsec->sid;
1404
1405 /* Try to obtain a transition SID. */
1406 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1408 isec->sclass, NULL, &sid);
1409 if (rc)
1410 goto out_unlock;
1411 isec->sid = sid;
1412 break;
1413 case SECURITY_FS_USE_MNTPOINT:
1414 isec->sid = sbsec->mntpoint_sid;
1415 break;
1416 default:
1417 /* Default to the fs superblock SID. */
1418 isec->sid = sbsec->sid;
1419
1420 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1421 /* We must have a dentry to determine the label on
1422 * procfs inodes */
1423 if (opt_dentry)
1424 /* Called from d_instantiate or
1425 * d_splice_alias. */
1426 dentry = dget(opt_dentry);
1427 else
1428 /* Called from selinux_complete_init, try to
1429 * find a dentry. */
1430 dentry = d_find_alias(inode);
1431 /*
1432 * This can be hit on boot when a file is accessed
1433 * before the policy is loaded. When we load policy we
1434 * may find inodes that have no dentry on the
1435 * sbsec->isec_head list. No reason to complain as
1436 * these will get fixed up the next time we go through
1437 * inode_doinit() with a dentry, before these inodes
1438 * could be used again by userspace.
1439 */
1440 if (!dentry)
1441 goto out_unlock;
1442 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1443 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1444 dput(dentry);
1445 if (rc)
1446 goto out_unlock;
1447 isec->sid = sid;
1448 }
1449 break;
1450 }
1451
1452 isec->initialized = 1;
1453
1454 out_unlock:
1455 mutex_unlock(&isec->lock);
1456 out:
1457 if (isec->sclass == SECCLASS_FILE)
1458 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1459 return rc;
1460 }
1461
1462 /* Convert a Linux signal to an access vector. */
1463 static inline u32 signal_to_av(int sig)
1464 {
1465 u32 perm = 0;
1466
1467 switch (sig) {
1468 case SIGCHLD:
1469 /* Commonly granted from child to parent. */
1470 perm = PROCESS__SIGCHLD;
1471 break;
1472 case SIGKILL:
1473 /* Cannot be caught or ignored */
1474 perm = PROCESS__SIGKILL;
1475 break;
1476 case SIGSTOP:
1477 /* Cannot be caught or ignored */
1478 perm = PROCESS__SIGSTOP;
1479 break;
1480 default:
1481 /* All other signals. */
1482 perm = PROCESS__SIGNAL;
1483 break;
1484 }
1485
1486 return perm;
1487 }
1488
1489 /*
1490 * Check permission between a pair of credentials
1491 * fork check, ptrace check, etc.
1492 */
1493 static int cred_has_perm(const struct cred *actor,
1494 const struct cred *target,
1495 u32 perms)
1496 {
1497 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1498
1499 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1500 }
1501
1502 /*
1503 * Check permission between a pair of tasks, e.g. signal checks,
1504 * fork check, ptrace check, etc.
1505 * tsk1 is the actor and tsk2 is the target
1506 * - this uses the default subjective creds of tsk1
1507 */
1508 static int task_has_perm(const struct task_struct *tsk1,
1509 const struct task_struct *tsk2,
1510 u32 perms)
1511 {
1512 const struct task_security_struct *__tsec1, *__tsec2;
1513 u32 sid1, sid2;
1514
1515 rcu_read_lock();
1516 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1517 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1518 rcu_read_unlock();
1519 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1520 }
1521
1522 /*
1523 * Check permission between current and another task, e.g. signal checks,
1524 * fork check, ptrace check, etc.
1525 * current is the actor and tsk2 is the target
1526 * - this uses current's subjective creds
1527 */
1528 static int current_has_perm(const struct task_struct *tsk,
1529 u32 perms)
1530 {
1531 u32 sid, tsid;
1532
1533 sid = current_sid();
1534 tsid = task_sid(tsk);
1535 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1536 }
1537
1538 #if CAP_LAST_CAP > 63
1539 #error Fix SELinux to handle capabilities > 63.
1540 #endif
1541
1542 /* Check whether a task is allowed to use a capability. */
1543 static int cred_has_capability(const struct cred *cred,
1544 int cap, int audit)
1545 {
1546 struct common_audit_data ad;
1547 struct av_decision avd;
1548 u16 sclass;
1549 u32 sid = cred_sid(cred);
1550 u32 av = CAP_TO_MASK(cap);
1551 int rc;
1552
1553 ad.type = LSM_AUDIT_DATA_CAP;
1554 ad.u.cap = cap;
1555
1556 switch (CAP_TO_INDEX(cap)) {
1557 case 0:
1558 sclass = SECCLASS_CAPABILITY;
1559 break;
1560 case 1:
1561 sclass = SECCLASS_CAPABILITY2;
1562 break;
1563 default:
1564 printk(KERN_ERR
1565 "SELinux: out of range capability %d\n", cap);
1566 BUG();
1567 return -EINVAL;
1568 }
1569
1570 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1571 if (audit == SECURITY_CAP_AUDIT) {
1572 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1573 if (rc2)
1574 return rc2;
1575 }
1576 return rc;
1577 }
1578
1579 /* Check whether a task is allowed to use a system operation. */
1580 static int task_has_system(struct task_struct *tsk,
1581 u32 perms)
1582 {
1583 u32 sid = task_sid(tsk);
1584
1585 return avc_has_perm(sid, SECINITSID_KERNEL,
1586 SECCLASS_SYSTEM, perms, NULL);
1587 }
1588
1589 /* Check whether a task has a particular permission to an inode.
1590 The 'adp' parameter is optional and allows other audit
1591 data to be passed (e.g. the dentry). */
1592 static int inode_has_perm(const struct cred *cred,
1593 struct inode *inode,
1594 u32 perms,
1595 struct common_audit_data *adp)
1596 {
1597 struct inode_security_struct *isec;
1598 u32 sid;
1599
1600 validate_creds(cred);
1601
1602 if (unlikely(IS_PRIVATE(inode)))
1603 return 0;
1604
1605 sid = cred_sid(cred);
1606 isec = inode->i_security;
1607
1608 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1609 }
1610
1611 /* Same as inode_has_perm, but pass explicit audit data containing
1612 the dentry to help the auditing code to more easily generate the
1613 pathname if needed. */
1614 static inline int dentry_has_perm(const struct cred *cred,
1615 struct dentry *dentry,
1616 u32 av)
1617 {
1618 struct inode *inode = dentry->d_inode;
1619 struct common_audit_data ad;
1620
1621 ad.type = LSM_AUDIT_DATA_DENTRY;
1622 ad.u.dentry = dentry;
1623 return inode_has_perm(cred, inode, av, &ad);
1624 }
1625
1626 /* Same as inode_has_perm, but pass explicit audit data containing
1627 the path to help the auditing code to more easily generate the
1628 pathname if needed. */
1629 static inline int path_has_perm(const struct cred *cred,
1630 struct path *path,
1631 u32 av)
1632 {
1633 struct inode *inode = path->dentry->d_inode;
1634 struct common_audit_data ad;
1635
1636 ad.type = LSM_AUDIT_DATA_PATH;
1637 ad.u.path = *path;
1638 return inode_has_perm(cred, inode, av, &ad);
1639 }
1640
1641 /* Same as path_has_perm, but uses the inode from the file struct. */
1642 static inline int file_path_has_perm(const struct cred *cred,
1643 struct file *file,
1644 u32 av)
1645 {
1646 struct common_audit_data ad;
1647
1648 ad.type = LSM_AUDIT_DATA_PATH;
1649 ad.u.path = file->f_path;
1650 return inode_has_perm(cred, file_inode(file), av, &ad);
1651 }
1652
1653 /* Check whether a task can use an open file descriptor to
1654 access an inode in a given way. Check access to the
1655 descriptor itself, and then use dentry_has_perm to
1656 check a particular permission to the file.
1657 Access to the descriptor is implicitly granted if it
1658 has the same SID as the process. If av is zero, then
1659 access to the file is not checked, e.g. for cases
1660 where only the descriptor is affected like seek. */
1661 static int file_has_perm(const struct cred *cred,
1662 struct file *file,
1663 u32 av)
1664 {
1665 struct file_security_struct *fsec = file->f_security;
1666 struct inode *inode = file_inode(file);
1667 struct common_audit_data ad;
1668 u32 sid = cred_sid(cred);
1669 int rc;
1670
1671 ad.type = LSM_AUDIT_DATA_PATH;
1672 ad.u.path = file->f_path;
1673
1674 if (sid != fsec->sid) {
1675 rc = avc_has_perm(sid, fsec->sid,
1676 SECCLASS_FD,
1677 FD__USE,
1678 &ad);
1679 if (rc)
1680 goto out;
1681 }
1682
1683 /* av is zero if only checking access to the descriptor. */
1684 rc = 0;
1685 if (av)
1686 rc = inode_has_perm(cred, inode, av, &ad);
1687
1688 out:
1689 return rc;
1690 }
1691
1692 /* Check whether a task can create a file. */
1693 static int may_create(struct inode *dir,
1694 struct dentry *dentry,
1695 u16 tclass)
1696 {
1697 const struct task_security_struct *tsec = current_security();
1698 struct inode_security_struct *dsec;
1699 struct superblock_security_struct *sbsec;
1700 u32 sid, newsid;
1701 struct common_audit_data ad;
1702 int rc;
1703
1704 dsec = dir->i_security;
1705 sbsec = dir->i_sb->s_security;
1706
1707 sid = tsec->sid;
1708 newsid = tsec->create_sid;
1709
1710 ad.type = LSM_AUDIT_DATA_DENTRY;
1711 ad.u.dentry = dentry;
1712
1713 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1714 DIR__ADD_NAME | DIR__SEARCH,
1715 &ad);
1716 if (rc)
1717 return rc;
1718
1719 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1720 rc = security_transition_sid(sid, dsec->sid, tclass,
1721 &dentry->d_name, &newsid);
1722 if (rc)
1723 return rc;
1724 }
1725
1726 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1727 if (rc)
1728 return rc;
1729
1730 return avc_has_perm(newsid, sbsec->sid,
1731 SECCLASS_FILESYSTEM,
1732 FILESYSTEM__ASSOCIATE, &ad);
1733 }
1734
1735 /* Check whether a task can create a key. */
1736 static int may_create_key(u32 ksid,
1737 struct task_struct *ctx)
1738 {
1739 u32 sid = task_sid(ctx);
1740
1741 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1742 }
1743
1744 #define MAY_LINK 0
1745 #define MAY_UNLINK 1
1746 #define MAY_RMDIR 2
1747
1748 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1749 static int may_link(struct inode *dir,
1750 struct dentry *dentry,
1751 int kind)
1752
1753 {
1754 struct inode_security_struct *dsec, *isec;
1755 struct common_audit_data ad;
1756 u32 sid = current_sid();
1757 u32 av;
1758 int rc;
1759
1760 dsec = dir->i_security;
1761 isec = dentry->d_inode->i_security;
1762
1763 ad.type = LSM_AUDIT_DATA_DENTRY;
1764 ad.u.dentry = dentry;
1765
1766 av = DIR__SEARCH;
1767 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1768 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1769 if (rc)
1770 return rc;
1771
1772 switch (kind) {
1773 case MAY_LINK:
1774 av = FILE__LINK;
1775 break;
1776 case MAY_UNLINK:
1777 av = FILE__UNLINK;
1778 break;
1779 case MAY_RMDIR:
1780 av = DIR__RMDIR;
1781 break;
1782 default:
1783 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1784 __func__, kind);
1785 return 0;
1786 }
1787
1788 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1789 return rc;
1790 }
1791
1792 static inline int may_rename(struct inode *old_dir,
1793 struct dentry *old_dentry,
1794 struct inode *new_dir,
1795 struct dentry *new_dentry)
1796 {
1797 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1798 struct common_audit_data ad;
1799 u32 sid = current_sid();
1800 u32 av;
1801 int old_is_dir, new_is_dir;
1802 int rc;
1803
1804 old_dsec = old_dir->i_security;
1805 old_isec = old_dentry->d_inode->i_security;
1806 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1807 new_dsec = new_dir->i_security;
1808
1809 ad.type = LSM_AUDIT_DATA_DENTRY;
1810
1811 ad.u.dentry = old_dentry;
1812 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1813 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1814 if (rc)
1815 return rc;
1816 rc = avc_has_perm(sid, old_isec->sid,
1817 old_isec->sclass, FILE__RENAME, &ad);
1818 if (rc)
1819 return rc;
1820 if (old_is_dir && new_dir != old_dir) {
1821 rc = avc_has_perm(sid, old_isec->sid,
1822 old_isec->sclass, DIR__REPARENT, &ad);
1823 if (rc)
1824 return rc;
1825 }
1826
1827 ad.u.dentry = new_dentry;
1828 av = DIR__ADD_NAME | DIR__SEARCH;
1829 if (new_dentry->d_inode)
1830 av |= DIR__REMOVE_NAME;
1831 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1832 if (rc)
1833 return rc;
1834 if (new_dentry->d_inode) {
1835 new_isec = new_dentry->d_inode->i_security;
1836 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1837 rc = avc_has_perm(sid, new_isec->sid,
1838 new_isec->sclass,
1839 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1840 if (rc)
1841 return rc;
1842 }
1843
1844 return 0;
1845 }
1846
1847 /* Check whether a task can perform a filesystem operation. */
1848 static int superblock_has_perm(const struct cred *cred,
1849 struct super_block *sb,
1850 u32 perms,
1851 struct common_audit_data *ad)
1852 {
1853 struct superblock_security_struct *sbsec;
1854 u32 sid = cred_sid(cred);
1855
1856 sbsec = sb->s_security;
1857 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1858 }
1859
1860 /* Convert a Linux mode and permission mask to an access vector. */
1861 static inline u32 file_mask_to_av(int mode, int mask)
1862 {
1863 u32 av = 0;
1864
1865 if (!S_ISDIR(mode)) {
1866 if (mask & MAY_EXEC)
1867 av |= FILE__EXECUTE;
1868 if (mask & MAY_READ)
1869 av |= FILE__READ;
1870
1871 if (mask & MAY_APPEND)
1872 av |= FILE__APPEND;
1873 else if (mask & MAY_WRITE)
1874 av |= FILE__WRITE;
1875
1876 } else {
1877 if (mask & MAY_EXEC)
1878 av |= DIR__SEARCH;
1879 if (mask & MAY_WRITE)
1880 av |= DIR__WRITE;
1881 if (mask & MAY_READ)
1882 av |= DIR__READ;
1883 }
1884
1885 return av;
1886 }
1887
1888 /* Convert a Linux file to an access vector. */
1889 static inline u32 file_to_av(struct file *file)
1890 {
1891 u32 av = 0;
1892
1893 if (file->f_mode & FMODE_READ)
1894 av |= FILE__READ;
1895 if (file->f_mode & FMODE_WRITE) {
1896 if (file->f_flags & O_APPEND)
1897 av |= FILE__APPEND;
1898 else
1899 av |= FILE__WRITE;
1900 }
1901 if (!av) {
1902 /*
1903 * Special file opened with flags 3 for ioctl-only use.
1904 */
1905 av = FILE__IOCTL;
1906 }
1907
1908 return av;
1909 }
1910
1911 /*
1912 * Convert a file to an access vector and include the correct open
1913 * open permission.
1914 */
1915 static inline u32 open_file_to_av(struct file *file)
1916 {
1917 u32 av = file_to_av(file);
1918
1919 if (selinux_policycap_openperm)
1920 av |= FILE__OPEN;
1921
1922 return av;
1923 }
1924
1925 /* Hook functions begin here. */
1926
1927 static int selinux_ptrace_access_check(struct task_struct *child,
1928 unsigned int mode)
1929 {
1930 int rc;
1931
1932 rc = cap_ptrace_access_check(child, mode);
1933 if (rc)
1934 return rc;
1935
1936 if (mode & PTRACE_MODE_READ) {
1937 u32 sid = current_sid();
1938 u32 csid = task_sid(child);
1939 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1940 }
1941
1942 return current_has_perm(child, PROCESS__PTRACE);
1943 }
1944
1945 static int selinux_ptrace_traceme(struct task_struct *parent)
1946 {
1947 int rc;
1948
1949 rc = cap_ptrace_traceme(parent);
1950 if (rc)
1951 return rc;
1952
1953 return task_has_perm(parent, current, PROCESS__PTRACE);
1954 }
1955
1956 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1957 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1958 {
1959 int error;
1960
1961 error = current_has_perm(target, PROCESS__GETCAP);
1962 if (error)
1963 return error;
1964
1965 return cap_capget(target, effective, inheritable, permitted);
1966 }
1967
1968 static int selinux_capset(struct cred *new, const struct cred *old,
1969 const kernel_cap_t *effective,
1970 const kernel_cap_t *inheritable,
1971 const kernel_cap_t *permitted)
1972 {
1973 int error;
1974
1975 error = cap_capset(new, old,
1976 effective, inheritable, permitted);
1977 if (error)
1978 return error;
1979
1980 return cred_has_perm(old, new, PROCESS__SETCAP);
1981 }
1982
1983 /*
1984 * (This comment used to live with the selinux_task_setuid hook,
1985 * which was removed).
1986 *
1987 * Since setuid only affects the current process, and since the SELinux
1988 * controls are not based on the Linux identity attributes, SELinux does not
1989 * need to control this operation. However, SELinux does control the use of
1990 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1991 */
1992
1993 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1994 int cap, int audit)
1995 {
1996 int rc;
1997
1998 rc = cap_capable(cred, ns, cap, audit);
1999 if (rc)
2000 return rc;
2001
2002 return cred_has_capability(cred, cap, audit);
2003 }
2004
2005 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2006 {
2007 const struct cred *cred = current_cred();
2008 int rc = 0;
2009
2010 if (!sb)
2011 return 0;
2012
2013 switch (cmds) {
2014 case Q_SYNC:
2015 case Q_QUOTAON:
2016 case Q_QUOTAOFF:
2017 case Q_SETINFO:
2018 case Q_SETQUOTA:
2019 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2020 break;
2021 case Q_GETFMT:
2022 case Q_GETINFO:
2023 case Q_GETQUOTA:
2024 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2025 break;
2026 default:
2027 rc = 0; /* let the kernel handle invalid cmds */
2028 break;
2029 }
2030 return rc;
2031 }
2032
2033 static int selinux_quota_on(struct dentry *dentry)
2034 {
2035 const struct cred *cred = current_cred();
2036
2037 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2038 }
2039
2040 static int selinux_syslog(int type)
2041 {
2042 int rc;
2043
2044 switch (type) {
2045 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2046 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2047 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2048 break;
2049 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2050 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2051 /* Set level of messages printed to console */
2052 case SYSLOG_ACTION_CONSOLE_LEVEL:
2053 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2054 break;
2055 case SYSLOG_ACTION_CLOSE: /* Close log */
2056 case SYSLOG_ACTION_OPEN: /* Open log */
2057 case SYSLOG_ACTION_READ: /* Read from log */
2058 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2059 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2060 default:
2061 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2062 break;
2063 }
2064 return rc;
2065 }
2066
2067 /*
2068 * Check that a process has enough memory to allocate a new virtual
2069 * mapping. 0 means there is enough memory for the allocation to
2070 * succeed and -ENOMEM implies there is not.
2071 *
2072 * Do not audit the selinux permission check, as this is applied to all
2073 * processes that allocate mappings.
2074 */
2075 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2076 {
2077 int rc, cap_sys_admin = 0;
2078
2079 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2080 SECURITY_CAP_NOAUDIT);
2081 if (rc == 0)
2082 cap_sys_admin = 1;
2083
2084 return __vm_enough_memory(mm, pages, cap_sys_admin);
2085 }
2086
2087 /* binprm security operations */
2088
2089 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2090 {
2091 const struct task_security_struct *old_tsec;
2092 struct task_security_struct *new_tsec;
2093 struct inode_security_struct *isec;
2094 struct common_audit_data ad;
2095 struct inode *inode = file_inode(bprm->file);
2096 int rc;
2097
2098 rc = cap_bprm_set_creds(bprm);
2099 if (rc)
2100 return rc;
2101
2102 /* SELinux context only depends on initial program or script and not
2103 * the script interpreter */
2104 if (bprm->cred_prepared)
2105 return 0;
2106
2107 old_tsec = current_security();
2108 new_tsec = bprm->cred->security;
2109 isec = inode->i_security;
2110
2111 /* Default to the current task SID. */
2112 new_tsec->sid = old_tsec->sid;
2113 new_tsec->osid = old_tsec->sid;
2114
2115 /* Reset fs, key, and sock SIDs on execve. */
2116 new_tsec->create_sid = 0;
2117 new_tsec->keycreate_sid = 0;
2118 new_tsec->sockcreate_sid = 0;
2119
2120 if (old_tsec->exec_sid) {
2121 new_tsec->sid = old_tsec->exec_sid;
2122 /* Reset exec SID on execve. */
2123 new_tsec->exec_sid = 0;
2124
2125 /*
2126 * Minimize confusion: if no_new_privs or nosuid and a
2127 * transition is explicitly requested, then fail the exec.
2128 */
2129 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2130 return -EPERM;
2131 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2132 return -EACCES;
2133 } else {
2134 /* Check for a default transition on this program. */
2135 rc = security_transition_sid(old_tsec->sid, isec->sid,
2136 SECCLASS_PROCESS, NULL,
2137 &new_tsec->sid);
2138 if (rc)
2139 return rc;
2140 }
2141
2142 ad.type = LSM_AUDIT_DATA_PATH;
2143 ad.u.path = bprm->file->f_path;
2144
2145 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2146 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2147 new_tsec->sid = old_tsec->sid;
2148
2149 if (new_tsec->sid == old_tsec->sid) {
2150 rc = avc_has_perm(old_tsec->sid, isec->sid,
2151 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2152 if (rc)
2153 return rc;
2154 } else {
2155 /* Check permissions for the transition. */
2156 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2157 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2158 if (rc)
2159 return rc;
2160
2161 rc = avc_has_perm(new_tsec->sid, isec->sid,
2162 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2163 if (rc)
2164 return rc;
2165
2166 /* Check for shared state */
2167 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2168 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2169 SECCLASS_PROCESS, PROCESS__SHARE,
2170 NULL);
2171 if (rc)
2172 return -EPERM;
2173 }
2174
2175 /* Make sure that anyone attempting to ptrace over a task that
2176 * changes its SID has the appropriate permit */
2177 if (bprm->unsafe &
2178 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2179 struct task_struct *tracer;
2180 struct task_security_struct *sec;
2181 u32 ptsid = 0;
2182
2183 rcu_read_lock();
2184 tracer = ptrace_parent(current);
2185 if (likely(tracer != NULL)) {
2186 sec = __task_cred(tracer)->security;
2187 ptsid = sec->sid;
2188 }
2189 rcu_read_unlock();
2190
2191 if (ptsid != 0) {
2192 rc = avc_has_perm(ptsid, new_tsec->sid,
2193 SECCLASS_PROCESS,
2194 PROCESS__PTRACE, NULL);
2195 if (rc)
2196 return -EPERM;
2197 }
2198 }
2199
2200 /* Clear any possibly unsafe personality bits on exec: */
2201 bprm->per_clear |= PER_CLEAR_ON_SETID;
2202 }
2203
2204 return 0;
2205 }
2206
2207 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2208 {
2209 const struct task_security_struct *tsec = current_security();
2210 u32 sid, osid;
2211 int atsecure = 0;
2212
2213 sid = tsec->sid;
2214 osid = tsec->osid;
2215
2216 if (osid != sid) {
2217 /* Enable secure mode for SIDs transitions unless
2218 the noatsecure permission is granted between
2219 the two SIDs, i.e. ahp returns 0. */
2220 atsecure = avc_has_perm(osid, sid,
2221 SECCLASS_PROCESS,
2222 PROCESS__NOATSECURE, NULL);
2223 }
2224
2225 return (atsecure || cap_bprm_secureexec(bprm));
2226 }
2227
2228 static int match_file(const void *p, struct file *file, unsigned fd)
2229 {
2230 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2231 }
2232
2233 /* Derived from fs/exec.c:flush_old_files. */
2234 static inline void flush_unauthorized_files(const struct cred *cred,
2235 struct files_struct *files)
2236 {
2237 struct file *file, *devnull = NULL;
2238 struct tty_struct *tty;
2239 int drop_tty = 0;
2240 unsigned n;
2241
2242 tty = get_current_tty();
2243 if (tty) {
2244 spin_lock(&tty_files_lock);
2245 if (!list_empty(&tty->tty_files)) {
2246 struct tty_file_private *file_priv;
2247
2248 /* Revalidate access to controlling tty.
2249 Use file_path_has_perm on the tty path directly
2250 rather than using file_has_perm, as this particular
2251 open file may belong to another process and we are
2252 only interested in the inode-based check here. */
2253 file_priv = list_first_entry(&tty->tty_files,
2254 struct tty_file_private, list);
2255 file = file_priv->file;
2256 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2257 drop_tty = 1;
2258 }
2259 spin_unlock(&tty_files_lock);
2260 tty_kref_put(tty);
2261 }
2262 /* Reset controlling tty. */
2263 if (drop_tty)
2264 no_tty();
2265
2266 /* Revalidate access to inherited open files. */
2267 n = iterate_fd(files, 0, match_file, cred);
2268 if (!n) /* none found? */
2269 return;
2270
2271 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2272 if (IS_ERR(devnull))
2273 devnull = NULL;
2274 /* replace all the matching ones with this */
2275 do {
2276 replace_fd(n - 1, devnull, 0);
2277 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2278 if (devnull)
2279 fput(devnull);
2280 }
2281
2282 /*
2283 * Prepare a process for imminent new credential changes due to exec
2284 */
2285 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2286 {
2287 struct task_security_struct *new_tsec;
2288 struct rlimit *rlim, *initrlim;
2289 int rc, i;
2290
2291 new_tsec = bprm->cred->security;
2292 if (new_tsec->sid == new_tsec->osid)
2293 return;
2294
2295 /* Close files for which the new task SID is not authorized. */
2296 flush_unauthorized_files(bprm->cred, current->files);
2297
2298 /* Always clear parent death signal on SID transitions. */
2299 current->pdeath_signal = 0;
2300
2301 /* Check whether the new SID can inherit resource limits from the old
2302 * SID. If not, reset all soft limits to the lower of the current
2303 * task's hard limit and the init task's soft limit.
2304 *
2305 * Note that the setting of hard limits (even to lower them) can be
2306 * controlled by the setrlimit check. The inclusion of the init task's
2307 * soft limit into the computation is to avoid resetting soft limits
2308 * higher than the default soft limit for cases where the default is
2309 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2310 */
2311 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2312 PROCESS__RLIMITINH, NULL);
2313 if (rc) {
2314 /* protect against do_prlimit() */
2315 task_lock(current);
2316 for (i = 0; i < RLIM_NLIMITS; i++) {
2317 rlim = current->signal->rlim + i;
2318 initrlim = init_task.signal->rlim + i;
2319 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2320 }
2321 task_unlock(current);
2322 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2323 }
2324 }
2325
2326 /*
2327 * Clean up the process immediately after the installation of new credentials
2328 * due to exec
2329 */
2330 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2331 {
2332 const struct task_security_struct *tsec = current_security();
2333 struct itimerval itimer;
2334 u32 osid, sid;
2335 int rc, i;
2336
2337 osid = tsec->osid;
2338 sid = tsec->sid;
2339
2340 if (sid == osid)
2341 return;
2342
2343 /* Check whether the new SID can inherit signal state from the old SID.
2344 * If not, clear itimers to avoid subsequent signal generation and
2345 * flush and unblock signals.
2346 *
2347 * This must occur _after_ the task SID has been updated so that any
2348 * kill done after the flush will be checked against the new SID.
2349 */
2350 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2351 if (rc) {
2352 memset(&itimer, 0, sizeof itimer);
2353 for (i = 0; i < 3; i++)
2354 do_setitimer(i, &itimer, NULL);
2355 spin_lock_irq(&current->sighand->siglock);
2356 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2357 __flush_signals(current);
2358 flush_signal_handlers(current, 1);
2359 sigemptyset(&current->blocked);
2360 }
2361 spin_unlock_irq(&current->sighand->siglock);
2362 }
2363
2364 /* Wake up the parent if it is waiting so that it can recheck
2365 * wait permission to the new task SID. */
2366 read_lock(&tasklist_lock);
2367 __wake_up_parent(current, current->real_parent);
2368 read_unlock(&tasklist_lock);
2369 }
2370
2371 /* superblock security operations */
2372
2373 static int selinux_sb_alloc_security(struct super_block *sb)
2374 {
2375 return superblock_alloc_security(sb);
2376 }
2377
2378 static void selinux_sb_free_security(struct super_block *sb)
2379 {
2380 superblock_free_security(sb);
2381 }
2382
2383 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2384 {
2385 if (plen > olen)
2386 return 0;
2387
2388 return !memcmp(prefix, option, plen);
2389 }
2390
2391 static inline int selinux_option(char *option, int len)
2392 {
2393 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2394 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2395 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2396 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2397 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2398 }
2399
2400 static inline void take_option(char **to, char *from, int *first, int len)
2401 {
2402 if (!*first) {
2403 **to = ',';
2404 *to += 1;
2405 } else
2406 *first = 0;
2407 memcpy(*to, from, len);
2408 *to += len;
2409 }
2410
2411 static inline void take_selinux_option(char **to, char *from, int *first,
2412 int len)
2413 {
2414 int current_size = 0;
2415
2416 if (!*first) {
2417 **to = '|';
2418 *to += 1;
2419 } else
2420 *first = 0;
2421
2422 while (current_size < len) {
2423 if (*from != '"') {
2424 **to = *from;
2425 *to += 1;
2426 }
2427 from += 1;
2428 current_size += 1;
2429 }
2430 }
2431
2432 static int selinux_sb_copy_data(char *orig, char *copy)
2433 {
2434 int fnosec, fsec, rc = 0;
2435 char *in_save, *in_curr, *in_end;
2436 char *sec_curr, *nosec_save, *nosec;
2437 int open_quote = 0;
2438
2439 in_curr = orig;
2440 sec_curr = copy;
2441
2442 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2443 if (!nosec) {
2444 rc = -ENOMEM;
2445 goto out;
2446 }
2447
2448 nosec_save = nosec;
2449 fnosec = fsec = 1;
2450 in_save = in_end = orig;
2451
2452 do {
2453 if (*in_end == '"')
2454 open_quote = !open_quote;
2455 if ((*in_end == ',' && open_quote == 0) ||
2456 *in_end == '\0') {
2457 int len = in_end - in_curr;
2458
2459 if (selinux_option(in_curr, len))
2460 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2461 else
2462 take_option(&nosec, in_curr, &fnosec, len);
2463
2464 in_curr = in_end + 1;
2465 }
2466 } while (*in_end++);
2467
2468 strcpy(in_save, nosec_save);
2469 free_page((unsigned long)nosec_save);
2470 out:
2471 return rc;
2472 }
2473
2474 static int selinux_sb_remount(struct super_block *sb, void *data)
2475 {
2476 int rc, i, *flags;
2477 struct security_mnt_opts opts;
2478 char *secdata, **mount_options;
2479 struct superblock_security_struct *sbsec = sb->s_security;
2480
2481 if (!(sbsec->flags & SE_SBINITIALIZED))
2482 return 0;
2483
2484 if (!data)
2485 return 0;
2486
2487 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2488 return 0;
2489
2490 security_init_mnt_opts(&opts);
2491 secdata = alloc_secdata();
2492 if (!secdata)
2493 return -ENOMEM;
2494 rc = selinux_sb_copy_data(data, secdata);
2495 if (rc)
2496 goto out_free_secdata;
2497
2498 rc = selinux_parse_opts_str(secdata, &opts);
2499 if (rc)
2500 goto out_free_secdata;
2501
2502 mount_options = opts.mnt_opts;
2503 flags = opts.mnt_opts_flags;
2504
2505 for (i = 0; i < opts.num_mnt_opts; i++) {
2506 u32 sid;
2507 size_t len;
2508
2509 if (flags[i] == SBLABEL_MNT)
2510 continue;
2511 len = strlen(mount_options[i]);
2512 rc = security_context_to_sid(mount_options[i], len, &sid,
2513 GFP_KERNEL);
2514 if (rc) {
2515 printk(KERN_WARNING "SELinux: security_context_to_sid"
2516 "(%s) failed for (dev %s, type %s) errno=%d\n",
2517 mount_options[i], sb->s_id, sb->s_type->name, rc);
2518 goto out_free_opts;
2519 }
2520 rc = -EINVAL;
2521 switch (flags[i]) {
2522 case FSCONTEXT_MNT:
2523 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2524 goto out_bad_option;
2525 break;
2526 case CONTEXT_MNT:
2527 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2528 goto out_bad_option;
2529 break;
2530 case ROOTCONTEXT_MNT: {
2531 struct inode_security_struct *root_isec;
2532 root_isec = sb->s_root->d_inode->i_security;
2533
2534 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2535 goto out_bad_option;
2536 break;
2537 }
2538 case DEFCONTEXT_MNT:
2539 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2540 goto out_bad_option;
2541 break;
2542 default:
2543 goto out_free_opts;
2544 }
2545 }
2546
2547 rc = 0;
2548 out_free_opts:
2549 security_free_mnt_opts(&opts);
2550 out_free_secdata:
2551 free_secdata(secdata);
2552 return rc;
2553 out_bad_option:
2554 printk(KERN_WARNING "SELinux: unable to change security options "
2555 "during remount (dev %s, type=%s)\n", sb->s_id,
2556 sb->s_type->name);
2557 goto out_free_opts;
2558 }
2559
2560 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2561 {
2562 const struct cred *cred = current_cred();
2563 struct common_audit_data ad;
2564 int rc;
2565
2566 rc = superblock_doinit(sb, data);
2567 if (rc)
2568 return rc;
2569
2570 /* Allow all mounts performed by the kernel */
2571 if (flags & MS_KERNMOUNT)
2572 return 0;
2573
2574 ad.type = LSM_AUDIT_DATA_DENTRY;
2575 ad.u.dentry = sb->s_root;
2576 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2577 }
2578
2579 static int selinux_sb_statfs(struct dentry *dentry)
2580 {
2581 const struct cred *cred = current_cred();
2582 struct common_audit_data ad;
2583
2584 ad.type = LSM_AUDIT_DATA_DENTRY;
2585 ad.u.dentry = dentry->d_sb->s_root;
2586 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2587 }
2588
2589 static int selinux_mount(const char *dev_name,
2590 struct path *path,
2591 const char *type,
2592 unsigned long flags,
2593 void *data)
2594 {
2595 const struct cred *cred = current_cred();
2596
2597 if (flags & MS_REMOUNT)
2598 return superblock_has_perm(cred, path->dentry->d_sb,
2599 FILESYSTEM__REMOUNT, NULL);
2600 else
2601 return path_has_perm(cred, path, FILE__MOUNTON);
2602 }
2603
2604 static int selinux_umount(struct vfsmount *mnt, int flags)
2605 {
2606 const struct cred *cred = current_cred();
2607
2608 return superblock_has_perm(cred, mnt->mnt_sb,
2609 FILESYSTEM__UNMOUNT, NULL);
2610 }
2611
2612 /* inode security operations */
2613
2614 static int selinux_inode_alloc_security(struct inode *inode)
2615 {
2616 return inode_alloc_security(inode);
2617 }
2618
2619 static void selinux_inode_free_security(struct inode *inode)
2620 {
2621 inode_free_security(inode);
2622 }
2623
2624 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2625 struct qstr *name, void **ctx,
2626 u32 *ctxlen)
2627 {
2628 const struct cred *cred = current_cred();
2629 struct task_security_struct *tsec;
2630 struct inode_security_struct *dsec;
2631 struct superblock_security_struct *sbsec;
2632 struct inode *dir = dentry->d_parent->d_inode;
2633 u32 newsid;
2634 int rc;
2635
2636 tsec = cred->security;
2637 dsec = dir->i_security;
2638 sbsec = dir->i_sb->s_security;
2639
2640 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2641 newsid = tsec->create_sid;
2642 } else {
2643 rc = security_transition_sid(tsec->sid, dsec->sid,
2644 inode_mode_to_security_class(mode),
2645 name,
2646 &newsid);
2647 if (rc) {
2648 printk(KERN_WARNING
2649 "%s: security_transition_sid failed, rc=%d\n",
2650 __func__, -rc);
2651 return rc;
2652 }
2653 }
2654
2655 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2656 }
2657
2658 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2659 const struct qstr *qstr,
2660 const char **name,
2661 void **value, size_t *len)
2662 {
2663 const struct task_security_struct *tsec = current_security();
2664 struct inode_security_struct *dsec;
2665 struct superblock_security_struct *sbsec;
2666 u32 sid, newsid, clen;
2667 int rc;
2668 char *context;
2669
2670 dsec = dir->i_security;
2671 sbsec = dir->i_sb->s_security;
2672
2673 sid = tsec->sid;
2674 newsid = tsec->create_sid;
2675
2676 if ((sbsec->flags & SE_SBINITIALIZED) &&
2677 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2678 newsid = sbsec->mntpoint_sid;
2679 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2680 rc = security_transition_sid(sid, dsec->sid,
2681 inode_mode_to_security_class(inode->i_mode),
2682 qstr, &newsid);
2683 if (rc) {
2684 printk(KERN_WARNING "%s: "
2685 "security_transition_sid failed, rc=%d (dev=%s "
2686 "ino=%ld)\n",
2687 __func__,
2688 -rc, inode->i_sb->s_id, inode->i_ino);
2689 return rc;
2690 }
2691 }
2692
2693 /* Possibly defer initialization to selinux_complete_init. */
2694 if (sbsec->flags & SE_SBINITIALIZED) {
2695 struct inode_security_struct *isec = inode->i_security;
2696 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2697 isec->sid = newsid;
2698 isec->initialized = 1;
2699 }
2700
2701 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2702 return -EOPNOTSUPP;
2703
2704 if (name)
2705 *name = XATTR_SELINUX_SUFFIX;
2706
2707 if (value && len) {
2708 rc = security_sid_to_context_force(newsid, &context, &clen);
2709 if (rc)
2710 return rc;
2711 *value = context;
2712 *len = clen;
2713 }
2714
2715 return 0;
2716 }
2717
2718 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2719 {
2720 return may_create(dir, dentry, SECCLASS_FILE);
2721 }
2722
2723 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2724 {
2725 return may_link(dir, old_dentry, MAY_LINK);
2726 }
2727
2728 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2729 {
2730 return may_link(dir, dentry, MAY_UNLINK);
2731 }
2732
2733 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2734 {
2735 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2736 }
2737
2738 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2739 {
2740 return may_create(dir, dentry, SECCLASS_DIR);
2741 }
2742
2743 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2744 {
2745 return may_link(dir, dentry, MAY_RMDIR);
2746 }
2747
2748 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2749 {
2750 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2751 }
2752
2753 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2754 struct inode *new_inode, struct dentry *new_dentry)
2755 {
2756 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2757 }
2758
2759 static int selinux_inode_readlink(struct dentry *dentry)
2760 {
2761 const struct cred *cred = current_cred();
2762
2763 return dentry_has_perm(cred, dentry, FILE__READ);
2764 }
2765
2766 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2767 {
2768 const struct cred *cred = current_cred();
2769
2770 return dentry_has_perm(cred, dentry, FILE__READ);
2771 }
2772
2773 static noinline int audit_inode_permission(struct inode *inode,
2774 u32 perms, u32 audited, u32 denied,
2775 int result,
2776 unsigned flags)
2777 {
2778 struct common_audit_data ad;
2779 struct inode_security_struct *isec = inode->i_security;
2780 int rc;
2781
2782 ad.type = LSM_AUDIT_DATA_INODE;
2783 ad.u.inode = inode;
2784
2785 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2786 audited, denied, result, &ad, flags);
2787 if (rc)
2788 return rc;
2789 return 0;
2790 }
2791
2792 static int selinux_inode_permission(struct inode *inode, int mask)
2793 {
2794 const struct cred *cred = current_cred();
2795 u32 perms;
2796 bool from_access;
2797 unsigned flags = mask & MAY_NOT_BLOCK;
2798 struct inode_security_struct *isec;
2799 u32 sid;
2800 struct av_decision avd;
2801 int rc, rc2;
2802 u32 audited, denied;
2803
2804 from_access = mask & MAY_ACCESS;
2805 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2806
2807 /* No permission to check. Existence test. */
2808 if (!mask)
2809 return 0;
2810
2811 validate_creds(cred);
2812
2813 if (unlikely(IS_PRIVATE(inode)))
2814 return 0;
2815
2816 perms = file_mask_to_av(inode->i_mode, mask);
2817
2818 sid = cred_sid(cred);
2819 isec = inode->i_security;
2820
2821 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2822 audited = avc_audit_required(perms, &avd, rc,
2823 from_access ? FILE__AUDIT_ACCESS : 0,
2824 &denied);
2825 if (likely(!audited))
2826 return rc;
2827
2828 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2829 if (rc2)
2830 return rc2;
2831 return rc;
2832 }
2833
2834 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2835 {
2836 const struct cred *cred = current_cred();
2837 unsigned int ia_valid = iattr->ia_valid;
2838 __u32 av = FILE__WRITE;
2839
2840 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2841 if (ia_valid & ATTR_FORCE) {
2842 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2843 ATTR_FORCE);
2844 if (!ia_valid)
2845 return 0;
2846 }
2847
2848 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2849 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2850 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2851
2852 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2853 av |= FILE__OPEN;
2854
2855 return dentry_has_perm(cred, dentry, av);
2856 }
2857
2858 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2859 {
2860 const struct cred *cred = current_cred();
2861 struct path path;
2862
2863 path.dentry = dentry;
2864 path.mnt = mnt;
2865
2866 return path_has_perm(cred, &path, FILE__GETATTR);
2867 }
2868
2869 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2870 {
2871 const struct cred *cred = current_cred();
2872
2873 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2874 sizeof XATTR_SECURITY_PREFIX - 1)) {
2875 if (!strcmp(name, XATTR_NAME_CAPS)) {
2876 if (!capable(CAP_SETFCAP))
2877 return -EPERM;
2878 } else if (!capable(CAP_SYS_ADMIN)) {
2879 /* A different attribute in the security namespace.
2880 Restrict to administrator. */
2881 return -EPERM;
2882 }
2883 }
2884
2885 /* Not an attribute we recognize, so just check the
2886 ordinary setattr permission. */
2887 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2888 }
2889
2890 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2891 const void *value, size_t size, int flags)
2892 {
2893 struct inode *inode = dentry->d_inode;
2894 struct inode_security_struct *isec = inode->i_security;
2895 struct superblock_security_struct *sbsec;
2896 struct common_audit_data ad;
2897 u32 newsid, sid = current_sid();
2898 int rc = 0;
2899
2900 if (strcmp(name, XATTR_NAME_SELINUX))
2901 return selinux_inode_setotherxattr(dentry, name);
2902
2903 sbsec = inode->i_sb->s_security;
2904 if (!(sbsec->flags & SBLABEL_MNT))
2905 return -EOPNOTSUPP;
2906
2907 if (!inode_owner_or_capable(inode))
2908 return -EPERM;
2909
2910 ad.type = LSM_AUDIT_DATA_DENTRY;
2911 ad.u.dentry = dentry;
2912
2913 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2914 FILE__RELABELFROM, &ad);
2915 if (rc)
2916 return rc;
2917
2918 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
2919 if (rc == -EINVAL) {
2920 if (!capable(CAP_MAC_ADMIN)) {
2921 struct audit_buffer *ab;
2922 size_t audit_size;
2923 const char *str;
2924
2925 /* We strip a nul only if it is at the end, otherwise the
2926 * context contains a nul and we should audit that */
2927 if (value) {
2928 str = value;
2929 if (str[size - 1] == '\0')
2930 audit_size = size - 1;
2931 else
2932 audit_size = size;
2933 } else {
2934 str = "";
2935 audit_size = 0;
2936 }
2937 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2938 audit_log_format(ab, "op=setxattr invalid_context=");
2939 audit_log_n_untrustedstring(ab, value, audit_size);
2940 audit_log_end(ab);
2941
2942 return rc;
2943 }
2944 rc = security_context_to_sid_force(value, size, &newsid);
2945 }
2946 if (rc)
2947 return rc;
2948
2949 rc = avc_has_perm(sid, newsid, isec->sclass,
2950 FILE__RELABELTO, &ad);
2951 if (rc)
2952 return rc;
2953
2954 rc = security_validate_transition(isec->sid, newsid, sid,
2955 isec->sclass);
2956 if (rc)
2957 return rc;
2958
2959 return avc_has_perm(newsid,
2960 sbsec->sid,
2961 SECCLASS_FILESYSTEM,
2962 FILESYSTEM__ASSOCIATE,
2963 &ad);
2964 }
2965
2966 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2967 const void *value, size_t size,
2968 int flags)
2969 {
2970 struct inode *inode = dentry->d_inode;
2971 struct inode_security_struct *isec = inode->i_security;
2972 u32 newsid;
2973 int rc;
2974
2975 if (strcmp(name, XATTR_NAME_SELINUX)) {
2976 /* Not an attribute we recognize, so nothing to do. */
2977 return;
2978 }
2979
2980 rc = security_context_to_sid_force(value, size, &newsid);
2981 if (rc) {
2982 printk(KERN_ERR "SELinux: unable to map context to SID"
2983 "for (%s, %lu), rc=%d\n",
2984 inode->i_sb->s_id, inode->i_ino, -rc);
2985 return;
2986 }
2987
2988 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2989 isec->sid = newsid;
2990 isec->initialized = 1;
2991
2992 return;
2993 }
2994
2995 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2996 {
2997 const struct cred *cred = current_cred();
2998
2999 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3000 }
3001
3002 static int selinux_inode_listxattr(struct dentry *dentry)
3003 {
3004 const struct cred *cred = current_cred();
3005
3006 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3007 }
3008
3009 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3010 {
3011 if (strcmp(name, XATTR_NAME_SELINUX))
3012 return selinux_inode_setotherxattr(dentry, name);
3013
3014 /* No one is allowed to remove a SELinux security label.
3015 You can change the label, but all data must be labeled. */
3016 return -EACCES;
3017 }
3018
3019 /*
3020 * Copy the inode security context value to the user.
3021 *
3022 * Permission check is handled by selinux_inode_getxattr hook.
3023 */
3024 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3025 {
3026 u32 size;
3027 int error;
3028 char *context = NULL;
3029 struct inode_security_struct *isec = inode->i_security;
3030
3031 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3032 return -EOPNOTSUPP;
3033
3034 /*
3035 * If the caller has CAP_MAC_ADMIN, then get the raw context
3036 * value even if it is not defined by current policy; otherwise,
3037 * use the in-core value under current policy.
3038 * Use the non-auditing forms of the permission checks since
3039 * getxattr may be called by unprivileged processes commonly
3040 * and lack of permission just means that we fall back to the
3041 * in-core context value, not a denial.
3042 */
3043 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3044 SECURITY_CAP_NOAUDIT);
3045 if (!error)
3046 error = security_sid_to_context_force(isec->sid, &context,
3047 &size);
3048 else
3049 error = security_sid_to_context(isec->sid, &context, &size);
3050 if (error)
3051 return error;
3052 error = size;
3053 if (alloc) {
3054 *buffer = context;
3055 goto out_nofree;
3056 }
3057 kfree(context);
3058 out_nofree:
3059 return error;
3060 }
3061
3062 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3063 const void *value, size_t size, int flags)
3064 {
3065 struct inode_security_struct *isec = inode->i_security;
3066 u32 newsid;
3067 int rc;
3068
3069 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3070 return -EOPNOTSUPP;
3071
3072 if (!value || !size)
3073 return -EACCES;
3074
3075 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3076 if (rc)
3077 return rc;
3078
3079 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3080 isec->sid = newsid;
3081 isec->initialized = 1;
3082 return 0;
3083 }
3084
3085 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3086 {
3087 const int len = sizeof(XATTR_NAME_SELINUX);
3088 if (buffer && len <= buffer_size)
3089 memcpy(buffer, XATTR_NAME_SELINUX, len);
3090 return len;
3091 }
3092
3093 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3094 {
3095 struct inode_security_struct *isec = inode->i_security;
3096 *secid = isec->sid;
3097 }
3098
3099 /* file security operations */
3100
3101 static int selinux_revalidate_file_permission(struct file *file, int mask)
3102 {
3103 const struct cred *cred = current_cred();
3104 struct inode *inode = file_inode(file);
3105
3106 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3107 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3108 mask |= MAY_APPEND;
3109
3110 return file_has_perm(cred, file,
3111 file_mask_to_av(inode->i_mode, mask));
3112 }
3113
3114 static int selinux_file_permission(struct file *file, int mask)
3115 {
3116 struct inode *inode = file_inode(file);
3117 struct file_security_struct *fsec = file->f_security;
3118 struct inode_security_struct *isec = inode->i_security;
3119 u32 sid = current_sid();
3120
3121 if (!mask)
3122 /* No permission to check. Existence test. */
3123 return 0;
3124
3125 if (sid == fsec->sid && fsec->isid == isec->sid &&
3126 fsec->pseqno == avc_policy_seqno())
3127 /* No change since file_open check. */
3128 return 0;
3129
3130 return selinux_revalidate_file_permission(file, mask);
3131 }
3132
3133 static int selinux_file_alloc_security(struct file *file)
3134 {
3135 return file_alloc_security(file);
3136 }
3137
3138 static void selinux_file_free_security(struct file *file)
3139 {
3140 file_free_security(file);
3141 }
3142
3143 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3144 unsigned long arg)
3145 {
3146 const struct cred *cred = current_cred();
3147 int error = 0;
3148
3149 switch (cmd) {
3150 case FIONREAD:
3151 /* fall through */
3152 case FIBMAP:
3153 /* fall through */
3154 case FIGETBSZ:
3155 /* fall through */
3156 case FS_IOC_GETFLAGS:
3157 /* fall through */
3158 case FS_IOC_GETVERSION:
3159 error = file_has_perm(cred, file, FILE__GETATTR);
3160 break;
3161
3162 case FS_IOC_SETFLAGS:
3163 /* fall through */
3164 case FS_IOC_SETVERSION:
3165 error = file_has_perm(cred, file, FILE__SETATTR);
3166 break;
3167
3168 /* sys_ioctl() checks */
3169 case FIONBIO:
3170 /* fall through */
3171 case FIOASYNC:
3172 error = file_has_perm(cred, file, 0);
3173 break;
3174
3175 case KDSKBENT:
3176 case KDSKBSENT:
3177 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3178 SECURITY_CAP_AUDIT);
3179 break;
3180
3181 /* default case assumes that the command will go
3182 * to the file's ioctl() function.
3183 */
3184 default:
3185 error = file_has_perm(cred, file, FILE__IOCTL);
3186 }
3187 return error;
3188 }
3189
3190 static int default_noexec;
3191
3192 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3193 {
3194 const struct cred *cred = current_cred();
3195 int rc = 0;
3196
3197 if (default_noexec &&
3198 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3199 /*
3200 * We are making executable an anonymous mapping or a
3201 * private file mapping that will also be writable.
3202 * This has an additional check.
3203 */
3204 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3205 if (rc)
3206 goto error;
3207 }
3208
3209 if (file) {
3210 /* read access is always possible with a mapping */
3211 u32 av = FILE__READ;
3212
3213 /* write access only matters if the mapping is shared */
3214 if (shared && (prot & PROT_WRITE))
3215 av |= FILE__WRITE;
3216
3217 if (prot & PROT_EXEC)
3218 av |= FILE__EXECUTE;
3219
3220 return file_has_perm(cred, file, av);
3221 }
3222
3223 error:
3224 return rc;
3225 }
3226
3227 static int selinux_mmap_addr(unsigned long addr)
3228 {
3229 int rc;
3230
3231 /* do DAC check on address space usage */
3232 rc = cap_mmap_addr(addr);
3233 if (rc)
3234 return rc;
3235
3236 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3237 u32 sid = current_sid();
3238 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3239 MEMPROTECT__MMAP_ZERO, NULL);
3240 }
3241
3242 return rc;
3243 }
3244
3245 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3246 unsigned long prot, unsigned long flags)
3247 {
3248 if (selinux_checkreqprot)
3249 prot = reqprot;
3250
3251 return file_map_prot_check(file, prot,
3252 (flags & MAP_TYPE) == MAP_SHARED);
3253 }
3254
3255 static int selinux_file_mprotect(struct vm_area_struct *vma,
3256 unsigned long reqprot,
3257 unsigned long prot)
3258 {
3259 const struct cred *cred = current_cred();
3260
3261 if (selinux_checkreqprot)
3262 prot = reqprot;
3263
3264 if (default_noexec &&
3265 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3266 int rc = 0;
3267 if (vma->vm_start >= vma->vm_mm->start_brk &&
3268 vma->vm_end <= vma->vm_mm->brk) {
3269 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3270 } else if (!vma->vm_file &&
3271 vma->vm_start <= vma->vm_mm->start_stack &&
3272 vma->vm_end >= vma->vm_mm->start_stack) {
3273 rc = current_has_perm(current, PROCESS__EXECSTACK);
3274 } else if (vma->vm_file && vma->anon_vma) {
3275 /*
3276 * We are making executable a file mapping that has
3277 * had some COW done. Since pages might have been
3278 * written, check ability to execute the possibly
3279 * modified content. This typically should only
3280 * occur for text relocations.
3281 */
3282 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3283 }
3284 if (rc)
3285 return rc;
3286 }
3287
3288 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3289 }
3290
3291 static int selinux_file_lock(struct file *file, unsigned int cmd)
3292 {
3293 const struct cred *cred = current_cred();
3294
3295 return file_has_perm(cred, file, FILE__LOCK);
3296 }
3297
3298 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3299 unsigned long arg)
3300 {
3301 const struct cred *cred = current_cred();
3302 int err = 0;
3303
3304 switch (cmd) {
3305 case F_SETFL:
3306 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3307 err = file_has_perm(cred, file, FILE__WRITE);
3308 break;
3309 }
3310 /* fall through */
3311 case F_SETOWN:
3312 case F_SETSIG:
3313 case F_GETFL:
3314 case F_GETOWN:
3315 case F_GETSIG:
3316 case F_GETOWNER_UIDS:
3317 /* Just check FD__USE permission */
3318 err = file_has_perm(cred, file, 0);
3319 break;
3320 case F_GETLK:
3321 case F_SETLK:
3322 case F_SETLKW:
3323 case F_OFD_GETLK:
3324 case F_OFD_SETLK:
3325 case F_OFD_SETLKW:
3326 #if BITS_PER_LONG == 32
3327 case F_GETLK64:
3328 case F_SETLK64:
3329 case F_SETLKW64:
3330 #endif
3331 err = file_has_perm(cred, file, FILE__LOCK);
3332 break;
3333 }
3334
3335 return err;
3336 }
3337
3338 static int selinux_file_set_fowner(struct file *file)
3339 {
3340 struct file_security_struct *fsec;
3341
3342 fsec = file->f_security;
3343 fsec->fown_sid = current_sid();
3344
3345 return 0;
3346 }
3347
3348 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3349 struct fown_struct *fown, int signum)
3350 {
3351 struct file *file;
3352 u32 sid = task_sid(tsk);
3353 u32 perm;
3354 struct file_security_struct *fsec;
3355
3356 /* struct fown_struct is never outside the context of a struct file */
3357 file = container_of(fown, struct file, f_owner);
3358
3359 fsec = file->f_security;
3360
3361 if (!signum)
3362 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3363 else
3364 perm = signal_to_av(signum);
3365
3366 return avc_has_perm(fsec->fown_sid, sid,
3367 SECCLASS_PROCESS, perm, NULL);
3368 }
3369
3370 static int selinux_file_receive(struct file *file)
3371 {
3372 const struct cred *cred = current_cred();
3373
3374 return file_has_perm(cred, file, file_to_av(file));
3375 }
3376
3377 static int selinux_file_open(struct file *file, const struct cred *cred)
3378 {
3379 struct file_security_struct *fsec;
3380 struct inode_security_struct *isec;
3381
3382 fsec = file->f_security;
3383 isec = file_inode(file)->i_security;
3384 /*
3385 * Save inode label and policy sequence number
3386 * at open-time so that selinux_file_permission
3387 * can determine whether revalidation is necessary.
3388 * Task label is already saved in the file security
3389 * struct as its SID.
3390 */
3391 fsec->isid = isec->sid;
3392 fsec->pseqno = avc_policy_seqno();
3393 /*
3394 * Since the inode label or policy seqno may have changed
3395 * between the selinux_inode_permission check and the saving
3396 * of state above, recheck that access is still permitted.
3397 * Otherwise, access might never be revalidated against the
3398 * new inode label or new policy.
3399 * This check is not redundant - do not remove.
3400 */
3401 return file_path_has_perm(cred, file, open_file_to_av(file));
3402 }
3403
3404 /* task security operations */
3405
3406 static int selinux_task_create(unsigned long clone_flags)
3407 {
3408 return current_has_perm(current, PROCESS__FORK);
3409 }
3410
3411 /*
3412 * allocate the SELinux part of blank credentials
3413 */
3414 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3415 {
3416 struct task_security_struct *tsec;
3417
3418 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3419 if (!tsec)
3420 return -ENOMEM;
3421
3422 cred->security = tsec;
3423 return 0;
3424 }
3425
3426 /*
3427 * detach and free the LSM part of a set of credentials
3428 */
3429 static void selinux_cred_free(struct cred *cred)
3430 {
3431 struct task_security_struct *tsec = cred->security;
3432
3433 /*
3434 * cred->security == NULL if security_cred_alloc_blank() or
3435 * security_prepare_creds() returned an error.
3436 */
3437 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3438 cred->security = (void *) 0x7UL;
3439 kfree(tsec);
3440 }
3441
3442 /*
3443 * prepare a new set of credentials for modification
3444 */
3445 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3446 gfp_t gfp)
3447 {
3448 const struct task_security_struct *old_tsec;
3449 struct task_security_struct *tsec;
3450
3451 old_tsec = old->security;
3452
3453 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3454 if (!tsec)
3455 return -ENOMEM;
3456
3457 new->security = tsec;
3458 return 0;
3459 }
3460
3461 /*
3462 * transfer the SELinux data to a blank set of creds
3463 */
3464 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3465 {
3466 const struct task_security_struct *old_tsec = old->security;
3467 struct task_security_struct *tsec = new->security;
3468
3469 *tsec = *old_tsec;
3470 }
3471
3472 /*
3473 * set the security data for a kernel service
3474 * - all the creation contexts are set to unlabelled
3475 */
3476 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3477 {
3478 struct task_security_struct *tsec = new->security;
3479 u32 sid = current_sid();
3480 int ret;
3481
3482 ret = avc_has_perm(sid, secid,
3483 SECCLASS_KERNEL_SERVICE,
3484 KERNEL_SERVICE__USE_AS_OVERRIDE,
3485 NULL);
3486 if (ret == 0) {
3487 tsec->sid = secid;
3488 tsec->create_sid = 0;
3489 tsec->keycreate_sid = 0;
3490 tsec->sockcreate_sid = 0;
3491 }
3492 return ret;
3493 }
3494
3495 /*
3496 * set the file creation context in a security record to the same as the
3497 * objective context of the specified inode
3498 */
3499 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3500 {
3501 struct inode_security_struct *isec = inode->i_security;
3502 struct task_security_struct *tsec = new->security;
3503 u32 sid = current_sid();
3504 int ret;
3505
3506 ret = avc_has_perm(sid, isec->sid,
3507 SECCLASS_KERNEL_SERVICE,
3508 KERNEL_SERVICE__CREATE_FILES_AS,
3509 NULL);
3510
3511 if (ret == 0)
3512 tsec->create_sid = isec->sid;
3513 return ret;
3514 }
3515
3516 static int selinux_kernel_module_request(char *kmod_name)
3517 {
3518 u32 sid;
3519 struct common_audit_data ad;
3520
3521 sid = task_sid(current);
3522
3523 ad.type = LSM_AUDIT_DATA_KMOD;
3524 ad.u.kmod_name = kmod_name;
3525
3526 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3527 SYSTEM__MODULE_REQUEST, &ad);
3528 }
3529
3530 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3531 {
3532 return current_has_perm(p, PROCESS__SETPGID);
3533 }
3534
3535 static int selinux_task_getpgid(struct task_struct *p)
3536 {
3537 return current_has_perm(p, PROCESS__GETPGID);
3538 }
3539
3540 static int selinux_task_getsid(struct task_struct *p)
3541 {
3542 return current_has_perm(p, PROCESS__GETSESSION);
3543 }
3544
3545 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3546 {
3547 *secid = task_sid(p);
3548 }
3549
3550 static int selinux_task_setnice(struct task_struct *p, int nice)
3551 {
3552 int rc;
3553
3554 rc = cap_task_setnice(p, nice);
3555 if (rc)
3556 return rc;
3557
3558 return current_has_perm(p, PROCESS__SETSCHED);
3559 }
3560
3561 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3562 {
3563 int rc;
3564
3565 rc = cap_task_setioprio(p, ioprio);
3566 if (rc)
3567 return rc;
3568
3569 return current_has_perm(p, PROCESS__SETSCHED);
3570 }
3571
3572 static int selinux_task_getioprio(struct task_struct *p)
3573 {
3574 return current_has_perm(p, PROCESS__GETSCHED);
3575 }
3576
3577 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3578 struct rlimit *new_rlim)
3579 {
3580 struct rlimit *old_rlim = p->signal->rlim + resource;
3581
3582 /* Control the ability to change the hard limit (whether
3583 lowering or raising it), so that the hard limit can
3584 later be used as a safe reset point for the soft limit
3585 upon context transitions. See selinux_bprm_committing_creds. */
3586 if (old_rlim->rlim_max != new_rlim->rlim_max)
3587 return current_has_perm(p, PROCESS__SETRLIMIT);
3588
3589 return 0;
3590 }
3591
3592 static int selinux_task_setscheduler(struct task_struct *p)
3593 {
3594 int rc;
3595
3596 rc = cap_task_setscheduler(p);
3597 if (rc)
3598 return rc;
3599
3600 return current_has_perm(p, PROCESS__SETSCHED);
3601 }
3602
3603 static int selinux_task_getscheduler(struct task_struct *p)
3604 {
3605 return current_has_perm(p, PROCESS__GETSCHED);
3606 }
3607
3608 static int selinux_task_movememory(struct task_struct *p)
3609 {
3610 return current_has_perm(p, PROCESS__SETSCHED);
3611 }
3612
3613 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3614 int sig, u32 secid)
3615 {
3616 u32 perm;
3617 int rc;
3618
3619 if (!sig)
3620 perm = PROCESS__SIGNULL; /* null signal; existence test */
3621 else
3622 perm = signal_to_av(sig);
3623 if (secid)
3624 rc = avc_has_perm(secid, task_sid(p),
3625 SECCLASS_PROCESS, perm, NULL);
3626 else
3627 rc = current_has_perm(p, perm);
3628 return rc;
3629 }
3630
3631 static int selinux_task_wait(struct task_struct *p)
3632 {
3633 return task_has_perm(p, current, PROCESS__SIGCHLD);
3634 }
3635
3636 static void selinux_task_to_inode(struct task_struct *p,
3637 struct inode *inode)
3638 {
3639 struct inode_security_struct *isec = inode->i_security;
3640 u32 sid = task_sid(p);
3641
3642 isec->sid = sid;
3643 isec->initialized = 1;
3644 }
3645
3646 /* Returns error only if unable to parse addresses */
3647 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3648 struct common_audit_data *ad, u8 *proto)
3649 {
3650 int offset, ihlen, ret = -EINVAL;
3651 struct iphdr _iph, *ih;
3652
3653 offset = skb_network_offset(skb);
3654 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3655 if (ih == NULL)
3656 goto out;
3657
3658 ihlen = ih->ihl * 4;
3659 if (ihlen < sizeof(_iph))
3660 goto out;
3661
3662 ad->u.net->v4info.saddr = ih->saddr;
3663 ad->u.net->v4info.daddr = ih->daddr;
3664 ret = 0;
3665
3666 if (proto)
3667 *proto = ih->protocol;
3668
3669 switch (ih->protocol) {
3670 case IPPROTO_TCP: {
3671 struct tcphdr _tcph, *th;
3672
3673 if (ntohs(ih->frag_off) & IP_OFFSET)
3674 break;
3675
3676 offset += ihlen;
3677 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3678 if (th == NULL)
3679 break;
3680
3681 ad->u.net->sport = th->source;
3682 ad->u.net->dport = th->dest;
3683 break;
3684 }
3685
3686 case IPPROTO_UDP: {
3687 struct udphdr _udph, *uh;
3688
3689 if (ntohs(ih->frag_off) & IP_OFFSET)
3690 break;
3691
3692 offset += ihlen;
3693 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3694 if (uh == NULL)
3695 break;
3696
3697 ad->u.net->sport = uh->source;
3698 ad->u.net->dport = uh->dest;
3699 break;
3700 }
3701
3702 case IPPROTO_DCCP: {
3703 struct dccp_hdr _dccph, *dh;
3704
3705 if (ntohs(ih->frag_off) & IP_OFFSET)
3706 break;
3707
3708 offset += ihlen;
3709 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3710 if (dh == NULL)
3711 break;
3712
3713 ad->u.net->sport = dh->dccph_sport;
3714 ad->u.net->dport = dh->dccph_dport;
3715 break;
3716 }
3717
3718 default:
3719 break;
3720 }
3721 out:
3722 return ret;
3723 }
3724
3725 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3726
3727 /* Returns error only if unable to parse addresses */
3728 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3729 struct common_audit_data *ad, u8 *proto)
3730 {
3731 u8 nexthdr;
3732 int ret = -EINVAL, offset;
3733 struct ipv6hdr _ipv6h, *ip6;
3734 __be16 frag_off;
3735
3736 offset = skb_network_offset(skb);
3737 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3738 if (ip6 == NULL)
3739 goto out;
3740
3741 ad->u.net->v6info.saddr = ip6->saddr;
3742 ad->u.net->v6info.daddr = ip6->daddr;
3743 ret = 0;
3744
3745 nexthdr = ip6->nexthdr;
3746 offset += sizeof(_ipv6h);
3747 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3748 if (offset < 0)
3749 goto out;
3750
3751 if (proto)
3752 *proto = nexthdr;
3753
3754 switch (nexthdr) {
3755 case IPPROTO_TCP: {
3756 struct tcphdr _tcph, *th;
3757
3758 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3759 if (th == NULL)
3760 break;
3761
3762 ad->u.net->sport = th->source;
3763 ad->u.net->dport = th->dest;
3764 break;
3765 }
3766
3767 case IPPROTO_UDP: {
3768 struct udphdr _udph, *uh;
3769
3770 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3771 if (uh == NULL)
3772 break;
3773
3774 ad->u.net->sport = uh->source;
3775 ad->u.net->dport = uh->dest;
3776 break;
3777 }
3778
3779 case IPPROTO_DCCP: {
3780 struct dccp_hdr _dccph, *dh;
3781
3782 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3783 if (dh == NULL)
3784 break;
3785
3786 ad->u.net->sport = dh->dccph_sport;
3787 ad->u.net->dport = dh->dccph_dport;
3788 break;
3789 }
3790
3791 /* includes fragments */
3792 default:
3793 break;
3794 }
3795 out:
3796 return ret;
3797 }
3798
3799 #endif /* IPV6 */
3800
3801 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3802 char **_addrp, int src, u8 *proto)
3803 {
3804 char *addrp;
3805 int ret;
3806
3807 switch (ad->u.net->family) {
3808 case PF_INET:
3809 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3810 if (ret)
3811 goto parse_error;
3812 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3813 &ad->u.net->v4info.daddr);
3814 goto okay;
3815
3816 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3817 case PF_INET6:
3818 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3819 if (ret)
3820 goto parse_error;
3821 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3822 &ad->u.net->v6info.daddr);
3823 goto okay;
3824 #endif /* IPV6 */
3825 default:
3826 addrp = NULL;
3827 goto okay;
3828 }
3829
3830 parse_error:
3831 printk(KERN_WARNING
3832 "SELinux: failure in selinux_parse_skb(),"
3833 " unable to parse packet\n");
3834 return ret;
3835
3836 okay:
3837 if (_addrp)
3838 *_addrp = addrp;
3839 return 0;
3840 }
3841
3842 /**
3843 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3844 * @skb: the packet
3845 * @family: protocol family
3846 * @sid: the packet's peer label SID
3847 *
3848 * Description:
3849 * Check the various different forms of network peer labeling and determine
3850 * the peer label/SID for the packet; most of the magic actually occurs in
3851 * the security server function security_net_peersid_cmp(). The function
3852 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3853 * or -EACCES if @sid is invalid due to inconsistencies with the different
3854 * peer labels.
3855 *
3856 */
3857 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3858 {
3859 int err;
3860 u32 xfrm_sid;
3861 u32 nlbl_sid;
3862 u32 nlbl_type;
3863
3864 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3865 if (unlikely(err))
3866 return -EACCES;
3867 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3868 if (unlikely(err))
3869 return -EACCES;
3870
3871 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3872 if (unlikely(err)) {
3873 printk(KERN_WARNING
3874 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3875 " unable to determine packet's peer label\n");
3876 return -EACCES;
3877 }
3878
3879 return 0;
3880 }
3881
3882 /**
3883 * selinux_conn_sid - Determine the child socket label for a connection
3884 * @sk_sid: the parent socket's SID
3885 * @skb_sid: the packet's SID
3886 * @conn_sid: the resulting connection SID
3887 *
3888 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3889 * combined with the MLS information from @skb_sid in order to create
3890 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
3891 * of @sk_sid. Returns zero on success, negative values on failure.
3892 *
3893 */
3894 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3895 {
3896 int err = 0;
3897
3898 if (skb_sid != SECSID_NULL)
3899 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3900 else
3901 *conn_sid = sk_sid;
3902
3903 return err;
3904 }
3905
3906 /* socket security operations */
3907
3908 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3909 u16 secclass, u32 *socksid)
3910 {
3911 if (tsec->sockcreate_sid > SECSID_NULL) {
3912 *socksid = tsec->sockcreate_sid;
3913 return 0;
3914 }
3915
3916 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3917 socksid);
3918 }
3919
3920 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3921 {
3922 struct sk_security_struct *sksec = sk->sk_security;
3923 struct common_audit_data ad;
3924 struct lsm_network_audit net = {0,};
3925 u32 tsid = task_sid(task);
3926
3927 if (sksec->sid == SECINITSID_KERNEL)
3928 return 0;
3929
3930 ad.type = LSM_AUDIT_DATA_NET;
3931 ad.u.net = &net;
3932 ad.u.net->sk = sk;
3933
3934 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3935 }
3936
3937 static int selinux_socket_create(int family, int type,
3938 int protocol, int kern)
3939 {
3940 const struct task_security_struct *tsec = current_security();
3941 u32 newsid;
3942 u16 secclass;
3943 int rc;
3944
3945 if (kern)
3946 return 0;
3947
3948 secclass = socket_type_to_security_class(family, type, protocol);
3949 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3950 if (rc)
3951 return rc;
3952
3953 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3954 }
3955
3956 static int selinux_socket_post_create(struct socket *sock, int family,
3957 int type, int protocol, int kern)
3958 {
3959 const struct task_security_struct *tsec = current_security();
3960 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3961 struct sk_security_struct *sksec;
3962 int err = 0;
3963
3964 isec->sclass = socket_type_to_security_class(family, type, protocol);
3965
3966 if (kern)
3967 isec->sid = SECINITSID_KERNEL;
3968 else {
3969 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3970 if (err)
3971 return err;
3972 }
3973
3974 isec->initialized = 1;
3975
3976 if (sock->sk) {
3977 sksec = sock->sk->sk_security;
3978 sksec->sid = isec->sid;
3979 sksec->sclass = isec->sclass;
3980 err = selinux_netlbl_socket_post_create(sock->sk, family);
3981 }
3982
3983 return err;
3984 }
3985
3986 /* Range of port numbers used to automatically bind.
3987 Need to determine whether we should perform a name_bind
3988 permission check between the socket and the port number. */
3989
3990 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3991 {
3992 struct sock *sk = sock->sk;
3993 u16 family;
3994 int err;
3995
3996 err = sock_has_perm(current, sk, SOCKET__BIND);
3997 if (err)
3998 goto out;
3999
4000 /*
4001 * If PF_INET or PF_INET6, check name_bind permission for the port.
4002 * Multiple address binding for SCTP is not supported yet: we just
4003 * check the first address now.
4004 */
4005 family = sk->sk_family;
4006 if (family == PF_INET || family == PF_INET6) {
4007 char *addrp;
4008 struct sk_security_struct *sksec = sk->sk_security;
4009 struct common_audit_data ad;
4010 struct lsm_network_audit net = {0,};
4011 struct sockaddr_in *addr4 = NULL;
4012 struct sockaddr_in6 *addr6 = NULL;
4013 unsigned short snum;
4014 u32 sid, node_perm;
4015
4016 if (family == PF_INET) {
4017 addr4 = (struct sockaddr_in *)address;
4018 snum = ntohs(addr4->sin_port);
4019 addrp = (char *)&addr4->sin_addr.s_addr;
4020 } else {
4021 addr6 = (struct sockaddr_in6 *)address;
4022 snum = ntohs(addr6->sin6_port);
4023 addrp = (char *)&addr6->sin6_addr.s6_addr;
4024 }
4025
4026 if (snum) {
4027 int low, high;
4028
4029 inet_get_local_port_range(sock_net(sk), &low, &high);
4030
4031 if (snum < max(PROT_SOCK, low) || snum > high) {
4032 err = sel_netport_sid(sk->sk_protocol,
4033 snum, &sid);
4034 if (err)
4035 goto out;
4036 ad.type = LSM_AUDIT_DATA_NET;
4037 ad.u.net = &net;
4038 ad.u.net->sport = htons(snum);
4039 ad.u.net->family = family;
4040 err = avc_has_perm(sksec->sid, sid,
4041 sksec->sclass,
4042 SOCKET__NAME_BIND, &ad);
4043 if (err)
4044 goto out;
4045 }
4046 }
4047
4048 switch (sksec->sclass) {
4049 case SECCLASS_TCP_SOCKET:
4050 node_perm = TCP_SOCKET__NODE_BIND;
4051 break;
4052
4053 case SECCLASS_UDP_SOCKET:
4054 node_perm = UDP_SOCKET__NODE_BIND;
4055 break;
4056
4057 case SECCLASS_DCCP_SOCKET:
4058 node_perm = DCCP_SOCKET__NODE_BIND;
4059 break;
4060
4061 default:
4062 node_perm = RAWIP_SOCKET__NODE_BIND;
4063 break;
4064 }
4065
4066 err = sel_netnode_sid(addrp, family, &sid);
4067 if (err)
4068 goto out;
4069
4070 ad.type = LSM_AUDIT_DATA_NET;
4071 ad.u.net = &net;
4072 ad.u.net->sport = htons(snum);
4073 ad.u.net->family = family;
4074
4075 if (family == PF_INET)
4076 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4077 else
4078 ad.u.net->v6info.saddr = addr6->sin6_addr;
4079
4080 err = avc_has_perm(sksec->sid, sid,
4081 sksec->sclass, node_perm, &ad);
4082 if (err)
4083 goto out;
4084 }
4085 out:
4086 return err;
4087 }
4088
4089 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4090 {
4091 struct sock *sk = sock->sk;
4092 struct sk_security_struct *sksec = sk->sk_security;
4093 int err;
4094
4095 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4096 if (err)
4097 return err;
4098
4099 /*
4100 * If a TCP or DCCP socket, check name_connect permission for the port.
4101 */
4102 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4103 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4104 struct common_audit_data ad;
4105 struct lsm_network_audit net = {0,};
4106 struct sockaddr_in *addr4 = NULL;
4107 struct sockaddr_in6 *addr6 = NULL;
4108 unsigned short snum;
4109 u32 sid, perm;
4110
4111 if (sk->sk_family == PF_INET) {
4112 addr4 = (struct sockaddr_in *)address;
4113 if (addrlen < sizeof(struct sockaddr_in))
4114 return -EINVAL;
4115 snum = ntohs(addr4->sin_port);
4116 } else {
4117 addr6 = (struct sockaddr_in6 *)address;
4118 if (addrlen < SIN6_LEN_RFC2133)
4119 return -EINVAL;
4120 snum = ntohs(addr6->sin6_port);
4121 }
4122
4123 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4124 if (err)
4125 goto out;
4126
4127 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4128 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4129
4130 ad.type = LSM_AUDIT_DATA_NET;
4131 ad.u.net = &net;
4132 ad.u.net->dport = htons(snum);
4133 ad.u.net->family = sk->sk_family;
4134 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4135 if (err)
4136 goto out;
4137 }
4138
4139 err = selinux_netlbl_socket_connect(sk, address);
4140
4141 out:
4142 return err;
4143 }
4144
4145 static int selinux_socket_listen(struct socket *sock, int backlog)
4146 {
4147 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4148 }
4149
4150 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4151 {
4152 int err;
4153 struct inode_security_struct *isec;
4154 struct inode_security_struct *newisec;
4155
4156 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4157 if (err)
4158 return err;
4159
4160 newisec = SOCK_INODE(newsock)->i_security;
4161
4162 isec = SOCK_INODE(sock)->i_security;
4163 newisec->sclass = isec->sclass;
4164 newisec->sid = isec->sid;
4165 newisec->initialized = 1;
4166
4167 return 0;
4168 }
4169
4170 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4171 int size)
4172 {
4173 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4174 }
4175
4176 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4177 int size, int flags)
4178 {
4179 return sock_has_perm(current, sock->sk, SOCKET__READ);
4180 }
4181
4182 static int selinux_socket_getsockname(struct socket *sock)
4183 {
4184 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4185 }
4186
4187 static int selinux_socket_getpeername(struct socket *sock)
4188 {
4189 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4190 }
4191
4192 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4193 {
4194 int err;
4195
4196 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4197 if (err)
4198 return err;
4199
4200 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4201 }
4202
4203 static int selinux_socket_getsockopt(struct socket *sock, int level,
4204 int optname)
4205 {
4206 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4207 }
4208
4209 static int selinux_socket_shutdown(struct socket *sock, int how)
4210 {
4211 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4212 }
4213
4214 static int selinux_socket_unix_stream_connect(struct sock *sock,
4215 struct sock *other,
4216 struct sock *newsk)
4217 {
4218 struct sk_security_struct *sksec_sock = sock->sk_security;
4219 struct sk_security_struct *sksec_other = other->sk_security;
4220 struct sk_security_struct *sksec_new = newsk->sk_security;
4221 struct common_audit_data ad;
4222 struct lsm_network_audit net = {0,};
4223 int err;
4224
4225 ad.type = LSM_AUDIT_DATA_NET;
4226 ad.u.net = &net;
4227 ad.u.net->sk = other;
4228
4229 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4230 sksec_other->sclass,
4231 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4232 if (err)
4233 return err;
4234
4235 /* server child socket */
4236 sksec_new->peer_sid = sksec_sock->sid;
4237 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4238 &sksec_new->sid);
4239 if (err)
4240 return err;
4241
4242 /* connecting socket */
4243 sksec_sock->peer_sid = sksec_new->sid;
4244
4245 return 0;
4246 }
4247
4248 static int selinux_socket_unix_may_send(struct socket *sock,
4249 struct socket *other)
4250 {
4251 struct sk_security_struct *ssec = sock->sk->sk_security;
4252 struct sk_security_struct *osec = other->sk->sk_security;
4253 struct common_audit_data ad;
4254 struct lsm_network_audit net = {0,};
4255
4256 ad.type = LSM_AUDIT_DATA_NET;
4257 ad.u.net = &net;
4258 ad.u.net->sk = other->sk;
4259
4260 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4261 &ad);
4262 }
4263
4264 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4265 u32 peer_sid,
4266 struct common_audit_data *ad)
4267 {
4268 int err;
4269 u32 if_sid;
4270 u32 node_sid;
4271
4272 err = sel_netif_sid(ifindex, &if_sid);
4273 if (err)
4274 return err;
4275 err = avc_has_perm(peer_sid, if_sid,
4276 SECCLASS_NETIF, NETIF__INGRESS, ad);
4277 if (err)
4278 return err;
4279
4280 err = sel_netnode_sid(addrp, family, &node_sid);
4281 if (err)
4282 return err;
4283 return avc_has_perm(peer_sid, node_sid,
4284 SECCLASS_NODE, NODE__RECVFROM, ad);
4285 }
4286
4287 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4288 u16 family)
4289 {
4290 int err = 0;
4291 struct sk_security_struct *sksec = sk->sk_security;
4292 u32 sk_sid = sksec->sid;
4293 struct common_audit_data ad;
4294 struct lsm_network_audit net = {0,};
4295 char *addrp;
4296
4297 ad.type = LSM_AUDIT_DATA_NET;
4298 ad.u.net = &net;
4299 ad.u.net->netif = skb->skb_iif;
4300 ad.u.net->family = family;
4301 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4302 if (err)
4303 return err;
4304
4305 if (selinux_secmark_enabled()) {
4306 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4307 PACKET__RECV, &ad);
4308 if (err)
4309 return err;
4310 }
4311
4312 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4313 if (err)
4314 return err;
4315 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4316
4317 return err;
4318 }
4319
4320 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4321 {
4322 int err;
4323 struct sk_security_struct *sksec = sk->sk_security;
4324 u16 family = sk->sk_family;
4325 u32 sk_sid = sksec->sid;
4326 struct common_audit_data ad;
4327 struct lsm_network_audit net = {0,};
4328 char *addrp;
4329 u8 secmark_active;
4330 u8 peerlbl_active;
4331
4332 if (family != PF_INET && family != PF_INET6)
4333 return 0;
4334
4335 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4336 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4337 family = PF_INET;
4338
4339 /* If any sort of compatibility mode is enabled then handoff processing
4340 * to the selinux_sock_rcv_skb_compat() function to deal with the
4341 * special handling. We do this in an attempt to keep this function
4342 * as fast and as clean as possible. */
4343 if (!selinux_policycap_netpeer)
4344 return selinux_sock_rcv_skb_compat(sk, skb, family);
4345
4346 secmark_active = selinux_secmark_enabled();
4347 peerlbl_active = selinux_peerlbl_enabled();
4348 if (!secmark_active && !peerlbl_active)
4349 return 0;
4350
4351 ad.type = LSM_AUDIT_DATA_NET;
4352 ad.u.net = &net;
4353 ad.u.net->netif = skb->skb_iif;
4354 ad.u.net->family = family;
4355 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4356 if (err)
4357 return err;
4358
4359 if (peerlbl_active) {
4360 u32 peer_sid;
4361
4362 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4363 if (err)
4364 return err;
4365 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4366 peer_sid, &ad);
4367 if (err) {
4368 selinux_netlbl_err(skb, err, 0);
4369 return err;
4370 }
4371 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4372 PEER__RECV, &ad);
4373 if (err) {
4374 selinux_netlbl_err(skb, err, 0);
4375 return err;
4376 }
4377 }
4378
4379 if (secmark_active) {
4380 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4381 PACKET__RECV, &ad);
4382 if (err)
4383 return err;
4384 }
4385
4386 return err;
4387 }
4388
4389 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4390 int __user *optlen, unsigned len)
4391 {
4392 int err = 0;
4393 char *scontext;
4394 u32 scontext_len;
4395 struct sk_security_struct *sksec = sock->sk->sk_security;
4396 u32 peer_sid = SECSID_NULL;
4397
4398 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4399 sksec->sclass == SECCLASS_TCP_SOCKET)
4400 peer_sid = sksec->peer_sid;
4401 if (peer_sid == SECSID_NULL)
4402 return -ENOPROTOOPT;
4403
4404 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4405 if (err)
4406 return err;
4407
4408 if (scontext_len > len) {
4409 err = -ERANGE;
4410 goto out_len;
4411 }
4412
4413 if (copy_to_user(optval, scontext, scontext_len))
4414 err = -EFAULT;
4415
4416 out_len:
4417 if (put_user(scontext_len, optlen))
4418 err = -EFAULT;
4419 kfree(scontext);
4420 return err;
4421 }
4422
4423 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4424 {
4425 u32 peer_secid = SECSID_NULL;
4426 u16 family;
4427
4428 if (skb && skb->protocol == htons(ETH_P_IP))
4429 family = PF_INET;
4430 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4431 family = PF_INET6;
4432 else if (sock)
4433 family = sock->sk->sk_family;
4434 else
4435 goto out;
4436
4437 if (sock && family == PF_UNIX)
4438 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4439 else if (skb)
4440 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4441
4442 out:
4443 *secid = peer_secid;
4444 if (peer_secid == SECSID_NULL)
4445 return -EINVAL;
4446 return 0;
4447 }
4448
4449 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4450 {
4451 struct sk_security_struct *sksec;
4452
4453 sksec = kzalloc(sizeof(*sksec), priority);
4454 if (!sksec)
4455 return -ENOMEM;
4456
4457 sksec->peer_sid = SECINITSID_UNLABELED;
4458 sksec->sid = SECINITSID_UNLABELED;
4459 selinux_netlbl_sk_security_reset(sksec);
4460 sk->sk_security = sksec;
4461
4462 return 0;
4463 }
4464
4465 static void selinux_sk_free_security(struct sock *sk)
4466 {
4467 struct sk_security_struct *sksec = sk->sk_security;
4468
4469 sk->sk_security = NULL;
4470 selinux_netlbl_sk_security_free(sksec);
4471 kfree(sksec);
4472 }
4473
4474 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4475 {
4476 struct sk_security_struct *sksec = sk->sk_security;
4477 struct sk_security_struct *newsksec = newsk->sk_security;
4478
4479 newsksec->sid = sksec->sid;
4480 newsksec->peer_sid = sksec->peer_sid;
4481 newsksec->sclass = sksec->sclass;
4482
4483 selinux_netlbl_sk_security_reset(newsksec);
4484 }
4485
4486 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4487 {
4488 if (!sk)
4489 *secid = SECINITSID_ANY_SOCKET;
4490 else {
4491 struct sk_security_struct *sksec = sk->sk_security;
4492
4493 *secid = sksec->sid;
4494 }
4495 }
4496
4497 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4498 {
4499 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4500 struct sk_security_struct *sksec = sk->sk_security;
4501
4502 switch (sk->sk_family) {
4503 case PF_INET:
4504 case PF_INET6:
4505 case PF_UNIX:
4506 isec->sid = sksec->sid;
4507 break;
4508 default:
4509 /* by default there is no special labeling mechanism for the
4510 * sksec label so inherit the label from the parent socket */
4511 BUG_ON(sksec->sid != SECINITSID_UNLABELED);
4512 sksec->sid = isec->sid;
4513 }
4514 sksec->sclass = isec->sclass;
4515 }
4516
4517 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4518 struct request_sock *req)
4519 {
4520 struct sk_security_struct *sksec = sk->sk_security;
4521 int err;
4522 u16 family = req->rsk_ops->family;
4523 u32 connsid;
4524 u32 peersid;
4525
4526 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4527 if (err)
4528 return err;
4529 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4530 if (err)
4531 return err;
4532 req->secid = connsid;
4533 req->peer_secid = peersid;
4534
4535 return selinux_netlbl_inet_conn_request(req, family);
4536 }
4537
4538 static void selinux_inet_csk_clone(struct sock *newsk,
4539 const struct request_sock *req)
4540 {
4541 struct sk_security_struct *newsksec = newsk->sk_security;
4542
4543 newsksec->sid = req->secid;
4544 newsksec->peer_sid = req->peer_secid;
4545 /* NOTE: Ideally, we should also get the isec->sid for the
4546 new socket in sync, but we don't have the isec available yet.
4547 So we will wait until sock_graft to do it, by which
4548 time it will have been created and available. */
4549
4550 /* We don't need to take any sort of lock here as we are the only
4551 * thread with access to newsksec */
4552 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4553 }
4554
4555 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4556 {
4557 u16 family = sk->sk_family;
4558 struct sk_security_struct *sksec = sk->sk_security;
4559
4560 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4561 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4562 family = PF_INET;
4563
4564 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4565 }
4566
4567 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4568 {
4569 skb_set_owner_w(skb, sk);
4570 }
4571
4572 static int selinux_secmark_relabel_packet(u32 sid)
4573 {
4574 const struct task_security_struct *__tsec;
4575 u32 tsid;
4576
4577 __tsec = current_security();
4578 tsid = __tsec->sid;
4579
4580 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4581 }
4582
4583 static void selinux_secmark_refcount_inc(void)
4584 {
4585 atomic_inc(&selinux_secmark_refcount);
4586 }
4587
4588 static void selinux_secmark_refcount_dec(void)
4589 {
4590 atomic_dec(&selinux_secmark_refcount);
4591 }
4592
4593 static void selinux_req_classify_flow(const struct request_sock *req,
4594 struct flowi *fl)
4595 {
4596 fl->flowi_secid = req->secid;
4597 }
4598
4599 static int selinux_tun_dev_alloc_security(void **security)
4600 {
4601 struct tun_security_struct *tunsec;
4602
4603 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4604 if (!tunsec)
4605 return -ENOMEM;
4606 tunsec->sid = current_sid();
4607
4608 *security = tunsec;
4609 return 0;
4610 }
4611
4612 static void selinux_tun_dev_free_security(void *security)
4613 {
4614 kfree(security);
4615 }
4616
4617 static int selinux_tun_dev_create(void)
4618 {
4619 u32 sid = current_sid();
4620
4621 /* we aren't taking into account the "sockcreate" SID since the socket
4622 * that is being created here is not a socket in the traditional sense,
4623 * instead it is a private sock, accessible only to the kernel, and
4624 * representing a wide range of network traffic spanning multiple
4625 * connections unlike traditional sockets - check the TUN driver to
4626 * get a better understanding of why this socket is special */
4627
4628 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4629 NULL);
4630 }
4631
4632 static int selinux_tun_dev_attach_queue(void *security)
4633 {
4634 struct tun_security_struct *tunsec = security;
4635
4636 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4637 TUN_SOCKET__ATTACH_QUEUE, NULL);
4638 }
4639
4640 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4641 {
4642 struct tun_security_struct *tunsec = security;
4643 struct sk_security_struct *sksec = sk->sk_security;
4644
4645 /* we don't currently perform any NetLabel based labeling here and it
4646 * isn't clear that we would want to do so anyway; while we could apply
4647 * labeling without the support of the TUN user the resulting labeled
4648 * traffic from the other end of the connection would almost certainly
4649 * cause confusion to the TUN user that had no idea network labeling
4650 * protocols were being used */
4651
4652 sksec->sid = tunsec->sid;
4653 sksec->sclass = SECCLASS_TUN_SOCKET;
4654
4655 return 0;
4656 }
4657
4658 static int selinux_tun_dev_open(void *security)
4659 {
4660 struct tun_security_struct *tunsec = security;
4661 u32 sid = current_sid();
4662 int err;
4663
4664 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4665 TUN_SOCKET__RELABELFROM, NULL);
4666 if (err)
4667 return err;
4668 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4669 TUN_SOCKET__RELABELTO, NULL);
4670 if (err)
4671 return err;
4672 tunsec->sid = sid;
4673
4674 return 0;
4675 }
4676
4677 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4678 {
4679 int err = 0;
4680 u32 perm;
4681 struct nlmsghdr *nlh;
4682 struct sk_security_struct *sksec = sk->sk_security;
4683
4684 if (skb->len < NLMSG_HDRLEN) {
4685 err = -EINVAL;
4686 goto out;
4687 }
4688 nlh = nlmsg_hdr(skb);
4689
4690 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4691 if (err) {
4692 if (err == -EINVAL) {
4693 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4694 "SELinux: unrecognized netlink message"
4695 " type=%hu for sclass=%hu\n",
4696 nlh->nlmsg_type, sksec->sclass);
4697 if (!selinux_enforcing || security_get_allow_unknown())
4698 err = 0;
4699 }
4700
4701 /* Ignore */
4702 if (err == -ENOENT)
4703 err = 0;
4704 goto out;
4705 }
4706
4707 err = sock_has_perm(current, sk, perm);
4708 out:
4709 return err;
4710 }
4711
4712 #ifdef CONFIG_NETFILTER
4713
4714 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4715 u16 family)
4716 {
4717 int err;
4718 char *addrp;
4719 u32 peer_sid;
4720 struct common_audit_data ad;
4721 struct lsm_network_audit net = {0,};
4722 u8 secmark_active;
4723 u8 netlbl_active;
4724 u8 peerlbl_active;
4725
4726 if (!selinux_policycap_netpeer)
4727 return NF_ACCEPT;
4728
4729 secmark_active = selinux_secmark_enabled();
4730 netlbl_active = netlbl_enabled();
4731 peerlbl_active = selinux_peerlbl_enabled();
4732 if (!secmark_active && !peerlbl_active)
4733 return NF_ACCEPT;
4734
4735 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4736 return NF_DROP;
4737
4738 ad.type = LSM_AUDIT_DATA_NET;
4739 ad.u.net = &net;
4740 ad.u.net->netif = ifindex;
4741 ad.u.net->family = family;
4742 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4743 return NF_DROP;
4744
4745 if (peerlbl_active) {
4746 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4747 peer_sid, &ad);
4748 if (err) {
4749 selinux_netlbl_err(skb, err, 1);
4750 return NF_DROP;
4751 }
4752 }
4753
4754 if (secmark_active)
4755 if (avc_has_perm(peer_sid, skb->secmark,
4756 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4757 return NF_DROP;
4758
4759 if (netlbl_active)
4760 /* we do this in the FORWARD path and not the POST_ROUTING
4761 * path because we want to make sure we apply the necessary
4762 * labeling before IPsec is applied so we can leverage AH
4763 * protection */
4764 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4765 return NF_DROP;
4766
4767 return NF_ACCEPT;
4768 }
4769
4770 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4771 struct sk_buff *skb,
4772 const struct net_device *in,
4773 const struct net_device *out,
4774 int (*okfn)(struct sk_buff *))
4775 {
4776 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4777 }
4778
4779 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4780 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4781 struct sk_buff *skb,
4782 const struct net_device *in,
4783 const struct net_device *out,
4784 int (*okfn)(struct sk_buff *))
4785 {
4786 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4787 }
4788 #endif /* IPV6 */
4789
4790 static unsigned int selinux_ip_output(struct sk_buff *skb,
4791 u16 family)
4792 {
4793 struct sock *sk;
4794 u32 sid;
4795
4796 if (!netlbl_enabled())
4797 return NF_ACCEPT;
4798
4799 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4800 * because we want to make sure we apply the necessary labeling
4801 * before IPsec is applied so we can leverage AH protection */
4802 sk = skb->sk;
4803 if (sk) {
4804 struct sk_security_struct *sksec;
4805
4806 if (sk->sk_state == TCP_LISTEN)
4807 /* if the socket is the listening state then this
4808 * packet is a SYN-ACK packet which means it needs to
4809 * be labeled based on the connection/request_sock and
4810 * not the parent socket. unfortunately, we can't
4811 * lookup the request_sock yet as it isn't queued on
4812 * the parent socket until after the SYN-ACK is sent.
4813 * the "solution" is to simply pass the packet as-is
4814 * as any IP option based labeling should be copied
4815 * from the initial connection request (in the IP
4816 * layer). it is far from ideal, but until we get a
4817 * security label in the packet itself this is the
4818 * best we can do. */
4819 return NF_ACCEPT;
4820
4821 /* standard practice, label using the parent socket */
4822 sksec = sk->sk_security;
4823 sid = sksec->sid;
4824 } else
4825 sid = SECINITSID_KERNEL;
4826 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4827 return NF_DROP;
4828
4829 return NF_ACCEPT;
4830 }
4831
4832 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4833 struct sk_buff *skb,
4834 const struct net_device *in,
4835 const struct net_device *out,
4836 int (*okfn)(struct sk_buff *))
4837 {
4838 return selinux_ip_output(skb, PF_INET);
4839 }
4840
4841 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4842 int ifindex,
4843 u16 family)
4844 {
4845 struct sock *sk = skb->sk;
4846 struct sk_security_struct *sksec;
4847 struct common_audit_data ad;
4848 struct lsm_network_audit net = {0,};
4849 char *addrp;
4850 u8 proto;
4851
4852 if (sk == NULL)
4853 return NF_ACCEPT;
4854 sksec = sk->sk_security;
4855
4856 ad.type = LSM_AUDIT_DATA_NET;
4857 ad.u.net = &net;
4858 ad.u.net->netif = ifindex;
4859 ad.u.net->family = family;
4860 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4861 return NF_DROP;
4862
4863 if (selinux_secmark_enabled())
4864 if (avc_has_perm(sksec->sid, skb->secmark,
4865 SECCLASS_PACKET, PACKET__SEND, &ad))
4866 return NF_DROP_ERR(-ECONNREFUSED);
4867
4868 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4869 return NF_DROP_ERR(-ECONNREFUSED);
4870
4871 return NF_ACCEPT;
4872 }
4873
4874 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4875 u16 family)
4876 {
4877 u32 secmark_perm;
4878 u32 peer_sid;
4879 struct sock *sk;
4880 struct common_audit_data ad;
4881 struct lsm_network_audit net = {0,};
4882 char *addrp;
4883 u8 secmark_active;
4884 u8 peerlbl_active;
4885
4886 /* If any sort of compatibility mode is enabled then handoff processing
4887 * to the selinux_ip_postroute_compat() function to deal with the
4888 * special handling. We do this in an attempt to keep this function
4889 * as fast and as clean as possible. */
4890 if (!selinux_policycap_netpeer)
4891 return selinux_ip_postroute_compat(skb, ifindex, family);
4892
4893 secmark_active = selinux_secmark_enabled();
4894 peerlbl_active = selinux_peerlbl_enabled();
4895 if (!secmark_active && !peerlbl_active)
4896 return NF_ACCEPT;
4897
4898 sk = skb->sk;
4899
4900 #ifdef CONFIG_XFRM
4901 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4902 * packet transformation so allow the packet to pass without any checks
4903 * since we'll have another chance to perform access control checks
4904 * when the packet is on it's final way out.
4905 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4906 * is NULL, in this case go ahead and apply access control.
4907 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4908 * TCP listening state we cannot wait until the XFRM processing
4909 * is done as we will miss out on the SA label if we do;
4910 * unfortunately, this means more work, but it is only once per
4911 * connection. */
4912 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4913 !(sk != NULL && sk->sk_state == TCP_LISTEN))
4914 return NF_ACCEPT;
4915 #endif
4916
4917 if (sk == NULL) {
4918 /* Without an associated socket the packet is either coming
4919 * from the kernel or it is being forwarded; check the packet
4920 * to determine which and if the packet is being forwarded
4921 * query the packet directly to determine the security label. */
4922 if (skb->skb_iif) {
4923 secmark_perm = PACKET__FORWARD_OUT;
4924 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4925 return NF_DROP;
4926 } else {
4927 secmark_perm = PACKET__SEND;
4928 peer_sid = SECINITSID_KERNEL;
4929 }
4930 } else if (sk->sk_state == TCP_LISTEN) {
4931 /* Locally generated packet but the associated socket is in the
4932 * listening state which means this is a SYN-ACK packet. In
4933 * this particular case the correct security label is assigned
4934 * to the connection/request_sock but unfortunately we can't
4935 * query the request_sock as it isn't queued on the parent
4936 * socket until after the SYN-ACK packet is sent; the only
4937 * viable choice is to regenerate the label like we do in
4938 * selinux_inet_conn_request(). See also selinux_ip_output()
4939 * for similar problems. */
4940 u32 skb_sid;
4941 struct sk_security_struct *sksec = sk->sk_security;
4942 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4943 return NF_DROP;
4944 /* At this point, if the returned skb peerlbl is SECSID_NULL
4945 * and the packet has been through at least one XFRM
4946 * transformation then we must be dealing with the "final"
4947 * form of labeled IPsec packet; since we've already applied
4948 * all of our access controls on this packet we can safely
4949 * pass the packet. */
4950 if (skb_sid == SECSID_NULL) {
4951 switch (family) {
4952 case PF_INET:
4953 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4954 return NF_ACCEPT;
4955 break;
4956 case PF_INET6:
4957 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4958 return NF_ACCEPT;
4959 default:
4960 return NF_DROP_ERR(-ECONNREFUSED);
4961 }
4962 }
4963 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4964 return NF_DROP;
4965 secmark_perm = PACKET__SEND;
4966 } else {
4967 /* Locally generated packet, fetch the security label from the
4968 * associated socket. */
4969 struct sk_security_struct *sksec = sk->sk_security;
4970 peer_sid = sksec->sid;
4971 secmark_perm = PACKET__SEND;
4972 }
4973
4974 ad.type = LSM_AUDIT_DATA_NET;
4975 ad.u.net = &net;
4976 ad.u.net->netif = ifindex;
4977 ad.u.net->family = family;
4978 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4979 return NF_DROP;
4980
4981 if (secmark_active)
4982 if (avc_has_perm(peer_sid, skb->secmark,
4983 SECCLASS_PACKET, secmark_perm, &ad))
4984 return NF_DROP_ERR(-ECONNREFUSED);
4985
4986 if (peerlbl_active) {
4987 u32 if_sid;
4988 u32 node_sid;
4989
4990 if (sel_netif_sid(ifindex, &if_sid))
4991 return NF_DROP;
4992 if (avc_has_perm(peer_sid, if_sid,
4993 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4994 return NF_DROP_ERR(-ECONNREFUSED);
4995
4996 if (sel_netnode_sid(addrp, family, &node_sid))
4997 return NF_DROP;
4998 if (avc_has_perm(peer_sid, node_sid,
4999 SECCLASS_NODE, NODE__SENDTO, &ad))
5000 return NF_DROP_ERR(-ECONNREFUSED);
5001 }
5002
5003 return NF_ACCEPT;
5004 }
5005
5006 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
5007 struct sk_buff *skb,
5008 const struct net_device *in,
5009 const struct net_device *out,
5010 int (*okfn)(struct sk_buff *))
5011 {
5012 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
5013 }
5014
5015 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5016 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5017 struct sk_buff *skb,
5018 const struct net_device *in,
5019 const struct net_device *out,
5020 int (*okfn)(struct sk_buff *))
5021 {
5022 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5023 }
5024 #endif /* IPV6 */
5025
5026 #endif /* CONFIG_NETFILTER */
5027
5028 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5029 {
5030 int err;
5031
5032 err = cap_netlink_send(sk, skb);
5033 if (err)
5034 return err;
5035
5036 return selinux_nlmsg_perm(sk, skb);
5037 }
5038
5039 static int ipc_alloc_security(struct task_struct *task,
5040 struct kern_ipc_perm *perm,
5041 u16 sclass)
5042 {
5043 struct ipc_security_struct *isec;
5044 u32 sid;
5045
5046 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5047 if (!isec)
5048 return -ENOMEM;
5049
5050 sid = task_sid(task);
5051 isec->sclass = sclass;
5052 isec->sid = sid;
5053 perm->security = isec;
5054
5055 return 0;
5056 }
5057
5058 static void ipc_free_security(struct kern_ipc_perm *perm)
5059 {
5060 struct ipc_security_struct *isec = perm->security;
5061 perm->security = NULL;
5062 kfree(isec);
5063 }
5064
5065 static int msg_msg_alloc_security(struct msg_msg *msg)
5066 {
5067 struct msg_security_struct *msec;
5068
5069 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5070 if (!msec)
5071 return -ENOMEM;
5072
5073 msec->sid = SECINITSID_UNLABELED;
5074 msg->security = msec;
5075
5076 return 0;
5077 }
5078
5079 static void msg_msg_free_security(struct msg_msg *msg)
5080 {
5081 struct msg_security_struct *msec = msg->security;
5082
5083 msg->security = NULL;
5084 kfree(msec);
5085 }
5086
5087 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5088 u32 perms)
5089 {
5090 struct ipc_security_struct *isec;
5091 struct common_audit_data ad;
5092 u32 sid = current_sid();
5093
5094 isec = ipc_perms->security;
5095
5096 ad.type = LSM_AUDIT_DATA_IPC;
5097 ad.u.ipc_id = ipc_perms->key;
5098
5099 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5100 }
5101
5102 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5103 {
5104 return msg_msg_alloc_security(msg);
5105 }
5106
5107 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5108 {
5109 msg_msg_free_security(msg);
5110 }
5111
5112 /* message queue security operations */
5113 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5114 {
5115 struct ipc_security_struct *isec;
5116 struct common_audit_data ad;
5117 u32 sid = current_sid();
5118 int rc;
5119
5120 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5121 if (rc)
5122 return rc;
5123
5124 isec = msq->q_perm.security;
5125
5126 ad.type = LSM_AUDIT_DATA_IPC;
5127 ad.u.ipc_id = msq->q_perm.key;
5128
5129 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5130 MSGQ__CREATE, &ad);
5131 if (rc) {
5132 ipc_free_security(&msq->q_perm);
5133 return rc;
5134 }
5135 return 0;
5136 }
5137
5138 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5139 {
5140 ipc_free_security(&msq->q_perm);
5141 }
5142
5143 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5144 {
5145 struct ipc_security_struct *isec;
5146 struct common_audit_data ad;
5147 u32 sid = current_sid();
5148
5149 isec = msq->q_perm.security;
5150
5151 ad.type = LSM_AUDIT_DATA_IPC;
5152 ad.u.ipc_id = msq->q_perm.key;
5153
5154 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5155 MSGQ__ASSOCIATE, &ad);
5156 }
5157
5158 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5159 {
5160 int err;
5161 int perms;
5162
5163 switch (cmd) {
5164 case IPC_INFO:
5165 case MSG_INFO:
5166 /* No specific object, just general system-wide information. */
5167 return task_has_system(current, SYSTEM__IPC_INFO);
5168 case IPC_STAT:
5169 case MSG_STAT:
5170 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5171 break;
5172 case IPC_SET:
5173 perms = MSGQ__SETATTR;
5174 break;
5175 case IPC_RMID:
5176 perms = MSGQ__DESTROY;
5177 break;
5178 default:
5179 return 0;
5180 }
5181
5182 err = ipc_has_perm(&msq->q_perm, perms);
5183 return err;
5184 }
5185
5186 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5187 {
5188 struct ipc_security_struct *isec;
5189 struct msg_security_struct *msec;
5190 struct common_audit_data ad;
5191 u32 sid = current_sid();
5192 int rc;
5193
5194 isec = msq->q_perm.security;
5195 msec = msg->security;
5196
5197 /*
5198 * First time through, need to assign label to the message
5199 */
5200 if (msec->sid == SECINITSID_UNLABELED) {
5201 /*
5202 * Compute new sid based on current process and
5203 * message queue this message will be stored in
5204 */
5205 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5206 NULL, &msec->sid);
5207 if (rc)
5208 return rc;
5209 }
5210
5211 ad.type = LSM_AUDIT_DATA_IPC;
5212 ad.u.ipc_id = msq->q_perm.key;
5213
5214 /* Can this process write to the queue? */
5215 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5216 MSGQ__WRITE, &ad);
5217 if (!rc)
5218 /* Can this process send the message */
5219 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5220 MSG__SEND, &ad);
5221 if (!rc)
5222 /* Can the message be put in the queue? */
5223 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5224 MSGQ__ENQUEUE, &ad);
5225
5226 return rc;
5227 }
5228
5229 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5230 struct task_struct *target,
5231 long type, int mode)
5232 {
5233 struct ipc_security_struct *isec;
5234 struct msg_security_struct *msec;
5235 struct common_audit_data ad;
5236 u32 sid = task_sid(target);
5237 int rc;
5238
5239 isec = msq->q_perm.security;
5240 msec = msg->security;
5241
5242 ad.type = LSM_AUDIT_DATA_IPC;
5243 ad.u.ipc_id = msq->q_perm.key;
5244
5245 rc = avc_has_perm(sid, isec->sid,
5246 SECCLASS_MSGQ, MSGQ__READ, &ad);
5247 if (!rc)
5248 rc = avc_has_perm(sid, msec->sid,
5249 SECCLASS_MSG, MSG__RECEIVE, &ad);
5250 return rc;
5251 }
5252
5253 /* Shared Memory security operations */
5254 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5255 {
5256 struct ipc_security_struct *isec;
5257 struct common_audit_data ad;
5258 u32 sid = current_sid();
5259 int rc;
5260
5261 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5262 if (rc)
5263 return rc;
5264
5265 isec = shp->shm_perm.security;
5266
5267 ad.type = LSM_AUDIT_DATA_IPC;
5268 ad.u.ipc_id = shp->shm_perm.key;
5269
5270 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5271 SHM__CREATE, &ad);
5272 if (rc) {
5273 ipc_free_security(&shp->shm_perm);
5274 return rc;
5275 }
5276 return 0;
5277 }
5278
5279 static void selinux_shm_free_security(struct shmid_kernel *shp)
5280 {
5281 ipc_free_security(&shp->shm_perm);
5282 }
5283
5284 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5285 {
5286 struct ipc_security_struct *isec;
5287 struct common_audit_data ad;
5288 u32 sid = current_sid();
5289
5290 isec = shp->shm_perm.security;
5291
5292 ad.type = LSM_AUDIT_DATA_IPC;
5293 ad.u.ipc_id = shp->shm_perm.key;
5294
5295 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5296 SHM__ASSOCIATE, &ad);
5297 }
5298
5299 /* Note, at this point, shp is locked down */
5300 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5301 {
5302 int perms;
5303 int err;
5304
5305 switch (cmd) {
5306 case IPC_INFO:
5307 case SHM_INFO:
5308 /* No specific object, just general system-wide information. */
5309 return task_has_system(current, SYSTEM__IPC_INFO);
5310 case IPC_STAT:
5311 case SHM_STAT:
5312 perms = SHM__GETATTR | SHM__ASSOCIATE;
5313 break;
5314 case IPC_SET:
5315 perms = SHM__SETATTR;
5316 break;
5317 case SHM_LOCK:
5318 case SHM_UNLOCK:
5319 perms = SHM__LOCK;
5320 break;
5321 case IPC_RMID:
5322 perms = SHM__DESTROY;
5323 break;
5324 default:
5325 return 0;
5326 }
5327
5328 err = ipc_has_perm(&shp->shm_perm, perms);
5329 return err;
5330 }
5331
5332 static int selinux_shm_shmat(struct shmid_kernel *shp,
5333 char __user *shmaddr, int shmflg)
5334 {
5335 u32 perms;
5336
5337 if (shmflg & SHM_RDONLY)
5338 perms = SHM__READ;
5339 else
5340 perms = SHM__READ | SHM__WRITE;
5341
5342 return ipc_has_perm(&shp->shm_perm, perms);
5343 }
5344
5345 /* Semaphore security operations */
5346 static int selinux_sem_alloc_security(struct sem_array *sma)
5347 {
5348 struct ipc_security_struct *isec;
5349 struct common_audit_data ad;
5350 u32 sid = current_sid();
5351 int rc;
5352
5353 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5354 if (rc)
5355 return rc;
5356
5357 isec = sma->sem_perm.security;
5358
5359 ad.type = LSM_AUDIT_DATA_IPC;
5360 ad.u.ipc_id = sma->sem_perm.key;
5361
5362 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5363 SEM__CREATE, &ad);
5364 if (rc) {
5365 ipc_free_security(&sma->sem_perm);
5366 return rc;
5367 }
5368 return 0;
5369 }
5370
5371 static void selinux_sem_free_security(struct sem_array *sma)
5372 {
5373 ipc_free_security(&sma->sem_perm);
5374 }
5375
5376 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5377 {
5378 struct ipc_security_struct *isec;
5379 struct common_audit_data ad;
5380 u32 sid = current_sid();
5381
5382 isec = sma->sem_perm.security;
5383
5384 ad.type = LSM_AUDIT_DATA_IPC;
5385 ad.u.ipc_id = sma->sem_perm.key;
5386
5387 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5388 SEM__ASSOCIATE, &ad);
5389 }
5390
5391 /* Note, at this point, sma is locked down */
5392 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5393 {
5394 int err;
5395 u32 perms;
5396
5397 switch (cmd) {
5398 case IPC_INFO:
5399 case SEM_INFO:
5400 /* No specific object, just general system-wide information. */
5401 return task_has_system(current, SYSTEM__IPC_INFO);
5402 case GETPID:
5403 case GETNCNT:
5404 case GETZCNT:
5405 perms = SEM__GETATTR;
5406 break;
5407 case GETVAL:
5408 case GETALL:
5409 perms = SEM__READ;
5410 break;
5411 case SETVAL:
5412 case SETALL:
5413 perms = SEM__WRITE;
5414 break;
5415 case IPC_RMID:
5416 perms = SEM__DESTROY;
5417 break;
5418 case IPC_SET:
5419 perms = SEM__SETATTR;
5420 break;
5421 case IPC_STAT:
5422 case SEM_STAT:
5423 perms = SEM__GETATTR | SEM__ASSOCIATE;
5424 break;
5425 default:
5426 return 0;
5427 }
5428
5429 err = ipc_has_perm(&sma->sem_perm, perms);
5430 return err;
5431 }
5432
5433 static int selinux_sem_semop(struct sem_array *sma,
5434 struct sembuf *sops, unsigned nsops, int alter)
5435 {
5436 u32 perms;
5437
5438 if (alter)
5439 perms = SEM__READ | SEM__WRITE;
5440 else
5441 perms = SEM__READ;
5442
5443 return ipc_has_perm(&sma->sem_perm, perms);
5444 }
5445
5446 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5447 {
5448 u32 av = 0;
5449
5450 av = 0;
5451 if (flag & S_IRUGO)
5452 av |= IPC__UNIX_READ;
5453 if (flag & S_IWUGO)
5454 av |= IPC__UNIX_WRITE;
5455
5456 if (av == 0)
5457 return 0;
5458
5459 return ipc_has_perm(ipcp, av);
5460 }
5461
5462 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5463 {
5464 struct ipc_security_struct *isec = ipcp->security;
5465 *secid = isec->sid;
5466 }
5467
5468 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5469 {
5470 if (inode)
5471 inode_doinit_with_dentry(inode, dentry);
5472 }
5473
5474 static int selinux_getprocattr(struct task_struct *p,
5475 char *name, char **value)
5476 {
5477 const struct task_security_struct *__tsec;
5478 u32 sid;
5479 int error;
5480 unsigned len;
5481
5482 if (current != p) {
5483 error = current_has_perm(p, PROCESS__GETATTR);
5484 if (error)
5485 return error;
5486 }
5487
5488 rcu_read_lock();
5489 __tsec = __task_cred(p)->security;
5490
5491 if (!strcmp(name, "current"))
5492 sid = __tsec->sid;
5493 else if (!strcmp(name, "prev"))
5494 sid = __tsec->osid;
5495 else if (!strcmp(name, "exec"))
5496 sid = __tsec->exec_sid;
5497 else if (!strcmp(name, "fscreate"))
5498 sid = __tsec->create_sid;
5499 else if (!strcmp(name, "keycreate"))
5500 sid = __tsec->keycreate_sid;
5501 else if (!strcmp(name, "sockcreate"))
5502 sid = __tsec->sockcreate_sid;
5503 else
5504 goto invalid;
5505 rcu_read_unlock();
5506
5507 if (!sid)
5508 return 0;
5509
5510 error = security_sid_to_context(sid, value, &len);
5511 if (error)
5512 return error;
5513 return len;
5514
5515 invalid:
5516 rcu_read_unlock();
5517 return -EINVAL;
5518 }
5519
5520 static int selinux_setprocattr(struct task_struct *p,
5521 char *name, void *value, size_t size)
5522 {
5523 struct task_security_struct *tsec;
5524 struct task_struct *tracer;
5525 struct cred *new;
5526 u32 sid = 0, ptsid;
5527 int error;
5528 char *str = value;
5529
5530 if (current != p) {
5531 /* SELinux only allows a process to change its own
5532 security attributes. */
5533 return -EACCES;
5534 }
5535
5536 /*
5537 * Basic control over ability to set these attributes at all.
5538 * current == p, but we'll pass them separately in case the
5539 * above restriction is ever removed.
5540 */
5541 if (!strcmp(name, "exec"))
5542 error = current_has_perm(p, PROCESS__SETEXEC);
5543 else if (!strcmp(name, "fscreate"))
5544 error = current_has_perm(p, PROCESS__SETFSCREATE);
5545 else if (!strcmp(name, "keycreate"))
5546 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5547 else if (!strcmp(name, "sockcreate"))
5548 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5549 else if (!strcmp(name, "current"))
5550 error = current_has_perm(p, PROCESS__SETCURRENT);
5551 else
5552 error = -EINVAL;
5553 if (error)
5554 return error;
5555
5556 /* Obtain a SID for the context, if one was specified. */
5557 if (size && str[1] && str[1] != '\n') {
5558 if (str[size-1] == '\n') {
5559 str[size-1] = 0;
5560 size--;
5561 }
5562 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5563 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5564 if (!capable(CAP_MAC_ADMIN)) {
5565 struct audit_buffer *ab;
5566 size_t audit_size;
5567
5568 /* We strip a nul only if it is at the end, otherwise the
5569 * context contains a nul and we should audit that */
5570 if (str[size - 1] == '\0')
5571 audit_size = size - 1;
5572 else
5573 audit_size = size;
5574 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5575 audit_log_format(ab, "op=fscreate invalid_context=");
5576 audit_log_n_untrustedstring(ab, value, audit_size);
5577 audit_log_end(ab);
5578
5579 return error;
5580 }
5581 error = security_context_to_sid_force(value, size,
5582 &sid);
5583 }
5584 if (error)
5585 return error;
5586 }
5587
5588 new = prepare_creds();
5589 if (!new)
5590 return -ENOMEM;
5591
5592 /* Permission checking based on the specified context is
5593 performed during the actual operation (execve,
5594 open/mkdir/...), when we know the full context of the
5595 operation. See selinux_bprm_set_creds for the execve
5596 checks and may_create for the file creation checks. The
5597 operation will then fail if the context is not permitted. */
5598 tsec = new->security;
5599 if (!strcmp(name, "exec")) {
5600 tsec->exec_sid = sid;
5601 } else if (!strcmp(name, "fscreate")) {
5602 tsec->create_sid = sid;
5603 } else if (!strcmp(name, "keycreate")) {
5604 error = may_create_key(sid, p);
5605 if (error)
5606 goto abort_change;
5607 tsec->keycreate_sid = sid;
5608 } else if (!strcmp(name, "sockcreate")) {
5609 tsec->sockcreate_sid = sid;
5610 } else if (!strcmp(name, "current")) {
5611 error = -EINVAL;
5612 if (sid == 0)
5613 goto abort_change;
5614
5615 /* Only allow single threaded processes to change context */
5616 error = -EPERM;
5617 if (!current_is_single_threaded()) {
5618 error = security_bounded_transition(tsec->sid, sid);
5619 if (error)
5620 goto abort_change;
5621 }
5622
5623 /* Check permissions for the transition. */
5624 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5625 PROCESS__DYNTRANSITION, NULL);
5626 if (error)
5627 goto abort_change;
5628
5629 /* Check for ptracing, and update the task SID if ok.
5630 Otherwise, leave SID unchanged and fail. */
5631 ptsid = 0;
5632 rcu_read_lock();
5633 tracer = ptrace_parent(p);
5634 if (tracer)
5635 ptsid = task_sid(tracer);
5636 rcu_read_unlock();
5637
5638 if (tracer) {
5639 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5640 PROCESS__PTRACE, NULL);
5641 if (error)
5642 goto abort_change;
5643 }
5644
5645 tsec->sid = sid;
5646 } else {
5647 error = -EINVAL;
5648 goto abort_change;
5649 }
5650
5651 commit_creds(new);
5652 return size;
5653
5654 abort_change:
5655 abort_creds(new);
5656 return error;
5657 }
5658
5659 static int selinux_ismaclabel(const char *name)
5660 {
5661 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5662 }
5663
5664 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5665 {
5666 return security_sid_to_context(secid, secdata, seclen);
5667 }
5668
5669 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5670 {
5671 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5672 }
5673
5674 static void selinux_release_secctx(char *secdata, u32 seclen)
5675 {
5676 kfree(secdata);
5677 }
5678
5679 /*
5680 * called with inode->i_mutex locked
5681 */
5682 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5683 {
5684 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5685 }
5686
5687 /*
5688 * called with inode->i_mutex locked
5689 */
5690 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5691 {
5692 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5693 }
5694
5695 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5696 {
5697 int len = 0;
5698 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5699 ctx, true);
5700 if (len < 0)
5701 return len;
5702 *ctxlen = len;
5703 return 0;
5704 }
5705 #ifdef CONFIG_KEYS
5706
5707 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5708 unsigned long flags)
5709 {
5710 const struct task_security_struct *tsec;
5711 struct key_security_struct *ksec;
5712
5713 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5714 if (!ksec)
5715 return -ENOMEM;
5716
5717 tsec = cred->security;
5718 if (tsec->keycreate_sid)
5719 ksec->sid = tsec->keycreate_sid;
5720 else
5721 ksec->sid = tsec->sid;
5722
5723 k->security = ksec;
5724 return 0;
5725 }
5726
5727 static void selinux_key_free(struct key *k)
5728 {
5729 struct key_security_struct *ksec = k->security;
5730
5731 k->security = NULL;
5732 kfree(ksec);
5733 }
5734
5735 static int selinux_key_permission(key_ref_t key_ref,
5736 const struct cred *cred,
5737 unsigned perm)
5738 {
5739 struct key *key;
5740 struct key_security_struct *ksec;
5741 u32 sid;
5742
5743 /* if no specific permissions are requested, we skip the
5744 permission check. No serious, additional covert channels
5745 appear to be created. */
5746 if (perm == 0)
5747 return 0;
5748
5749 sid = cred_sid(cred);
5750
5751 key = key_ref_to_ptr(key_ref);
5752 ksec = key->security;
5753
5754 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5755 }
5756
5757 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5758 {
5759 struct key_security_struct *ksec = key->security;
5760 char *context = NULL;
5761 unsigned len;
5762 int rc;
5763
5764 rc = security_sid_to_context(ksec->sid, &context, &len);
5765 if (!rc)
5766 rc = len;
5767 *_buffer = context;
5768 return rc;
5769 }
5770
5771 #endif
5772
5773 static struct security_operations selinux_ops = {
5774 .name = "selinux",
5775
5776 .ptrace_access_check = selinux_ptrace_access_check,
5777 .ptrace_traceme = selinux_ptrace_traceme,
5778 .capget = selinux_capget,
5779 .capset = selinux_capset,
5780 .capable = selinux_capable,
5781 .quotactl = selinux_quotactl,
5782 .quota_on = selinux_quota_on,
5783 .syslog = selinux_syslog,
5784 .vm_enough_memory = selinux_vm_enough_memory,
5785
5786 .netlink_send = selinux_netlink_send,
5787
5788 .bprm_set_creds = selinux_bprm_set_creds,
5789 .bprm_committing_creds = selinux_bprm_committing_creds,
5790 .bprm_committed_creds = selinux_bprm_committed_creds,
5791 .bprm_secureexec = selinux_bprm_secureexec,
5792
5793 .sb_alloc_security = selinux_sb_alloc_security,
5794 .sb_free_security = selinux_sb_free_security,
5795 .sb_copy_data = selinux_sb_copy_data,
5796 .sb_remount = selinux_sb_remount,
5797 .sb_kern_mount = selinux_sb_kern_mount,
5798 .sb_show_options = selinux_sb_show_options,
5799 .sb_statfs = selinux_sb_statfs,
5800 .sb_mount = selinux_mount,
5801 .sb_umount = selinux_umount,
5802 .sb_set_mnt_opts = selinux_set_mnt_opts,
5803 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5804 .sb_parse_opts_str = selinux_parse_opts_str,
5805
5806 .dentry_init_security = selinux_dentry_init_security,
5807
5808 .inode_alloc_security = selinux_inode_alloc_security,
5809 .inode_free_security = selinux_inode_free_security,
5810 .inode_init_security = selinux_inode_init_security,
5811 .inode_create = selinux_inode_create,
5812 .inode_link = selinux_inode_link,
5813 .inode_unlink = selinux_inode_unlink,
5814 .inode_symlink = selinux_inode_symlink,
5815 .inode_mkdir = selinux_inode_mkdir,
5816 .inode_rmdir = selinux_inode_rmdir,
5817 .inode_mknod = selinux_inode_mknod,
5818 .inode_rename = selinux_inode_rename,
5819 .inode_readlink = selinux_inode_readlink,
5820 .inode_follow_link = selinux_inode_follow_link,
5821 .inode_permission = selinux_inode_permission,
5822 .inode_setattr = selinux_inode_setattr,
5823 .inode_getattr = selinux_inode_getattr,
5824 .inode_setxattr = selinux_inode_setxattr,
5825 .inode_post_setxattr = selinux_inode_post_setxattr,
5826 .inode_getxattr = selinux_inode_getxattr,
5827 .inode_listxattr = selinux_inode_listxattr,
5828 .inode_removexattr = selinux_inode_removexattr,
5829 .inode_getsecurity = selinux_inode_getsecurity,
5830 .inode_setsecurity = selinux_inode_setsecurity,
5831 .inode_listsecurity = selinux_inode_listsecurity,
5832 .inode_getsecid = selinux_inode_getsecid,
5833
5834 .file_permission = selinux_file_permission,
5835 .file_alloc_security = selinux_file_alloc_security,
5836 .file_free_security = selinux_file_free_security,
5837 .file_ioctl = selinux_file_ioctl,
5838 .mmap_file = selinux_mmap_file,
5839 .mmap_addr = selinux_mmap_addr,
5840 .file_mprotect = selinux_file_mprotect,
5841 .file_lock = selinux_file_lock,
5842 .file_fcntl = selinux_file_fcntl,
5843 .file_set_fowner = selinux_file_set_fowner,
5844 .file_send_sigiotask = selinux_file_send_sigiotask,
5845 .file_receive = selinux_file_receive,
5846
5847 .file_open = selinux_file_open,
5848
5849 .task_create = selinux_task_create,
5850 .cred_alloc_blank = selinux_cred_alloc_blank,
5851 .cred_free = selinux_cred_free,
5852 .cred_prepare = selinux_cred_prepare,
5853 .cred_transfer = selinux_cred_transfer,
5854 .kernel_act_as = selinux_kernel_act_as,
5855 .kernel_create_files_as = selinux_kernel_create_files_as,
5856 .kernel_module_request = selinux_kernel_module_request,
5857 .task_setpgid = selinux_task_setpgid,
5858 .task_getpgid = selinux_task_getpgid,
5859 .task_getsid = selinux_task_getsid,
5860 .task_getsecid = selinux_task_getsecid,
5861 .task_setnice = selinux_task_setnice,
5862 .task_setioprio = selinux_task_setioprio,
5863 .task_getioprio = selinux_task_getioprio,
5864 .task_setrlimit = selinux_task_setrlimit,
5865 .task_setscheduler = selinux_task_setscheduler,
5866 .task_getscheduler = selinux_task_getscheduler,
5867 .task_movememory = selinux_task_movememory,
5868 .task_kill = selinux_task_kill,
5869 .task_wait = selinux_task_wait,
5870 .task_to_inode = selinux_task_to_inode,
5871
5872 .ipc_permission = selinux_ipc_permission,
5873 .ipc_getsecid = selinux_ipc_getsecid,
5874
5875 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5876 .msg_msg_free_security = selinux_msg_msg_free_security,
5877
5878 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5879 .msg_queue_free_security = selinux_msg_queue_free_security,
5880 .msg_queue_associate = selinux_msg_queue_associate,
5881 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5882 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5883 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5884
5885 .shm_alloc_security = selinux_shm_alloc_security,
5886 .shm_free_security = selinux_shm_free_security,
5887 .shm_associate = selinux_shm_associate,
5888 .shm_shmctl = selinux_shm_shmctl,
5889 .shm_shmat = selinux_shm_shmat,
5890
5891 .sem_alloc_security = selinux_sem_alloc_security,
5892 .sem_free_security = selinux_sem_free_security,
5893 .sem_associate = selinux_sem_associate,
5894 .sem_semctl = selinux_sem_semctl,
5895 .sem_semop = selinux_sem_semop,
5896
5897 .d_instantiate = selinux_d_instantiate,
5898
5899 .getprocattr = selinux_getprocattr,
5900 .setprocattr = selinux_setprocattr,
5901
5902 .ismaclabel = selinux_ismaclabel,
5903 .secid_to_secctx = selinux_secid_to_secctx,
5904 .secctx_to_secid = selinux_secctx_to_secid,
5905 .release_secctx = selinux_release_secctx,
5906 .inode_notifysecctx = selinux_inode_notifysecctx,
5907 .inode_setsecctx = selinux_inode_setsecctx,
5908 .inode_getsecctx = selinux_inode_getsecctx,
5909
5910 .unix_stream_connect = selinux_socket_unix_stream_connect,
5911 .unix_may_send = selinux_socket_unix_may_send,
5912
5913 .socket_create = selinux_socket_create,
5914 .socket_post_create = selinux_socket_post_create,
5915 .socket_bind = selinux_socket_bind,
5916 .socket_connect = selinux_socket_connect,
5917 .socket_listen = selinux_socket_listen,
5918 .socket_accept = selinux_socket_accept,
5919 .socket_sendmsg = selinux_socket_sendmsg,
5920 .socket_recvmsg = selinux_socket_recvmsg,
5921 .socket_getsockname = selinux_socket_getsockname,
5922 .socket_getpeername = selinux_socket_getpeername,
5923 .socket_getsockopt = selinux_socket_getsockopt,
5924 .socket_setsockopt = selinux_socket_setsockopt,
5925 .socket_shutdown = selinux_socket_shutdown,
5926 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5927 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5928 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5929 .sk_alloc_security = selinux_sk_alloc_security,
5930 .sk_free_security = selinux_sk_free_security,
5931 .sk_clone_security = selinux_sk_clone_security,
5932 .sk_getsecid = selinux_sk_getsecid,
5933 .sock_graft = selinux_sock_graft,
5934 .inet_conn_request = selinux_inet_conn_request,
5935 .inet_csk_clone = selinux_inet_csk_clone,
5936 .inet_conn_established = selinux_inet_conn_established,
5937 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5938 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5939 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5940 .req_classify_flow = selinux_req_classify_flow,
5941 .tun_dev_alloc_security = selinux_tun_dev_alloc_security,
5942 .tun_dev_free_security = selinux_tun_dev_free_security,
5943 .tun_dev_create = selinux_tun_dev_create,
5944 .tun_dev_attach_queue = selinux_tun_dev_attach_queue,
5945 .tun_dev_attach = selinux_tun_dev_attach,
5946 .tun_dev_open = selinux_tun_dev_open,
5947 .skb_owned_by = selinux_skb_owned_by,
5948
5949 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5950 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5951 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5952 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5953 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5954 .xfrm_state_alloc = selinux_xfrm_state_alloc,
5955 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire,
5956 .xfrm_state_free_security = selinux_xfrm_state_free,
5957 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5958 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5959 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5960 .xfrm_decode_session = selinux_xfrm_decode_session,
5961 #endif
5962
5963 #ifdef CONFIG_KEYS
5964 .key_alloc = selinux_key_alloc,
5965 .key_free = selinux_key_free,
5966 .key_permission = selinux_key_permission,
5967 .key_getsecurity = selinux_key_getsecurity,
5968 #endif
5969
5970 #ifdef CONFIG_AUDIT
5971 .audit_rule_init = selinux_audit_rule_init,
5972 .audit_rule_known = selinux_audit_rule_known,
5973 .audit_rule_match = selinux_audit_rule_match,
5974 .audit_rule_free = selinux_audit_rule_free,
5975 #endif
5976 };
5977
5978 static __init int selinux_init(void)
5979 {
5980 if (!security_module_enable(&selinux_ops)) {
5981 selinux_enabled = 0;
5982 return 0;
5983 }
5984
5985 if (!selinux_enabled) {
5986 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5987 return 0;
5988 }
5989
5990 printk(KERN_INFO "SELinux: Initializing.\n");
5991
5992 /* Set the security state for the initial task. */
5993 cred_init_security();
5994
5995 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5996
5997 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5998 sizeof(struct inode_security_struct),
5999 0, SLAB_PANIC, NULL);
6000 avc_init();
6001
6002 if (register_security(&selinux_ops))
6003 panic("SELinux: Unable to register with kernel.\n");
6004
6005 if (selinux_enforcing)
6006 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6007 else
6008 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6009
6010 return 0;
6011 }
6012
6013 static void delayed_superblock_init(struct super_block *sb, void *unused)
6014 {
6015 superblock_doinit(sb, NULL);
6016 }
6017
6018 void selinux_complete_init(void)
6019 {
6020 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6021
6022 /* Set up any superblocks initialized prior to the policy load. */
6023 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6024 iterate_supers(delayed_superblock_init, NULL);
6025 }
6026
6027 /* SELinux requires early initialization in order to label
6028 all processes and objects when they are created. */
6029 security_initcall(selinux_init);
6030
6031 #if defined(CONFIG_NETFILTER)
6032
6033 static struct nf_hook_ops selinux_ipv4_ops[] = {
6034 {
6035 .hook = selinux_ipv4_postroute,
6036 .owner = THIS_MODULE,
6037 .pf = NFPROTO_IPV4,
6038 .hooknum = NF_INET_POST_ROUTING,
6039 .priority = NF_IP_PRI_SELINUX_LAST,
6040 },
6041 {
6042 .hook = selinux_ipv4_forward,
6043 .owner = THIS_MODULE,
6044 .pf = NFPROTO_IPV4,
6045 .hooknum = NF_INET_FORWARD,
6046 .priority = NF_IP_PRI_SELINUX_FIRST,
6047 },
6048 {
6049 .hook = selinux_ipv4_output,
6050 .owner = THIS_MODULE,
6051 .pf = NFPROTO_IPV4,
6052 .hooknum = NF_INET_LOCAL_OUT,
6053 .priority = NF_IP_PRI_SELINUX_FIRST,
6054 }
6055 };
6056
6057 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6058
6059 static struct nf_hook_ops selinux_ipv6_ops[] = {
6060 {
6061 .hook = selinux_ipv6_postroute,
6062 .owner = THIS_MODULE,
6063 .pf = NFPROTO_IPV6,
6064 .hooknum = NF_INET_POST_ROUTING,
6065 .priority = NF_IP6_PRI_SELINUX_LAST,
6066 },
6067 {
6068 .hook = selinux_ipv6_forward,
6069 .owner = THIS_MODULE,
6070 .pf = NFPROTO_IPV6,
6071 .hooknum = NF_INET_FORWARD,
6072 .priority = NF_IP6_PRI_SELINUX_FIRST,
6073 }
6074 };
6075
6076 #endif /* IPV6 */
6077
6078 static int __init selinux_nf_ip_init(void)
6079 {
6080 int err = 0;
6081
6082 if (!selinux_enabled)
6083 goto out;
6084
6085 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6086
6087 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6088 if (err)
6089 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6090
6091 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6092 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6093 if (err)
6094 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6095 #endif /* IPV6 */
6096
6097 out:
6098 return err;
6099 }
6100
6101 __initcall(selinux_nf_ip_init);
6102
6103 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6104 static void selinux_nf_ip_exit(void)
6105 {
6106 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6107
6108 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6109 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6110 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6111 #endif /* IPV6 */
6112 }
6113 #endif
6114
6115 #else /* CONFIG_NETFILTER */
6116
6117 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6118 #define selinux_nf_ip_exit()
6119 #endif
6120
6121 #endif /* CONFIG_NETFILTER */
6122
6123 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6124 static int selinux_disabled;
6125
6126 int selinux_disable(void)
6127 {
6128 if (ss_initialized) {
6129 /* Not permitted after initial policy load. */
6130 return -EINVAL;
6131 }
6132
6133 if (selinux_disabled) {
6134 /* Only do this once. */
6135 return -EINVAL;
6136 }
6137
6138 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6139
6140 selinux_disabled = 1;
6141 selinux_enabled = 0;
6142
6143 reset_security_ops();
6144
6145 /* Try to destroy the avc node cache */
6146 avc_disable();
6147
6148 /* Unregister netfilter hooks. */
6149 selinux_nf_ip_exit();
6150
6151 /* Unregister selinuxfs. */
6152 exit_sel_fs();
6153
6154 return 0;
6155 }
6156 #endif