]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - security/selinux/hooks.c
proc/sysctl: Don't grab i_lock under sysctl_lock.
[mirror_ubuntu-artful-kernel.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/lsm_hooks.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h> /* for local_port_range[] */
54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55 #include <net/inet_connection_sock.h>
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h> /* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h> /* for Unix socket types */
70 #include <net/af_unix.h> /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/msg.h>
85 #include <linux/shm.h>
86
87 #include "avc.h"
88 #include "objsec.h"
89 #include "netif.h"
90 #include "netnode.h"
91 #include "netport.h"
92 #include "xfrm.h"
93 #include "netlabel.h"
94 #include "audit.h"
95 #include "avc_ss.h"
96
97 /* SECMARK reference count */
98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101 int selinux_enforcing;
102
103 static int __init enforcing_setup(char *str)
104 {
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116 static int __init selinux_enabled_setup(char *str)
117 {
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122 }
123 __setup("selinux=", selinux_enabled_setup);
124 #else
125 int selinux_enabled = 1;
126 #endif
127
128 static struct kmem_cache *sel_inode_cache;
129 static struct kmem_cache *file_security_cache;
130
131 /**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled. If the always_check_network
139 * policy capability is enabled, SECMARK is always considered enabled.
140 *
141 */
142 static int selinux_secmark_enabled(void)
143 {
144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
145 }
146
147 /**
148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
149 *
150 * Description:
151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
152 * (1) if any are enabled or false (0) if neither are enabled. If the
153 * always_check_network policy capability is enabled, peer labeling
154 * is always considered enabled.
155 *
156 */
157 static int selinux_peerlbl_enabled(void)
158 {
159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
160 }
161
162 static int selinux_netcache_avc_callback(u32 event)
163 {
164 if (event == AVC_CALLBACK_RESET) {
165 sel_netif_flush();
166 sel_netnode_flush();
167 sel_netport_flush();
168 synchronize_net();
169 }
170 return 0;
171 }
172
173 /*
174 * initialise the security for the init task
175 */
176 static void cred_init_security(void)
177 {
178 struct cred *cred = (struct cred *) current->real_cred;
179 struct task_security_struct *tsec;
180
181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
182 if (!tsec)
183 panic("SELinux: Failed to initialize initial task.\n");
184
185 tsec->osid = tsec->sid = SECINITSID_KERNEL;
186 cred->security = tsec;
187 }
188
189 /*
190 * get the security ID of a set of credentials
191 */
192 static inline u32 cred_sid(const struct cred *cred)
193 {
194 const struct task_security_struct *tsec;
195
196 tsec = cred->security;
197 return tsec->sid;
198 }
199
200 /*
201 * get the objective security ID of a task
202 */
203 static inline u32 task_sid(const struct task_struct *task)
204 {
205 u32 sid;
206
207 rcu_read_lock();
208 sid = cred_sid(__task_cred(task));
209 rcu_read_unlock();
210 return sid;
211 }
212
213 /*
214 * get the subjective security ID of the current task
215 */
216 static inline u32 current_sid(void)
217 {
218 const struct task_security_struct *tsec = current_security();
219
220 return tsec->sid;
221 }
222
223 /* Allocate and free functions for each kind of security blob. */
224
225 static int inode_alloc_security(struct inode *inode)
226 {
227 struct inode_security_struct *isec;
228 u32 sid = current_sid();
229
230 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
231 if (!isec)
232 return -ENOMEM;
233
234 spin_lock_init(&isec->lock);
235 INIT_LIST_HEAD(&isec->list);
236 isec->inode = inode;
237 isec->sid = SECINITSID_UNLABELED;
238 isec->sclass = SECCLASS_FILE;
239 isec->task_sid = sid;
240 isec->initialized = LABEL_INVALID;
241 inode->i_security = isec;
242
243 return 0;
244 }
245
246 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
247
248 /*
249 * Try reloading inode security labels that have been marked as invalid. The
250 * @may_sleep parameter indicates when sleeping and thus reloading labels is
251 * allowed; when set to false, returns -ECHILD when the label is
252 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
253 * when no dentry is available, set it to NULL instead.
254 */
255 static int __inode_security_revalidate(struct inode *inode,
256 struct dentry *opt_dentry,
257 bool may_sleep)
258 {
259 struct inode_security_struct *isec = inode->i_security;
260
261 might_sleep_if(may_sleep);
262
263 if (ss_initialized && isec->initialized != LABEL_INITIALIZED) {
264 if (!may_sleep)
265 return -ECHILD;
266
267 /*
268 * Try reloading the inode security label. This will fail if
269 * @opt_dentry is NULL and no dentry for this inode can be
270 * found; in that case, continue using the old label.
271 */
272 inode_doinit_with_dentry(inode, opt_dentry);
273 }
274 return 0;
275 }
276
277 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
278 {
279 return inode->i_security;
280 }
281
282 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
283 {
284 int error;
285
286 error = __inode_security_revalidate(inode, NULL, !rcu);
287 if (error)
288 return ERR_PTR(error);
289 return inode->i_security;
290 }
291
292 /*
293 * Get the security label of an inode.
294 */
295 static struct inode_security_struct *inode_security(struct inode *inode)
296 {
297 __inode_security_revalidate(inode, NULL, true);
298 return inode->i_security;
299 }
300
301 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
302 {
303 struct inode *inode = d_backing_inode(dentry);
304
305 return inode->i_security;
306 }
307
308 /*
309 * Get the security label of a dentry's backing inode.
310 */
311 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
312 {
313 struct inode *inode = d_backing_inode(dentry);
314
315 __inode_security_revalidate(inode, dentry, true);
316 return inode->i_security;
317 }
318
319 static void inode_free_rcu(struct rcu_head *head)
320 {
321 struct inode_security_struct *isec;
322
323 isec = container_of(head, struct inode_security_struct, rcu);
324 kmem_cache_free(sel_inode_cache, isec);
325 }
326
327 static void inode_free_security(struct inode *inode)
328 {
329 struct inode_security_struct *isec = inode->i_security;
330 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
331
332 /*
333 * As not all inode security structures are in a list, we check for
334 * empty list outside of the lock to make sure that we won't waste
335 * time taking a lock doing nothing.
336 *
337 * The list_del_init() function can be safely called more than once.
338 * It should not be possible for this function to be called with
339 * concurrent list_add(), but for better safety against future changes
340 * in the code, we use list_empty_careful() here.
341 */
342 if (!list_empty_careful(&isec->list)) {
343 spin_lock(&sbsec->isec_lock);
344 list_del_init(&isec->list);
345 spin_unlock(&sbsec->isec_lock);
346 }
347
348 /*
349 * The inode may still be referenced in a path walk and
350 * a call to selinux_inode_permission() can be made
351 * after inode_free_security() is called. Ideally, the VFS
352 * wouldn't do this, but fixing that is a much harder
353 * job. For now, simply free the i_security via RCU, and
354 * leave the current inode->i_security pointer intact.
355 * The inode will be freed after the RCU grace period too.
356 */
357 call_rcu(&isec->rcu, inode_free_rcu);
358 }
359
360 static int file_alloc_security(struct file *file)
361 {
362 struct file_security_struct *fsec;
363 u32 sid = current_sid();
364
365 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
366 if (!fsec)
367 return -ENOMEM;
368
369 fsec->sid = sid;
370 fsec->fown_sid = sid;
371 file->f_security = fsec;
372
373 return 0;
374 }
375
376 static void file_free_security(struct file *file)
377 {
378 struct file_security_struct *fsec = file->f_security;
379 file->f_security = NULL;
380 kmem_cache_free(file_security_cache, fsec);
381 }
382
383 static int superblock_alloc_security(struct super_block *sb)
384 {
385 struct superblock_security_struct *sbsec;
386
387 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
388 if (!sbsec)
389 return -ENOMEM;
390
391 mutex_init(&sbsec->lock);
392 INIT_LIST_HEAD(&sbsec->isec_head);
393 spin_lock_init(&sbsec->isec_lock);
394 sbsec->sb = sb;
395 sbsec->sid = SECINITSID_UNLABELED;
396 sbsec->def_sid = SECINITSID_FILE;
397 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
398 sb->s_security = sbsec;
399
400 return 0;
401 }
402
403 static void superblock_free_security(struct super_block *sb)
404 {
405 struct superblock_security_struct *sbsec = sb->s_security;
406 sb->s_security = NULL;
407 kfree(sbsec);
408 }
409
410 /* The file system's label must be initialized prior to use. */
411
412 static const char *labeling_behaviors[7] = {
413 "uses xattr",
414 "uses transition SIDs",
415 "uses task SIDs",
416 "uses genfs_contexts",
417 "not configured for labeling",
418 "uses mountpoint labeling",
419 "uses native labeling",
420 };
421
422 static inline int inode_doinit(struct inode *inode)
423 {
424 return inode_doinit_with_dentry(inode, NULL);
425 }
426
427 enum {
428 Opt_error = -1,
429 Opt_context = 1,
430 Opt_fscontext = 2,
431 Opt_defcontext = 3,
432 Opt_rootcontext = 4,
433 Opt_labelsupport = 5,
434 Opt_nextmntopt = 6,
435 };
436
437 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
438
439 static const match_table_t tokens = {
440 {Opt_context, CONTEXT_STR "%s"},
441 {Opt_fscontext, FSCONTEXT_STR "%s"},
442 {Opt_defcontext, DEFCONTEXT_STR "%s"},
443 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
444 {Opt_labelsupport, LABELSUPP_STR},
445 {Opt_error, NULL},
446 };
447
448 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
449
450 static int may_context_mount_sb_relabel(u32 sid,
451 struct superblock_security_struct *sbsec,
452 const struct cred *cred)
453 {
454 const struct task_security_struct *tsec = cred->security;
455 int rc;
456
457 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
458 FILESYSTEM__RELABELFROM, NULL);
459 if (rc)
460 return rc;
461
462 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
463 FILESYSTEM__RELABELTO, NULL);
464 return rc;
465 }
466
467 static int may_context_mount_inode_relabel(u32 sid,
468 struct superblock_security_struct *sbsec,
469 const struct cred *cred)
470 {
471 const struct task_security_struct *tsec = cred->security;
472 int rc;
473 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
474 FILESYSTEM__RELABELFROM, NULL);
475 if (rc)
476 return rc;
477
478 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
479 FILESYSTEM__ASSOCIATE, NULL);
480 return rc;
481 }
482
483 static int selinux_is_sblabel_mnt(struct super_block *sb)
484 {
485 struct superblock_security_struct *sbsec = sb->s_security;
486
487 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
488 sbsec->behavior == SECURITY_FS_USE_TRANS ||
489 sbsec->behavior == SECURITY_FS_USE_TASK ||
490 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
491 /* Special handling. Genfs but also in-core setxattr handler */
492 !strcmp(sb->s_type->name, "sysfs") ||
493 !strcmp(sb->s_type->name, "pstore") ||
494 !strcmp(sb->s_type->name, "debugfs") ||
495 !strcmp(sb->s_type->name, "rootfs");
496 }
497
498 static int sb_finish_set_opts(struct super_block *sb)
499 {
500 struct superblock_security_struct *sbsec = sb->s_security;
501 struct dentry *root = sb->s_root;
502 struct inode *root_inode = d_backing_inode(root);
503 int rc = 0;
504
505 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
506 /* Make sure that the xattr handler exists and that no
507 error other than -ENODATA is returned by getxattr on
508 the root directory. -ENODATA is ok, as this may be
509 the first boot of the SELinux kernel before we have
510 assigned xattr values to the filesystem. */
511 if (!(root_inode->i_opflags & IOP_XATTR)) {
512 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
513 "xattr support\n", sb->s_id, sb->s_type->name);
514 rc = -EOPNOTSUPP;
515 goto out;
516 }
517
518 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
519 if (rc < 0 && rc != -ENODATA) {
520 if (rc == -EOPNOTSUPP)
521 printk(KERN_WARNING "SELinux: (dev %s, type "
522 "%s) has no security xattr handler\n",
523 sb->s_id, sb->s_type->name);
524 else
525 printk(KERN_WARNING "SELinux: (dev %s, type "
526 "%s) getxattr errno %d\n", sb->s_id,
527 sb->s_type->name, -rc);
528 goto out;
529 }
530 }
531
532 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
533 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
534 sb->s_id, sb->s_type->name);
535
536 sbsec->flags |= SE_SBINITIALIZED;
537 if (selinux_is_sblabel_mnt(sb))
538 sbsec->flags |= SBLABEL_MNT;
539
540 /* Initialize the root inode. */
541 rc = inode_doinit_with_dentry(root_inode, root);
542
543 /* Initialize any other inodes associated with the superblock, e.g.
544 inodes created prior to initial policy load or inodes created
545 during get_sb by a pseudo filesystem that directly
546 populates itself. */
547 spin_lock(&sbsec->isec_lock);
548 next_inode:
549 if (!list_empty(&sbsec->isec_head)) {
550 struct inode_security_struct *isec =
551 list_entry(sbsec->isec_head.next,
552 struct inode_security_struct, list);
553 struct inode *inode = isec->inode;
554 list_del_init(&isec->list);
555 spin_unlock(&sbsec->isec_lock);
556 inode = igrab(inode);
557 if (inode) {
558 if (!IS_PRIVATE(inode))
559 inode_doinit(inode);
560 iput(inode);
561 }
562 spin_lock(&sbsec->isec_lock);
563 goto next_inode;
564 }
565 spin_unlock(&sbsec->isec_lock);
566 out:
567 return rc;
568 }
569
570 /*
571 * This function should allow an FS to ask what it's mount security
572 * options were so it can use those later for submounts, displaying
573 * mount options, or whatever.
574 */
575 static int selinux_get_mnt_opts(const struct super_block *sb,
576 struct security_mnt_opts *opts)
577 {
578 int rc = 0, i;
579 struct superblock_security_struct *sbsec = sb->s_security;
580 char *context = NULL;
581 u32 len;
582 char tmp;
583
584 security_init_mnt_opts(opts);
585
586 if (!(sbsec->flags & SE_SBINITIALIZED))
587 return -EINVAL;
588
589 if (!ss_initialized)
590 return -EINVAL;
591
592 /* make sure we always check enough bits to cover the mask */
593 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
594
595 tmp = sbsec->flags & SE_MNTMASK;
596 /* count the number of mount options for this sb */
597 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
598 if (tmp & 0x01)
599 opts->num_mnt_opts++;
600 tmp >>= 1;
601 }
602 /* Check if the Label support flag is set */
603 if (sbsec->flags & SBLABEL_MNT)
604 opts->num_mnt_opts++;
605
606 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
607 if (!opts->mnt_opts) {
608 rc = -ENOMEM;
609 goto out_free;
610 }
611
612 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
613 if (!opts->mnt_opts_flags) {
614 rc = -ENOMEM;
615 goto out_free;
616 }
617
618 i = 0;
619 if (sbsec->flags & FSCONTEXT_MNT) {
620 rc = security_sid_to_context(sbsec->sid, &context, &len);
621 if (rc)
622 goto out_free;
623 opts->mnt_opts[i] = context;
624 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
625 }
626 if (sbsec->flags & CONTEXT_MNT) {
627 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
628 if (rc)
629 goto out_free;
630 opts->mnt_opts[i] = context;
631 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
632 }
633 if (sbsec->flags & DEFCONTEXT_MNT) {
634 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
635 if (rc)
636 goto out_free;
637 opts->mnt_opts[i] = context;
638 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
639 }
640 if (sbsec->flags & ROOTCONTEXT_MNT) {
641 struct dentry *root = sbsec->sb->s_root;
642 struct inode_security_struct *isec = backing_inode_security(root);
643
644 rc = security_sid_to_context(isec->sid, &context, &len);
645 if (rc)
646 goto out_free;
647 opts->mnt_opts[i] = context;
648 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
649 }
650 if (sbsec->flags & SBLABEL_MNT) {
651 opts->mnt_opts[i] = NULL;
652 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
653 }
654
655 BUG_ON(i != opts->num_mnt_opts);
656
657 return 0;
658
659 out_free:
660 security_free_mnt_opts(opts);
661 return rc;
662 }
663
664 static int bad_option(struct superblock_security_struct *sbsec, char flag,
665 u32 old_sid, u32 new_sid)
666 {
667 char mnt_flags = sbsec->flags & SE_MNTMASK;
668
669 /* check if the old mount command had the same options */
670 if (sbsec->flags & SE_SBINITIALIZED)
671 if (!(sbsec->flags & flag) ||
672 (old_sid != new_sid))
673 return 1;
674
675 /* check if we were passed the same options twice,
676 * aka someone passed context=a,context=b
677 */
678 if (!(sbsec->flags & SE_SBINITIALIZED))
679 if (mnt_flags & flag)
680 return 1;
681 return 0;
682 }
683
684 /*
685 * Allow filesystems with binary mount data to explicitly set mount point
686 * labeling information.
687 */
688 static int selinux_set_mnt_opts(struct super_block *sb,
689 struct security_mnt_opts *opts,
690 unsigned long kern_flags,
691 unsigned long *set_kern_flags)
692 {
693 const struct cred *cred = current_cred();
694 int rc = 0, i;
695 struct superblock_security_struct *sbsec = sb->s_security;
696 const char *name = sb->s_type->name;
697 struct dentry *root = sbsec->sb->s_root;
698 struct inode_security_struct *root_isec;
699 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
700 u32 defcontext_sid = 0;
701 char **mount_options = opts->mnt_opts;
702 int *flags = opts->mnt_opts_flags;
703 int num_opts = opts->num_mnt_opts;
704
705 mutex_lock(&sbsec->lock);
706
707 if (!ss_initialized) {
708 if (!num_opts) {
709 /* Defer initialization until selinux_complete_init,
710 after the initial policy is loaded and the security
711 server is ready to handle calls. */
712 goto out;
713 }
714 rc = -EINVAL;
715 printk(KERN_WARNING "SELinux: Unable to set superblock options "
716 "before the security server is initialized\n");
717 goto out;
718 }
719 if (kern_flags && !set_kern_flags) {
720 /* Specifying internal flags without providing a place to
721 * place the results is not allowed */
722 rc = -EINVAL;
723 goto out;
724 }
725
726 /*
727 * Binary mount data FS will come through this function twice. Once
728 * from an explicit call and once from the generic calls from the vfs.
729 * Since the generic VFS calls will not contain any security mount data
730 * we need to skip the double mount verification.
731 *
732 * This does open a hole in which we will not notice if the first
733 * mount using this sb set explict options and a second mount using
734 * this sb does not set any security options. (The first options
735 * will be used for both mounts)
736 */
737 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
738 && (num_opts == 0))
739 goto out;
740
741 root_isec = backing_inode_security_novalidate(root);
742
743 /*
744 * parse the mount options, check if they are valid sids.
745 * also check if someone is trying to mount the same sb more
746 * than once with different security options.
747 */
748 for (i = 0; i < num_opts; i++) {
749 u32 sid;
750
751 if (flags[i] == SBLABEL_MNT)
752 continue;
753 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
754 if (rc) {
755 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
756 "(%s) failed for (dev %s, type %s) errno=%d\n",
757 mount_options[i], sb->s_id, name, rc);
758 goto out;
759 }
760 switch (flags[i]) {
761 case FSCONTEXT_MNT:
762 fscontext_sid = sid;
763
764 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
765 fscontext_sid))
766 goto out_double_mount;
767
768 sbsec->flags |= FSCONTEXT_MNT;
769 break;
770 case CONTEXT_MNT:
771 context_sid = sid;
772
773 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
774 context_sid))
775 goto out_double_mount;
776
777 sbsec->flags |= CONTEXT_MNT;
778 break;
779 case ROOTCONTEXT_MNT:
780 rootcontext_sid = sid;
781
782 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
783 rootcontext_sid))
784 goto out_double_mount;
785
786 sbsec->flags |= ROOTCONTEXT_MNT;
787
788 break;
789 case DEFCONTEXT_MNT:
790 defcontext_sid = sid;
791
792 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
793 defcontext_sid))
794 goto out_double_mount;
795
796 sbsec->flags |= DEFCONTEXT_MNT;
797
798 break;
799 default:
800 rc = -EINVAL;
801 goto out;
802 }
803 }
804
805 if (sbsec->flags & SE_SBINITIALIZED) {
806 /* previously mounted with options, but not on this attempt? */
807 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
808 goto out_double_mount;
809 rc = 0;
810 goto out;
811 }
812
813 if (strcmp(sb->s_type->name, "proc") == 0)
814 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
815
816 if (!strcmp(sb->s_type->name, "debugfs") ||
817 !strcmp(sb->s_type->name, "sysfs") ||
818 !strcmp(sb->s_type->name, "pstore"))
819 sbsec->flags |= SE_SBGENFS;
820
821 if (!sbsec->behavior) {
822 /*
823 * Determine the labeling behavior to use for this
824 * filesystem type.
825 */
826 rc = security_fs_use(sb);
827 if (rc) {
828 printk(KERN_WARNING
829 "%s: security_fs_use(%s) returned %d\n",
830 __func__, sb->s_type->name, rc);
831 goto out;
832 }
833 }
834
835 /*
836 * If this is a user namespace mount, no contexts are allowed
837 * on the command line and security labels must be ignored.
838 */
839 if (sb->s_user_ns != &init_user_ns) {
840 if (context_sid || fscontext_sid || rootcontext_sid ||
841 defcontext_sid) {
842 rc = -EACCES;
843 goto out;
844 }
845 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
846 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
847 rc = security_transition_sid(current_sid(), current_sid(),
848 SECCLASS_FILE, NULL,
849 &sbsec->mntpoint_sid);
850 if (rc)
851 goto out;
852 }
853 goto out_set_opts;
854 }
855
856 /* sets the context of the superblock for the fs being mounted. */
857 if (fscontext_sid) {
858 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
859 if (rc)
860 goto out;
861
862 sbsec->sid = fscontext_sid;
863 }
864
865 /*
866 * Switch to using mount point labeling behavior.
867 * sets the label used on all file below the mountpoint, and will set
868 * the superblock context if not already set.
869 */
870 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
871 sbsec->behavior = SECURITY_FS_USE_NATIVE;
872 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
873 }
874
875 if (context_sid) {
876 if (!fscontext_sid) {
877 rc = may_context_mount_sb_relabel(context_sid, sbsec,
878 cred);
879 if (rc)
880 goto out;
881 sbsec->sid = context_sid;
882 } else {
883 rc = may_context_mount_inode_relabel(context_sid, sbsec,
884 cred);
885 if (rc)
886 goto out;
887 }
888 if (!rootcontext_sid)
889 rootcontext_sid = context_sid;
890
891 sbsec->mntpoint_sid = context_sid;
892 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
893 }
894
895 if (rootcontext_sid) {
896 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
897 cred);
898 if (rc)
899 goto out;
900
901 root_isec->sid = rootcontext_sid;
902 root_isec->initialized = LABEL_INITIALIZED;
903 }
904
905 if (defcontext_sid) {
906 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
907 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
908 rc = -EINVAL;
909 printk(KERN_WARNING "SELinux: defcontext option is "
910 "invalid for this filesystem type\n");
911 goto out;
912 }
913
914 if (defcontext_sid != sbsec->def_sid) {
915 rc = may_context_mount_inode_relabel(defcontext_sid,
916 sbsec, cred);
917 if (rc)
918 goto out;
919 }
920
921 sbsec->def_sid = defcontext_sid;
922 }
923
924 out_set_opts:
925 rc = sb_finish_set_opts(sb);
926 out:
927 mutex_unlock(&sbsec->lock);
928 return rc;
929 out_double_mount:
930 rc = -EINVAL;
931 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
932 "security settings for (dev %s, type %s)\n", sb->s_id, name);
933 goto out;
934 }
935
936 static int selinux_cmp_sb_context(const struct super_block *oldsb,
937 const struct super_block *newsb)
938 {
939 struct superblock_security_struct *old = oldsb->s_security;
940 struct superblock_security_struct *new = newsb->s_security;
941 char oldflags = old->flags & SE_MNTMASK;
942 char newflags = new->flags & SE_MNTMASK;
943
944 if (oldflags != newflags)
945 goto mismatch;
946 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
947 goto mismatch;
948 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
949 goto mismatch;
950 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
951 goto mismatch;
952 if (oldflags & ROOTCONTEXT_MNT) {
953 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
954 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
955 if (oldroot->sid != newroot->sid)
956 goto mismatch;
957 }
958 return 0;
959 mismatch:
960 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
961 "different security settings for (dev %s, "
962 "type %s)\n", newsb->s_id, newsb->s_type->name);
963 return -EBUSY;
964 }
965
966 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
967 struct super_block *newsb)
968 {
969 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
970 struct superblock_security_struct *newsbsec = newsb->s_security;
971
972 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
973 int set_context = (oldsbsec->flags & CONTEXT_MNT);
974 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
975
976 /*
977 * if the parent was able to be mounted it clearly had no special lsm
978 * mount options. thus we can safely deal with this superblock later
979 */
980 if (!ss_initialized)
981 return 0;
982
983 /* how can we clone if the old one wasn't set up?? */
984 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
985
986 /* if fs is reusing a sb, make sure that the contexts match */
987 if (newsbsec->flags & SE_SBINITIALIZED)
988 return selinux_cmp_sb_context(oldsb, newsb);
989
990 mutex_lock(&newsbsec->lock);
991
992 newsbsec->flags = oldsbsec->flags;
993
994 newsbsec->sid = oldsbsec->sid;
995 newsbsec->def_sid = oldsbsec->def_sid;
996 newsbsec->behavior = oldsbsec->behavior;
997
998 if (set_context) {
999 u32 sid = oldsbsec->mntpoint_sid;
1000
1001 if (!set_fscontext)
1002 newsbsec->sid = sid;
1003 if (!set_rootcontext) {
1004 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1005 newisec->sid = sid;
1006 }
1007 newsbsec->mntpoint_sid = sid;
1008 }
1009 if (set_rootcontext) {
1010 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1011 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1012
1013 newisec->sid = oldisec->sid;
1014 }
1015
1016 sb_finish_set_opts(newsb);
1017 mutex_unlock(&newsbsec->lock);
1018 return 0;
1019 }
1020
1021 static int selinux_parse_opts_str(char *options,
1022 struct security_mnt_opts *opts)
1023 {
1024 char *p;
1025 char *context = NULL, *defcontext = NULL;
1026 char *fscontext = NULL, *rootcontext = NULL;
1027 int rc, num_mnt_opts = 0;
1028
1029 opts->num_mnt_opts = 0;
1030
1031 /* Standard string-based options. */
1032 while ((p = strsep(&options, "|")) != NULL) {
1033 int token;
1034 substring_t args[MAX_OPT_ARGS];
1035
1036 if (!*p)
1037 continue;
1038
1039 token = match_token(p, tokens, args);
1040
1041 switch (token) {
1042 case Opt_context:
1043 if (context || defcontext) {
1044 rc = -EINVAL;
1045 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1046 goto out_err;
1047 }
1048 context = match_strdup(&args[0]);
1049 if (!context) {
1050 rc = -ENOMEM;
1051 goto out_err;
1052 }
1053 break;
1054
1055 case Opt_fscontext:
1056 if (fscontext) {
1057 rc = -EINVAL;
1058 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1059 goto out_err;
1060 }
1061 fscontext = match_strdup(&args[0]);
1062 if (!fscontext) {
1063 rc = -ENOMEM;
1064 goto out_err;
1065 }
1066 break;
1067
1068 case Opt_rootcontext:
1069 if (rootcontext) {
1070 rc = -EINVAL;
1071 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1072 goto out_err;
1073 }
1074 rootcontext = match_strdup(&args[0]);
1075 if (!rootcontext) {
1076 rc = -ENOMEM;
1077 goto out_err;
1078 }
1079 break;
1080
1081 case Opt_defcontext:
1082 if (context || defcontext) {
1083 rc = -EINVAL;
1084 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1085 goto out_err;
1086 }
1087 defcontext = match_strdup(&args[0]);
1088 if (!defcontext) {
1089 rc = -ENOMEM;
1090 goto out_err;
1091 }
1092 break;
1093 case Opt_labelsupport:
1094 break;
1095 default:
1096 rc = -EINVAL;
1097 printk(KERN_WARNING "SELinux: unknown mount option\n");
1098 goto out_err;
1099
1100 }
1101 }
1102
1103 rc = -ENOMEM;
1104 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1105 if (!opts->mnt_opts)
1106 goto out_err;
1107
1108 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1109 GFP_KERNEL);
1110 if (!opts->mnt_opts_flags) {
1111 kfree(opts->mnt_opts);
1112 goto out_err;
1113 }
1114
1115 if (fscontext) {
1116 opts->mnt_opts[num_mnt_opts] = fscontext;
1117 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1118 }
1119 if (context) {
1120 opts->mnt_opts[num_mnt_opts] = context;
1121 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1122 }
1123 if (rootcontext) {
1124 opts->mnt_opts[num_mnt_opts] = rootcontext;
1125 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1126 }
1127 if (defcontext) {
1128 opts->mnt_opts[num_mnt_opts] = defcontext;
1129 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1130 }
1131
1132 opts->num_mnt_opts = num_mnt_opts;
1133 return 0;
1134
1135 out_err:
1136 kfree(context);
1137 kfree(defcontext);
1138 kfree(fscontext);
1139 kfree(rootcontext);
1140 return rc;
1141 }
1142 /*
1143 * string mount options parsing and call set the sbsec
1144 */
1145 static int superblock_doinit(struct super_block *sb, void *data)
1146 {
1147 int rc = 0;
1148 char *options = data;
1149 struct security_mnt_opts opts;
1150
1151 security_init_mnt_opts(&opts);
1152
1153 if (!data)
1154 goto out;
1155
1156 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1157
1158 rc = selinux_parse_opts_str(options, &opts);
1159 if (rc)
1160 goto out_err;
1161
1162 out:
1163 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1164
1165 out_err:
1166 security_free_mnt_opts(&opts);
1167 return rc;
1168 }
1169
1170 static void selinux_write_opts(struct seq_file *m,
1171 struct security_mnt_opts *opts)
1172 {
1173 int i;
1174 char *prefix;
1175
1176 for (i = 0; i < opts->num_mnt_opts; i++) {
1177 char *has_comma;
1178
1179 if (opts->mnt_opts[i])
1180 has_comma = strchr(opts->mnt_opts[i], ',');
1181 else
1182 has_comma = NULL;
1183
1184 switch (opts->mnt_opts_flags[i]) {
1185 case CONTEXT_MNT:
1186 prefix = CONTEXT_STR;
1187 break;
1188 case FSCONTEXT_MNT:
1189 prefix = FSCONTEXT_STR;
1190 break;
1191 case ROOTCONTEXT_MNT:
1192 prefix = ROOTCONTEXT_STR;
1193 break;
1194 case DEFCONTEXT_MNT:
1195 prefix = DEFCONTEXT_STR;
1196 break;
1197 case SBLABEL_MNT:
1198 seq_putc(m, ',');
1199 seq_puts(m, LABELSUPP_STR);
1200 continue;
1201 default:
1202 BUG();
1203 return;
1204 };
1205 /* we need a comma before each option */
1206 seq_putc(m, ',');
1207 seq_puts(m, prefix);
1208 if (has_comma)
1209 seq_putc(m, '\"');
1210 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1211 if (has_comma)
1212 seq_putc(m, '\"');
1213 }
1214 }
1215
1216 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1217 {
1218 struct security_mnt_opts opts;
1219 int rc;
1220
1221 rc = selinux_get_mnt_opts(sb, &opts);
1222 if (rc) {
1223 /* before policy load we may get EINVAL, don't show anything */
1224 if (rc == -EINVAL)
1225 rc = 0;
1226 return rc;
1227 }
1228
1229 selinux_write_opts(m, &opts);
1230
1231 security_free_mnt_opts(&opts);
1232
1233 return rc;
1234 }
1235
1236 static inline u16 inode_mode_to_security_class(umode_t mode)
1237 {
1238 switch (mode & S_IFMT) {
1239 case S_IFSOCK:
1240 return SECCLASS_SOCK_FILE;
1241 case S_IFLNK:
1242 return SECCLASS_LNK_FILE;
1243 case S_IFREG:
1244 return SECCLASS_FILE;
1245 case S_IFBLK:
1246 return SECCLASS_BLK_FILE;
1247 case S_IFDIR:
1248 return SECCLASS_DIR;
1249 case S_IFCHR:
1250 return SECCLASS_CHR_FILE;
1251 case S_IFIFO:
1252 return SECCLASS_FIFO_FILE;
1253
1254 }
1255
1256 return SECCLASS_FILE;
1257 }
1258
1259 static inline int default_protocol_stream(int protocol)
1260 {
1261 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1262 }
1263
1264 static inline int default_protocol_dgram(int protocol)
1265 {
1266 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1267 }
1268
1269 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1270 {
1271 switch (family) {
1272 case PF_UNIX:
1273 switch (type) {
1274 case SOCK_STREAM:
1275 case SOCK_SEQPACKET:
1276 return SECCLASS_UNIX_STREAM_SOCKET;
1277 case SOCK_DGRAM:
1278 return SECCLASS_UNIX_DGRAM_SOCKET;
1279 }
1280 break;
1281 case PF_INET:
1282 case PF_INET6:
1283 switch (type) {
1284 case SOCK_STREAM:
1285 if (default_protocol_stream(protocol))
1286 return SECCLASS_TCP_SOCKET;
1287 else
1288 return SECCLASS_RAWIP_SOCKET;
1289 case SOCK_DGRAM:
1290 if (default_protocol_dgram(protocol))
1291 return SECCLASS_UDP_SOCKET;
1292 else
1293 return SECCLASS_RAWIP_SOCKET;
1294 case SOCK_DCCP:
1295 return SECCLASS_DCCP_SOCKET;
1296 default:
1297 return SECCLASS_RAWIP_SOCKET;
1298 }
1299 break;
1300 case PF_NETLINK:
1301 switch (protocol) {
1302 case NETLINK_ROUTE:
1303 return SECCLASS_NETLINK_ROUTE_SOCKET;
1304 case NETLINK_SOCK_DIAG:
1305 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1306 case NETLINK_NFLOG:
1307 return SECCLASS_NETLINK_NFLOG_SOCKET;
1308 case NETLINK_XFRM:
1309 return SECCLASS_NETLINK_XFRM_SOCKET;
1310 case NETLINK_SELINUX:
1311 return SECCLASS_NETLINK_SELINUX_SOCKET;
1312 case NETLINK_ISCSI:
1313 return SECCLASS_NETLINK_ISCSI_SOCKET;
1314 case NETLINK_AUDIT:
1315 return SECCLASS_NETLINK_AUDIT_SOCKET;
1316 case NETLINK_FIB_LOOKUP:
1317 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1318 case NETLINK_CONNECTOR:
1319 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1320 case NETLINK_NETFILTER:
1321 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1322 case NETLINK_DNRTMSG:
1323 return SECCLASS_NETLINK_DNRT_SOCKET;
1324 case NETLINK_KOBJECT_UEVENT:
1325 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1326 case NETLINK_GENERIC:
1327 return SECCLASS_NETLINK_GENERIC_SOCKET;
1328 case NETLINK_SCSITRANSPORT:
1329 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1330 case NETLINK_RDMA:
1331 return SECCLASS_NETLINK_RDMA_SOCKET;
1332 case NETLINK_CRYPTO:
1333 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1334 default:
1335 return SECCLASS_NETLINK_SOCKET;
1336 }
1337 case PF_PACKET:
1338 return SECCLASS_PACKET_SOCKET;
1339 case PF_KEY:
1340 return SECCLASS_KEY_SOCKET;
1341 case PF_APPLETALK:
1342 return SECCLASS_APPLETALK_SOCKET;
1343 }
1344
1345 return SECCLASS_SOCKET;
1346 }
1347
1348 static int selinux_genfs_get_sid(struct dentry *dentry,
1349 u16 tclass,
1350 u16 flags,
1351 u32 *sid)
1352 {
1353 int rc;
1354 struct super_block *sb = dentry->d_sb;
1355 char *buffer, *path;
1356
1357 buffer = (char *)__get_free_page(GFP_KERNEL);
1358 if (!buffer)
1359 return -ENOMEM;
1360
1361 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1362 if (IS_ERR(path))
1363 rc = PTR_ERR(path);
1364 else {
1365 if (flags & SE_SBPROC) {
1366 /* each process gets a /proc/PID/ entry. Strip off the
1367 * PID part to get a valid selinux labeling.
1368 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1369 while (path[1] >= '0' && path[1] <= '9') {
1370 path[1] = '/';
1371 path++;
1372 }
1373 }
1374 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1375 }
1376 free_page((unsigned long)buffer);
1377 return rc;
1378 }
1379
1380 /* The inode's security attributes must be initialized before first use. */
1381 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1382 {
1383 struct superblock_security_struct *sbsec = NULL;
1384 struct inode_security_struct *isec = inode->i_security;
1385 u32 task_sid, sid = 0;
1386 u16 sclass;
1387 struct dentry *dentry;
1388 #define INITCONTEXTLEN 255
1389 char *context = NULL;
1390 unsigned len = 0;
1391 int rc = 0;
1392
1393 if (isec->initialized == LABEL_INITIALIZED)
1394 return 0;
1395
1396 spin_lock(&isec->lock);
1397 if (isec->initialized == LABEL_INITIALIZED)
1398 goto out_unlock;
1399
1400 if (isec->sclass == SECCLASS_FILE)
1401 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1402
1403 sbsec = inode->i_sb->s_security;
1404 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1405 /* Defer initialization until selinux_complete_init,
1406 after the initial policy is loaded and the security
1407 server is ready to handle calls. */
1408 spin_lock(&sbsec->isec_lock);
1409 if (list_empty(&isec->list))
1410 list_add(&isec->list, &sbsec->isec_head);
1411 spin_unlock(&sbsec->isec_lock);
1412 goto out_unlock;
1413 }
1414
1415 sclass = isec->sclass;
1416 task_sid = isec->task_sid;
1417 sid = isec->sid;
1418 isec->initialized = LABEL_PENDING;
1419 spin_unlock(&isec->lock);
1420
1421 switch (sbsec->behavior) {
1422 case SECURITY_FS_USE_NATIVE:
1423 break;
1424 case SECURITY_FS_USE_XATTR:
1425 if (!(inode->i_opflags & IOP_XATTR)) {
1426 sid = sbsec->def_sid;
1427 break;
1428 }
1429 /* Need a dentry, since the xattr API requires one.
1430 Life would be simpler if we could just pass the inode. */
1431 if (opt_dentry) {
1432 /* Called from d_instantiate or d_splice_alias. */
1433 dentry = dget(opt_dentry);
1434 } else {
1435 /* Called from selinux_complete_init, try to find a dentry. */
1436 dentry = d_find_alias(inode);
1437 }
1438 if (!dentry) {
1439 /*
1440 * this is can be hit on boot when a file is accessed
1441 * before the policy is loaded. When we load policy we
1442 * may find inodes that have no dentry on the
1443 * sbsec->isec_head list. No reason to complain as these
1444 * will get fixed up the next time we go through
1445 * inode_doinit with a dentry, before these inodes could
1446 * be used again by userspace.
1447 */
1448 goto out;
1449 }
1450
1451 len = INITCONTEXTLEN;
1452 context = kmalloc(len+1, GFP_NOFS);
1453 if (!context) {
1454 rc = -ENOMEM;
1455 dput(dentry);
1456 goto out;
1457 }
1458 context[len] = '\0';
1459 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1460 if (rc == -ERANGE) {
1461 kfree(context);
1462
1463 /* Need a larger buffer. Query for the right size. */
1464 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1465 if (rc < 0) {
1466 dput(dentry);
1467 goto out;
1468 }
1469 len = rc;
1470 context = kmalloc(len+1, GFP_NOFS);
1471 if (!context) {
1472 rc = -ENOMEM;
1473 dput(dentry);
1474 goto out;
1475 }
1476 context[len] = '\0';
1477 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1478 }
1479 dput(dentry);
1480 if (rc < 0) {
1481 if (rc != -ENODATA) {
1482 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1483 "%d for dev=%s ino=%ld\n", __func__,
1484 -rc, inode->i_sb->s_id, inode->i_ino);
1485 kfree(context);
1486 goto out;
1487 }
1488 /* Map ENODATA to the default file SID */
1489 sid = sbsec->def_sid;
1490 rc = 0;
1491 } else {
1492 rc = security_context_to_sid_default(context, rc, &sid,
1493 sbsec->def_sid,
1494 GFP_NOFS);
1495 if (rc) {
1496 char *dev = inode->i_sb->s_id;
1497 unsigned long ino = inode->i_ino;
1498
1499 if (rc == -EINVAL) {
1500 if (printk_ratelimit())
1501 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1502 "context=%s. This indicates you may need to relabel the inode or the "
1503 "filesystem in question.\n", ino, dev, context);
1504 } else {
1505 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1506 "returned %d for dev=%s ino=%ld\n",
1507 __func__, context, -rc, dev, ino);
1508 }
1509 kfree(context);
1510 /* Leave with the unlabeled SID */
1511 rc = 0;
1512 break;
1513 }
1514 }
1515 kfree(context);
1516 break;
1517 case SECURITY_FS_USE_TASK:
1518 sid = task_sid;
1519 break;
1520 case SECURITY_FS_USE_TRANS:
1521 /* Default to the fs SID. */
1522 sid = sbsec->sid;
1523
1524 /* Try to obtain a transition SID. */
1525 rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid);
1526 if (rc)
1527 goto out;
1528 break;
1529 case SECURITY_FS_USE_MNTPOINT:
1530 sid = sbsec->mntpoint_sid;
1531 break;
1532 default:
1533 /* Default to the fs superblock SID. */
1534 sid = sbsec->sid;
1535
1536 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1537 /* We must have a dentry to determine the label on
1538 * procfs inodes */
1539 if (opt_dentry)
1540 /* Called from d_instantiate or
1541 * d_splice_alias. */
1542 dentry = dget(opt_dentry);
1543 else
1544 /* Called from selinux_complete_init, try to
1545 * find a dentry. */
1546 dentry = d_find_alias(inode);
1547 /*
1548 * This can be hit on boot when a file is accessed
1549 * before the policy is loaded. When we load policy we
1550 * may find inodes that have no dentry on the
1551 * sbsec->isec_head list. No reason to complain as
1552 * these will get fixed up the next time we go through
1553 * inode_doinit() with a dentry, before these inodes
1554 * could be used again by userspace.
1555 */
1556 if (!dentry)
1557 goto out;
1558 rc = selinux_genfs_get_sid(dentry, sclass,
1559 sbsec->flags, &sid);
1560 dput(dentry);
1561 if (rc)
1562 goto out;
1563 }
1564 break;
1565 }
1566
1567 out:
1568 spin_lock(&isec->lock);
1569 if (isec->initialized == LABEL_PENDING) {
1570 if (!sid || rc) {
1571 isec->initialized = LABEL_INVALID;
1572 goto out_unlock;
1573 }
1574
1575 isec->initialized = LABEL_INITIALIZED;
1576 isec->sid = sid;
1577 }
1578
1579 out_unlock:
1580 spin_unlock(&isec->lock);
1581 return rc;
1582 }
1583
1584 /* Convert a Linux signal to an access vector. */
1585 static inline u32 signal_to_av(int sig)
1586 {
1587 u32 perm = 0;
1588
1589 switch (sig) {
1590 case SIGCHLD:
1591 /* Commonly granted from child to parent. */
1592 perm = PROCESS__SIGCHLD;
1593 break;
1594 case SIGKILL:
1595 /* Cannot be caught or ignored */
1596 perm = PROCESS__SIGKILL;
1597 break;
1598 case SIGSTOP:
1599 /* Cannot be caught or ignored */
1600 perm = PROCESS__SIGSTOP;
1601 break;
1602 default:
1603 /* All other signals. */
1604 perm = PROCESS__SIGNAL;
1605 break;
1606 }
1607
1608 return perm;
1609 }
1610
1611 /*
1612 * Check permission between a pair of credentials
1613 * fork check, ptrace check, etc.
1614 */
1615 static int cred_has_perm(const struct cred *actor,
1616 const struct cred *target,
1617 u32 perms)
1618 {
1619 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1620
1621 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1622 }
1623
1624 /*
1625 * Check permission between a pair of tasks, e.g. signal checks,
1626 * fork check, ptrace check, etc.
1627 * tsk1 is the actor and tsk2 is the target
1628 * - this uses the default subjective creds of tsk1
1629 */
1630 static int task_has_perm(const struct task_struct *tsk1,
1631 const struct task_struct *tsk2,
1632 u32 perms)
1633 {
1634 const struct task_security_struct *__tsec1, *__tsec2;
1635 u32 sid1, sid2;
1636
1637 rcu_read_lock();
1638 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1639 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1640 rcu_read_unlock();
1641 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1642 }
1643
1644 /*
1645 * Check permission between current and another task, e.g. signal checks,
1646 * fork check, ptrace check, etc.
1647 * current is the actor and tsk2 is the target
1648 * - this uses current's subjective creds
1649 */
1650 static int current_has_perm(const struct task_struct *tsk,
1651 u32 perms)
1652 {
1653 u32 sid, tsid;
1654
1655 sid = current_sid();
1656 tsid = task_sid(tsk);
1657 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1658 }
1659
1660 #if CAP_LAST_CAP > 63
1661 #error Fix SELinux to handle capabilities > 63.
1662 #endif
1663
1664 /* Check whether a task is allowed to use a capability. */
1665 static int cred_has_capability(const struct cred *cred,
1666 int cap, int audit, bool initns)
1667 {
1668 struct common_audit_data ad;
1669 struct av_decision avd;
1670 u16 sclass;
1671 u32 sid = cred_sid(cred);
1672 u32 av = CAP_TO_MASK(cap);
1673 int rc;
1674
1675 ad.type = LSM_AUDIT_DATA_CAP;
1676 ad.u.cap = cap;
1677
1678 switch (CAP_TO_INDEX(cap)) {
1679 case 0:
1680 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1681 break;
1682 case 1:
1683 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1684 break;
1685 default:
1686 printk(KERN_ERR
1687 "SELinux: out of range capability %d\n", cap);
1688 BUG();
1689 return -EINVAL;
1690 }
1691
1692 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1693 if (audit == SECURITY_CAP_AUDIT) {
1694 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1695 if (rc2)
1696 return rc2;
1697 }
1698 return rc;
1699 }
1700
1701 /* Check whether a task is allowed to use a system operation. */
1702 static int task_has_system(struct task_struct *tsk,
1703 u32 perms)
1704 {
1705 u32 sid = task_sid(tsk);
1706
1707 return avc_has_perm(sid, SECINITSID_KERNEL,
1708 SECCLASS_SYSTEM, perms, NULL);
1709 }
1710
1711 /* Check whether a task has a particular permission to an inode.
1712 The 'adp' parameter is optional and allows other audit
1713 data to be passed (e.g. the dentry). */
1714 static int inode_has_perm(const struct cred *cred,
1715 struct inode *inode,
1716 u32 perms,
1717 struct common_audit_data *adp)
1718 {
1719 struct inode_security_struct *isec;
1720 u32 sid;
1721
1722 validate_creds(cred);
1723
1724 if (unlikely(IS_PRIVATE(inode)))
1725 return 0;
1726
1727 sid = cred_sid(cred);
1728 isec = inode->i_security;
1729
1730 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1731 }
1732
1733 /* Same as inode_has_perm, but pass explicit audit data containing
1734 the dentry to help the auditing code to more easily generate the
1735 pathname if needed. */
1736 static inline int dentry_has_perm(const struct cred *cred,
1737 struct dentry *dentry,
1738 u32 av)
1739 {
1740 struct inode *inode = d_backing_inode(dentry);
1741 struct common_audit_data ad;
1742
1743 ad.type = LSM_AUDIT_DATA_DENTRY;
1744 ad.u.dentry = dentry;
1745 __inode_security_revalidate(inode, dentry, true);
1746 return inode_has_perm(cred, inode, av, &ad);
1747 }
1748
1749 /* Same as inode_has_perm, but pass explicit audit data containing
1750 the path to help the auditing code to more easily generate the
1751 pathname if needed. */
1752 static inline int path_has_perm(const struct cred *cred,
1753 const struct path *path,
1754 u32 av)
1755 {
1756 struct inode *inode = d_backing_inode(path->dentry);
1757 struct common_audit_data ad;
1758
1759 ad.type = LSM_AUDIT_DATA_PATH;
1760 ad.u.path = *path;
1761 __inode_security_revalidate(inode, path->dentry, true);
1762 return inode_has_perm(cred, inode, av, &ad);
1763 }
1764
1765 /* Same as path_has_perm, but uses the inode from the file struct. */
1766 static inline int file_path_has_perm(const struct cred *cred,
1767 struct file *file,
1768 u32 av)
1769 {
1770 struct common_audit_data ad;
1771
1772 ad.type = LSM_AUDIT_DATA_FILE;
1773 ad.u.file = file;
1774 return inode_has_perm(cred, file_inode(file), av, &ad);
1775 }
1776
1777 /* Check whether a task can use an open file descriptor to
1778 access an inode in a given way. Check access to the
1779 descriptor itself, and then use dentry_has_perm to
1780 check a particular permission to the file.
1781 Access to the descriptor is implicitly granted if it
1782 has the same SID as the process. If av is zero, then
1783 access to the file is not checked, e.g. for cases
1784 where only the descriptor is affected like seek. */
1785 static int file_has_perm(const struct cred *cred,
1786 struct file *file,
1787 u32 av)
1788 {
1789 struct file_security_struct *fsec = file->f_security;
1790 struct inode *inode = file_inode(file);
1791 struct common_audit_data ad;
1792 u32 sid = cred_sid(cred);
1793 int rc;
1794
1795 ad.type = LSM_AUDIT_DATA_FILE;
1796 ad.u.file = file;
1797
1798 if (sid != fsec->sid) {
1799 rc = avc_has_perm(sid, fsec->sid,
1800 SECCLASS_FD,
1801 FD__USE,
1802 &ad);
1803 if (rc)
1804 goto out;
1805 }
1806
1807 /* av is zero if only checking access to the descriptor. */
1808 rc = 0;
1809 if (av)
1810 rc = inode_has_perm(cred, inode, av, &ad);
1811
1812 out:
1813 return rc;
1814 }
1815
1816 /*
1817 * Determine the label for an inode that might be unioned.
1818 */
1819 static int
1820 selinux_determine_inode_label(const struct task_security_struct *tsec,
1821 struct inode *dir,
1822 const struct qstr *name, u16 tclass,
1823 u32 *_new_isid)
1824 {
1825 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1826
1827 if ((sbsec->flags & SE_SBINITIALIZED) &&
1828 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1829 *_new_isid = sbsec->mntpoint_sid;
1830 } else if ((sbsec->flags & SBLABEL_MNT) &&
1831 tsec->create_sid) {
1832 *_new_isid = tsec->create_sid;
1833 } else {
1834 const struct inode_security_struct *dsec = inode_security(dir);
1835 return security_transition_sid(tsec->sid, dsec->sid, tclass,
1836 name, _new_isid);
1837 }
1838
1839 return 0;
1840 }
1841
1842 /* Check whether a task can create a file. */
1843 static int may_create(struct inode *dir,
1844 struct dentry *dentry,
1845 u16 tclass)
1846 {
1847 const struct task_security_struct *tsec = current_security();
1848 struct inode_security_struct *dsec;
1849 struct superblock_security_struct *sbsec;
1850 u32 sid, newsid;
1851 struct common_audit_data ad;
1852 int rc;
1853
1854 dsec = inode_security(dir);
1855 sbsec = dir->i_sb->s_security;
1856
1857 sid = tsec->sid;
1858
1859 ad.type = LSM_AUDIT_DATA_DENTRY;
1860 ad.u.dentry = dentry;
1861
1862 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1863 DIR__ADD_NAME | DIR__SEARCH,
1864 &ad);
1865 if (rc)
1866 return rc;
1867
1868 rc = selinux_determine_inode_label(current_security(), dir,
1869 &dentry->d_name, tclass, &newsid);
1870 if (rc)
1871 return rc;
1872
1873 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1874 if (rc)
1875 return rc;
1876
1877 return avc_has_perm(newsid, sbsec->sid,
1878 SECCLASS_FILESYSTEM,
1879 FILESYSTEM__ASSOCIATE, &ad);
1880 }
1881
1882 /* Check whether a task can create a key. */
1883 static int may_create_key(u32 ksid,
1884 struct task_struct *ctx)
1885 {
1886 u32 sid = task_sid(ctx);
1887
1888 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1889 }
1890
1891 #define MAY_LINK 0
1892 #define MAY_UNLINK 1
1893 #define MAY_RMDIR 2
1894
1895 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1896 static int may_link(struct inode *dir,
1897 struct dentry *dentry,
1898 int kind)
1899
1900 {
1901 struct inode_security_struct *dsec, *isec;
1902 struct common_audit_data ad;
1903 u32 sid = current_sid();
1904 u32 av;
1905 int rc;
1906
1907 dsec = inode_security(dir);
1908 isec = backing_inode_security(dentry);
1909
1910 ad.type = LSM_AUDIT_DATA_DENTRY;
1911 ad.u.dentry = dentry;
1912
1913 av = DIR__SEARCH;
1914 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1915 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1916 if (rc)
1917 return rc;
1918
1919 switch (kind) {
1920 case MAY_LINK:
1921 av = FILE__LINK;
1922 break;
1923 case MAY_UNLINK:
1924 av = FILE__UNLINK;
1925 break;
1926 case MAY_RMDIR:
1927 av = DIR__RMDIR;
1928 break;
1929 default:
1930 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1931 __func__, kind);
1932 return 0;
1933 }
1934
1935 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1936 return rc;
1937 }
1938
1939 static inline int may_rename(struct inode *old_dir,
1940 struct dentry *old_dentry,
1941 struct inode *new_dir,
1942 struct dentry *new_dentry)
1943 {
1944 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1945 struct common_audit_data ad;
1946 u32 sid = current_sid();
1947 u32 av;
1948 int old_is_dir, new_is_dir;
1949 int rc;
1950
1951 old_dsec = inode_security(old_dir);
1952 old_isec = backing_inode_security(old_dentry);
1953 old_is_dir = d_is_dir(old_dentry);
1954 new_dsec = inode_security(new_dir);
1955
1956 ad.type = LSM_AUDIT_DATA_DENTRY;
1957
1958 ad.u.dentry = old_dentry;
1959 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1960 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1961 if (rc)
1962 return rc;
1963 rc = avc_has_perm(sid, old_isec->sid,
1964 old_isec->sclass, FILE__RENAME, &ad);
1965 if (rc)
1966 return rc;
1967 if (old_is_dir && new_dir != old_dir) {
1968 rc = avc_has_perm(sid, old_isec->sid,
1969 old_isec->sclass, DIR__REPARENT, &ad);
1970 if (rc)
1971 return rc;
1972 }
1973
1974 ad.u.dentry = new_dentry;
1975 av = DIR__ADD_NAME | DIR__SEARCH;
1976 if (d_is_positive(new_dentry))
1977 av |= DIR__REMOVE_NAME;
1978 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1979 if (rc)
1980 return rc;
1981 if (d_is_positive(new_dentry)) {
1982 new_isec = backing_inode_security(new_dentry);
1983 new_is_dir = d_is_dir(new_dentry);
1984 rc = avc_has_perm(sid, new_isec->sid,
1985 new_isec->sclass,
1986 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1987 if (rc)
1988 return rc;
1989 }
1990
1991 return 0;
1992 }
1993
1994 /* Check whether a task can perform a filesystem operation. */
1995 static int superblock_has_perm(const struct cred *cred,
1996 struct super_block *sb,
1997 u32 perms,
1998 struct common_audit_data *ad)
1999 {
2000 struct superblock_security_struct *sbsec;
2001 u32 sid = cred_sid(cred);
2002
2003 sbsec = sb->s_security;
2004 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2005 }
2006
2007 /* Convert a Linux mode and permission mask to an access vector. */
2008 static inline u32 file_mask_to_av(int mode, int mask)
2009 {
2010 u32 av = 0;
2011
2012 if (!S_ISDIR(mode)) {
2013 if (mask & MAY_EXEC)
2014 av |= FILE__EXECUTE;
2015 if (mask & MAY_READ)
2016 av |= FILE__READ;
2017
2018 if (mask & MAY_APPEND)
2019 av |= FILE__APPEND;
2020 else if (mask & MAY_WRITE)
2021 av |= FILE__WRITE;
2022
2023 } else {
2024 if (mask & MAY_EXEC)
2025 av |= DIR__SEARCH;
2026 if (mask & MAY_WRITE)
2027 av |= DIR__WRITE;
2028 if (mask & MAY_READ)
2029 av |= DIR__READ;
2030 }
2031
2032 return av;
2033 }
2034
2035 /* Convert a Linux file to an access vector. */
2036 static inline u32 file_to_av(struct file *file)
2037 {
2038 u32 av = 0;
2039
2040 if (file->f_mode & FMODE_READ)
2041 av |= FILE__READ;
2042 if (file->f_mode & FMODE_WRITE) {
2043 if (file->f_flags & O_APPEND)
2044 av |= FILE__APPEND;
2045 else
2046 av |= FILE__WRITE;
2047 }
2048 if (!av) {
2049 /*
2050 * Special file opened with flags 3 for ioctl-only use.
2051 */
2052 av = FILE__IOCTL;
2053 }
2054
2055 return av;
2056 }
2057
2058 /*
2059 * Convert a file to an access vector and include the correct open
2060 * open permission.
2061 */
2062 static inline u32 open_file_to_av(struct file *file)
2063 {
2064 u32 av = file_to_av(file);
2065
2066 if (selinux_policycap_openperm)
2067 av |= FILE__OPEN;
2068
2069 return av;
2070 }
2071
2072 /* Hook functions begin here. */
2073
2074 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2075 {
2076 u32 mysid = current_sid();
2077 u32 mgrsid = task_sid(mgr);
2078
2079 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2080 BINDER__SET_CONTEXT_MGR, NULL);
2081 }
2082
2083 static int selinux_binder_transaction(struct task_struct *from,
2084 struct task_struct *to)
2085 {
2086 u32 mysid = current_sid();
2087 u32 fromsid = task_sid(from);
2088 u32 tosid = task_sid(to);
2089 int rc;
2090
2091 if (mysid != fromsid) {
2092 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2093 BINDER__IMPERSONATE, NULL);
2094 if (rc)
2095 return rc;
2096 }
2097
2098 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2099 NULL);
2100 }
2101
2102 static int selinux_binder_transfer_binder(struct task_struct *from,
2103 struct task_struct *to)
2104 {
2105 u32 fromsid = task_sid(from);
2106 u32 tosid = task_sid(to);
2107
2108 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2109 NULL);
2110 }
2111
2112 static int selinux_binder_transfer_file(struct task_struct *from,
2113 struct task_struct *to,
2114 struct file *file)
2115 {
2116 u32 sid = task_sid(to);
2117 struct file_security_struct *fsec = file->f_security;
2118 struct dentry *dentry = file->f_path.dentry;
2119 struct inode_security_struct *isec;
2120 struct common_audit_data ad;
2121 int rc;
2122
2123 ad.type = LSM_AUDIT_DATA_PATH;
2124 ad.u.path = file->f_path;
2125
2126 if (sid != fsec->sid) {
2127 rc = avc_has_perm(sid, fsec->sid,
2128 SECCLASS_FD,
2129 FD__USE,
2130 &ad);
2131 if (rc)
2132 return rc;
2133 }
2134
2135 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2136 return 0;
2137
2138 isec = backing_inode_security(dentry);
2139 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2140 &ad);
2141 }
2142
2143 static int selinux_ptrace_access_check(struct task_struct *child,
2144 unsigned int mode)
2145 {
2146 if (mode & PTRACE_MODE_READ) {
2147 u32 sid = current_sid();
2148 u32 csid = task_sid(child);
2149 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150 }
2151
2152 return current_has_perm(child, PROCESS__PTRACE);
2153 }
2154
2155 static int selinux_ptrace_traceme(struct task_struct *parent)
2156 {
2157 return task_has_perm(parent, current, PROCESS__PTRACE);
2158 }
2159
2160 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2161 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2162 {
2163 return current_has_perm(target, PROCESS__GETCAP);
2164 }
2165
2166 static int selinux_capset(struct cred *new, const struct cred *old,
2167 const kernel_cap_t *effective,
2168 const kernel_cap_t *inheritable,
2169 const kernel_cap_t *permitted)
2170 {
2171 return cred_has_perm(old, new, PROCESS__SETCAP);
2172 }
2173
2174 /*
2175 * (This comment used to live with the selinux_task_setuid hook,
2176 * which was removed).
2177 *
2178 * Since setuid only affects the current process, and since the SELinux
2179 * controls are not based on the Linux identity attributes, SELinux does not
2180 * need to control this operation. However, SELinux does control the use of
2181 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2182 */
2183
2184 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2185 int cap, int audit)
2186 {
2187 return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2188 }
2189
2190 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2191 {
2192 const struct cred *cred = current_cred();
2193 int rc = 0;
2194
2195 if (!sb)
2196 return 0;
2197
2198 switch (cmds) {
2199 case Q_SYNC:
2200 case Q_QUOTAON:
2201 case Q_QUOTAOFF:
2202 case Q_SETINFO:
2203 case Q_SETQUOTA:
2204 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2205 break;
2206 case Q_GETFMT:
2207 case Q_GETINFO:
2208 case Q_GETQUOTA:
2209 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2210 break;
2211 default:
2212 rc = 0; /* let the kernel handle invalid cmds */
2213 break;
2214 }
2215 return rc;
2216 }
2217
2218 static int selinux_quota_on(struct dentry *dentry)
2219 {
2220 const struct cred *cred = current_cred();
2221
2222 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2223 }
2224
2225 static int selinux_syslog(int type)
2226 {
2227 int rc;
2228
2229 switch (type) {
2230 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2231 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2232 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2233 break;
2234 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2235 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2236 /* Set level of messages printed to console */
2237 case SYSLOG_ACTION_CONSOLE_LEVEL:
2238 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2239 break;
2240 case SYSLOG_ACTION_CLOSE: /* Close log */
2241 case SYSLOG_ACTION_OPEN: /* Open log */
2242 case SYSLOG_ACTION_READ: /* Read from log */
2243 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2244 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2245 default:
2246 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2247 break;
2248 }
2249 return rc;
2250 }
2251
2252 /*
2253 * Check that a process has enough memory to allocate a new virtual
2254 * mapping. 0 means there is enough memory for the allocation to
2255 * succeed and -ENOMEM implies there is not.
2256 *
2257 * Do not audit the selinux permission check, as this is applied to all
2258 * processes that allocate mappings.
2259 */
2260 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2261 {
2262 int rc, cap_sys_admin = 0;
2263
2264 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2265 SECURITY_CAP_NOAUDIT, true);
2266 if (rc == 0)
2267 cap_sys_admin = 1;
2268
2269 return cap_sys_admin;
2270 }
2271
2272 /* binprm security operations */
2273
2274 static u32 ptrace_parent_sid(struct task_struct *task)
2275 {
2276 u32 sid = 0;
2277 struct task_struct *tracer;
2278
2279 rcu_read_lock();
2280 tracer = ptrace_parent(task);
2281 if (tracer)
2282 sid = task_sid(tracer);
2283 rcu_read_unlock();
2284
2285 return sid;
2286 }
2287
2288 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2289 const struct task_security_struct *old_tsec,
2290 const struct task_security_struct *new_tsec)
2291 {
2292 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2293 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2294 int rc;
2295
2296 if (!nnp && !nosuid)
2297 return 0; /* neither NNP nor nosuid */
2298
2299 if (new_tsec->sid == old_tsec->sid)
2300 return 0; /* No change in credentials */
2301
2302 /*
2303 * The only transitions we permit under NNP or nosuid
2304 * are transitions to bounded SIDs, i.e. SIDs that are
2305 * guaranteed to only be allowed a subset of the permissions
2306 * of the current SID.
2307 */
2308 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2309 if (rc) {
2310 /*
2311 * On failure, preserve the errno values for NNP vs nosuid.
2312 * NNP: Operation not permitted for caller.
2313 * nosuid: Permission denied to file.
2314 */
2315 if (nnp)
2316 return -EPERM;
2317 else
2318 return -EACCES;
2319 }
2320 return 0;
2321 }
2322
2323 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2324 {
2325 const struct task_security_struct *old_tsec;
2326 struct task_security_struct *new_tsec;
2327 struct inode_security_struct *isec;
2328 struct common_audit_data ad;
2329 struct inode *inode = file_inode(bprm->file);
2330 int rc;
2331
2332 /* SELinux context only depends on initial program or script and not
2333 * the script interpreter */
2334 if (bprm->cred_prepared)
2335 return 0;
2336
2337 old_tsec = current_security();
2338 new_tsec = bprm->cred->security;
2339 isec = inode_security(inode);
2340
2341 /* Default to the current task SID. */
2342 new_tsec->sid = old_tsec->sid;
2343 new_tsec->osid = old_tsec->sid;
2344
2345 /* Reset fs, key, and sock SIDs on execve. */
2346 new_tsec->create_sid = 0;
2347 new_tsec->keycreate_sid = 0;
2348 new_tsec->sockcreate_sid = 0;
2349
2350 if (old_tsec->exec_sid) {
2351 new_tsec->sid = old_tsec->exec_sid;
2352 /* Reset exec SID on execve. */
2353 new_tsec->exec_sid = 0;
2354
2355 /* Fail on NNP or nosuid if not an allowed transition. */
2356 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2357 if (rc)
2358 return rc;
2359 } else {
2360 /* Check for a default transition on this program. */
2361 rc = security_transition_sid(old_tsec->sid, isec->sid,
2362 SECCLASS_PROCESS, NULL,
2363 &new_tsec->sid);
2364 if (rc)
2365 return rc;
2366
2367 /*
2368 * Fallback to old SID on NNP or nosuid if not an allowed
2369 * transition.
2370 */
2371 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2372 if (rc)
2373 new_tsec->sid = old_tsec->sid;
2374 }
2375
2376 ad.type = LSM_AUDIT_DATA_FILE;
2377 ad.u.file = bprm->file;
2378
2379 if (new_tsec->sid == old_tsec->sid) {
2380 rc = avc_has_perm(old_tsec->sid, isec->sid,
2381 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2382 if (rc)
2383 return rc;
2384 } else {
2385 /* Check permissions for the transition. */
2386 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2387 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2388 if (rc)
2389 return rc;
2390
2391 rc = avc_has_perm(new_tsec->sid, isec->sid,
2392 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2393 if (rc)
2394 return rc;
2395
2396 /* Check for shared state */
2397 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2398 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2399 SECCLASS_PROCESS, PROCESS__SHARE,
2400 NULL);
2401 if (rc)
2402 return -EPERM;
2403 }
2404
2405 /* Make sure that anyone attempting to ptrace over a task that
2406 * changes its SID has the appropriate permit */
2407 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2408 u32 ptsid = ptrace_parent_sid(current);
2409 if (ptsid != 0) {
2410 rc = avc_has_perm(ptsid, new_tsec->sid,
2411 SECCLASS_PROCESS,
2412 PROCESS__PTRACE, NULL);
2413 if (rc)
2414 return -EPERM;
2415 }
2416 }
2417
2418 /* Clear any possibly unsafe personality bits on exec: */
2419 bprm->per_clear |= PER_CLEAR_ON_SETID;
2420 }
2421
2422 return 0;
2423 }
2424
2425 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2426 {
2427 const struct task_security_struct *tsec = current_security();
2428 u32 sid, osid;
2429 int atsecure = 0;
2430
2431 sid = tsec->sid;
2432 osid = tsec->osid;
2433
2434 if (osid != sid) {
2435 /* Enable secure mode for SIDs transitions unless
2436 the noatsecure permission is granted between
2437 the two SIDs, i.e. ahp returns 0. */
2438 atsecure = avc_has_perm(osid, sid,
2439 SECCLASS_PROCESS,
2440 PROCESS__NOATSECURE, NULL);
2441 }
2442
2443 return !!atsecure;
2444 }
2445
2446 static int match_file(const void *p, struct file *file, unsigned fd)
2447 {
2448 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2449 }
2450
2451 /* Derived from fs/exec.c:flush_old_files. */
2452 static inline void flush_unauthorized_files(const struct cred *cred,
2453 struct files_struct *files)
2454 {
2455 struct file *file, *devnull = NULL;
2456 struct tty_struct *tty;
2457 int drop_tty = 0;
2458 unsigned n;
2459
2460 tty = get_current_tty();
2461 if (tty) {
2462 spin_lock(&tty->files_lock);
2463 if (!list_empty(&tty->tty_files)) {
2464 struct tty_file_private *file_priv;
2465
2466 /* Revalidate access to controlling tty.
2467 Use file_path_has_perm on the tty path directly
2468 rather than using file_has_perm, as this particular
2469 open file may belong to another process and we are
2470 only interested in the inode-based check here. */
2471 file_priv = list_first_entry(&tty->tty_files,
2472 struct tty_file_private, list);
2473 file = file_priv->file;
2474 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2475 drop_tty = 1;
2476 }
2477 spin_unlock(&tty->files_lock);
2478 tty_kref_put(tty);
2479 }
2480 /* Reset controlling tty. */
2481 if (drop_tty)
2482 no_tty();
2483
2484 /* Revalidate access to inherited open files. */
2485 n = iterate_fd(files, 0, match_file, cred);
2486 if (!n) /* none found? */
2487 return;
2488
2489 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2490 if (IS_ERR(devnull))
2491 devnull = NULL;
2492 /* replace all the matching ones with this */
2493 do {
2494 replace_fd(n - 1, devnull, 0);
2495 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2496 if (devnull)
2497 fput(devnull);
2498 }
2499
2500 /*
2501 * Prepare a process for imminent new credential changes due to exec
2502 */
2503 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2504 {
2505 struct task_security_struct *new_tsec;
2506 struct rlimit *rlim, *initrlim;
2507 int rc, i;
2508
2509 new_tsec = bprm->cred->security;
2510 if (new_tsec->sid == new_tsec->osid)
2511 return;
2512
2513 /* Close files for which the new task SID is not authorized. */
2514 flush_unauthorized_files(bprm->cred, current->files);
2515
2516 /* Always clear parent death signal on SID transitions. */
2517 current->pdeath_signal = 0;
2518
2519 /* Check whether the new SID can inherit resource limits from the old
2520 * SID. If not, reset all soft limits to the lower of the current
2521 * task's hard limit and the init task's soft limit.
2522 *
2523 * Note that the setting of hard limits (even to lower them) can be
2524 * controlled by the setrlimit check. The inclusion of the init task's
2525 * soft limit into the computation is to avoid resetting soft limits
2526 * higher than the default soft limit for cases where the default is
2527 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2528 */
2529 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2530 PROCESS__RLIMITINH, NULL);
2531 if (rc) {
2532 /* protect against do_prlimit() */
2533 task_lock(current);
2534 for (i = 0; i < RLIM_NLIMITS; i++) {
2535 rlim = current->signal->rlim + i;
2536 initrlim = init_task.signal->rlim + i;
2537 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2538 }
2539 task_unlock(current);
2540 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2541 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2542 }
2543 }
2544
2545 /*
2546 * Clean up the process immediately after the installation of new credentials
2547 * due to exec
2548 */
2549 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2550 {
2551 const struct task_security_struct *tsec = current_security();
2552 struct itimerval itimer;
2553 u32 osid, sid;
2554 int rc, i;
2555
2556 osid = tsec->osid;
2557 sid = tsec->sid;
2558
2559 if (sid == osid)
2560 return;
2561
2562 /* Check whether the new SID can inherit signal state from the old SID.
2563 * If not, clear itimers to avoid subsequent signal generation and
2564 * flush and unblock signals.
2565 *
2566 * This must occur _after_ the task SID has been updated so that any
2567 * kill done after the flush will be checked against the new SID.
2568 */
2569 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2570 if (rc) {
2571 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2572 memset(&itimer, 0, sizeof itimer);
2573 for (i = 0; i < 3; i++)
2574 do_setitimer(i, &itimer, NULL);
2575 }
2576 spin_lock_irq(&current->sighand->siglock);
2577 if (!fatal_signal_pending(current)) {
2578 flush_sigqueue(&current->pending);
2579 flush_sigqueue(&current->signal->shared_pending);
2580 flush_signal_handlers(current, 1);
2581 sigemptyset(&current->blocked);
2582 recalc_sigpending();
2583 }
2584 spin_unlock_irq(&current->sighand->siglock);
2585 }
2586
2587 /* Wake up the parent if it is waiting so that it can recheck
2588 * wait permission to the new task SID. */
2589 read_lock(&tasklist_lock);
2590 __wake_up_parent(current, current->real_parent);
2591 read_unlock(&tasklist_lock);
2592 }
2593
2594 /* superblock security operations */
2595
2596 static int selinux_sb_alloc_security(struct super_block *sb)
2597 {
2598 return superblock_alloc_security(sb);
2599 }
2600
2601 static void selinux_sb_free_security(struct super_block *sb)
2602 {
2603 superblock_free_security(sb);
2604 }
2605
2606 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2607 {
2608 if (plen > olen)
2609 return 0;
2610
2611 return !memcmp(prefix, option, plen);
2612 }
2613
2614 static inline int selinux_option(char *option, int len)
2615 {
2616 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2617 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2618 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2619 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2620 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2621 }
2622
2623 static inline void take_option(char **to, char *from, int *first, int len)
2624 {
2625 if (!*first) {
2626 **to = ',';
2627 *to += 1;
2628 } else
2629 *first = 0;
2630 memcpy(*to, from, len);
2631 *to += len;
2632 }
2633
2634 static inline void take_selinux_option(char **to, char *from, int *first,
2635 int len)
2636 {
2637 int current_size = 0;
2638
2639 if (!*first) {
2640 **to = '|';
2641 *to += 1;
2642 } else
2643 *first = 0;
2644
2645 while (current_size < len) {
2646 if (*from != '"') {
2647 **to = *from;
2648 *to += 1;
2649 }
2650 from += 1;
2651 current_size += 1;
2652 }
2653 }
2654
2655 static int selinux_sb_copy_data(char *orig, char *copy)
2656 {
2657 int fnosec, fsec, rc = 0;
2658 char *in_save, *in_curr, *in_end;
2659 char *sec_curr, *nosec_save, *nosec;
2660 int open_quote = 0;
2661
2662 in_curr = orig;
2663 sec_curr = copy;
2664
2665 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2666 if (!nosec) {
2667 rc = -ENOMEM;
2668 goto out;
2669 }
2670
2671 nosec_save = nosec;
2672 fnosec = fsec = 1;
2673 in_save = in_end = orig;
2674
2675 do {
2676 if (*in_end == '"')
2677 open_quote = !open_quote;
2678 if ((*in_end == ',' && open_quote == 0) ||
2679 *in_end == '\0') {
2680 int len = in_end - in_curr;
2681
2682 if (selinux_option(in_curr, len))
2683 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2684 else
2685 take_option(&nosec, in_curr, &fnosec, len);
2686
2687 in_curr = in_end + 1;
2688 }
2689 } while (*in_end++);
2690
2691 strcpy(in_save, nosec_save);
2692 free_page((unsigned long)nosec_save);
2693 out:
2694 return rc;
2695 }
2696
2697 static int selinux_sb_remount(struct super_block *sb, void *data)
2698 {
2699 int rc, i, *flags;
2700 struct security_mnt_opts opts;
2701 char *secdata, **mount_options;
2702 struct superblock_security_struct *sbsec = sb->s_security;
2703
2704 if (!(sbsec->flags & SE_SBINITIALIZED))
2705 return 0;
2706
2707 if (!data)
2708 return 0;
2709
2710 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2711 return 0;
2712
2713 security_init_mnt_opts(&opts);
2714 secdata = alloc_secdata();
2715 if (!secdata)
2716 return -ENOMEM;
2717 rc = selinux_sb_copy_data(data, secdata);
2718 if (rc)
2719 goto out_free_secdata;
2720
2721 rc = selinux_parse_opts_str(secdata, &opts);
2722 if (rc)
2723 goto out_free_secdata;
2724
2725 mount_options = opts.mnt_opts;
2726 flags = opts.mnt_opts_flags;
2727
2728 for (i = 0; i < opts.num_mnt_opts; i++) {
2729 u32 sid;
2730
2731 if (flags[i] == SBLABEL_MNT)
2732 continue;
2733 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2734 if (rc) {
2735 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2736 "(%s) failed for (dev %s, type %s) errno=%d\n",
2737 mount_options[i], sb->s_id, sb->s_type->name, rc);
2738 goto out_free_opts;
2739 }
2740 rc = -EINVAL;
2741 switch (flags[i]) {
2742 case FSCONTEXT_MNT:
2743 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2744 goto out_bad_option;
2745 break;
2746 case CONTEXT_MNT:
2747 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2748 goto out_bad_option;
2749 break;
2750 case ROOTCONTEXT_MNT: {
2751 struct inode_security_struct *root_isec;
2752 root_isec = backing_inode_security(sb->s_root);
2753
2754 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2755 goto out_bad_option;
2756 break;
2757 }
2758 case DEFCONTEXT_MNT:
2759 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2760 goto out_bad_option;
2761 break;
2762 default:
2763 goto out_free_opts;
2764 }
2765 }
2766
2767 rc = 0;
2768 out_free_opts:
2769 security_free_mnt_opts(&opts);
2770 out_free_secdata:
2771 free_secdata(secdata);
2772 return rc;
2773 out_bad_option:
2774 printk(KERN_WARNING "SELinux: unable to change security options "
2775 "during remount (dev %s, type=%s)\n", sb->s_id,
2776 sb->s_type->name);
2777 goto out_free_opts;
2778 }
2779
2780 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2781 {
2782 const struct cred *cred = current_cred();
2783 struct common_audit_data ad;
2784 int rc;
2785
2786 rc = superblock_doinit(sb, data);
2787 if (rc)
2788 return rc;
2789
2790 /* Allow all mounts performed by the kernel */
2791 if (flags & MS_KERNMOUNT)
2792 return 0;
2793
2794 ad.type = LSM_AUDIT_DATA_DENTRY;
2795 ad.u.dentry = sb->s_root;
2796 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2797 }
2798
2799 static int selinux_sb_statfs(struct dentry *dentry)
2800 {
2801 const struct cred *cred = current_cred();
2802 struct common_audit_data ad;
2803
2804 ad.type = LSM_AUDIT_DATA_DENTRY;
2805 ad.u.dentry = dentry->d_sb->s_root;
2806 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2807 }
2808
2809 static int selinux_mount(const char *dev_name,
2810 const struct path *path,
2811 const char *type,
2812 unsigned long flags,
2813 void *data)
2814 {
2815 const struct cred *cred = current_cred();
2816
2817 if (flags & MS_REMOUNT)
2818 return superblock_has_perm(cred, path->dentry->d_sb,
2819 FILESYSTEM__REMOUNT, NULL);
2820 else
2821 return path_has_perm(cred, path, FILE__MOUNTON);
2822 }
2823
2824 static int selinux_umount(struct vfsmount *mnt, int flags)
2825 {
2826 const struct cred *cred = current_cred();
2827
2828 return superblock_has_perm(cred, mnt->mnt_sb,
2829 FILESYSTEM__UNMOUNT, NULL);
2830 }
2831
2832 /* inode security operations */
2833
2834 static int selinux_inode_alloc_security(struct inode *inode)
2835 {
2836 return inode_alloc_security(inode);
2837 }
2838
2839 static void selinux_inode_free_security(struct inode *inode)
2840 {
2841 inode_free_security(inode);
2842 }
2843
2844 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2845 const struct qstr *name, void **ctx,
2846 u32 *ctxlen)
2847 {
2848 u32 newsid;
2849 int rc;
2850
2851 rc = selinux_determine_inode_label(current_security(),
2852 d_inode(dentry->d_parent), name,
2853 inode_mode_to_security_class(mode),
2854 &newsid);
2855 if (rc)
2856 return rc;
2857
2858 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2859 }
2860
2861 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2862 struct qstr *name,
2863 const struct cred *old,
2864 struct cred *new)
2865 {
2866 u32 newsid;
2867 int rc;
2868 struct task_security_struct *tsec;
2869
2870 rc = selinux_determine_inode_label(old->security,
2871 d_inode(dentry->d_parent), name,
2872 inode_mode_to_security_class(mode),
2873 &newsid);
2874 if (rc)
2875 return rc;
2876
2877 tsec = new->security;
2878 tsec->create_sid = newsid;
2879 return 0;
2880 }
2881
2882 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2883 const struct qstr *qstr,
2884 const char **name,
2885 void **value, size_t *len)
2886 {
2887 const struct task_security_struct *tsec = current_security();
2888 struct superblock_security_struct *sbsec;
2889 u32 sid, newsid, clen;
2890 int rc;
2891 char *context;
2892
2893 sbsec = dir->i_sb->s_security;
2894
2895 sid = tsec->sid;
2896 newsid = tsec->create_sid;
2897
2898 rc = selinux_determine_inode_label(current_security(),
2899 dir, qstr,
2900 inode_mode_to_security_class(inode->i_mode),
2901 &newsid);
2902 if (rc)
2903 return rc;
2904
2905 /* Possibly defer initialization to selinux_complete_init. */
2906 if (sbsec->flags & SE_SBINITIALIZED) {
2907 struct inode_security_struct *isec = inode->i_security;
2908 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2909 isec->sid = newsid;
2910 isec->initialized = LABEL_INITIALIZED;
2911 }
2912
2913 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2914 return -EOPNOTSUPP;
2915
2916 if (name)
2917 *name = XATTR_SELINUX_SUFFIX;
2918
2919 if (value && len) {
2920 rc = security_sid_to_context_force(newsid, &context, &clen);
2921 if (rc)
2922 return rc;
2923 *value = context;
2924 *len = clen;
2925 }
2926
2927 return 0;
2928 }
2929
2930 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2931 {
2932 return may_create(dir, dentry, SECCLASS_FILE);
2933 }
2934
2935 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2936 {
2937 return may_link(dir, old_dentry, MAY_LINK);
2938 }
2939
2940 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2941 {
2942 return may_link(dir, dentry, MAY_UNLINK);
2943 }
2944
2945 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2946 {
2947 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2948 }
2949
2950 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2951 {
2952 return may_create(dir, dentry, SECCLASS_DIR);
2953 }
2954
2955 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2956 {
2957 return may_link(dir, dentry, MAY_RMDIR);
2958 }
2959
2960 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2961 {
2962 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2963 }
2964
2965 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2966 struct inode *new_inode, struct dentry *new_dentry)
2967 {
2968 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2969 }
2970
2971 static int selinux_inode_readlink(struct dentry *dentry)
2972 {
2973 const struct cred *cred = current_cred();
2974
2975 return dentry_has_perm(cred, dentry, FILE__READ);
2976 }
2977
2978 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2979 bool rcu)
2980 {
2981 const struct cred *cred = current_cred();
2982 struct common_audit_data ad;
2983 struct inode_security_struct *isec;
2984 u32 sid;
2985
2986 validate_creds(cred);
2987
2988 ad.type = LSM_AUDIT_DATA_DENTRY;
2989 ad.u.dentry = dentry;
2990 sid = cred_sid(cred);
2991 isec = inode_security_rcu(inode, rcu);
2992 if (IS_ERR(isec))
2993 return PTR_ERR(isec);
2994
2995 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2996 rcu ? MAY_NOT_BLOCK : 0);
2997 }
2998
2999 static noinline int audit_inode_permission(struct inode *inode,
3000 u32 perms, u32 audited, u32 denied,
3001 int result,
3002 unsigned flags)
3003 {
3004 struct common_audit_data ad;
3005 struct inode_security_struct *isec = inode->i_security;
3006 int rc;
3007
3008 ad.type = LSM_AUDIT_DATA_INODE;
3009 ad.u.inode = inode;
3010
3011 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3012 audited, denied, result, &ad, flags);
3013 if (rc)
3014 return rc;
3015 return 0;
3016 }
3017
3018 static int selinux_inode_permission(struct inode *inode, int mask)
3019 {
3020 const struct cred *cred = current_cred();
3021 u32 perms;
3022 bool from_access;
3023 unsigned flags = mask & MAY_NOT_BLOCK;
3024 struct inode_security_struct *isec;
3025 u32 sid;
3026 struct av_decision avd;
3027 int rc, rc2;
3028 u32 audited, denied;
3029
3030 from_access = mask & MAY_ACCESS;
3031 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3032
3033 /* No permission to check. Existence test. */
3034 if (!mask)
3035 return 0;
3036
3037 validate_creds(cred);
3038
3039 if (unlikely(IS_PRIVATE(inode)))
3040 return 0;
3041
3042 perms = file_mask_to_av(inode->i_mode, mask);
3043
3044 sid = cred_sid(cred);
3045 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3046 if (IS_ERR(isec))
3047 return PTR_ERR(isec);
3048
3049 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
3050 audited = avc_audit_required(perms, &avd, rc,
3051 from_access ? FILE__AUDIT_ACCESS : 0,
3052 &denied);
3053 if (likely(!audited))
3054 return rc;
3055
3056 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3057 if (rc2)
3058 return rc2;
3059 return rc;
3060 }
3061
3062 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3063 {
3064 const struct cred *cred = current_cred();
3065 unsigned int ia_valid = iattr->ia_valid;
3066 __u32 av = FILE__WRITE;
3067
3068 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3069 if (ia_valid & ATTR_FORCE) {
3070 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3071 ATTR_FORCE);
3072 if (!ia_valid)
3073 return 0;
3074 }
3075
3076 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3077 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3078 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3079
3080 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3081 && !(ia_valid & ATTR_FILE))
3082 av |= FILE__OPEN;
3083
3084 return dentry_has_perm(cred, dentry, av);
3085 }
3086
3087 static int selinux_inode_getattr(const struct path *path)
3088 {
3089 return path_has_perm(current_cred(), path, FILE__GETATTR);
3090 }
3091
3092 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3093 {
3094 const struct cred *cred = current_cred();
3095
3096 if (!strncmp(name, XATTR_SECURITY_PREFIX,
3097 sizeof XATTR_SECURITY_PREFIX - 1)) {
3098 if (!strcmp(name, XATTR_NAME_CAPS)) {
3099 if (!capable(CAP_SETFCAP))
3100 return -EPERM;
3101 } else if (!capable(CAP_SYS_ADMIN)) {
3102 /* A different attribute in the security namespace.
3103 Restrict to administrator. */
3104 return -EPERM;
3105 }
3106 }
3107
3108 /* Not an attribute we recognize, so just check the
3109 ordinary setattr permission. */
3110 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3111 }
3112
3113 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3114 const void *value, size_t size, int flags)
3115 {
3116 struct inode *inode = d_backing_inode(dentry);
3117 struct inode_security_struct *isec;
3118 struct superblock_security_struct *sbsec;
3119 struct common_audit_data ad;
3120 u32 newsid, sid = current_sid();
3121 int rc = 0;
3122
3123 if (strcmp(name, XATTR_NAME_SELINUX))
3124 return selinux_inode_setotherxattr(dentry, name);
3125
3126 sbsec = inode->i_sb->s_security;
3127 if (!(sbsec->flags & SBLABEL_MNT))
3128 return -EOPNOTSUPP;
3129
3130 if (!inode_owner_or_capable(inode))
3131 return -EPERM;
3132
3133 ad.type = LSM_AUDIT_DATA_DENTRY;
3134 ad.u.dentry = dentry;
3135
3136 isec = backing_inode_security(dentry);
3137 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3138 FILE__RELABELFROM, &ad);
3139 if (rc)
3140 return rc;
3141
3142 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3143 if (rc == -EINVAL) {
3144 if (!capable(CAP_MAC_ADMIN)) {
3145 struct audit_buffer *ab;
3146 size_t audit_size;
3147 const char *str;
3148
3149 /* We strip a nul only if it is at the end, otherwise the
3150 * context contains a nul and we should audit that */
3151 if (value) {
3152 str = value;
3153 if (str[size - 1] == '\0')
3154 audit_size = size - 1;
3155 else
3156 audit_size = size;
3157 } else {
3158 str = "";
3159 audit_size = 0;
3160 }
3161 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3162 audit_log_format(ab, "op=setxattr invalid_context=");
3163 audit_log_n_untrustedstring(ab, value, audit_size);
3164 audit_log_end(ab);
3165
3166 return rc;
3167 }
3168 rc = security_context_to_sid_force(value, size, &newsid);
3169 }
3170 if (rc)
3171 return rc;
3172
3173 rc = avc_has_perm(sid, newsid, isec->sclass,
3174 FILE__RELABELTO, &ad);
3175 if (rc)
3176 return rc;
3177
3178 rc = security_validate_transition(isec->sid, newsid, sid,
3179 isec->sclass);
3180 if (rc)
3181 return rc;
3182
3183 return avc_has_perm(newsid,
3184 sbsec->sid,
3185 SECCLASS_FILESYSTEM,
3186 FILESYSTEM__ASSOCIATE,
3187 &ad);
3188 }
3189
3190 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3191 const void *value, size_t size,
3192 int flags)
3193 {
3194 struct inode *inode = d_backing_inode(dentry);
3195 struct inode_security_struct *isec;
3196 u32 newsid;
3197 int rc;
3198
3199 if (strcmp(name, XATTR_NAME_SELINUX)) {
3200 /* Not an attribute we recognize, so nothing to do. */
3201 return;
3202 }
3203
3204 rc = security_context_to_sid_force(value, size, &newsid);
3205 if (rc) {
3206 printk(KERN_ERR "SELinux: unable to map context to SID"
3207 "for (%s, %lu), rc=%d\n",
3208 inode->i_sb->s_id, inode->i_ino, -rc);
3209 return;
3210 }
3211
3212 isec = backing_inode_security(dentry);
3213 spin_lock(&isec->lock);
3214 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3215 isec->sid = newsid;
3216 isec->initialized = LABEL_INITIALIZED;
3217 spin_unlock(&isec->lock);
3218
3219 return;
3220 }
3221
3222 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3223 {
3224 const struct cred *cred = current_cred();
3225
3226 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3227 }
3228
3229 static int selinux_inode_listxattr(struct dentry *dentry)
3230 {
3231 const struct cred *cred = current_cred();
3232
3233 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3234 }
3235
3236 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3237 {
3238 if (strcmp(name, XATTR_NAME_SELINUX))
3239 return selinux_inode_setotherxattr(dentry, name);
3240
3241 /* No one is allowed to remove a SELinux security label.
3242 You can change the label, but all data must be labeled. */
3243 return -EACCES;
3244 }
3245
3246 /*
3247 * Copy the inode security context value to the user.
3248 *
3249 * Permission check is handled by selinux_inode_getxattr hook.
3250 */
3251 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3252 {
3253 u32 size;
3254 int error;
3255 char *context = NULL;
3256 struct inode_security_struct *isec;
3257
3258 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3259 return -EOPNOTSUPP;
3260
3261 /*
3262 * If the caller has CAP_MAC_ADMIN, then get the raw context
3263 * value even if it is not defined by current policy; otherwise,
3264 * use the in-core value under current policy.
3265 * Use the non-auditing forms of the permission checks since
3266 * getxattr may be called by unprivileged processes commonly
3267 * and lack of permission just means that we fall back to the
3268 * in-core context value, not a denial.
3269 */
3270 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3271 SECURITY_CAP_NOAUDIT);
3272 if (!error)
3273 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3274 SECURITY_CAP_NOAUDIT, true);
3275 isec = inode_security(inode);
3276 if (!error)
3277 error = security_sid_to_context_force(isec->sid, &context,
3278 &size);
3279 else
3280 error = security_sid_to_context(isec->sid, &context, &size);
3281 if (error)
3282 return error;
3283 error = size;
3284 if (alloc) {
3285 *buffer = context;
3286 goto out_nofree;
3287 }
3288 kfree(context);
3289 out_nofree:
3290 return error;
3291 }
3292
3293 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3294 const void *value, size_t size, int flags)
3295 {
3296 struct inode_security_struct *isec = inode_security_novalidate(inode);
3297 u32 newsid;
3298 int rc;
3299
3300 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3301 return -EOPNOTSUPP;
3302
3303 if (!value || !size)
3304 return -EACCES;
3305
3306 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3307 if (rc)
3308 return rc;
3309
3310 spin_lock(&isec->lock);
3311 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3312 isec->sid = newsid;
3313 isec->initialized = LABEL_INITIALIZED;
3314 spin_unlock(&isec->lock);
3315 return 0;
3316 }
3317
3318 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3319 {
3320 const int len = sizeof(XATTR_NAME_SELINUX);
3321 if (buffer && len <= buffer_size)
3322 memcpy(buffer, XATTR_NAME_SELINUX, len);
3323 return len;
3324 }
3325
3326 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3327 {
3328 struct inode_security_struct *isec = inode_security_novalidate(inode);
3329 *secid = isec->sid;
3330 }
3331
3332 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3333 {
3334 u32 sid;
3335 struct task_security_struct *tsec;
3336 struct cred *new_creds = *new;
3337
3338 if (new_creds == NULL) {
3339 new_creds = prepare_creds();
3340 if (!new_creds)
3341 return -ENOMEM;
3342 }
3343
3344 tsec = new_creds->security;
3345 /* Get label from overlay inode and set it in create_sid */
3346 selinux_inode_getsecid(d_inode(src), &sid);
3347 tsec->create_sid = sid;
3348 *new = new_creds;
3349 return 0;
3350 }
3351
3352 static int selinux_inode_copy_up_xattr(const char *name)
3353 {
3354 /* The copy_up hook above sets the initial context on an inode, but we
3355 * don't then want to overwrite it by blindly copying all the lower
3356 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3357 */
3358 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3359 return 1; /* Discard */
3360 /*
3361 * Any other attribute apart from SELINUX is not claimed, supported
3362 * by selinux.
3363 */
3364 return -EOPNOTSUPP;
3365 }
3366
3367 /* file security operations */
3368
3369 static int selinux_revalidate_file_permission(struct file *file, int mask)
3370 {
3371 const struct cred *cred = current_cred();
3372 struct inode *inode = file_inode(file);
3373
3374 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3375 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3376 mask |= MAY_APPEND;
3377
3378 return file_has_perm(cred, file,
3379 file_mask_to_av(inode->i_mode, mask));
3380 }
3381
3382 static int selinux_file_permission(struct file *file, int mask)
3383 {
3384 struct inode *inode = file_inode(file);
3385 struct file_security_struct *fsec = file->f_security;
3386 struct inode_security_struct *isec;
3387 u32 sid = current_sid();
3388
3389 if (!mask)
3390 /* No permission to check. Existence test. */
3391 return 0;
3392
3393 isec = inode_security(inode);
3394 if (sid == fsec->sid && fsec->isid == isec->sid &&
3395 fsec->pseqno == avc_policy_seqno())
3396 /* No change since file_open check. */
3397 return 0;
3398
3399 return selinux_revalidate_file_permission(file, mask);
3400 }
3401
3402 static int selinux_file_alloc_security(struct file *file)
3403 {
3404 return file_alloc_security(file);
3405 }
3406
3407 static void selinux_file_free_security(struct file *file)
3408 {
3409 file_free_security(file);
3410 }
3411
3412 /*
3413 * Check whether a task has the ioctl permission and cmd
3414 * operation to an inode.
3415 */
3416 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3417 u32 requested, u16 cmd)
3418 {
3419 struct common_audit_data ad;
3420 struct file_security_struct *fsec = file->f_security;
3421 struct inode *inode = file_inode(file);
3422 struct inode_security_struct *isec;
3423 struct lsm_ioctlop_audit ioctl;
3424 u32 ssid = cred_sid(cred);
3425 int rc;
3426 u8 driver = cmd >> 8;
3427 u8 xperm = cmd & 0xff;
3428
3429 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3430 ad.u.op = &ioctl;
3431 ad.u.op->cmd = cmd;
3432 ad.u.op->path = file->f_path;
3433
3434 if (ssid != fsec->sid) {
3435 rc = avc_has_perm(ssid, fsec->sid,
3436 SECCLASS_FD,
3437 FD__USE,
3438 &ad);
3439 if (rc)
3440 goto out;
3441 }
3442
3443 if (unlikely(IS_PRIVATE(inode)))
3444 return 0;
3445
3446 isec = inode_security(inode);
3447 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3448 requested, driver, xperm, &ad);
3449 out:
3450 return rc;
3451 }
3452
3453 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3454 unsigned long arg)
3455 {
3456 const struct cred *cred = current_cred();
3457 int error = 0;
3458
3459 switch (cmd) {
3460 case FIONREAD:
3461 /* fall through */
3462 case FIBMAP:
3463 /* fall through */
3464 case FIGETBSZ:
3465 /* fall through */
3466 case FS_IOC_GETFLAGS:
3467 /* fall through */
3468 case FS_IOC_GETVERSION:
3469 error = file_has_perm(cred, file, FILE__GETATTR);
3470 break;
3471
3472 case FS_IOC_SETFLAGS:
3473 /* fall through */
3474 case FS_IOC_SETVERSION:
3475 error = file_has_perm(cred, file, FILE__SETATTR);
3476 break;
3477
3478 /* sys_ioctl() checks */
3479 case FIONBIO:
3480 /* fall through */
3481 case FIOASYNC:
3482 error = file_has_perm(cred, file, 0);
3483 break;
3484
3485 case KDSKBENT:
3486 case KDSKBSENT:
3487 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3488 SECURITY_CAP_AUDIT, true);
3489 break;
3490
3491 /* default case assumes that the command will go
3492 * to the file's ioctl() function.
3493 */
3494 default:
3495 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3496 }
3497 return error;
3498 }
3499
3500 static int default_noexec;
3501
3502 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3503 {
3504 const struct cred *cred = current_cred();
3505 int rc = 0;
3506
3507 if (default_noexec &&
3508 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3509 (!shared && (prot & PROT_WRITE)))) {
3510 /*
3511 * We are making executable an anonymous mapping or a
3512 * private file mapping that will also be writable.
3513 * This has an additional check.
3514 */
3515 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3516 if (rc)
3517 goto error;
3518 }
3519
3520 if (file) {
3521 /* read access is always possible with a mapping */
3522 u32 av = FILE__READ;
3523
3524 /* write access only matters if the mapping is shared */
3525 if (shared && (prot & PROT_WRITE))
3526 av |= FILE__WRITE;
3527
3528 if (prot & PROT_EXEC)
3529 av |= FILE__EXECUTE;
3530
3531 return file_has_perm(cred, file, av);
3532 }
3533
3534 error:
3535 return rc;
3536 }
3537
3538 static int selinux_mmap_addr(unsigned long addr)
3539 {
3540 int rc = 0;
3541
3542 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3543 u32 sid = current_sid();
3544 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3545 MEMPROTECT__MMAP_ZERO, NULL);
3546 }
3547
3548 return rc;
3549 }
3550
3551 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3552 unsigned long prot, unsigned long flags)
3553 {
3554 if (selinux_checkreqprot)
3555 prot = reqprot;
3556
3557 return file_map_prot_check(file, prot,
3558 (flags & MAP_TYPE) == MAP_SHARED);
3559 }
3560
3561 static int selinux_file_mprotect(struct vm_area_struct *vma,
3562 unsigned long reqprot,
3563 unsigned long prot)
3564 {
3565 const struct cred *cred = current_cred();
3566
3567 if (selinux_checkreqprot)
3568 prot = reqprot;
3569
3570 if (default_noexec &&
3571 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3572 int rc = 0;
3573 if (vma->vm_start >= vma->vm_mm->start_brk &&
3574 vma->vm_end <= vma->vm_mm->brk) {
3575 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3576 } else if (!vma->vm_file &&
3577 ((vma->vm_start <= vma->vm_mm->start_stack &&
3578 vma->vm_end >= vma->vm_mm->start_stack) ||
3579 vma_is_stack_for_current(vma))) {
3580 rc = current_has_perm(current, PROCESS__EXECSTACK);
3581 } else if (vma->vm_file && vma->anon_vma) {
3582 /*
3583 * We are making executable a file mapping that has
3584 * had some COW done. Since pages might have been
3585 * written, check ability to execute the possibly
3586 * modified content. This typically should only
3587 * occur for text relocations.
3588 */
3589 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3590 }
3591 if (rc)
3592 return rc;
3593 }
3594
3595 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3596 }
3597
3598 static int selinux_file_lock(struct file *file, unsigned int cmd)
3599 {
3600 const struct cred *cred = current_cred();
3601
3602 return file_has_perm(cred, file, FILE__LOCK);
3603 }
3604
3605 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3606 unsigned long arg)
3607 {
3608 const struct cred *cred = current_cred();
3609 int err = 0;
3610
3611 switch (cmd) {
3612 case F_SETFL:
3613 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3614 err = file_has_perm(cred, file, FILE__WRITE);
3615 break;
3616 }
3617 /* fall through */
3618 case F_SETOWN:
3619 case F_SETSIG:
3620 case F_GETFL:
3621 case F_GETOWN:
3622 case F_GETSIG:
3623 case F_GETOWNER_UIDS:
3624 /* Just check FD__USE permission */
3625 err = file_has_perm(cred, file, 0);
3626 break;
3627 case F_GETLK:
3628 case F_SETLK:
3629 case F_SETLKW:
3630 case F_OFD_GETLK:
3631 case F_OFD_SETLK:
3632 case F_OFD_SETLKW:
3633 #if BITS_PER_LONG == 32
3634 case F_GETLK64:
3635 case F_SETLK64:
3636 case F_SETLKW64:
3637 #endif
3638 err = file_has_perm(cred, file, FILE__LOCK);
3639 break;
3640 }
3641
3642 return err;
3643 }
3644
3645 static void selinux_file_set_fowner(struct file *file)
3646 {
3647 struct file_security_struct *fsec;
3648
3649 fsec = file->f_security;
3650 fsec->fown_sid = current_sid();
3651 }
3652
3653 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3654 struct fown_struct *fown, int signum)
3655 {
3656 struct file *file;
3657 u32 sid = task_sid(tsk);
3658 u32 perm;
3659 struct file_security_struct *fsec;
3660
3661 /* struct fown_struct is never outside the context of a struct file */
3662 file = container_of(fown, struct file, f_owner);
3663
3664 fsec = file->f_security;
3665
3666 if (!signum)
3667 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3668 else
3669 perm = signal_to_av(signum);
3670
3671 return avc_has_perm(fsec->fown_sid, sid,
3672 SECCLASS_PROCESS, perm, NULL);
3673 }
3674
3675 static int selinux_file_receive(struct file *file)
3676 {
3677 const struct cred *cred = current_cred();
3678
3679 return file_has_perm(cred, file, file_to_av(file));
3680 }
3681
3682 static int selinux_file_open(struct file *file, const struct cred *cred)
3683 {
3684 struct file_security_struct *fsec;
3685 struct inode_security_struct *isec;
3686
3687 fsec = file->f_security;
3688 isec = inode_security(file_inode(file));
3689 /*
3690 * Save inode label and policy sequence number
3691 * at open-time so that selinux_file_permission
3692 * can determine whether revalidation is necessary.
3693 * Task label is already saved in the file security
3694 * struct as its SID.
3695 */
3696 fsec->isid = isec->sid;
3697 fsec->pseqno = avc_policy_seqno();
3698 /*
3699 * Since the inode label or policy seqno may have changed
3700 * between the selinux_inode_permission check and the saving
3701 * of state above, recheck that access is still permitted.
3702 * Otherwise, access might never be revalidated against the
3703 * new inode label or new policy.
3704 * This check is not redundant - do not remove.
3705 */
3706 return file_path_has_perm(cred, file, open_file_to_av(file));
3707 }
3708
3709 /* task security operations */
3710
3711 static int selinux_task_create(unsigned long clone_flags)
3712 {
3713 return current_has_perm(current, PROCESS__FORK);
3714 }
3715
3716 /*
3717 * allocate the SELinux part of blank credentials
3718 */
3719 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3720 {
3721 struct task_security_struct *tsec;
3722
3723 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3724 if (!tsec)
3725 return -ENOMEM;
3726
3727 cred->security = tsec;
3728 return 0;
3729 }
3730
3731 /*
3732 * detach and free the LSM part of a set of credentials
3733 */
3734 static void selinux_cred_free(struct cred *cred)
3735 {
3736 struct task_security_struct *tsec = cred->security;
3737
3738 /*
3739 * cred->security == NULL if security_cred_alloc_blank() or
3740 * security_prepare_creds() returned an error.
3741 */
3742 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3743 cred->security = (void *) 0x7UL;
3744 kfree(tsec);
3745 }
3746
3747 /*
3748 * prepare a new set of credentials for modification
3749 */
3750 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3751 gfp_t gfp)
3752 {
3753 const struct task_security_struct *old_tsec;
3754 struct task_security_struct *tsec;
3755
3756 old_tsec = old->security;
3757
3758 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3759 if (!tsec)
3760 return -ENOMEM;
3761
3762 new->security = tsec;
3763 return 0;
3764 }
3765
3766 /*
3767 * transfer the SELinux data to a blank set of creds
3768 */
3769 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3770 {
3771 const struct task_security_struct *old_tsec = old->security;
3772 struct task_security_struct *tsec = new->security;
3773
3774 *tsec = *old_tsec;
3775 }
3776
3777 /*
3778 * set the security data for a kernel service
3779 * - all the creation contexts are set to unlabelled
3780 */
3781 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3782 {
3783 struct task_security_struct *tsec = new->security;
3784 u32 sid = current_sid();
3785 int ret;
3786
3787 ret = avc_has_perm(sid, secid,
3788 SECCLASS_KERNEL_SERVICE,
3789 KERNEL_SERVICE__USE_AS_OVERRIDE,
3790 NULL);
3791 if (ret == 0) {
3792 tsec->sid = secid;
3793 tsec->create_sid = 0;
3794 tsec->keycreate_sid = 0;
3795 tsec->sockcreate_sid = 0;
3796 }
3797 return ret;
3798 }
3799
3800 /*
3801 * set the file creation context in a security record to the same as the
3802 * objective context of the specified inode
3803 */
3804 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3805 {
3806 struct inode_security_struct *isec = inode_security(inode);
3807 struct task_security_struct *tsec = new->security;
3808 u32 sid = current_sid();
3809 int ret;
3810
3811 ret = avc_has_perm(sid, isec->sid,
3812 SECCLASS_KERNEL_SERVICE,
3813 KERNEL_SERVICE__CREATE_FILES_AS,
3814 NULL);
3815
3816 if (ret == 0)
3817 tsec->create_sid = isec->sid;
3818 return ret;
3819 }
3820
3821 static int selinux_kernel_module_request(char *kmod_name)
3822 {
3823 u32 sid;
3824 struct common_audit_data ad;
3825
3826 sid = task_sid(current);
3827
3828 ad.type = LSM_AUDIT_DATA_KMOD;
3829 ad.u.kmod_name = kmod_name;
3830
3831 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3832 SYSTEM__MODULE_REQUEST, &ad);
3833 }
3834
3835 static int selinux_kernel_module_from_file(struct file *file)
3836 {
3837 struct common_audit_data ad;
3838 struct inode_security_struct *isec;
3839 struct file_security_struct *fsec;
3840 u32 sid = current_sid();
3841 int rc;
3842
3843 /* init_module */
3844 if (file == NULL)
3845 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
3846 SYSTEM__MODULE_LOAD, NULL);
3847
3848 /* finit_module */
3849
3850 ad.type = LSM_AUDIT_DATA_FILE;
3851 ad.u.file = file;
3852
3853 fsec = file->f_security;
3854 if (sid != fsec->sid) {
3855 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3856 if (rc)
3857 return rc;
3858 }
3859
3860 isec = inode_security(file_inode(file));
3861 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
3862 SYSTEM__MODULE_LOAD, &ad);
3863 }
3864
3865 static int selinux_kernel_read_file(struct file *file,
3866 enum kernel_read_file_id id)
3867 {
3868 int rc = 0;
3869
3870 switch (id) {
3871 case READING_MODULE:
3872 rc = selinux_kernel_module_from_file(file);
3873 break;
3874 default:
3875 break;
3876 }
3877
3878 return rc;
3879 }
3880
3881 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3882 {
3883 return current_has_perm(p, PROCESS__SETPGID);
3884 }
3885
3886 static int selinux_task_getpgid(struct task_struct *p)
3887 {
3888 return current_has_perm(p, PROCESS__GETPGID);
3889 }
3890
3891 static int selinux_task_getsid(struct task_struct *p)
3892 {
3893 return current_has_perm(p, PROCESS__GETSESSION);
3894 }
3895
3896 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3897 {
3898 *secid = task_sid(p);
3899 }
3900
3901 static int selinux_task_setnice(struct task_struct *p, int nice)
3902 {
3903 return current_has_perm(p, PROCESS__SETSCHED);
3904 }
3905
3906 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3907 {
3908 return current_has_perm(p, PROCESS__SETSCHED);
3909 }
3910
3911 static int selinux_task_getioprio(struct task_struct *p)
3912 {
3913 return current_has_perm(p, PROCESS__GETSCHED);
3914 }
3915
3916 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3917 struct rlimit *new_rlim)
3918 {
3919 struct rlimit *old_rlim = p->signal->rlim + resource;
3920
3921 /* Control the ability to change the hard limit (whether
3922 lowering or raising it), so that the hard limit can
3923 later be used as a safe reset point for the soft limit
3924 upon context transitions. See selinux_bprm_committing_creds. */
3925 if (old_rlim->rlim_max != new_rlim->rlim_max)
3926 return current_has_perm(p, PROCESS__SETRLIMIT);
3927
3928 return 0;
3929 }
3930
3931 static int selinux_task_setscheduler(struct task_struct *p)
3932 {
3933 return current_has_perm(p, PROCESS__SETSCHED);
3934 }
3935
3936 static int selinux_task_getscheduler(struct task_struct *p)
3937 {
3938 return current_has_perm(p, PROCESS__GETSCHED);
3939 }
3940
3941 static int selinux_task_movememory(struct task_struct *p)
3942 {
3943 return current_has_perm(p, PROCESS__SETSCHED);
3944 }
3945
3946 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3947 int sig, u32 secid)
3948 {
3949 u32 perm;
3950 int rc;
3951
3952 if (!sig)
3953 perm = PROCESS__SIGNULL; /* null signal; existence test */
3954 else
3955 perm = signal_to_av(sig);
3956 if (secid)
3957 rc = avc_has_perm(secid, task_sid(p),
3958 SECCLASS_PROCESS, perm, NULL);
3959 else
3960 rc = current_has_perm(p, perm);
3961 return rc;
3962 }
3963
3964 static int selinux_task_wait(struct task_struct *p)
3965 {
3966 return task_has_perm(p, current, PROCESS__SIGCHLD);
3967 }
3968
3969 static void selinux_task_to_inode(struct task_struct *p,
3970 struct inode *inode)
3971 {
3972 struct inode_security_struct *isec = inode->i_security;
3973 u32 sid = task_sid(p);
3974
3975 spin_lock(&isec->lock);
3976 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3977 isec->sid = sid;
3978 isec->initialized = LABEL_INITIALIZED;
3979 spin_unlock(&isec->lock);
3980 }
3981
3982 /* Returns error only if unable to parse addresses */
3983 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3984 struct common_audit_data *ad, u8 *proto)
3985 {
3986 int offset, ihlen, ret = -EINVAL;
3987 struct iphdr _iph, *ih;
3988
3989 offset = skb_network_offset(skb);
3990 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3991 if (ih == NULL)
3992 goto out;
3993
3994 ihlen = ih->ihl * 4;
3995 if (ihlen < sizeof(_iph))
3996 goto out;
3997
3998 ad->u.net->v4info.saddr = ih->saddr;
3999 ad->u.net->v4info.daddr = ih->daddr;
4000 ret = 0;
4001
4002 if (proto)
4003 *proto = ih->protocol;
4004
4005 switch (ih->protocol) {
4006 case IPPROTO_TCP: {
4007 struct tcphdr _tcph, *th;
4008
4009 if (ntohs(ih->frag_off) & IP_OFFSET)
4010 break;
4011
4012 offset += ihlen;
4013 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4014 if (th == NULL)
4015 break;
4016
4017 ad->u.net->sport = th->source;
4018 ad->u.net->dport = th->dest;
4019 break;
4020 }
4021
4022 case IPPROTO_UDP: {
4023 struct udphdr _udph, *uh;
4024
4025 if (ntohs(ih->frag_off) & IP_OFFSET)
4026 break;
4027
4028 offset += ihlen;
4029 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4030 if (uh == NULL)
4031 break;
4032
4033 ad->u.net->sport = uh->source;
4034 ad->u.net->dport = uh->dest;
4035 break;
4036 }
4037
4038 case IPPROTO_DCCP: {
4039 struct dccp_hdr _dccph, *dh;
4040
4041 if (ntohs(ih->frag_off) & IP_OFFSET)
4042 break;
4043
4044 offset += ihlen;
4045 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4046 if (dh == NULL)
4047 break;
4048
4049 ad->u.net->sport = dh->dccph_sport;
4050 ad->u.net->dport = dh->dccph_dport;
4051 break;
4052 }
4053
4054 default:
4055 break;
4056 }
4057 out:
4058 return ret;
4059 }
4060
4061 #if IS_ENABLED(CONFIG_IPV6)
4062
4063 /* Returns error only if unable to parse addresses */
4064 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4065 struct common_audit_data *ad, u8 *proto)
4066 {
4067 u8 nexthdr;
4068 int ret = -EINVAL, offset;
4069 struct ipv6hdr _ipv6h, *ip6;
4070 __be16 frag_off;
4071
4072 offset = skb_network_offset(skb);
4073 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4074 if (ip6 == NULL)
4075 goto out;
4076
4077 ad->u.net->v6info.saddr = ip6->saddr;
4078 ad->u.net->v6info.daddr = ip6->daddr;
4079 ret = 0;
4080
4081 nexthdr = ip6->nexthdr;
4082 offset += sizeof(_ipv6h);
4083 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4084 if (offset < 0)
4085 goto out;
4086
4087 if (proto)
4088 *proto = nexthdr;
4089
4090 switch (nexthdr) {
4091 case IPPROTO_TCP: {
4092 struct tcphdr _tcph, *th;
4093
4094 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4095 if (th == NULL)
4096 break;
4097
4098 ad->u.net->sport = th->source;
4099 ad->u.net->dport = th->dest;
4100 break;
4101 }
4102
4103 case IPPROTO_UDP: {
4104 struct udphdr _udph, *uh;
4105
4106 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4107 if (uh == NULL)
4108 break;
4109
4110 ad->u.net->sport = uh->source;
4111 ad->u.net->dport = uh->dest;
4112 break;
4113 }
4114
4115 case IPPROTO_DCCP: {
4116 struct dccp_hdr _dccph, *dh;
4117
4118 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4119 if (dh == NULL)
4120 break;
4121
4122 ad->u.net->sport = dh->dccph_sport;
4123 ad->u.net->dport = dh->dccph_dport;
4124 break;
4125 }
4126
4127 /* includes fragments */
4128 default:
4129 break;
4130 }
4131 out:
4132 return ret;
4133 }
4134
4135 #endif /* IPV6 */
4136
4137 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4138 char **_addrp, int src, u8 *proto)
4139 {
4140 char *addrp;
4141 int ret;
4142
4143 switch (ad->u.net->family) {
4144 case PF_INET:
4145 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4146 if (ret)
4147 goto parse_error;
4148 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4149 &ad->u.net->v4info.daddr);
4150 goto okay;
4151
4152 #if IS_ENABLED(CONFIG_IPV6)
4153 case PF_INET6:
4154 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4155 if (ret)
4156 goto parse_error;
4157 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4158 &ad->u.net->v6info.daddr);
4159 goto okay;
4160 #endif /* IPV6 */
4161 default:
4162 addrp = NULL;
4163 goto okay;
4164 }
4165
4166 parse_error:
4167 printk(KERN_WARNING
4168 "SELinux: failure in selinux_parse_skb(),"
4169 " unable to parse packet\n");
4170 return ret;
4171
4172 okay:
4173 if (_addrp)
4174 *_addrp = addrp;
4175 return 0;
4176 }
4177
4178 /**
4179 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4180 * @skb: the packet
4181 * @family: protocol family
4182 * @sid: the packet's peer label SID
4183 *
4184 * Description:
4185 * Check the various different forms of network peer labeling and determine
4186 * the peer label/SID for the packet; most of the magic actually occurs in
4187 * the security server function security_net_peersid_cmp(). The function
4188 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4189 * or -EACCES if @sid is invalid due to inconsistencies with the different
4190 * peer labels.
4191 *
4192 */
4193 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4194 {
4195 int err;
4196 u32 xfrm_sid;
4197 u32 nlbl_sid;
4198 u32 nlbl_type;
4199
4200 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4201 if (unlikely(err))
4202 return -EACCES;
4203 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4204 if (unlikely(err))
4205 return -EACCES;
4206
4207 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4208 if (unlikely(err)) {
4209 printk(KERN_WARNING
4210 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4211 " unable to determine packet's peer label\n");
4212 return -EACCES;
4213 }
4214
4215 return 0;
4216 }
4217
4218 /**
4219 * selinux_conn_sid - Determine the child socket label for a connection
4220 * @sk_sid: the parent socket's SID
4221 * @skb_sid: the packet's SID
4222 * @conn_sid: the resulting connection SID
4223 *
4224 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4225 * combined with the MLS information from @skb_sid in order to create
4226 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4227 * of @sk_sid. Returns zero on success, negative values on failure.
4228 *
4229 */
4230 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4231 {
4232 int err = 0;
4233
4234 if (skb_sid != SECSID_NULL)
4235 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4236 else
4237 *conn_sid = sk_sid;
4238
4239 return err;
4240 }
4241
4242 /* socket security operations */
4243
4244 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4245 u16 secclass, u32 *socksid)
4246 {
4247 if (tsec->sockcreate_sid > SECSID_NULL) {
4248 *socksid = tsec->sockcreate_sid;
4249 return 0;
4250 }
4251
4252 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4253 socksid);
4254 }
4255
4256 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4257 {
4258 struct sk_security_struct *sksec = sk->sk_security;
4259 struct common_audit_data ad;
4260 struct lsm_network_audit net = {0,};
4261 u32 tsid = task_sid(task);
4262
4263 if (sksec->sid == SECINITSID_KERNEL)
4264 return 0;
4265
4266 ad.type = LSM_AUDIT_DATA_NET;
4267 ad.u.net = &net;
4268 ad.u.net->sk = sk;
4269
4270 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4271 }
4272
4273 static int selinux_socket_create(int family, int type,
4274 int protocol, int kern)
4275 {
4276 const struct task_security_struct *tsec = current_security();
4277 u32 newsid;
4278 u16 secclass;
4279 int rc;
4280
4281 if (kern)
4282 return 0;
4283
4284 secclass = socket_type_to_security_class(family, type, protocol);
4285 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4286 if (rc)
4287 return rc;
4288
4289 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4290 }
4291
4292 static int selinux_socket_post_create(struct socket *sock, int family,
4293 int type, int protocol, int kern)
4294 {
4295 const struct task_security_struct *tsec = current_security();
4296 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4297 struct sk_security_struct *sksec;
4298 u16 sclass = socket_type_to_security_class(family, type, protocol);
4299 u32 sid = SECINITSID_KERNEL;
4300 int err = 0;
4301
4302 if (!kern) {
4303 err = socket_sockcreate_sid(tsec, sclass, &sid);
4304 if (err)
4305 return err;
4306 }
4307
4308 isec->sclass = sclass;
4309 isec->sid = sid;
4310 isec->initialized = LABEL_INITIALIZED;
4311
4312 if (sock->sk) {
4313 sksec = sock->sk->sk_security;
4314 sksec->sclass = sclass;
4315 sksec->sid = sid;
4316 err = selinux_netlbl_socket_post_create(sock->sk, family);
4317 }
4318
4319 return err;
4320 }
4321
4322 /* Range of port numbers used to automatically bind.
4323 Need to determine whether we should perform a name_bind
4324 permission check between the socket and the port number. */
4325
4326 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4327 {
4328 struct sock *sk = sock->sk;
4329 u16 family;
4330 int err;
4331
4332 err = sock_has_perm(current, sk, SOCKET__BIND);
4333 if (err)
4334 goto out;
4335
4336 /*
4337 * If PF_INET or PF_INET6, check name_bind permission for the port.
4338 * Multiple address binding for SCTP is not supported yet: we just
4339 * check the first address now.
4340 */
4341 family = sk->sk_family;
4342 if (family == PF_INET || family == PF_INET6) {
4343 char *addrp;
4344 struct sk_security_struct *sksec = sk->sk_security;
4345 struct common_audit_data ad;
4346 struct lsm_network_audit net = {0,};
4347 struct sockaddr_in *addr4 = NULL;
4348 struct sockaddr_in6 *addr6 = NULL;
4349 unsigned short snum;
4350 u32 sid, node_perm;
4351
4352 if (family == PF_INET) {
4353 addr4 = (struct sockaddr_in *)address;
4354 snum = ntohs(addr4->sin_port);
4355 addrp = (char *)&addr4->sin_addr.s_addr;
4356 } else {
4357 addr6 = (struct sockaddr_in6 *)address;
4358 snum = ntohs(addr6->sin6_port);
4359 addrp = (char *)&addr6->sin6_addr.s6_addr;
4360 }
4361
4362 if (snum) {
4363 int low, high;
4364
4365 inet_get_local_port_range(sock_net(sk), &low, &high);
4366
4367 if (snum < max(PROT_SOCK, low) || snum > high) {
4368 err = sel_netport_sid(sk->sk_protocol,
4369 snum, &sid);
4370 if (err)
4371 goto out;
4372 ad.type = LSM_AUDIT_DATA_NET;
4373 ad.u.net = &net;
4374 ad.u.net->sport = htons(snum);
4375 ad.u.net->family = family;
4376 err = avc_has_perm(sksec->sid, sid,
4377 sksec->sclass,
4378 SOCKET__NAME_BIND, &ad);
4379 if (err)
4380 goto out;
4381 }
4382 }
4383
4384 switch (sksec->sclass) {
4385 case SECCLASS_TCP_SOCKET:
4386 node_perm = TCP_SOCKET__NODE_BIND;
4387 break;
4388
4389 case SECCLASS_UDP_SOCKET:
4390 node_perm = UDP_SOCKET__NODE_BIND;
4391 break;
4392
4393 case SECCLASS_DCCP_SOCKET:
4394 node_perm = DCCP_SOCKET__NODE_BIND;
4395 break;
4396
4397 default:
4398 node_perm = RAWIP_SOCKET__NODE_BIND;
4399 break;
4400 }
4401
4402 err = sel_netnode_sid(addrp, family, &sid);
4403 if (err)
4404 goto out;
4405
4406 ad.type = LSM_AUDIT_DATA_NET;
4407 ad.u.net = &net;
4408 ad.u.net->sport = htons(snum);
4409 ad.u.net->family = family;
4410
4411 if (family == PF_INET)
4412 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4413 else
4414 ad.u.net->v6info.saddr = addr6->sin6_addr;
4415
4416 err = avc_has_perm(sksec->sid, sid,
4417 sksec->sclass, node_perm, &ad);
4418 if (err)
4419 goto out;
4420 }
4421 out:
4422 return err;
4423 }
4424
4425 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4426 {
4427 struct sock *sk = sock->sk;
4428 struct sk_security_struct *sksec = sk->sk_security;
4429 int err;
4430
4431 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4432 if (err)
4433 return err;
4434
4435 /*
4436 * If a TCP or DCCP socket, check name_connect permission for the port.
4437 */
4438 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4439 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4440 struct common_audit_data ad;
4441 struct lsm_network_audit net = {0,};
4442 struct sockaddr_in *addr4 = NULL;
4443 struct sockaddr_in6 *addr6 = NULL;
4444 unsigned short snum;
4445 u32 sid, perm;
4446
4447 if (sk->sk_family == PF_INET) {
4448 addr4 = (struct sockaddr_in *)address;
4449 if (addrlen < sizeof(struct sockaddr_in))
4450 return -EINVAL;
4451 snum = ntohs(addr4->sin_port);
4452 } else {
4453 addr6 = (struct sockaddr_in6 *)address;
4454 if (addrlen < SIN6_LEN_RFC2133)
4455 return -EINVAL;
4456 snum = ntohs(addr6->sin6_port);
4457 }
4458
4459 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4460 if (err)
4461 goto out;
4462
4463 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4464 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4465
4466 ad.type = LSM_AUDIT_DATA_NET;
4467 ad.u.net = &net;
4468 ad.u.net->dport = htons(snum);
4469 ad.u.net->family = sk->sk_family;
4470 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4471 if (err)
4472 goto out;
4473 }
4474
4475 err = selinux_netlbl_socket_connect(sk, address);
4476
4477 out:
4478 return err;
4479 }
4480
4481 static int selinux_socket_listen(struct socket *sock, int backlog)
4482 {
4483 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4484 }
4485
4486 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4487 {
4488 int err;
4489 struct inode_security_struct *isec;
4490 struct inode_security_struct *newisec;
4491 u16 sclass;
4492 u32 sid;
4493
4494 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4495 if (err)
4496 return err;
4497
4498 isec = inode_security_novalidate(SOCK_INODE(sock));
4499 spin_lock(&isec->lock);
4500 sclass = isec->sclass;
4501 sid = isec->sid;
4502 spin_unlock(&isec->lock);
4503
4504 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4505 newisec->sclass = sclass;
4506 newisec->sid = sid;
4507 newisec->initialized = LABEL_INITIALIZED;
4508
4509 return 0;
4510 }
4511
4512 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4513 int size)
4514 {
4515 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4516 }
4517
4518 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4519 int size, int flags)
4520 {
4521 return sock_has_perm(current, sock->sk, SOCKET__READ);
4522 }
4523
4524 static int selinux_socket_getsockname(struct socket *sock)
4525 {
4526 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4527 }
4528
4529 static int selinux_socket_getpeername(struct socket *sock)
4530 {
4531 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4532 }
4533
4534 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4535 {
4536 int err;
4537
4538 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4539 if (err)
4540 return err;
4541
4542 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4543 }
4544
4545 static int selinux_socket_getsockopt(struct socket *sock, int level,
4546 int optname)
4547 {
4548 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4549 }
4550
4551 static int selinux_socket_shutdown(struct socket *sock, int how)
4552 {
4553 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4554 }
4555
4556 static int selinux_socket_unix_stream_connect(struct sock *sock,
4557 struct sock *other,
4558 struct sock *newsk)
4559 {
4560 struct sk_security_struct *sksec_sock = sock->sk_security;
4561 struct sk_security_struct *sksec_other = other->sk_security;
4562 struct sk_security_struct *sksec_new = newsk->sk_security;
4563 struct common_audit_data ad;
4564 struct lsm_network_audit net = {0,};
4565 int err;
4566
4567 ad.type = LSM_AUDIT_DATA_NET;
4568 ad.u.net = &net;
4569 ad.u.net->sk = other;
4570
4571 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4572 sksec_other->sclass,
4573 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4574 if (err)
4575 return err;
4576
4577 /* server child socket */
4578 sksec_new->peer_sid = sksec_sock->sid;
4579 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4580 &sksec_new->sid);
4581 if (err)
4582 return err;
4583
4584 /* connecting socket */
4585 sksec_sock->peer_sid = sksec_new->sid;
4586
4587 return 0;
4588 }
4589
4590 static int selinux_socket_unix_may_send(struct socket *sock,
4591 struct socket *other)
4592 {
4593 struct sk_security_struct *ssec = sock->sk->sk_security;
4594 struct sk_security_struct *osec = other->sk->sk_security;
4595 struct common_audit_data ad;
4596 struct lsm_network_audit net = {0,};
4597
4598 ad.type = LSM_AUDIT_DATA_NET;
4599 ad.u.net = &net;
4600 ad.u.net->sk = other->sk;
4601
4602 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4603 &ad);
4604 }
4605
4606 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4607 char *addrp, u16 family, u32 peer_sid,
4608 struct common_audit_data *ad)
4609 {
4610 int err;
4611 u32 if_sid;
4612 u32 node_sid;
4613
4614 err = sel_netif_sid(ns, ifindex, &if_sid);
4615 if (err)
4616 return err;
4617 err = avc_has_perm(peer_sid, if_sid,
4618 SECCLASS_NETIF, NETIF__INGRESS, ad);
4619 if (err)
4620 return err;
4621
4622 err = sel_netnode_sid(addrp, family, &node_sid);
4623 if (err)
4624 return err;
4625 return avc_has_perm(peer_sid, node_sid,
4626 SECCLASS_NODE, NODE__RECVFROM, ad);
4627 }
4628
4629 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4630 u16 family)
4631 {
4632 int err = 0;
4633 struct sk_security_struct *sksec = sk->sk_security;
4634 u32 sk_sid = sksec->sid;
4635 struct common_audit_data ad;
4636 struct lsm_network_audit net = {0,};
4637 char *addrp;
4638
4639 ad.type = LSM_AUDIT_DATA_NET;
4640 ad.u.net = &net;
4641 ad.u.net->netif = skb->skb_iif;
4642 ad.u.net->family = family;
4643 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4644 if (err)
4645 return err;
4646
4647 if (selinux_secmark_enabled()) {
4648 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4649 PACKET__RECV, &ad);
4650 if (err)
4651 return err;
4652 }
4653
4654 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4655 if (err)
4656 return err;
4657 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4658
4659 return err;
4660 }
4661
4662 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4663 {
4664 int err;
4665 struct sk_security_struct *sksec = sk->sk_security;
4666 u16 family = sk->sk_family;
4667 u32 sk_sid = sksec->sid;
4668 struct common_audit_data ad;
4669 struct lsm_network_audit net = {0,};
4670 char *addrp;
4671 u8 secmark_active;
4672 u8 peerlbl_active;
4673
4674 if (family != PF_INET && family != PF_INET6)
4675 return 0;
4676
4677 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4678 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4679 family = PF_INET;
4680
4681 /* If any sort of compatibility mode is enabled then handoff processing
4682 * to the selinux_sock_rcv_skb_compat() function to deal with the
4683 * special handling. We do this in an attempt to keep this function
4684 * as fast and as clean as possible. */
4685 if (!selinux_policycap_netpeer)
4686 return selinux_sock_rcv_skb_compat(sk, skb, family);
4687
4688 secmark_active = selinux_secmark_enabled();
4689 peerlbl_active = selinux_peerlbl_enabled();
4690 if (!secmark_active && !peerlbl_active)
4691 return 0;
4692
4693 ad.type = LSM_AUDIT_DATA_NET;
4694 ad.u.net = &net;
4695 ad.u.net->netif = skb->skb_iif;
4696 ad.u.net->family = family;
4697 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4698 if (err)
4699 return err;
4700
4701 if (peerlbl_active) {
4702 u32 peer_sid;
4703
4704 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4705 if (err)
4706 return err;
4707 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4708 addrp, family, peer_sid, &ad);
4709 if (err) {
4710 selinux_netlbl_err(skb, family, err, 0);
4711 return err;
4712 }
4713 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4714 PEER__RECV, &ad);
4715 if (err) {
4716 selinux_netlbl_err(skb, family, err, 0);
4717 return err;
4718 }
4719 }
4720
4721 if (secmark_active) {
4722 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4723 PACKET__RECV, &ad);
4724 if (err)
4725 return err;
4726 }
4727
4728 return err;
4729 }
4730
4731 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4732 int __user *optlen, unsigned len)
4733 {
4734 int err = 0;
4735 char *scontext;
4736 u32 scontext_len;
4737 struct sk_security_struct *sksec = sock->sk->sk_security;
4738 u32 peer_sid = SECSID_NULL;
4739
4740 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4741 sksec->sclass == SECCLASS_TCP_SOCKET)
4742 peer_sid = sksec->peer_sid;
4743 if (peer_sid == SECSID_NULL)
4744 return -ENOPROTOOPT;
4745
4746 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4747 if (err)
4748 return err;
4749
4750 if (scontext_len > len) {
4751 err = -ERANGE;
4752 goto out_len;
4753 }
4754
4755 if (copy_to_user(optval, scontext, scontext_len))
4756 err = -EFAULT;
4757
4758 out_len:
4759 if (put_user(scontext_len, optlen))
4760 err = -EFAULT;
4761 kfree(scontext);
4762 return err;
4763 }
4764
4765 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4766 {
4767 u32 peer_secid = SECSID_NULL;
4768 u16 family;
4769 struct inode_security_struct *isec;
4770
4771 if (skb && skb->protocol == htons(ETH_P_IP))
4772 family = PF_INET;
4773 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4774 family = PF_INET6;
4775 else if (sock)
4776 family = sock->sk->sk_family;
4777 else
4778 goto out;
4779
4780 if (sock && family == PF_UNIX) {
4781 isec = inode_security_novalidate(SOCK_INODE(sock));
4782 peer_secid = isec->sid;
4783 } else if (skb)
4784 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4785
4786 out:
4787 *secid = peer_secid;
4788 if (peer_secid == SECSID_NULL)
4789 return -EINVAL;
4790 return 0;
4791 }
4792
4793 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4794 {
4795 struct sk_security_struct *sksec;
4796
4797 sksec = kzalloc(sizeof(*sksec), priority);
4798 if (!sksec)
4799 return -ENOMEM;
4800
4801 sksec->peer_sid = SECINITSID_UNLABELED;
4802 sksec->sid = SECINITSID_UNLABELED;
4803 sksec->sclass = SECCLASS_SOCKET;
4804 selinux_netlbl_sk_security_reset(sksec);
4805 sk->sk_security = sksec;
4806
4807 return 0;
4808 }
4809
4810 static void selinux_sk_free_security(struct sock *sk)
4811 {
4812 struct sk_security_struct *sksec = sk->sk_security;
4813
4814 sk->sk_security = NULL;
4815 selinux_netlbl_sk_security_free(sksec);
4816 kfree(sksec);
4817 }
4818
4819 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4820 {
4821 struct sk_security_struct *sksec = sk->sk_security;
4822 struct sk_security_struct *newsksec = newsk->sk_security;
4823
4824 newsksec->sid = sksec->sid;
4825 newsksec->peer_sid = sksec->peer_sid;
4826 newsksec->sclass = sksec->sclass;
4827
4828 selinux_netlbl_sk_security_reset(newsksec);
4829 }
4830
4831 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4832 {
4833 if (!sk)
4834 *secid = SECINITSID_ANY_SOCKET;
4835 else {
4836 struct sk_security_struct *sksec = sk->sk_security;
4837
4838 *secid = sksec->sid;
4839 }
4840 }
4841
4842 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4843 {
4844 struct inode_security_struct *isec =
4845 inode_security_novalidate(SOCK_INODE(parent));
4846 struct sk_security_struct *sksec = sk->sk_security;
4847
4848 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4849 sk->sk_family == PF_UNIX)
4850 isec->sid = sksec->sid;
4851 sksec->sclass = isec->sclass;
4852 }
4853
4854 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4855 struct request_sock *req)
4856 {
4857 struct sk_security_struct *sksec = sk->sk_security;
4858 int err;
4859 u16 family = req->rsk_ops->family;
4860 u32 connsid;
4861 u32 peersid;
4862
4863 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4864 if (err)
4865 return err;
4866 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4867 if (err)
4868 return err;
4869 req->secid = connsid;
4870 req->peer_secid = peersid;
4871
4872 return selinux_netlbl_inet_conn_request(req, family);
4873 }
4874
4875 static void selinux_inet_csk_clone(struct sock *newsk,
4876 const struct request_sock *req)
4877 {
4878 struct sk_security_struct *newsksec = newsk->sk_security;
4879
4880 newsksec->sid = req->secid;
4881 newsksec->peer_sid = req->peer_secid;
4882 /* NOTE: Ideally, we should also get the isec->sid for the
4883 new socket in sync, but we don't have the isec available yet.
4884 So we will wait until sock_graft to do it, by which
4885 time it will have been created and available. */
4886
4887 /* We don't need to take any sort of lock here as we are the only
4888 * thread with access to newsksec */
4889 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4890 }
4891
4892 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4893 {
4894 u16 family = sk->sk_family;
4895 struct sk_security_struct *sksec = sk->sk_security;
4896
4897 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4898 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4899 family = PF_INET;
4900
4901 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4902 }
4903
4904 static int selinux_secmark_relabel_packet(u32 sid)
4905 {
4906 const struct task_security_struct *__tsec;
4907 u32 tsid;
4908
4909 __tsec = current_security();
4910 tsid = __tsec->sid;
4911
4912 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4913 }
4914
4915 static void selinux_secmark_refcount_inc(void)
4916 {
4917 atomic_inc(&selinux_secmark_refcount);
4918 }
4919
4920 static void selinux_secmark_refcount_dec(void)
4921 {
4922 atomic_dec(&selinux_secmark_refcount);
4923 }
4924
4925 static void selinux_req_classify_flow(const struct request_sock *req,
4926 struct flowi *fl)
4927 {
4928 fl->flowi_secid = req->secid;
4929 }
4930
4931 static int selinux_tun_dev_alloc_security(void **security)
4932 {
4933 struct tun_security_struct *tunsec;
4934
4935 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4936 if (!tunsec)
4937 return -ENOMEM;
4938 tunsec->sid = current_sid();
4939
4940 *security = tunsec;
4941 return 0;
4942 }
4943
4944 static void selinux_tun_dev_free_security(void *security)
4945 {
4946 kfree(security);
4947 }
4948
4949 static int selinux_tun_dev_create(void)
4950 {
4951 u32 sid = current_sid();
4952
4953 /* we aren't taking into account the "sockcreate" SID since the socket
4954 * that is being created here is not a socket in the traditional sense,
4955 * instead it is a private sock, accessible only to the kernel, and
4956 * representing a wide range of network traffic spanning multiple
4957 * connections unlike traditional sockets - check the TUN driver to
4958 * get a better understanding of why this socket is special */
4959
4960 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4961 NULL);
4962 }
4963
4964 static int selinux_tun_dev_attach_queue(void *security)
4965 {
4966 struct tun_security_struct *tunsec = security;
4967
4968 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4969 TUN_SOCKET__ATTACH_QUEUE, NULL);
4970 }
4971
4972 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4973 {
4974 struct tun_security_struct *tunsec = security;
4975 struct sk_security_struct *sksec = sk->sk_security;
4976
4977 /* we don't currently perform any NetLabel based labeling here and it
4978 * isn't clear that we would want to do so anyway; while we could apply
4979 * labeling without the support of the TUN user the resulting labeled
4980 * traffic from the other end of the connection would almost certainly
4981 * cause confusion to the TUN user that had no idea network labeling
4982 * protocols were being used */
4983
4984 sksec->sid = tunsec->sid;
4985 sksec->sclass = SECCLASS_TUN_SOCKET;
4986
4987 return 0;
4988 }
4989
4990 static int selinux_tun_dev_open(void *security)
4991 {
4992 struct tun_security_struct *tunsec = security;
4993 u32 sid = current_sid();
4994 int err;
4995
4996 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4997 TUN_SOCKET__RELABELFROM, NULL);
4998 if (err)
4999 return err;
5000 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5001 TUN_SOCKET__RELABELTO, NULL);
5002 if (err)
5003 return err;
5004 tunsec->sid = sid;
5005
5006 return 0;
5007 }
5008
5009 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5010 {
5011 int err = 0;
5012 u32 perm;
5013 struct nlmsghdr *nlh;
5014 struct sk_security_struct *sksec = sk->sk_security;
5015
5016 if (skb->len < NLMSG_HDRLEN) {
5017 err = -EINVAL;
5018 goto out;
5019 }
5020 nlh = nlmsg_hdr(skb);
5021
5022 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5023 if (err) {
5024 if (err == -EINVAL) {
5025 pr_warn_ratelimited("SELinux: unrecognized netlink"
5026 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5027 " pig=%d comm=%s\n",
5028 sk->sk_protocol, nlh->nlmsg_type,
5029 secclass_map[sksec->sclass - 1].name,
5030 task_pid_nr(current), current->comm);
5031 if (!selinux_enforcing || security_get_allow_unknown())
5032 err = 0;
5033 }
5034
5035 /* Ignore */
5036 if (err == -ENOENT)
5037 err = 0;
5038 goto out;
5039 }
5040
5041 err = sock_has_perm(current, sk, perm);
5042 out:
5043 return err;
5044 }
5045
5046 #ifdef CONFIG_NETFILTER
5047
5048 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5049 const struct net_device *indev,
5050 u16 family)
5051 {
5052 int err;
5053 char *addrp;
5054 u32 peer_sid;
5055 struct common_audit_data ad;
5056 struct lsm_network_audit net = {0,};
5057 u8 secmark_active;
5058 u8 netlbl_active;
5059 u8 peerlbl_active;
5060
5061 if (!selinux_policycap_netpeer)
5062 return NF_ACCEPT;
5063
5064 secmark_active = selinux_secmark_enabled();
5065 netlbl_active = netlbl_enabled();
5066 peerlbl_active = selinux_peerlbl_enabled();
5067 if (!secmark_active && !peerlbl_active)
5068 return NF_ACCEPT;
5069
5070 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5071 return NF_DROP;
5072
5073 ad.type = LSM_AUDIT_DATA_NET;
5074 ad.u.net = &net;
5075 ad.u.net->netif = indev->ifindex;
5076 ad.u.net->family = family;
5077 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5078 return NF_DROP;
5079
5080 if (peerlbl_active) {
5081 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5082 addrp, family, peer_sid, &ad);
5083 if (err) {
5084 selinux_netlbl_err(skb, family, err, 1);
5085 return NF_DROP;
5086 }
5087 }
5088
5089 if (secmark_active)
5090 if (avc_has_perm(peer_sid, skb->secmark,
5091 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5092 return NF_DROP;
5093
5094 if (netlbl_active)
5095 /* we do this in the FORWARD path and not the POST_ROUTING
5096 * path because we want to make sure we apply the necessary
5097 * labeling before IPsec is applied so we can leverage AH
5098 * protection */
5099 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5100 return NF_DROP;
5101
5102 return NF_ACCEPT;
5103 }
5104
5105 static unsigned int selinux_ipv4_forward(void *priv,
5106 struct sk_buff *skb,
5107 const struct nf_hook_state *state)
5108 {
5109 return selinux_ip_forward(skb, state->in, PF_INET);
5110 }
5111
5112 #if IS_ENABLED(CONFIG_IPV6)
5113 static unsigned int selinux_ipv6_forward(void *priv,
5114 struct sk_buff *skb,
5115 const struct nf_hook_state *state)
5116 {
5117 return selinux_ip_forward(skb, state->in, PF_INET6);
5118 }
5119 #endif /* IPV6 */
5120
5121 static unsigned int selinux_ip_output(struct sk_buff *skb,
5122 u16 family)
5123 {
5124 struct sock *sk;
5125 u32 sid;
5126
5127 if (!netlbl_enabled())
5128 return NF_ACCEPT;
5129
5130 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5131 * because we want to make sure we apply the necessary labeling
5132 * before IPsec is applied so we can leverage AH protection */
5133 sk = skb->sk;
5134 if (sk) {
5135 struct sk_security_struct *sksec;
5136
5137 if (sk_listener(sk))
5138 /* if the socket is the listening state then this
5139 * packet is a SYN-ACK packet which means it needs to
5140 * be labeled based on the connection/request_sock and
5141 * not the parent socket. unfortunately, we can't
5142 * lookup the request_sock yet as it isn't queued on
5143 * the parent socket until after the SYN-ACK is sent.
5144 * the "solution" is to simply pass the packet as-is
5145 * as any IP option based labeling should be copied
5146 * from the initial connection request (in the IP
5147 * layer). it is far from ideal, but until we get a
5148 * security label in the packet itself this is the
5149 * best we can do. */
5150 return NF_ACCEPT;
5151
5152 /* standard practice, label using the parent socket */
5153 sksec = sk->sk_security;
5154 sid = sksec->sid;
5155 } else
5156 sid = SECINITSID_KERNEL;
5157 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5158 return NF_DROP;
5159
5160 return NF_ACCEPT;
5161 }
5162
5163 static unsigned int selinux_ipv4_output(void *priv,
5164 struct sk_buff *skb,
5165 const struct nf_hook_state *state)
5166 {
5167 return selinux_ip_output(skb, PF_INET);
5168 }
5169
5170 #if IS_ENABLED(CONFIG_IPV6)
5171 static unsigned int selinux_ipv6_output(void *priv,
5172 struct sk_buff *skb,
5173 const struct nf_hook_state *state)
5174 {
5175 return selinux_ip_output(skb, PF_INET6);
5176 }
5177 #endif /* IPV6 */
5178
5179 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5180 int ifindex,
5181 u16 family)
5182 {
5183 struct sock *sk = skb_to_full_sk(skb);
5184 struct sk_security_struct *sksec;
5185 struct common_audit_data ad;
5186 struct lsm_network_audit net = {0,};
5187 char *addrp;
5188 u8 proto;
5189
5190 if (sk == NULL)
5191 return NF_ACCEPT;
5192 sksec = sk->sk_security;
5193
5194 ad.type = LSM_AUDIT_DATA_NET;
5195 ad.u.net = &net;
5196 ad.u.net->netif = ifindex;
5197 ad.u.net->family = family;
5198 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5199 return NF_DROP;
5200
5201 if (selinux_secmark_enabled())
5202 if (avc_has_perm(sksec->sid, skb->secmark,
5203 SECCLASS_PACKET, PACKET__SEND, &ad))
5204 return NF_DROP_ERR(-ECONNREFUSED);
5205
5206 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5207 return NF_DROP_ERR(-ECONNREFUSED);
5208
5209 return NF_ACCEPT;
5210 }
5211
5212 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5213 const struct net_device *outdev,
5214 u16 family)
5215 {
5216 u32 secmark_perm;
5217 u32 peer_sid;
5218 int ifindex = outdev->ifindex;
5219 struct sock *sk;
5220 struct common_audit_data ad;
5221 struct lsm_network_audit net = {0,};
5222 char *addrp;
5223 u8 secmark_active;
5224 u8 peerlbl_active;
5225
5226 /* If any sort of compatibility mode is enabled then handoff processing
5227 * to the selinux_ip_postroute_compat() function to deal with the
5228 * special handling. We do this in an attempt to keep this function
5229 * as fast and as clean as possible. */
5230 if (!selinux_policycap_netpeer)
5231 return selinux_ip_postroute_compat(skb, ifindex, family);
5232
5233 secmark_active = selinux_secmark_enabled();
5234 peerlbl_active = selinux_peerlbl_enabled();
5235 if (!secmark_active && !peerlbl_active)
5236 return NF_ACCEPT;
5237
5238 sk = skb_to_full_sk(skb);
5239
5240 #ifdef CONFIG_XFRM
5241 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5242 * packet transformation so allow the packet to pass without any checks
5243 * since we'll have another chance to perform access control checks
5244 * when the packet is on it's final way out.
5245 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5246 * is NULL, in this case go ahead and apply access control.
5247 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5248 * TCP listening state we cannot wait until the XFRM processing
5249 * is done as we will miss out on the SA label if we do;
5250 * unfortunately, this means more work, but it is only once per
5251 * connection. */
5252 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5253 !(sk && sk_listener(sk)))
5254 return NF_ACCEPT;
5255 #endif
5256
5257 if (sk == NULL) {
5258 /* Without an associated socket the packet is either coming
5259 * from the kernel or it is being forwarded; check the packet
5260 * to determine which and if the packet is being forwarded
5261 * query the packet directly to determine the security label. */
5262 if (skb->skb_iif) {
5263 secmark_perm = PACKET__FORWARD_OUT;
5264 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5265 return NF_DROP;
5266 } else {
5267 secmark_perm = PACKET__SEND;
5268 peer_sid = SECINITSID_KERNEL;
5269 }
5270 } else if (sk_listener(sk)) {
5271 /* Locally generated packet but the associated socket is in the
5272 * listening state which means this is a SYN-ACK packet. In
5273 * this particular case the correct security label is assigned
5274 * to the connection/request_sock but unfortunately we can't
5275 * query the request_sock as it isn't queued on the parent
5276 * socket until after the SYN-ACK packet is sent; the only
5277 * viable choice is to regenerate the label like we do in
5278 * selinux_inet_conn_request(). See also selinux_ip_output()
5279 * for similar problems. */
5280 u32 skb_sid;
5281 struct sk_security_struct *sksec;
5282
5283 sksec = sk->sk_security;
5284 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5285 return NF_DROP;
5286 /* At this point, if the returned skb peerlbl is SECSID_NULL
5287 * and the packet has been through at least one XFRM
5288 * transformation then we must be dealing with the "final"
5289 * form of labeled IPsec packet; since we've already applied
5290 * all of our access controls on this packet we can safely
5291 * pass the packet. */
5292 if (skb_sid == SECSID_NULL) {
5293 switch (family) {
5294 case PF_INET:
5295 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5296 return NF_ACCEPT;
5297 break;
5298 case PF_INET6:
5299 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5300 return NF_ACCEPT;
5301 break;
5302 default:
5303 return NF_DROP_ERR(-ECONNREFUSED);
5304 }
5305 }
5306 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5307 return NF_DROP;
5308 secmark_perm = PACKET__SEND;
5309 } else {
5310 /* Locally generated packet, fetch the security label from the
5311 * associated socket. */
5312 struct sk_security_struct *sksec = sk->sk_security;
5313 peer_sid = sksec->sid;
5314 secmark_perm = PACKET__SEND;
5315 }
5316
5317 ad.type = LSM_AUDIT_DATA_NET;
5318 ad.u.net = &net;
5319 ad.u.net->netif = ifindex;
5320 ad.u.net->family = family;
5321 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5322 return NF_DROP;
5323
5324 if (secmark_active)
5325 if (avc_has_perm(peer_sid, skb->secmark,
5326 SECCLASS_PACKET, secmark_perm, &ad))
5327 return NF_DROP_ERR(-ECONNREFUSED);
5328
5329 if (peerlbl_active) {
5330 u32 if_sid;
5331 u32 node_sid;
5332
5333 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5334 return NF_DROP;
5335 if (avc_has_perm(peer_sid, if_sid,
5336 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5337 return NF_DROP_ERR(-ECONNREFUSED);
5338
5339 if (sel_netnode_sid(addrp, family, &node_sid))
5340 return NF_DROP;
5341 if (avc_has_perm(peer_sid, node_sid,
5342 SECCLASS_NODE, NODE__SENDTO, &ad))
5343 return NF_DROP_ERR(-ECONNREFUSED);
5344 }
5345
5346 return NF_ACCEPT;
5347 }
5348
5349 static unsigned int selinux_ipv4_postroute(void *priv,
5350 struct sk_buff *skb,
5351 const struct nf_hook_state *state)
5352 {
5353 return selinux_ip_postroute(skb, state->out, PF_INET);
5354 }
5355
5356 #if IS_ENABLED(CONFIG_IPV6)
5357 static unsigned int selinux_ipv6_postroute(void *priv,
5358 struct sk_buff *skb,
5359 const struct nf_hook_state *state)
5360 {
5361 return selinux_ip_postroute(skb, state->out, PF_INET6);
5362 }
5363 #endif /* IPV6 */
5364
5365 #endif /* CONFIG_NETFILTER */
5366
5367 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5368 {
5369 return selinux_nlmsg_perm(sk, skb);
5370 }
5371
5372 static int ipc_alloc_security(struct task_struct *task,
5373 struct kern_ipc_perm *perm,
5374 u16 sclass)
5375 {
5376 struct ipc_security_struct *isec;
5377 u32 sid;
5378
5379 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5380 if (!isec)
5381 return -ENOMEM;
5382
5383 sid = task_sid(task);
5384 isec->sclass = sclass;
5385 isec->sid = sid;
5386 perm->security = isec;
5387
5388 return 0;
5389 }
5390
5391 static void ipc_free_security(struct kern_ipc_perm *perm)
5392 {
5393 struct ipc_security_struct *isec = perm->security;
5394 perm->security = NULL;
5395 kfree(isec);
5396 }
5397
5398 static int msg_msg_alloc_security(struct msg_msg *msg)
5399 {
5400 struct msg_security_struct *msec;
5401
5402 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5403 if (!msec)
5404 return -ENOMEM;
5405
5406 msec->sid = SECINITSID_UNLABELED;
5407 msg->security = msec;
5408
5409 return 0;
5410 }
5411
5412 static void msg_msg_free_security(struct msg_msg *msg)
5413 {
5414 struct msg_security_struct *msec = msg->security;
5415
5416 msg->security = NULL;
5417 kfree(msec);
5418 }
5419
5420 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5421 u32 perms)
5422 {
5423 struct ipc_security_struct *isec;
5424 struct common_audit_data ad;
5425 u32 sid = current_sid();
5426
5427 isec = ipc_perms->security;
5428
5429 ad.type = LSM_AUDIT_DATA_IPC;
5430 ad.u.ipc_id = ipc_perms->key;
5431
5432 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5433 }
5434
5435 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5436 {
5437 return msg_msg_alloc_security(msg);
5438 }
5439
5440 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5441 {
5442 msg_msg_free_security(msg);
5443 }
5444
5445 /* message queue security operations */
5446 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5447 {
5448 struct ipc_security_struct *isec;
5449 struct common_audit_data ad;
5450 u32 sid = current_sid();
5451 int rc;
5452
5453 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5454 if (rc)
5455 return rc;
5456
5457 isec = msq->q_perm.security;
5458
5459 ad.type = LSM_AUDIT_DATA_IPC;
5460 ad.u.ipc_id = msq->q_perm.key;
5461
5462 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5463 MSGQ__CREATE, &ad);
5464 if (rc) {
5465 ipc_free_security(&msq->q_perm);
5466 return rc;
5467 }
5468 return 0;
5469 }
5470
5471 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5472 {
5473 ipc_free_security(&msq->q_perm);
5474 }
5475
5476 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5477 {
5478 struct ipc_security_struct *isec;
5479 struct common_audit_data ad;
5480 u32 sid = current_sid();
5481
5482 isec = msq->q_perm.security;
5483
5484 ad.type = LSM_AUDIT_DATA_IPC;
5485 ad.u.ipc_id = msq->q_perm.key;
5486
5487 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5488 MSGQ__ASSOCIATE, &ad);
5489 }
5490
5491 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5492 {
5493 int err;
5494 int perms;
5495
5496 switch (cmd) {
5497 case IPC_INFO:
5498 case MSG_INFO:
5499 /* No specific object, just general system-wide information. */
5500 return task_has_system(current, SYSTEM__IPC_INFO);
5501 case IPC_STAT:
5502 case MSG_STAT:
5503 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5504 break;
5505 case IPC_SET:
5506 perms = MSGQ__SETATTR;
5507 break;
5508 case IPC_RMID:
5509 perms = MSGQ__DESTROY;
5510 break;
5511 default:
5512 return 0;
5513 }
5514
5515 err = ipc_has_perm(&msq->q_perm, perms);
5516 return err;
5517 }
5518
5519 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5520 {
5521 struct ipc_security_struct *isec;
5522 struct msg_security_struct *msec;
5523 struct common_audit_data ad;
5524 u32 sid = current_sid();
5525 int rc;
5526
5527 isec = msq->q_perm.security;
5528 msec = msg->security;
5529
5530 /*
5531 * First time through, need to assign label to the message
5532 */
5533 if (msec->sid == SECINITSID_UNLABELED) {
5534 /*
5535 * Compute new sid based on current process and
5536 * message queue this message will be stored in
5537 */
5538 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5539 NULL, &msec->sid);
5540 if (rc)
5541 return rc;
5542 }
5543
5544 ad.type = LSM_AUDIT_DATA_IPC;
5545 ad.u.ipc_id = msq->q_perm.key;
5546
5547 /* Can this process write to the queue? */
5548 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5549 MSGQ__WRITE, &ad);
5550 if (!rc)
5551 /* Can this process send the message */
5552 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5553 MSG__SEND, &ad);
5554 if (!rc)
5555 /* Can the message be put in the queue? */
5556 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5557 MSGQ__ENQUEUE, &ad);
5558
5559 return rc;
5560 }
5561
5562 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5563 struct task_struct *target,
5564 long type, int mode)
5565 {
5566 struct ipc_security_struct *isec;
5567 struct msg_security_struct *msec;
5568 struct common_audit_data ad;
5569 u32 sid = task_sid(target);
5570 int rc;
5571
5572 isec = msq->q_perm.security;
5573 msec = msg->security;
5574
5575 ad.type = LSM_AUDIT_DATA_IPC;
5576 ad.u.ipc_id = msq->q_perm.key;
5577
5578 rc = avc_has_perm(sid, isec->sid,
5579 SECCLASS_MSGQ, MSGQ__READ, &ad);
5580 if (!rc)
5581 rc = avc_has_perm(sid, msec->sid,
5582 SECCLASS_MSG, MSG__RECEIVE, &ad);
5583 return rc;
5584 }
5585
5586 /* Shared Memory security operations */
5587 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5588 {
5589 struct ipc_security_struct *isec;
5590 struct common_audit_data ad;
5591 u32 sid = current_sid();
5592 int rc;
5593
5594 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5595 if (rc)
5596 return rc;
5597
5598 isec = shp->shm_perm.security;
5599
5600 ad.type = LSM_AUDIT_DATA_IPC;
5601 ad.u.ipc_id = shp->shm_perm.key;
5602
5603 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5604 SHM__CREATE, &ad);
5605 if (rc) {
5606 ipc_free_security(&shp->shm_perm);
5607 return rc;
5608 }
5609 return 0;
5610 }
5611
5612 static void selinux_shm_free_security(struct shmid_kernel *shp)
5613 {
5614 ipc_free_security(&shp->shm_perm);
5615 }
5616
5617 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5618 {
5619 struct ipc_security_struct *isec;
5620 struct common_audit_data ad;
5621 u32 sid = current_sid();
5622
5623 isec = shp->shm_perm.security;
5624
5625 ad.type = LSM_AUDIT_DATA_IPC;
5626 ad.u.ipc_id = shp->shm_perm.key;
5627
5628 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5629 SHM__ASSOCIATE, &ad);
5630 }
5631
5632 /* Note, at this point, shp is locked down */
5633 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5634 {
5635 int perms;
5636 int err;
5637
5638 switch (cmd) {
5639 case IPC_INFO:
5640 case SHM_INFO:
5641 /* No specific object, just general system-wide information. */
5642 return task_has_system(current, SYSTEM__IPC_INFO);
5643 case IPC_STAT:
5644 case SHM_STAT:
5645 perms = SHM__GETATTR | SHM__ASSOCIATE;
5646 break;
5647 case IPC_SET:
5648 perms = SHM__SETATTR;
5649 break;
5650 case SHM_LOCK:
5651 case SHM_UNLOCK:
5652 perms = SHM__LOCK;
5653 break;
5654 case IPC_RMID:
5655 perms = SHM__DESTROY;
5656 break;
5657 default:
5658 return 0;
5659 }
5660
5661 err = ipc_has_perm(&shp->shm_perm, perms);
5662 return err;
5663 }
5664
5665 static int selinux_shm_shmat(struct shmid_kernel *shp,
5666 char __user *shmaddr, int shmflg)
5667 {
5668 u32 perms;
5669
5670 if (shmflg & SHM_RDONLY)
5671 perms = SHM__READ;
5672 else
5673 perms = SHM__READ | SHM__WRITE;
5674
5675 return ipc_has_perm(&shp->shm_perm, perms);
5676 }
5677
5678 /* Semaphore security operations */
5679 static int selinux_sem_alloc_security(struct sem_array *sma)
5680 {
5681 struct ipc_security_struct *isec;
5682 struct common_audit_data ad;
5683 u32 sid = current_sid();
5684 int rc;
5685
5686 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5687 if (rc)
5688 return rc;
5689
5690 isec = sma->sem_perm.security;
5691
5692 ad.type = LSM_AUDIT_DATA_IPC;
5693 ad.u.ipc_id = sma->sem_perm.key;
5694
5695 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5696 SEM__CREATE, &ad);
5697 if (rc) {
5698 ipc_free_security(&sma->sem_perm);
5699 return rc;
5700 }
5701 return 0;
5702 }
5703
5704 static void selinux_sem_free_security(struct sem_array *sma)
5705 {
5706 ipc_free_security(&sma->sem_perm);
5707 }
5708
5709 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5710 {
5711 struct ipc_security_struct *isec;
5712 struct common_audit_data ad;
5713 u32 sid = current_sid();
5714
5715 isec = sma->sem_perm.security;
5716
5717 ad.type = LSM_AUDIT_DATA_IPC;
5718 ad.u.ipc_id = sma->sem_perm.key;
5719
5720 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5721 SEM__ASSOCIATE, &ad);
5722 }
5723
5724 /* Note, at this point, sma is locked down */
5725 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5726 {
5727 int err;
5728 u32 perms;
5729
5730 switch (cmd) {
5731 case IPC_INFO:
5732 case SEM_INFO:
5733 /* No specific object, just general system-wide information. */
5734 return task_has_system(current, SYSTEM__IPC_INFO);
5735 case GETPID:
5736 case GETNCNT:
5737 case GETZCNT:
5738 perms = SEM__GETATTR;
5739 break;
5740 case GETVAL:
5741 case GETALL:
5742 perms = SEM__READ;
5743 break;
5744 case SETVAL:
5745 case SETALL:
5746 perms = SEM__WRITE;
5747 break;
5748 case IPC_RMID:
5749 perms = SEM__DESTROY;
5750 break;
5751 case IPC_SET:
5752 perms = SEM__SETATTR;
5753 break;
5754 case IPC_STAT:
5755 case SEM_STAT:
5756 perms = SEM__GETATTR | SEM__ASSOCIATE;
5757 break;
5758 default:
5759 return 0;
5760 }
5761
5762 err = ipc_has_perm(&sma->sem_perm, perms);
5763 return err;
5764 }
5765
5766 static int selinux_sem_semop(struct sem_array *sma,
5767 struct sembuf *sops, unsigned nsops, int alter)
5768 {
5769 u32 perms;
5770
5771 if (alter)
5772 perms = SEM__READ | SEM__WRITE;
5773 else
5774 perms = SEM__READ;
5775
5776 return ipc_has_perm(&sma->sem_perm, perms);
5777 }
5778
5779 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5780 {
5781 u32 av = 0;
5782
5783 av = 0;
5784 if (flag & S_IRUGO)
5785 av |= IPC__UNIX_READ;
5786 if (flag & S_IWUGO)
5787 av |= IPC__UNIX_WRITE;
5788
5789 if (av == 0)
5790 return 0;
5791
5792 return ipc_has_perm(ipcp, av);
5793 }
5794
5795 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5796 {
5797 struct ipc_security_struct *isec = ipcp->security;
5798 *secid = isec->sid;
5799 }
5800
5801 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5802 {
5803 if (inode)
5804 inode_doinit_with_dentry(inode, dentry);
5805 }
5806
5807 static int selinux_getprocattr(struct task_struct *p,
5808 char *name, char **value)
5809 {
5810 const struct task_security_struct *__tsec;
5811 u32 sid;
5812 int error;
5813 unsigned len;
5814
5815 if (current != p) {
5816 error = current_has_perm(p, PROCESS__GETATTR);
5817 if (error)
5818 return error;
5819 }
5820
5821 rcu_read_lock();
5822 __tsec = __task_cred(p)->security;
5823
5824 if (!strcmp(name, "current"))
5825 sid = __tsec->sid;
5826 else if (!strcmp(name, "prev"))
5827 sid = __tsec->osid;
5828 else if (!strcmp(name, "exec"))
5829 sid = __tsec->exec_sid;
5830 else if (!strcmp(name, "fscreate"))
5831 sid = __tsec->create_sid;
5832 else if (!strcmp(name, "keycreate"))
5833 sid = __tsec->keycreate_sid;
5834 else if (!strcmp(name, "sockcreate"))
5835 sid = __tsec->sockcreate_sid;
5836 else
5837 goto invalid;
5838 rcu_read_unlock();
5839
5840 if (!sid)
5841 return 0;
5842
5843 error = security_sid_to_context(sid, value, &len);
5844 if (error)
5845 return error;
5846 return len;
5847
5848 invalid:
5849 rcu_read_unlock();
5850 return -EINVAL;
5851 }
5852
5853 static int selinux_setprocattr(struct task_struct *p,
5854 char *name, void *value, size_t size)
5855 {
5856 struct task_security_struct *tsec;
5857 struct cred *new;
5858 u32 sid = 0, ptsid;
5859 int error;
5860 char *str = value;
5861
5862 if (current != p) {
5863 /* SELinux only allows a process to change its own
5864 security attributes. */
5865 return -EACCES;
5866 }
5867
5868 /*
5869 * Basic control over ability to set these attributes at all.
5870 * current == p, but we'll pass them separately in case the
5871 * above restriction is ever removed.
5872 */
5873 if (!strcmp(name, "exec"))
5874 error = current_has_perm(p, PROCESS__SETEXEC);
5875 else if (!strcmp(name, "fscreate"))
5876 error = current_has_perm(p, PROCESS__SETFSCREATE);
5877 else if (!strcmp(name, "keycreate"))
5878 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5879 else if (!strcmp(name, "sockcreate"))
5880 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5881 else if (!strcmp(name, "current"))
5882 error = current_has_perm(p, PROCESS__SETCURRENT);
5883 else
5884 error = -EINVAL;
5885 if (error)
5886 return error;
5887
5888 /* Obtain a SID for the context, if one was specified. */
5889 if (size && str[1] && str[1] != '\n') {
5890 if (str[size-1] == '\n') {
5891 str[size-1] = 0;
5892 size--;
5893 }
5894 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5895 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5896 if (!capable(CAP_MAC_ADMIN)) {
5897 struct audit_buffer *ab;
5898 size_t audit_size;
5899
5900 /* We strip a nul only if it is at the end, otherwise the
5901 * context contains a nul and we should audit that */
5902 if (str[size - 1] == '\0')
5903 audit_size = size - 1;
5904 else
5905 audit_size = size;
5906 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5907 audit_log_format(ab, "op=fscreate invalid_context=");
5908 audit_log_n_untrustedstring(ab, value, audit_size);
5909 audit_log_end(ab);
5910
5911 return error;
5912 }
5913 error = security_context_to_sid_force(value, size,
5914 &sid);
5915 }
5916 if (error)
5917 return error;
5918 }
5919
5920 new = prepare_creds();
5921 if (!new)
5922 return -ENOMEM;
5923
5924 /* Permission checking based on the specified context is
5925 performed during the actual operation (execve,
5926 open/mkdir/...), when we know the full context of the
5927 operation. See selinux_bprm_set_creds for the execve
5928 checks and may_create for the file creation checks. The
5929 operation will then fail if the context is not permitted. */
5930 tsec = new->security;
5931 if (!strcmp(name, "exec")) {
5932 tsec->exec_sid = sid;
5933 } else if (!strcmp(name, "fscreate")) {
5934 tsec->create_sid = sid;
5935 } else if (!strcmp(name, "keycreate")) {
5936 error = may_create_key(sid, p);
5937 if (error)
5938 goto abort_change;
5939 tsec->keycreate_sid = sid;
5940 } else if (!strcmp(name, "sockcreate")) {
5941 tsec->sockcreate_sid = sid;
5942 } else if (!strcmp(name, "current")) {
5943 error = -EINVAL;
5944 if (sid == 0)
5945 goto abort_change;
5946
5947 /* Only allow single threaded processes to change context */
5948 error = -EPERM;
5949 if (!current_is_single_threaded()) {
5950 error = security_bounded_transition(tsec->sid, sid);
5951 if (error)
5952 goto abort_change;
5953 }
5954
5955 /* Check permissions for the transition. */
5956 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5957 PROCESS__DYNTRANSITION, NULL);
5958 if (error)
5959 goto abort_change;
5960
5961 /* Check for ptracing, and update the task SID if ok.
5962 Otherwise, leave SID unchanged and fail. */
5963 ptsid = ptrace_parent_sid(p);
5964 if (ptsid != 0) {
5965 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5966 PROCESS__PTRACE, NULL);
5967 if (error)
5968 goto abort_change;
5969 }
5970
5971 tsec->sid = sid;
5972 } else {
5973 error = -EINVAL;
5974 goto abort_change;
5975 }
5976
5977 commit_creds(new);
5978 return size;
5979
5980 abort_change:
5981 abort_creds(new);
5982 return error;
5983 }
5984
5985 static int selinux_ismaclabel(const char *name)
5986 {
5987 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5988 }
5989
5990 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5991 {
5992 return security_sid_to_context(secid, secdata, seclen);
5993 }
5994
5995 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5996 {
5997 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5998 }
5999
6000 static void selinux_release_secctx(char *secdata, u32 seclen)
6001 {
6002 kfree(secdata);
6003 }
6004
6005 static void selinux_inode_invalidate_secctx(struct inode *inode)
6006 {
6007 struct inode_security_struct *isec = inode->i_security;
6008
6009 spin_lock(&isec->lock);
6010 isec->initialized = LABEL_INVALID;
6011 spin_unlock(&isec->lock);
6012 }
6013
6014 /*
6015 * called with inode->i_mutex locked
6016 */
6017 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6018 {
6019 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6020 }
6021
6022 /*
6023 * called with inode->i_mutex locked
6024 */
6025 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6026 {
6027 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6028 }
6029
6030 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6031 {
6032 int len = 0;
6033 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6034 ctx, true);
6035 if (len < 0)
6036 return len;
6037 *ctxlen = len;
6038 return 0;
6039 }
6040 #ifdef CONFIG_KEYS
6041
6042 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6043 unsigned long flags)
6044 {
6045 const struct task_security_struct *tsec;
6046 struct key_security_struct *ksec;
6047
6048 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6049 if (!ksec)
6050 return -ENOMEM;
6051
6052 tsec = cred->security;
6053 if (tsec->keycreate_sid)
6054 ksec->sid = tsec->keycreate_sid;
6055 else
6056 ksec->sid = tsec->sid;
6057
6058 k->security = ksec;
6059 return 0;
6060 }
6061
6062 static void selinux_key_free(struct key *k)
6063 {
6064 struct key_security_struct *ksec = k->security;
6065
6066 k->security = NULL;
6067 kfree(ksec);
6068 }
6069
6070 static int selinux_key_permission(key_ref_t key_ref,
6071 const struct cred *cred,
6072 unsigned perm)
6073 {
6074 struct key *key;
6075 struct key_security_struct *ksec;
6076 u32 sid;
6077
6078 /* if no specific permissions are requested, we skip the
6079 permission check. No serious, additional covert channels
6080 appear to be created. */
6081 if (perm == 0)
6082 return 0;
6083
6084 sid = cred_sid(cred);
6085
6086 key = key_ref_to_ptr(key_ref);
6087 ksec = key->security;
6088
6089 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6090 }
6091
6092 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6093 {
6094 struct key_security_struct *ksec = key->security;
6095 char *context = NULL;
6096 unsigned len;
6097 int rc;
6098
6099 rc = security_sid_to_context(ksec->sid, &context, &len);
6100 if (!rc)
6101 rc = len;
6102 *_buffer = context;
6103 return rc;
6104 }
6105
6106 #endif
6107
6108 static struct security_hook_list selinux_hooks[] = {
6109 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6110 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6111 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6112 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6113
6114 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6115 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6116 LSM_HOOK_INIT(capget, selinux_capget),
6117 LSM_HOOK_INIT(capset, selinux_capset),
6118 LSM_HOOK_INIT(capable, selinux_capable),
6119 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6120 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6121 LSM_HOOK_INIT(syslog, selinux_syslog),
6122 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6123
6124 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6125
6126 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6127 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6128 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6129 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
6130
6131 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6132 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6133 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6134 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6135 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6136 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6137 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6138 LSM_HOOK_INIT(sb_mount, selinux_mount),
6139 LSM_HOOK_INIT(sb_umount, selinux_umount),
6140 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6141 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6142 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6143
6144 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6145 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6146
6147 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6148 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6149 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6150 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6151 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6152 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6153 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6154 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6155 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6156 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6157 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6158 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6159 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6160 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6161 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6162 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6163 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6164 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6165 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6166 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6167 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6168 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6169 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6170 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6171 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6172 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6173 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6174
6175 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6176 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6177 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6178 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6179 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6180 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6181 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6182 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6183 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6184 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6185 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6186 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6187
6188 LSM_HOOK_INIT(file_open, selinux_file_open),
6189
6190 LSM_HOOK_INIT(task_create, selinux_task_create),
6191 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6192 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6193 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6194 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6195 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6196 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6197 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6198 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6199 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6200 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6201 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6202 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6203 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6204 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6205 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6206 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6207 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6208 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6209 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6210 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6211 LSM_HOOK_INIT(task_wait, selinux_task_wait),
6212 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6213
6214 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6215 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6216
6217 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6218 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6219
6220 LSM_HOOK_INIT(msg_queue_alloc_security,
6221 selinux_msg_queue_alloc_security),
6222 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6223 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6224 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6225 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6226 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6227
6228 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6229 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6230 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6231 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6232 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6233
6234 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6235 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6236 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6237 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6238 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6239
6240 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6241
6242 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6243 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6244
6245 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6246 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6247 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6248 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6249 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6250 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6251 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6252 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6253
6254 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6255 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6256
6257 LSM_HOOK_INIT(socket_create, selinux_socket_create),
6258 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6259 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6260 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6261 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6262 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6263 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6264 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6265 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6266 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6267 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6268 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6269 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6270 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6271 LSM_HOOK_INIT(socket_getpeersec_stream,
6272 selinux_socket_getpeersec_stream),
6273 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6274 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6275 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6276 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6277 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6278 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6279 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6280 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6281 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6282 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6283 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6284 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6285 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6286 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6287 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6288 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6289 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6290 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6291 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6292
6293 #ifdef CONFIG_SECURITY_NETWORK_XFRM
6294 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6295 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6296 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6297 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6298 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6299 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6300 selinux_xfrm_state_alloc_acquire),
6301 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6302 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6303 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6304 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6305 selinux_xfrm_state_pol_flow_match),
6306 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6307 #endif
6308
6309 #ifdef CONFIG_KEYS
6310 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6311 LSM_HOOK_INIT(key_free, selinux_key_free),
6312 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6313 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6314 #endif
6315
6316 #ifdef CONFIG_AUDIT
6317 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6318 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6319 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6320 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6321 #endif
6322 };
6323
6324 static __init int selinux_init(void)
6325 {
6326 if (!security_module_enable("selinux")) {
6327 selinux_enabled = 0;
6328 return 0;
6329 }
6330
6331 if (!selinux_enabled) {
6332 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6333 return 0;
6334 }
6335
6336 printk(KERN_INFO "SELinux: Initializing.\n");
6337
6338 /* Set the security state for the initial task. */
6339 cred_init_security();
6340
6341 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6342
6343 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6344 sizeof(struct inode_security_struct),
6345 0, SLAB_PANIC, NULL);
6346 file_security_cache = kmem_cache_create("selinux_file_security",
6347 sizeof(struct file_security_struct),
6348 0, SLAB_PANIC, NULL);
6349 avc_init();
6350
6351 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6352
6353 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6354 panic("SELinux: Unable to register AVC netcache callback\n");
6355
6356 if (selinux_enforcing)
6357 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6358 else
6359 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6360
6361 return 0;
6362 }
6363
6364 static void delayed_superblock_init(struct super_block *sb, void *unused)
6365 {
6366 superblock_doinit(sb, NULL);
6367 }
6368
6369 void selinux_complete_init(void)
6370 {
6371 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6372
6373 /* Set up any superblocks initialized prior to the policy load. */
6374 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6375 iterate_supers(delayed_superblock_init, NULL);
6376 }
6377
6378 /* SELinux requires early initialization in order to label
6379 all processes and objects when they are created. */
6380 security_initcall(selinux_init);
6381
6382 #if defined(CONFIG_NETFILTER)
6383
6384 static struct nf_hook_ops selinux_nf_ops[] = {
6385 {
6386 .hook = selinux_ipv4_postroute,
6387 .pf = NFPROTO_IPV4,
6388 .hooknum = NF_INET_POST_ROUTING,
6389 .priority = NF_IP_PRI_SELINUX_LAST,
6390 },
6391 {
6392 .hook = selinux_ipv4_forward,
6393 .pf = NFPROTO_IPV4,
6394 .hooknum = NF_INET_FORWARD,
6395 .priority = NF_IP_PRI_SELINUX_FIRST,
6396 },
6397 {
6398 .hook = selinux_ipv4_output,
6399 .pf = NFPROTO_IPV4,
6400 .hooknum = NF_INET_LOCAL_OUT,
6401 .priority = NF_IP_PRI_SELINUX_FIRST,
6402 },
6403 #if IS_ENABLED(CONFIG_IPV6)
6404 {
6405 .hook = selinux_ipv6_postroute,
6406 .pf = NFPROTO_IPV6,
6407 .hooknum = NF_INET_POST_ROUTING,
6408 .priority = NF_IP6_PRI_SELINUX_LAST,
6409 },
6410 {
6411 .hook = selinux_ipv6_forward,
6412 .pf = NFPROTO_IPV6,
6413 .hooknum = NF_INET_FORWARD,
6414 .priority = NF_IP6_PRI_SELINUX_FIRST,
6415 },
6416 {
6417 .hook = selinux_ipv6_output,
6418 .pf = NFPROTO_IPV6,
6419 .hooknum = NF_INET_LOCAL_OUT,
6420 .priority = NF_IP6_PRI_SELINUX_FIRST,
6421 },
6422 #endif /* IPV6 */
6423 };
6424
6425 static int __init selinux_nf_ip_init(void)
6426 {
6427 int err;
6428
6429 if (!selinux_enabled)
6430 return 0;
6431
6432 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6433
6434 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6435 if (err)
6436 panic("SELinux: nf_register_hooks: error %d\n", err);
6437
6438 return 0;
6439 }
6440
6441 __initcall(selinux_nf_ip_init);
6442
6443 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6444 static void selinux_nf_ip_exit(void)
6445 {
6446 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6447
6448 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6449 }
6450 #endif
6451
6452 #else /* CONFIG_NETFILTER */
6453
6454 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6455 #define selinux_nf_ip_exit()
6456 #endif
6457
6458 #endif /* CONFIG_NETFILTER */
6459
6460 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6461 static int selinux_disabled;
6462
6463 int selinux_disable(void)
6464 {
6465 if (ss_initialized) {
6466 /* Not permitted after initial policy load. */
6467 return -EINVAL;
6468 }
6469
6470 if (selinux_disabled) {
6471 /* Only do this once. */
6472 return -EINVAL;
6473 }
6474
6475 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6476
6477 selinux_disabled = 1;
6478 selinux_enabled = 0;
6479
6480 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6481
6482 /* Try to destroy the avc node cache */
6483 avc_disable();
6484
6485 /* Unregister netfilter hooks. */
6486 selinux_nf_ip_exit();
6487
6488 /* Unregister selinuxfs. */
6489 exit_sel_fs();
6490
6491 return 0;
6492 }
6493 #endif