]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/selinux/hooks.c
Merge branch 'kvm-arm-cleanup' from git://github.com/columbia/linux-kvm-arm.git
[mirror_ubuntu-bionic-kernel.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h> /* for local_port_range[] */
54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55 #include <net/net_namespace.h>
56 #include <net/netlabel.h>
57 #include <linux/uaccess.h>
58 #include <asm/ioctls.h>
59 #include <linux/atomic.h>
60 #include <linux/bitops.h>
61 #include <linux/interrupt.h>
62 #include <linux/netdevice.h> /* for network interface checks */
63 #include <linux/netlink.h>
64 #include <linux/tcp.h>
65 #include <linux/udp.h>
66 #include <linux/dccp.h>
67 #include <linux/quota.h>
68 #include <linux/un.h> /* for Unix socket types */
69 #include <net/af_unix.h> /* for Unix socket types */
70 #include <linux/parser.h>
71 #include <linux/nfs_mount.h>
72 #include <net/ipv6.h>
73 #include <linux/hugetlb.h>
74 #include <linux/personality.h>
75 #include <linux/audit.h>
76 #include <linux/string.h>
77 #include <linux/selinux.h>
78 #include <linux/mutex.h>
79 #include <linux/posix-timers.h>
80 #include <linux/syslog.h>
81 #include <linux/user_namespace.h>
82 #include <linux/export.h>
83 #include <linux/msg.h>
84 #include <linux/shm.h>
85
86 #include "avc.h"
87 #include "objsec.h"
88 #include "netif.h"
89 #include "netnode.h"
90 #include "netport.h"
91 #include "xfrm.h"
92 #include "netlabel.h"
93 #include "audit.h"
94 #include "avc_ss.h"
95
96 #define NUM_SEL_MNT_OPTS 5
97
98 extern struct security_operations *security_ops;
99
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105
106 static int __init enforcing_setup(char *str)
107 {
108 unsigned long enforcing;
109 if (!strict_strtoul(str, 0, &enforcing))
110 selinux_enforcing = enforcing ? 1 : 0;
111 return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119 static int __init selinux_enabled_setup(char *str)
120 {
121 unsigned long enabled;
122 if (!strict_strtoul(str, 0, &enabled))
123 selinux_enabled = enabled ? 1 : 0;
124 return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130
131 static struct kmem_cache *sel_inode_cache;
132
133 /**
134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135 *
136 * Description:
137 * This function checks the SECMARK reference counter to see if any SECMARK
138 * targets are currently configured, if the reference counter is greater than
139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
140 * enabled, false (0) if SECMARK is disabled.
141 *
142 */
143 static int selinux_secmark_enabled(void)
144 {
145 return (atomic_read(&selinux_secmark_refcount) > 0);
146 }
147
148 /*
149 * initialise the security for the init task
150 */
151 static void cred_init_security(void)
152 {
153 struct cred *cred = (struct cred *) current->real_cred;
154 struct task_security_struct *tsec;
155
156 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157 if (!tsec)
158 panic("SELinux: Failed to initialize initial task.\n");
159
160 tsec->osid = tsec->sid = SECINITSID_KERNEL;
161 cred->security = tsec;
162 }
163
164 /*
165 * get the security ID of a set of credentials
166 */
167 static inline u32 cred_sid(const struct cred *cred)
168 {
169 const struct task_security_struct *tsec;
170
171 tsec = cred->security;
172 return tsec->sid;
173 }
174
175 /*
176 * get the objective security ID of a task
177 */
178 static inline u32 task_sid(const struct task_struct *task)
179 {
180 u32 sid;
181
182 rcu_read_lock();
183 sid = cred_sid(__task_cred(task));
184 rcu_read_unlock();
185 return sid;
186 }
187
188 /*
189 * get the subjective security ID of the current task
190 */
191 static inline u32 current_sid(void)
192 {
193 const struct task_security_struct *tsec = current_security();
194
195 return tsec->sid;
196 }
197
198 /* Allocate and free functions for each kind of security blob. */
199
200 static int inode_alloc_security(struct inode *inode)
201 {
202 struct inode_security_struct *isec;
203 u32 sid = current_sid();
204
205 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206 if (!isec)
207 return -ENOMEM;
208
209 mutex_init(&isec->lock);
210 INIT_LIST_HEAD(&isec->list);
211 isec->inode = inode;
212 isec->sid = SECINITSID_UNLABELED;
213 isec->sclass = SECCLASS_FILE;
214 isec->task_sid = sid;
215 inode->i_security = isec;
216
217 return 0;
218 }
219
220 static void inode_free_security(struct inode *inode)
221 {
222 struct inode_security_struct *isec = inode->i_security;
223 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224
225 spin_lock(&sbsec->isec_lock);
226 if (!list_empty(&isec->list))
227 list_del_init(&isec->list);
228 spin_unlock(&sbsec->isec_lock);
229
230 inode->i_security = NULL;
231 kmem_cache_free(sel_inode_cache, isec);
232 }
233
234 static int file_alloc_security(struct file *file)
235 {
236 struct file_security_struct *fsec;
237 u32 sid = current_sid();
238
239 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240 if (!fsec)
241 return -ENOMEM;
242
243 fsec->sid = sid;
244 fsec->fown_sid = sid;
245 file->f_security = fsec;
246
247 return 0;
248 }
249
250 static void file_free_security(struct file *file)
251 {
252 struct file_security_struct *fsec = file->f_security;
253 file->f_security = NULL;
254 kfree(fsec);
255 }
256
257 static int superblock_alloc_security(struct super_block *sb)
258 {
259 struct superblock_security_struct *sbsec;
260
261 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262 if (!sbsec)
263 return -ENOMEM;
264
265 mutex_init(&sbsec->lock);
266 INIT_LIST_HEAD(&sbsec->isec_head);
267 spin_lock_init(&sbsec->isec_lock);
268 sbsec->sb = sb;
269 sbsec->sid = SECINITSID_UNLABELED;
270 sbsec->def_sid = SECINITSID_FILE;
271 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272 sb->s_security = sbsec;
273
274 return 0;
275 }
276
277 static void superblock_free_security(struct super_block *sb)
278 {
279 struct superblock_security_struct *sbsec = sb->s_security;
280 sb->s_security = NULL;
281 kfree(sbsec);
282 }
283
284 /* The file system's label must be initialized prior to use. */
285
286 static const char *labeling_behaviors[6] = {
287 "uses xattr",
288 "uses transition SIDs",
289 "uses task SIDs",
290 "uses genfs_contexts",
291 "not configured for labeling",
292 "uses mountpoint labeling",
293 };
294
295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296
297 static inline int inode_doinit(struct inode *inode)
298 {
299 return inode_doinit_with_dentry(inode, NULL);
300 }
301
302 enum {
303 Opt_error = -1,
304 Opt_context = 1,
305 Opt_fscontext = 2,
306 Opt_defcontext = 3,
307 Opt_rootcontext = 4,
308 Opt_labelsupport = 5,
309 };
310
311 static const match_table_t tokens = {
312 {Opt_context, CONTEXT_STR "%s"},
313 {Opt_fscontext, FSCONTEXT_STR "%s"},
314 {Opt_defcontext, DEFCONTEXT_STR "%s"},
315 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316 {Opt_labelsupport, LABELSUPP_STR},
317 {Opt_error, NULL},
318 };
319
320 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
321
322 static int may_context_mount_sb_relabel(u32 sid,
323 struct superblock_security_struct *sbsec,
324 const struct cred *cred)
325 {
326 const struct task_security_struct *tsec = cred->security;
327 int rc;
328
329 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330 FILESYSTEM__RELABELFROM, NULL);
331 if (rc)
332 return rc;
333
334 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335 FILESYSTEM__RELABELTO, NULL);
336 return rc;
337 }
338
339 static int may_context_mount_inode_relabel(u32 sid,
340 struct superblock_security_struct *sbsec,
341 const struct cred *cred)
342 {
343 const struct task_security_struct *tsec = cred->security;
344 int rc;
345 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346 FILESYSTEM__RELABELFROM, NULL);
347 if (rc)
348 return rc;
349
350 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351 FILESYSTEM__ASSOCIATE, NULL);
352 return rc;
353 }
354
355 static int sb_finish_set_opts(struct super_block *sb)
356 {
357 struct superblock_security_struct *sbsec = sb->s_security;
358 struct dentry *root = sb->s_root;
359 struct inode *root_inode = root->d_inode;
360 int rc = 0;
361
362 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363 /* Make sure that the xattr handler exists and that no
364 error other than -ENODATA is returned by getxattr on
365 the root directory. -ENODATA is ok, as this may be
366 the first boot of the SELinux kernel before we have
367 assigned xattr values to the filesystem. */
368 if (!root_inode->i_op->getxattr) {
369 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370 "xattr support\n", sb->s_id, sb->s_type->name);
371 rc = -EOPNOTSUPP;
372 goto out;
373 }
374 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375 if (rc < 0 && rc != -ENODATA) {
376 if (rc == -EOPNOTSUPP)
377 printk(KERN_WARNING "SELinux: (dev %s, type "
378 "%s) has no security xattr handler\n",
379 sb->s_id, sb->s_type->name);
380 else
381 printk(KERN_WARNING "SELinux: (dev %s, type "
382 "%s) getxattr errno %d\n", sb->s_id,
383 sb->s_type->name, -rc);
384 goto out;
385 }
386 }
387
388 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389
390 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392 sb->s_id, sb->s_type->name);
393 else
394 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395 sb->s_id, sb->s_type->name,
396 labeling_behaviors[sbsec->behavior-1]);
397
398 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400 sbsec->behavior == SECURITY_FS_USE_NONE ||
401 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402 sbsec->flags &= ~SE_SBLABELSUPP;
403
404 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
405 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406 sbsec->flags |= SE_SBLABELSUPP;
407
408 /* Initialize the root inode. */
409 rc = inode_doinit_with_dentry(root_inode, root);
410
411 /* Initialize any other inodes associated with the superblock, e.g.
412 inodes created prior to initial policy load or inodes created
413 during get_sb by a pseudo filesystem that directly
414 populates itself. */
415 spin_lock(&sbsec->isec_lock);
416 next_inode:
417 if (!list_empty(&sbsec->isec_head)) {
418 struct inode_security_struct *isec =
419 list_entry(sbsec->isec_head.next,
420 struct inode_security_struct, list);
421 struct inode *inode = isec->inode;
422 spin_unlock(&sbsec->isec_lock);
423 inode = igrab(inode);
424 if (inode) {
425 if (!IS_PRIVATE(inode))
426 inode_doinit(inode);
427 iput(inode);
428 }
429 spin_lock(&sbsec->isec_lock);
430 list_del_init(&isec->list);
431 goto next_inode;
432 }
433 spin_unlock(&sbsec->isec_lock);
434 out:
435 return rc;
436 }
437
438 /*
439 * This function should allow an FS to ask what it's mount security
440 * options were so it can use those later for submounts, displaying
441 * mount options, or whatever.
442 */
443 static int selinux_get_mnt_opts(const struct super_block *sb,
444 struct security_mnt_opts *opts)
445 {
446 int rc = 0, i;
447 struct superblock_security_struct *sbsec = sb->s_security;
448 char *context = NULL;
449 u32 len;
450 char tmp;
451
452 security_init_mnt_opts(opts);
453
454 if (!(sbsec->flags & SE_SBINITIALIZED))
455 return -EINVAL;
456
457 if (!ss_initialized)
458 return -EINVAL;
459
460 tmp = sbsec->flags & SE_MNTMASK;
461 /* count the number of mount options for this sb */
462 for (i = 0; i < 8; i++) {
463 if (tmp & 0x01)
464 opts->num_mnt_opts++;
465 tmp >>= 1;
466 }
467 /* Check if the Label support flag is set */
468 if (sbsec->flags & SE_SBLABELSUPP)
469 opts->num_mnt_opts++;
470
471 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472 if (!opts->mnt_opts) {
473 rc = -ENOMEM;
474 goto out_free;
475 }
476
477 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478 if (!opts->mnt_opts_flags) {
479 rc = -ENOMEM;
480 goto out_free;
481 }
482
483 i = 0;
484 if (sbsec->flags & FSCONTEXT_MNT) {
485 rc = security_sid_to_context(sbsec->sid, &context, &len);
486 if (rc)
487 goto out_free;
488 opts->mnt_opts[i] = context;
489 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490 }
491 if (sbsec->flags & CONTEXT_MNT) {
492 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493 if (rc)
494 goto out_free;
495 opts->mnt_opts[i] = context;
496 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497 }
498 if (sbsec->flags & DEFCONTEXT_MNT) {
499 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500 if (rc)
501 goto out_free;
502 opts->mnt_opts[i] = context;
503 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504 }
505 if (sbsec->flags & ROOTCONTEXT_MNT) {
506 struct inode *root = sbsec->sb->s_root->d_inode;
507 struct inode_security_struct *isec = root->i_security;
508
509 rc = security_sid_to_context(isec->sid, &context, &len);
510 if (rc)
511 goto out_free;
512 opts->mnt_opts[i] = context;
513 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514 }
515 if (sbsec->flags & SE_SBLABELSUPP) {
516 opts->mnt_opts[i] = NULL;
517 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518 }
519
520 BUG_ON(i != opts->num_mnt_opts);
521
522 return 0;
523
524 out_free:
525 security_free_mnt_opts(opts);
526 return rc;
527 }
528
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530 u32 old_sid, u32 new_sid)
531 {
532 char mnt_flags = sbsec->flags & SE_MNTMASK;
533
534 /* check if the old mount command had the same options */
535 if (sbsec->flags & SE_SBINITIALIZED)
536 if (!(sbsec->flags & flag) ||
537 (old_sid != new_sid))
538 return 1;
539
540 /* check if we were passed the same options twice,
541 * aka someone passed context=a,context=b
542 */
543 if (!(sbsec->flags & SE_SBINITIALIZED))
544 if (mnt_flags & flag)
545 return 1;
546 return 0;
547 }
548
549 /*
550 * Allow filesystems with binary mount data to explicitly set mount point
551 * labeling information.
552 */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554 struct security_mnt_opts *opts)
555 {
556 const struct cred *cred = current_cred();
557 int rc = 0, i;
558 struct superblock_security_struct *sbsec = sb->s_security;
559 const char *name = sb->s_type->name;
560 struct inode *inode = sbsec->sb->s_root->d_inode;
561 struct inode_security_struct *root_isec = inode->i_security;
562 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563 u32 defcontext_sid = 0;
564 char **mount_options = opts->mnt_opts;
565 int *flags = opts->mnt_opts_flags;
566 int num_opts = opts->num_mnt_opts;
567
568 mutex_lock(&sbsec->lock);
569
570 if (!ss_initialized) {
571 if (!num_opts) {
572 /* Defer initialization until selinux_complete_init,
573 after the initial policy is loaded and the security
574 server is ready to handle calls. */
575 goto out;
576 }
577 rc = -EINVAL;
578 printk(KERN_WARNING "SELinux: Unable to set superblock options "
579 "before the security server is initialized\n");
580 goto out;
581 }
582
583 /*
584 * Binary mount data FS will come through this function twice. Once
585 * from an explicit call and once from the generic calls from the vfs.
586 * Since the generic VFS calls will not contain any security mount data
587 * we need to skip the double mount verification.
588 *
589 * This does open a hole in which we will not notice if the first
590 * mount using this sb set explict options and a second mount using
591 * this sb does not set any security options. (The first options
592 * will be used for both mounts)
593 */
594 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595 && (num_opts == 0))
596 goto out;
597
598 /*
599 * parse the mount options, check if they are valid sids.
600 * also check if someone is trying to mount the same sb more
601 * than once with different security options.
602 */
603 for (i = 0; i < num_opts; i++) {
604 u32 sid;
605
606 if (flags[i] == SE_SBLABELSUPP)
607 continue;
608 rc = security_context_to_sid(mount_options[i],
609 strlen(mount_options[i]), &sid);
610 if (rc) {
611 printk(KERN_WARNING "SELinux: security_context_to_sid"
612 "(%s) failed for (dev %s, type %s) errno=%d\n",
613 mount_options[i], sb->s_id, name, rc);
614 goto out;
615 }
616 switch (flags[i]) {
617 case FSCONTEXT_MNT:
618 fscontext_sid = sid;
619
620 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621 fscontext_sid))
622 goto out_double_mount;
623
624 sbsec->flags |= FSCONTEXT_MNT;
625 break;
626 case CONTEXT_MNT:
627 context_sid = sid;
628
629 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630 context_sid))
631 goto out_double_mount;
632
633 sbsec->flags |= CONTEXT_MNT;
634 break;
635 case ROOTCONTEXT_MNT:
636 rootcontext_sid = sid;
637
638 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639 rootcontext_sid))
640 goto out_double_mount;
641
642 sbsec->flags |= ROOTCONTEXT_MNT;
643
644 break;
645 case DEFCONTEXT_MNT:
646 defcontext_sid = sid;
647
648 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649 defcontext_sid))
650 goto out_double_mount;
651
652 sbsec->flags |= DEFCONTEXT_MNT;
653
654 break;
655 default:
656 rc = -EINVAL;
657 goto out;
658 }
659 }
660
661 if (sbsec->flags & SE_SBINITIALIZED) {
662 /* previously mounted with options, but not on this attempt? */
663 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664 goto out_double_mount;
665 rc = 0;
666 goto out;
667 }
668
669 if (strcmp(sb->s_type->name, "proc") == 0)
670 sbsec->flags |= SE_SBPROC;
671
672 /* Determine the labeling behavior to use for this filesystem type. */
673 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674 if (rc) {
675 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676 __func__, sb->s_type->name, rc);
677 goto out;
678 }
679
680 /* sets the context of the superblock for the fs being mounted. */
681 if (fscontext_sid) {
682 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683 if (rc)
684 goto out;
685
686 sbsec->sid = fscontext_sid;
687 }
688
689 /*
690 * Switch to using mount point labeling behavior.
691 * sets the label used on all file below the mountpoint, and will set
692 * the superblock context if not already set.
693 */
694 if (context_sid) {
695 if (!fscontext_sid) {
696 rc = may_context_mount_sb_relabel(context_sid, sbsec,
697 cred);
698 if (rc)
699 goto out;
700 sbsec->sid = context_sid;
701 } else {
702 rc = may_context_mount_inode_relabel(context_sid, sbsec,
703 cred);
704 if (rc)
705 goto out;
706 }
707 if (!rootcontext_sid)
708 rootcontext_sid = context_sid;
709
710 sbsec->mntpoint_sid = context_sid;
711 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712 }
713
714 if (rootcontext_sid) {
715 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716 cred);
717 if (rc)
718 goto out;
719
720 root_isec->sid = rootcontext_sid;
721 root_isec->initialized = 1;
722 }
723
724 if (defcontext_sid) {
725 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726 rc = -EINVAL;
727 printk(KERN_WARNING "SELinux: defcontext option is "
728 "invalid for this filesystem type\n");
729 goto out;
730 }
731
732 if (defcontext_sid != sbsec->def_sid) {
733 rc = may_context_mount_inode_relabel(defcontext_sid,
734 sbsec, cred);
735 if (rc)
736 goto out;
737 }
738
739 sbsec->def_sid = defcontext_sid;
740 }
741
742 rc = sb_finish_set_opts(sb);
743 out:
744 mutex_unlock(&sbsec->lock);
745 return rc;
746 out_double_mount:
747 rc = -EINVAL;
748 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
749 "security settings for (dev %s, type %s)\n", sb->s_id, name);
750 goto out;
751 }
752
753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754 struct super_block *newsb)
755 {
756 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757 struct superblock_security_struct *newsbsec = newsb->s_security;
758
759 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
760 int set_context = (oldsbsec->flags & CONTEXT_MNT);
761 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
762
763 /*
764 * if the parent was able to be mounted it clearly had no special lsm
765 * mount options. thus we can safely deal with this superblock later
766 */
767 if (!ss_initialized)
768 return;
769
770 /* how can we clone if the old one wasn't set up?? */
771 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772
773 /* if fs is reusing a sb, just let its options stand... */
774 if (newsbsec->flags & SE_SBINITIALIZED)
775 return;
776
777 mutex_lock(&newsbsec->lock);
778
779 newsbsec->flags = oldsbsec->flags;
780
781 newsbsec->sid = oldsbsec->sid;
782 newsbsec->def_sid = oldsbsec->def_sid;
783 newsbsec->behavior = oldsbsec->behavior;
784
785 if (set_context) {
786 u32 sid = oldsbsec->mntpoint_sid;
787
788 if (!set_fscontext)
789 newsbsec->sid = sid;
790 if (!set_rootcontext) {
791 struct inode *newinode = newsb->s_root->d_inode;
792 struct inode_security_struct *newisec = newinode->i_security;
793 newisec->sid = sid;
794 }
795 newsbsec->mntpoint_sid = sid;
796 }
797 if (set_rootcontext) {
798 const struct inode *oldinode = oldsb->s_root->d_inode;
799 const struct inode_security_struct *oldisec = oldinode->i_security;
800 struct inode *newinode = newsb->s_root->d_inode;
801 struct inode_security_struct *newisec = newinode->i_security;
802
803 newisec->sid = oldisec->sid;
804 }
805
806 sb_finish_set_opts(newsb);
807 mutex_unlock(&newsbsec->lock);
808 }
809
810 static int selinux_parse_opts_str(char *options,
811 struct security_mnt_opts *opts)
812 {
813 char *p;
814 char *context = NULL, *defcontext = NULL;
815 char *fscontext = NULL, *rootcontext = NULL;
816 int rc, num_mnt_opts = 0;
817
818 opts->num_mnt_opts = 0;
819
820 /* Standard string-based options. */
821 while ((p = strsep(&options, "|")) != NULL) {
822 int token;
823 substring_t args[MAX_OPT_ARGS];
824
825 if (!*p)
826 continue;
827
828 token = match_token(p, tokens, args);
829
830 switch (token) {
831 case Opt_context:
832 if (context || defcontext) {
833 rc = -EINVAL;
834 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835 goto out_err;
836 }
837 context = match_strdup(&args[0]);
838 if (!context) {
839 rc = -ENOMEM;
840 goto out_err;
841 }
842 break;
843
844 case Opt_fscontext:
845 if (fscontext) {
846 rc = -EINVAL;
847 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848 goto out_err;
849 }
850 fscontext = match_strdup(&args[0]);
851 if (!fscontext) {
852 rc = -ENOMEM;
853 goto out_err;
854 }
855 break;
856
857 case Opt_rootcontext:
858 if (rootcontext) {
859 rc = -EINVAL;
860 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861 goto out_err;
862 }
863 rootcontext = match_strdup(&args[0]);
864 if (!rootcontext) {
865 rc = -ENOMEM;
866 goto out_err;
867 }
868 break;
869
870 case Opt_defcontext:
871 if (context || defcontext) {
872 rc = -EINVAL;
873 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 goto out_err;
875 }
876 defcontext = match_strdup(&args[0]);
877 if (!defcontext) {
878 rc = -ENOMEM;
879 goto out_err;
880 }
881 break;
882 case Opt_labelsupport:
883 break;
884 default:
885 rc = -EINVAL;
886 printk(KERN_WARNING "SELinux: unknown mount option\n");
887 goto out_err;
888
889 }
890 }
891
892 rc = -ENOMEM;
893 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894 if (!opts->mnt_opts)
895 goto out_err;
896
897 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898 if (!opts->mnt_opts_flags) {
899 kfree(opts->mnt_opts);
900 goto out_err;
901 }
902
903 if (fscontext) {
904 opts->mnt_opts[num_mnt_opts] = fscontext;
905 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906 }
907 if (context) {
908 opts->mnt_opts[num_mnt_opts] = context;
909 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910 }
911 if (rootcontext) {
912 opts->mnt_opts[num_mnt_opts] = rootcontext;
913 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914 }
915 if (defcontext) {
916 opts->mnt_opts[num_mnt_opts] = defcontext;
917 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918 }
919
920 opts->num_mnt_opts = num_mnt_opts;
921 return 0;
922
923 out_err:
924 kfree(context);
925 kfree(defcontext);
926 kfree(fscontext);
927 kfree(rootcontext);
928 return rc;
929 }
930 /*
931 * string mount options parsing and call set the sbsec
932 */
933 static int superblock_doinit(struct super_block *sb, void *data)
934 {
935 int rc = 0;
936 char *options = data;
937 struct security_mnt_opts opts;
938
939 security_init_mnt_opts(&opts);
940
941 if (!data)
942 goto out;
943
944 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945
946 rc = selinux_parse_opts_str(options, &opts);
947 if (rc)
948 goto out_err;
949
950 out:
951 rc = selinux_set_mnt_opts(sb, &opts);
952
953 out_err:
954 security_free_mnt_opts(&opts);
955 return rc;
956 }
957
958 static void selinux_write_opts(struct seq_file *m,
959 struct security_mnt_opts *opts)
960 {
961 int i;
962 char *prefix;
963
964 for (i = 0; i < opts->num_mnt_opts; i++) {
965 char *has_comma;
966
967 if (opts->mnt_opts[i])
968 has_comma = strchr(opts->mnt_opts[i], ',');
969 else
970 has_comma = NULL;
971
972 switch (opts->mnt_opts_flags[i]) {
973 case CONTEXT_MNT:
974 prefix = CONTEXT_STR;
975 break;
976 case FSCONTEXT_MNT:
977 prefix = FSCONTEXT_STR;
978 break;
979 case ROOTCONTEXT_MNT:
980 prefix = ROOTCONTEXT_STR;
981 break;
982 case DEFCONTEXT_MNT:
983 prefix = DEFCONTEXT_STR;
984 break;
985 case SE_SBLABELSUPP:
986 seq_putc(m, ',');
987 seq_puts(m, LABELSUPP_STR);
988 continue;
989 default:
990 BUG();
991 return;
992 };
993 /* we need a comma before each option */
994 seq_putc(m, ',');
995 seq_puts(m, prefix);
996 if (has_comma)
997 seq_putc(m, '\"');
998 seq_puts(m, opts->mnt_opts[i]);
999 if (has_comma)
1000 seq_putc(m, '\"');
1001 }
1002 }
1003
1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005 {
1006 struct security_mnt_opts opts;
1007 int rc;
1008
1009 rc = selinux_get_mnt_opts(sb, &opts);
1010 if (rc) {
1011 /* before policy load we may get EINVAL, don't show anything */
1012 if (rc == -EINVAL)
1013 rc = 0;
1014 return rc;
1015 }
1016
1017 selinux_write_opts(m, &opts);
1018
1019 security_free_mnt_opts(&opts);
1020
1021 return rc;
1022 }
1023
1024 static inline u16 inode_mode_to_security_class(umode_t mode)
1025 {
1026 switch (mode & S_IFMT) {
1027 case S_IFSOCK:
1028 return SECCLASS_SOCK_FILE;
1029 case S_IFLNK:
1030 return SECCLASS_LNK_FILE;
1031 case S_IFREG:
1032 return SECCLASS_FILE;
1033 case S_IFBLK:
1034 return SECCLASS_BLK_FILE;
1035 case S_IFDIR:
1036 return SECCLASS_DIR;
1037 case S_IFCHR:
1038 return SECCLASS_CHR_FILE;
1039 case S_IFIFO:
1040 return SECCLASS_FIFO_FILE;
1041
1042 }
1043
1044 return SECCLASS_FILE;
1045 }
1046
1047 static inline int default_protocol_stream(int protocol)
1048 {
1049 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050 }
1051
1052 static inline int default_protocol_dgram(int protocol)
1053 {
1054 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055 }
1056
1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058 {
1059 switch (family) {
1060 case PF_UNIX:
1061 switch (type) {
1062 case SOCK_STREAM:
1063 case SOCK_SEQPACKET:
1064 return SECCLASS_UNIX_STREAM_SOCKET;
1065 case SOCK_DGRAM:
1066 return SECCLASS_UNIX_DGRAM_SOCKET;
1067 }
1068 break;
1069 case PF_INET:
1070 case PF_INET6:
1071 switch (type) {
1072 case SOCK_STREAM:
1073 if (default_protocol_stream(protocol))
1074 return SECCLASS_TCP_SOCKET;
1075 else
1076 return SECCLASS_RAWIP_SOCKET;
1077 case SOCK_DGRAM:
1078 if (default_protocol_dgram(protocol))
1079 return SECCLASS_UDP_SOCKET;
1080 else
1081 return SECCLASS_RAWIP_SOCKET;
1082 case SOCK_DCCP:
1083 return SECCLASS_DCCP_SOCKET;
1084 default:
1085 return SECCLASS_RAWIP_SOCKET;
1086 }
1087 break;
1088 case PF_NETLINK:
1089 switch (protocol) {
1090 case NETLINK_ROUTE:
1091 return SECCLASS_NETLINK_ROUTE_SOCKET;
1092 case NETLINK_FIREWALL:
1093 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094 case NETLINK_SOCK_DIAG:
1095 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096 case NETLINK_NFLOG:
1097 return SECCLASS_NETLINK_NFLOG_SOCKET;
1098 case NETLINK_XFRM:
1099 return SECCLASS_NETLINK_XFRM_SOCKET;
1100 case NETLINK_SELINUX:
1101 return SECCLASS_NETLINK_SELINUX_SOCKET;
1102 case NETLINK_AUDIT:
1103 return SECCLASS_NETLINK_AUDIT_SOCKET;
1104 case NETLINK_IP6_FW:
1105 return SECCLASS_NETLINK_IP6FW_SOCKET;
1106 case NETLINK_DNRTMSG:
1107 return SECCLASS_NETLINK_DNRT_SOCKET;
1108 case NETLINK_KOBJECT_UEVENT:
1109 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110 default:
1111 return SECCLASS_NETLINK_SOCKET;
1112 }
1113 case PF_PACKET:
1114 return SECCLASS_PACKET_SOCKET;
1115 case PF_KEY:
1116 return SECCLASS_KEY_SOCKET;
1117 case PF_APPLETALK:
1118 return SECCLASS_APPLETALK_SOCKET;
1119 }
1120
1121 return SECCLASS_SOCKET;
1122 }
1123
1124 #ifdef CONFIG_PROC_FS
1125 static int selinux_proc_get_sid(struct dentry *dentry,
1126 u16 tclass,
1127 u32 *sid)
1128 {
1129 int rc;
1130 char *buffer, *path;
1131
1132 buffer = (char *)__get_free_page(GFP_KERNEL);
1133 if (!buffer)
1134 return -ENOMEM;
1135
1136 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137 if (IS_ERR(path))
1138 rc = PTR_ERR(path);
1139 else {
1140 /* each process gets a /proc/PID/ entry. Strip off the
1141 * PID part to get a valid selinux labeling.
1142 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143 while (path[1] >= '0' && path[1] <= '9') {
1144 path[1] = '/';
1145 path++;
1146 }
1147 rc = security_genfs_sid("proc", path, tclass, sid);
1148 }
1149 free_page((unsigned long)buffer);
1150 return rc;
1151 }
1152 #else
1153 static int selinux_proc_get_sid(struct dentry *dentry,
1154 u16 tclass,
1155 u32 *sid)
1156 {
1157 return -EINVAL;
1158 }
1159 #endif
1160
1161 /* The inode's security attributes must be initialized before first use. */
1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163 {
1164 struct superblock_security_struct *sbsec = NULL;
1165 struct inode_security_struct *isec = inode->i_security;
1166 u32 sid;
1167 struct dentry *dentry;
1168 #define INITCONTEXTLEN 255
1169 char *context = NULL;
1170 unsigned len = 0;
1171 int rc = 0;
1172
1173 if (isec->initialized)
1174 goto out;
1175
1176 mutex_lock(&isec->lock);
1177 if (isec->initialized)
1178 goto out_unlock;
1179
1180 sbsec = inode->i_sb->s_security;
1181 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182 /* Defer initialization until selinux_complete_init,
1183 after the initial policy is loaded and the security
1184 server is ready to handle calls. */
1185 spin_lock(&sbsec->isec_lock);
1186 if (list_empty(&isec->list))
1187 list_add(&isec->list, &sbsec->isec_head);
1188 spin_unlock(&sbsec->isec_lock);
1189 goto out_unlock;
1190 }
1191
1192 switch (sbsec->behavior) {
1193 case SECURITY_FS_USE_XATTR:
1194 if (!inode->i_op->getxattr) {
1195 isec->sid = sbsec->def_sid;
1196 break;
1197 }
1198
1199 /* Need a dentry, since the xattr API requires one.
1200 Life would be simpler if we could just pass the inode. */
1201 if (opt_dentry) {
1202 /* Called from d_instantiate or d_splice_alias. */
1203 dentry = dget(opt_dentry);
1204 } else {
1205 /* Called from selinux_complete_init, try to find a dentry. */
1206 dentry = d_find_alias(inode);
1207 }
1208 if (!dentry) {
1209 /*
1210 * this is can be hit on boot when a file is accessed
1211 * before the policy is loaded. When we load policy we
1212 * may find inodes that have no dentry on the
1213 * sbsec->isec_head list. No reason to complain as these
1214 * will get fixed up the next time we go through
1215 * inode_doinit with a dentry, before these inodes could
1216 * be used again by userspace.
1217 */
1218 goto out_unlock;
1219 }
1220
1221 len = INITCONTEXTLEN;
1222 context = kmalloc(len+1, GFP_NOFS);
1223 if (!context) {
1224 rc = -ENOMEM;
1225 dput(dentry);
1226 goto out_unlock;
1227 }
1228 context[len] = '\0';
1229 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230 context, len);
1231 if (rc == -ERANGE) {
1232 kfree(context);
1233
1234 /* Need a larger buffer. Query for the right size. */
1235 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236 NULL, 0);
1237 if (rc < 0) {
1238 dput(dentry);
1239 goto out_unlock;
1240 }
1241 len = rc;
1242 context = kmalloc(len+1, GFP_NOFS);
1243 if (!context) {
1244 rc = -ENOMEM;
1245 dput(dentry);
1246 goto out_unlock;
1247 }
1248 context[len] = '\0';
1249 rc = inode->i_op->getxattr(dentry,
1250 XATTR_NAME_SELINUX,
1251 context, len);
1252 }
1253 dput(dentry);
1254 if (rc < 0) {
1255 if (rc != -ENODATA) {
1256 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1257 "%d for dev=%s ino=%ld\n", __func__,
1258 -rc, inode->i_sb->s_id, inode->i_ino);
1259 kfree(context);
1260 goto out_unlock;
1261 }
1262 /* Map ENODATA to the default file SID */
1263 sid = sbsec->def_sid;
1264 rc = 0;
1265 } else {
1266 rc = security_context_to_sid_default(context, rc, &sid,
1267 sbsec->def_sid,
1268 GFP_NOFS);
1269 if (rc) {
1270 char *dev = inode->i_sb->s_id;
1271 unsigned long ino = inode->i_ino;
1272
1273 if (rc == -EINVAL) {
1274 if (printk_ratelimit())
1275 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276 "context=%s. This indicates you may need to relabel the inode or the "
1277 "filesystem in question.\n", ino, dev, context);
1278 } else {
1279 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1280 "returned %d for dev=%s ino=%ld\n",
1281 __func__, context, -rc, dev, ino);
1282 }
1283 kfree(context);
1284 /* Leave with the unlabeled SID */
1285 rc = 0;
1286 break;
1287 }
1288 }
1289 kfree(context);
1290 isec->sid = sid;
1291 break;
1292 case SECURITY_FS_USE_TASK:
1293 isec->sid = isec->task_sid;
1294 break;
1295 case SECURITY_FS_USE_TRANS:
1296 /* Default to the fs SID. */
1297 isec->sid = sbsec->sid;
1298
1299 /* Try to obtain a transition SID. */
1300 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302 isec->sclass, NULL, &sid);
1303 if (rc)
1304 goto out_unlock;
1305 isec->sid = sid;
1306 break;
1307 case SECURITY_FS_USE_MNTPOINT:
1308 isec->sid = sbsec->mntpoint_sid;
1309 break;
1310 default:
1311 /* Default to the fs superblock SID. */
1312 isec->sid = sbsec->sid;
1313
1314 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315 if (opt_dentry) {
1316 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317 rc = selinux_proc_get_sid(opt_dentry,
1318 isec->sclass,
1319 &sid);
1320 if (rc)
1321 goto out_unlock;
1322 isec->sid = sid;
1323 }
1324 }
1325 break;
1326 }
1327
1328 isec->initialized = 1;
1329
1330 out_unlock:
1331 mutex_unlock(&isec->lock);
1332 out:
1333 if (isec->sclass == SECCLASS_FILE)
1334 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335 return rc;
1336 }
1337
1338 /* Convert a Linux signal to an access vector. */
1339 static inline u32 signal_to_av(int sig)
1340 {
1341 u32 perm = 0;
1342
1343 switch (sig) {
1344 case SIGCHLD:
1345 /* Commonly granted from child to parent. */
1346 perm = PROCESS__SIGCHLD;
1347 break;
1348 case SIGKILL:
1349 /* Cannot be caught or ignored */
1350 perm = PROCESS__SIGKILL;
1351 break;
1352 case SIGSTOP:
1353 /* Cannot be caught or ignored */
1354 perm = PROCESS__SIGSTOP;
1355 break;
1356 default:
1357 /* All other signals. */
1358 perm = PROCESS__SIGNAL;
1359 break;
1360 }
1361
1362 return perm;
1363 }
1364
1365 /*
1366 * Check permission between a pair of credentials
1367 * fork check, ptrace check, etc.
1368 */
1369 static int cred_has_perm(const struct cred *actor,
1370 const struct cred *target,
1371 u32 perms)
1372 {
1373 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376 }
1377
1378 /*
1379 * Check permission between a pair of tasks, e.g. signal checks,
1380 * fork check, ptrace check, etc.
1381 * tsk1 is the actor and tsk2 is the target
1382 * - this uses the default subjective creds of tsk1
1383 */
1384 static int task_has_perm(const struct task_struct *tsk1,
1385 const struct task_struct *tsk2,
1386 u32 perms)
1387 {
1388 const struct task_security_struct *__tsec1, *__tsec2;
1389 u32 sid1, sid2;
1390
1391 rcu_read_lock();
1392 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1393 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1394 rcu_read_unlock();
1395 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396 }
1397
1398 /*
1399 * Check permission between current and another task, e.g. signal checks,
1400 * fork check, ptrace check, etc.
1401 * current is the actor and tsk2 is the target
1402 * - this uses current's subjective creds
1403 */
1404 static int current_has_perm(const struct task_struct *tsk,
1405 u32 perms)
1406 {
1407 u32 sid, tsid;
1408
1409 sid = current_sid();
1410 tsid = task_sid(tsk);
1411 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 }
1413
1414 #if CAP_LAST_CAP > 63
1415 #error Fix SELinux to handle capabilities > 63.
1416 #endif
1417
1418 /* Check whether a task is allowed to use a capability. */
1419 static int cred_has_capability(const struct cred *cred,
1420 int cap, int audit)
1421 {
1422 struct common_audit_data ad;
1423 struct av_decision avd;
1424 u16 sclass;
1425 u32 sid = cred_sid(cred);
1426 u32 av = CAP_TO_MASK(cap);
1427 int rc;
1428
1429 ad.type = LSM_AUDIT_DATA_CAP;
1430 ad.u.cap = cap;
1431
1432 switch (CAP_TO_INDEX(cap)) {
1433 case 0:
1434 sclass = SECCLASS_CAPABILITY;
1435 break;
1436 case 1:
1437 sclass = SECCLASS_CAPABILITY2;
1438 break;
1439 default:
1440 printk(KERN_ERR
1441 "SELinux: out of range capability %d\n", cap);
1442 BUG();
1443 return -EINVAL;
1444 }
1445
1446 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447 if (audit == SECURITY_CAP_AUDIT) {
1448 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449 if (rc2)
1450 return rc2;
1451 }
1452 return rc;
1453 }
1454
1455 /* Check whether a task is allowed to use a system operation. */
1456 static int task_has_system(struct task_struct *tsk,
1457 u32 perms)
1458 {
1459 u32 sid = task_sid(tsk);
1460
1461 return avc_has_perm(sid, SECINITSID_KERNEL,
1462 SECCLASS_SYSTEM, perms, NULL);
1463 }
1464
1465 /* Check whether a task has a particular permission to an inode.
1466 The 'adp' parameter is optional and allows other audit
1467 data to be passed (e.g. the dentry). */
1468 static int inode_has_perm(const struct cred *cred,
1469 struct inode *inode,
1470 u32 perms,
1471 struct common_audit_data *adp,
1472 unsigned flags)
1473 {
1474 struct inode_security_struct *isec;
1475 u32 sid;
1476
1477 validate_creds(cred);
1478
1479 if (unlikely(IS_PRIVATE(inode)))
1480 return 0;
1481
1482 sid = cred_sid(cred);
1483 isec = inode->i_security;
1484
1485 return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486 }
1487
1488 /* Same as inode_has_perm, but pass explicit audit data containing
1489 the dentry to help the auditing code to more easily generate the
1490 pathname if needed. */
1491 static inline int dentry_has_perm(const struct cred *cred,
1492 struct dentry *dentry,
1493 u32 av)
1494 {
1495 struct inode *inode = dentry->d_inode;
1496 struct common_audit_data ad;
1497
1498 ad.type = LSM_AUDIT_DATA_DENTRY;
1499 ad.u.dentry = dentry;
1500 return inode_has_perm(cred, inode, av, &ad, 0);
1501 }
1502
1503 /* Same as inode_has_perm, but pass explicit audit data containing
1504 the path to help the auditing code to more easily generate the
1505 pathname if needed. */
1506 static inline int path_has_perm(const struct cred *cred,
1507 struct path *path,
1508 u32 av)
1509 {
1510 struct inode *inode = path->dentry->d_inode;
1511 struct common_audit_data ad;
1512
1513 ad.type = LSM_AUDIT_DATA_PATH;
1514 ad.u.path = *path;
1515 return inode_has_perm(cred, inode, av, &ad, 0);
1516 }
1517
1518 /* Check whether a task can use an open file descriptor to
1519 access an inode in a given way. Check access to the
1520 descriptor itself, and then use dentry_has_perm to
1521 check a particular permission to the file.
1522 Access to the descriptor is implicitly granted if it
1523 has the same SID as the process. If av is zero, then
1524 access to the file is not checked, e.g. for cases
1525 where only the descriptor is affected like seek. */
1526 static int file_has_perm(const struct cred *cred,
1527 struct file *file,
1528 u32 av)
1529 {
1530 struct file_security_struct *fsec = file->f_security;
1531 struct inode *inode = file_inode(file);
1532 struct common_audit_data ad;
1533 u32 sid = cred_sid(cred);
1534 int rc;
1535
1536 ad.type = LSM_AUDIT_DATA_PATH;
1537 ad.u.path = file->f_path;
1538
1539 if (sid != fsec->sid) {
1540 rc = avc_has_perm(sid, fsec->sid,
1541 SECCLASS_FD,
1542 FD__USE,
1543 &ad);
1544 if (rc)
1545 goto out;
1546 }
1547
1548 /* av is zero if only checking access to the descriptor. */
1549 rc = 0;
1550 if (av)
1551 rc = inode_has_perm(cred, inode, av, &ad, 0);
1552
1553 out:
1554 return rc;
1555 }
1556
1557 /* Check whether a task can create a file. */
1558 static int may_create(struct inode *dir,
1559 struct dentry *dentry,
1560 u16 tclass)
1561 {
1562 const struct task_security_struct *tsec = current_security();
1563 struct inode_security_struct *dsec;
1564 struct superblock_security_struct *sbsec;
1565 u32 sid, newsid;
1566 struct common_audit_data ad;
1567 int rc;
1568
1569 dsec = dir->i_security;
1570 sbsec = dir->i_sb->s_security;
1571
1572 sid = tsec->sid;
1573 newsid = tsec->create_sid;
1574
1575 ad.type = LSM_AUDIT_DATA_DENTRY;
1576 ad.u.dentry = dentry;
1577
1578 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579 DIR__ADD_NAME | DIR__SEARCH,
1580 &ad);
1581 if (rc)
1582 return rc;
1583
1584 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585 rc = security_transition_sid(sid, dsec->sid, tclass,
1586 &dentry->d_name, &newsid);
1587 if (rc)
1588 return rc;
1589 }
1590
1591 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592 if (rc)
1593 return rc;
1594
1595 return avc_has_perm(newsid, sbsec->sid,
1596 SECCLASS_FILESYSTEM,
1597 FILESYSTEM__ASSOCIATE, &ad);
1598 }
1599
1600 /* Check whether a task can create a key. */
1601 static int may_create_key(u32 ksid,
1602 struct task_struct *ctx)
1603 {
1604 u32 sid = task_sid(ctx);
1605
1606 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607 }
1608
1609 #define MAY_LINK 0
1610 #define MAY_UNLINK 1
1611 #define MAY_RMDIR 2
1612
1613 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1614 static int may_link(struct inode *dir,
1615 struct dentry *dentry,
1616 int kind)
1617
1618 {
1619 struct inode_security_struct *dsec, *isec;
1620 struct common_audit_data ad;
1621 u32 sid = current_sid();
1622 u32 av;
1623 int rc;
1624
1625 dsec = dir->i_security;
1626 isec = dentry->d_inode->i_security;
1627
1628 ad.type = LSM_AUDIT_DATA_DENTRY;
1629 ad.u.dentry = dentry;
1630
1631 av = DIR__SEARCH;
1632 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634 if (rc)
1635 return rc;
1636
1637 switch (kind) {
1638 case MAY_LINK:
1639 av = FILE__LINK;
1640 break;
1641 case MAY_UNLINK:
1642 av = FILE__UNLINK;
1643 break;
1644 case MAY_RMDIR:
1645 av = DIR__RMDIR;
1646 break;
1647 default:
1648 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1649 __func__, kind);
1650 return 0;
1651 }
1652
1653 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654 return rc;
1655 }
1656
1657 static inline int may_rename(struct inode *old_dir,
1658 struct dentry *old_dentry,
1659 struct inode *new_dir,
1660 struct dentry *new_dentry)
1661 {
1662 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663 struct common_audit_data ad;
1664 u32 sid = current_sid();
1665 u32 av;
1666 int old_is_dir, new_is_dir;
1667 int rc;
1668
1669 old_dsec = old_dir->i_security;
1670 old_isec = old_dentry->d_inode->i_security;
1671 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672 new_dsec = new_dir->i_security;
1673
1674 ad.type = LSM_AUDIT_DATA_DENTRY;
1675
1676 ad.u.dentry = old_dentry;
1677 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679 if (rc)
1680 return rc;
1681 rc = avc_has_perm(sid, old_isec->sid,
1682 old_isec->sclass, FILE__RENAME, &ad);
1683 if (rc)
1684 return rc;
1685 if (old_is_dir && new_dir != old_dir) {
1686 rc = avc_has_perm(sid, old_isec->sid,
1687 old_isec->sclass, DIR__REPARENT, &ad);
1688 if (rc)
1689 return rc;
1690 }
1691
1692 ad.u.dentry = new_dentry;
1693 av = DIR__ADD_NAME | DIR__SEARCH;
1694 if (new_dentry->d_inode)
1695 av |= DIR__REMOVE_NAME;
1696 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697 if (rc)
1698 return rc;
1699 if (new_dentry->d_inode) {
1700 new_isec = new_dentry->d_inode->i_security;
1701 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702 rc = avc_has_perm(sid, new_isec->sid,
1703 new_isec->sclass,
1704 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705 if (rc)
1706 return rc;
1707 }
1708
1709 return 0;
1710 }
1711
1712 /* Check whether a task can perform a filesystem operation. */
1713 static int superblock_has_perm(const struct cred *cred,
1714 struct super_block *sb,
1715 u32 perms,
1716 struct common_audit_data *ad)
1717 {
1718 struct superblock_security_struct *sbsec;
1719 u32 sid = cred_sid(cred);
1720
1721 sbsec = sb->s_security;
1722 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723 }
1724
1725 /* Convert a Linux mode and permission mask to an access vector. */
1726 static inline u32 file_mask_to_av(int mode, int mask)
1727 {
1728 u32 av = 0;
1729
1730 if (!S_ISDIR(mode)) {
1731 if (mask & MAY_EXEC)
1732 av |= FILE__EXECUTE;
1733 if (mask & MAY_READ)
1734 av |= FILE__READ;
1735
1736 if (mask & MAY_APPEND)
1737 av |= FILE__APPEND;
1738 else if (mask & MAY_WRITE)
1739 av |= FILE__WRITE;
1740
1741 } else {
1742 if (mask & MAY_EXEC)
1743 av |= DIR__SEARCH;
1744 if (mask & MAY_WRITE)
1745 av |= DIR__WRITE;
1746 if (mask & MAY_READ)
1747 av |= DIR__READ;
1748 }
1749
1750 return av;
1751 }
1752
1753 /* Convert a Linux file to an access vector. */
1754 static inline u32 file_to_av(struct file *file)
1755 {
1756 u32 av = 0;
1757
1758 if (file->f_mode & FMODE_READ)
1759 av |= FILE__READ;
1760 if (file->f_mode & FMODE_WRITE) {
1761 if (file->f_flags & O_APPEND)
1762 av |= FILE__APPEND;
1763 else
1764 av |= FILE__WRITE;
1765 }
1766 if (!av) {
1767 /*
1768 * Special file opened with flags 3 for ioctl-only use.
1769 */
1770 av = FILE__IOCTL;
1771 }
1772
1773 return av;
1774 }
1775
1776 /*
1777 * Convert a file to an access vector and include the correct open
1778 * open permission.
1779 */
1780 static inline u32 open_file_to_av(struct file *file)
1781 {
1782 u32 av = file_to_av(file);
1783
1784 if (selinux_policycap_openperm)
1785 av |= FILE__OPEN;
1786
1787 return av;
1788 }
1789
1790 /* Hook functions begin here. */
1791
1792 static int selinux_ptrace_access_check(struct task_struct *child,
1793 unsigned int mode)
1794 {
1795 int rc;
1796
1797 rc = cap_ptrace_access_check(child, mode);
1798 if (rc)
1799 return rc;
1800
1801 if (mode & PTRACE_MODE_READ) {
1802 u32 sid = current_sid();
1803 u32 csid = task_sid(child);
1804 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805 }
1806
1807 return current_has_perm(child, PROCESS__PTRACE);
1808 }
1809
1810 static int selinux_ptrace_traceme(struct task_struct *parent)
1811 {
1812 int rc;
1813
1814 rc = cap_ptrace_traceme(parent);
1815 if (rc)
1816 return rc;
1817
1818 return task_has_perm(parent, current, PROCESS__PTRACE);
1819 }
1820
1821 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823 {
1824 int error;
1825
1826 error = current_has_perm(target, PROCESS__GETCAP);
1827 if (error)
1828 return error;
1829
1830 return cap_capget(target, effective, inheritable, permitted);
1831 }
1832
1833 static int selinux_capset(struct cred *new, const struct cred *old,
1834 const kernel_cap_t *effective,
1835 const kernel_cap_t *inheritable,
1836 const kernel_cap_t *permitted)
1837 {
1838 int error;
1839
1840 error = cap_capset(new, old,
1841 effective, inheritable, permitted);
1842 if (error)
1843 return error;
1844
1845 return cred_has_perm(old, new, PROCESS__SETCAP);
1846 }
1847
1848 /*
1849 * (This comment used to live with the selinux_task_setuid hook,
1850 * which was removed).
1851 *
1852 * Since setuid only affects the current process, and since the SELinux
1853 * controls are not based on the Linux identity attributes, SELinux does not
1854 * need to control this operation. However, SELinux does control the use of
1855 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856 */
1857
1858 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859 int cap, int audit)
1860 {
1861 int rc;
1862
1863 rc = cap_capable(cred, ns, cap, audit);
1864 if (rc)
1865 return rc;
1866
1867 return cred_has_capability(cred, cap, audit);
1868 }
1869
1870 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871 {
1872 const struct cred *cred = current_cred();
1873 int rc = 0;
1874
1875 if (!sb)
1876 return 0;
1877
1878 switch (cmds) {
1879 case Q_SYNC:
1880 case Q_QUOTAON:
1881 case Q_QUOTAOFF:
1882 case Q_SETINFO:
1883 case Q_SETQUOTA:
1884 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885 break;
1886 case Q_GETFMT:
1887 case Q_GETINFO:
1888 case Q_GETQUOTA:
1889 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890 break;
1891 default:
1892 rc = 0; /* let the kernel handle invalid cmds */
1893 break;
1894 }
1895 return rc;
1896 }
1897
1898 static int selinux_quota_on(struct dentry *dentry)
1899 {
1900 const struct cred *cred = current_cred();
1901
1902 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903 }
1904
1905 static int selinux_syslog(int type)
1906 {
1907 int rc;
1908
1909 switch (type) {
1910 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
1911 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1912 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913 break;
1914 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1915 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
1916 /* Set level of messages printed to console */
1917 case SYSLOG_ACTION_CONSOLE_LEVEL:
1918 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919 break;
1920 case SYSLOG_ACTION_CLOSE: /* Close log */
1921 case SYSLOG_ACTION_OPEN: /* Open log */
1922 case SYSLOG_ACTION_READ: /* Read from log */
1923 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
1924 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
1925 default:
1926 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927 break;
1928 }
1929 return rc;
1930 }
1931
1932 /*
1933 * Check that a process has enough memory to allocate a new virtual
1934 * mapping. 0 means there is enough memory for the allocation to
1935 * succeed and -ENOMEM implies there is not.
1936 *
1937 * Do not audit the selinux permission check, as this is applied to all
1938 * processes that allocate mappings.
1939 */
1940 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941 {
1942 int rc, cap_sys_admin = 0;
1943
1944 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945 SECURITY_CAP_NOAUDIT);
1946 if (rc == 0)
1947 cap_sys_admin = 1;
1948
1949 return __vm_enough_memory(mm, pages, cap_sys_admin);
1950 }
1951
1952 /* binprm security operations */
1953
1954 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955 {
1956 const struct task_security_struct *old_tsec;
1957 struct task_security_struct *new_tsec;
1958 struct inode_security_struct *isec;
1959 struct common_audit_data ad;
1960 struct inode *inode = file_inode(bprm->file);
1961 int rc;
1962
1963 rc = cap_bprm_set_creds(bprm);
1964 if (rc)
1965 return rc;
1966
1967 /* SELinux context only depends on initial program or script and not
1968 * the script interpreter */
1969 if (bprm->cred_prepared)
1970 return 0;
1971
1972 old_tsec = current_security();
1973 new_tsec = bprm->cred->security;
1974 isec = inode->i_security;
1975
1976 /* Default to the current task SID. */
1977 new_tsec->sid = old_tsec->sid;
1978 new_tsec->osid = old_tsec->sid;
1979
1980 /* Reset fs, key, and sock SIDs on execve. */
1981 new_tsec->create_sid = 0;
1982 new_tsec->keycreate_sid = 0;
1983 new_tsec->sockcreate_sid = 0;
1984
1985 if (old_tsec->exec_sid) {
1986 new_tsec->sid = old_tsec->exec_sid;
1987 /* Reset exec SID on execve. */
1988 new_tsec->exec_sid = 0;
1989
1990 /*
1991 * Minimize confusion: if no_new_privs and a transition is
1992 * explicitly requested, then fail the exec.
1993 */
1994 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995 return -EPERM;
1996 } else {
1997 /* Check for a default transition on this program. */
1998 rc = security_transition_sid(old_tsec->sid, isec->sid,
1999 SECCLASS_PROCESS, NULL,
2000 &new_tsec->sid);
2001 if (rc)
2002 return rc;
2003 }
2004
2005 ad.type = LSM_AUDIT_DATA_PATH;
2006 ad.u.path = bprm->file->f_path;
2007
2008 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010 new_tsec->sid = old_tsec->sid;
2011
2012 if (new_tsec->sid == old_tsec->sid) {
2013 rc = avc_has_perm(old_tsec->sid, isec->sid,
2014 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015 if (rc)
2016 return rc;
2017 } else {
2018 /* Check permissions for the transition. */
2019 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021 if (rc)
2022 return rc;
2023
2024 rc = avc_has_perm(new_tsec->sid, isec->sid,
2025 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026 if (rc)
2027 return rc;
2028
2029 /* Check for shared state */
2030 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032 SECCLASS_PROCESS, PROCESS__SHARE,
2033 NULL);
2034 if (rc)
2035 return -EPERM;
2036 }
2037
2038 /* Make sure that anyone attempting to ptrace over a task that
2039 * changes its SID has the appropriate permit */
2040 if (bprm->unsafe &
2041 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042 struct task_struct *tracer;
2043 struct task_security_struct *sec;
2044 u32 ptsid = 0;
2045
2046 rcu_read_lock();
2047 tracer = ptrace_parent(current);
2048 if (likely(tracer != NULL)) {
2049 sec = __task_cred(tracer)->security;
2050 ptsid = sec->sid;
2051 }
2052 rcu_read_unlock();
2053
2054 if (ptsid != 0) {
2055 rc = avc_has_perm(ptsid, new_tsec->sid,
2056 SECCLASS_PROCESS,
2057 PROCESS__PTRACE, NULL);
2058 if (rc)
2059 return -EPERM;
2060 }
2061 }
2062
2063 /* Clear any possibly unsafe personality bits on exec: */
2064 bprm->per_clear |= PER_CLEAR_ON_SETID;
2065 }
2066
2067 return 0;
2068 }
2069
2070 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071 {
2072 const struct task_security_struct *tsec = current_security();
2073 u32 sid, osid;
2074 int atsecure = 0;
2075
2076 sid = tsec->sid;
2077 osid = tsec->osid;
2078
2079 if (osid != sid) {
2080 /* Enable secure mode for SIDs transitions unless
2081 the noatsecure permission is granted between
2082 the two SIDs, i.e. ahp returns 0. */
2083 atsecure = avc_has_perm(osid, sid,
2084 SECCLASS_PROCESS,
2085 PROCESS__NOATSECURE, NULL);
2086 }
2087
2088 return (atsecure || cap_bprm_secureexec(bprm));
2089 }
2090
2091 static int match_file(const void *p, struct file *file, unsigned fd)
2092 {
2093 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2094 }
2095
2096 /* Derived from fs/exec.c:flush_old_files. */
2097 static inline void flush_unauthorized_files(const struct cred *cred,
2098 struct files_struct *files)
2099 {
2100 struct file *file, *devnull = NULL;
2101 struct tty_struct *tty;
2102 int drop_tty = 0;
2103 unsigned n;
2104
2105 tty = get_current_tty();
2106 if (tty) {
2107 spin_lock(&tty_files_lock);
2108 if (!list_empty(&tty->tty_files)) {
2109 struct tty_file_private *file_priv;
2110
2111 /* Revalidate access to controlling tty.
2112 Use path_has_perm on the tty path directly rather
2113 than using file_has_perm, as this particular open
2114 file may belong to another process and we are only
2115 interested in the inode-based check here. */
2116 file_priv = list_first_entry(&tty->tty_files,
2117 struct tty_file_private, list);
2118 file = file_priv->file;
2119 if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2120 drop_tty = 1;
2121 }
2122 spin_unlock(&tty_files_lock);
2123 tty_kref_put(tty);
2124 }
2125 /* Reset controlling tty. */
2126 if (drop_tty)
2127 no_tty();
2128
2129 /* Revalidate access to inherited open files. */
2130 n = iterate_fd(files, 0, match_file, cred);
2131 if (!n) /* none found? */
2132 return;
2133
2134 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2135 if (IS_ERR(devnull))
2136 devnull = NULL;
2137 /* replace all the matching ones with this */
2138 do {
2139 replace_fd(n - 1, devnull, 0);
2140 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2141 if (devnull)
2142 fput(devnull);
2143 }
2144
2145 /*
2146 * Prepare a process for imminent new credential changes due to exec
2147 */
2148 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2149 {
2150 struct task_security_struct *new_tsec;
2151 struct rlimit *rlim, *initrlim;
2152 int rc, i;
2153
2154 new_tsec = bprm->cred->security;
2155 if (new_tsec->sid == new_tsec->osid)
2156 return;
2157
2158 /* Close files for which the new task SID is not authorized. */
2159 flush_unauthorized_files(bprm->cred, current->files);
2160
2161 /* Always clear parent death signal on SID transitions. */
2162 current->pdeath_signal = 0;
2163
2164 /* Check whether the new SID can inherit resource limits from the old
2165 * SID. If not, reset all soft limits to the lower of the current
2166 * task's hard limit and the init task's soft limit.
2167 *
2168 * Note that the setting of hard limits (even to lower them) can be
2169 * controlled by the setrlimit check. The inclusion of the init task's
2170 * soft limit into the computation is to avoid resetting soft limits
2171 * higher than the default soft limit for cases where the default is
2172 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2173 */
2174 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2175 PROCESS__RLIMITINH, NULL);
2176 if (rc) {
2177 /* protect against do_prlimit() */
2178 task_lock(current);
2179 for (i = 0; i < RLIM_NLIMITS; i++) {
2180 rlim = current->signal->rlim + i;
2181 initrlim = init_task.signal->rlim + i;
2182 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2183 }
2184 task_unlock(current);
2185 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2186 }
2187 }
2188
2189 /*
2190 * Clean up the process immediately after the installation of new credentials
2191 * due to exec
2192 */
2193 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2194 {
2195 const struct task_security_struct *tsec = current_security();
2196 struct itimerval itimer;
2197 u32 osid, sid;
2198 int rc, i;
2199
2200 osid = tsec->osid;
2201 sid = tsec->sid;
2202
2203 if (sid == osid)
2204 return;
2205
2206 /* Check whether the new SID can inherit signal state from the old SID.
2207 * If not, clear itimers to avoid subsequent signal generation and
2208 * flush and unblock signals.
2209 *
2210 * This must occur _after_ the task SID has been updated so that any
2211 * kill done after the flush will be checked against the new SID.
2212 */
2213 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2214 if (rc) {
2215 memset(&itimer, 0, sizeof itimer);
2216 for (i = 0; i < 3; i++)
2217 do_setitimer(i, &itimer, NULL);
2218 spin_lock_irq(&current->sighand->siglock);
2219 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2220 __flush_signals(current);
2221 flush_signal_handlers(current, 1);
2222 sigemptyset(&current->blocked);
2223 }
2224 spin_unlock_irq(&current->sighand->siglock);
2225 }
2226
2227 /* Wake up the parent if it is waiting so that it can recheck
2228 * wait permission to the new task SID. */
2229 read_lock(&tasklist_lock);
2230 __wake_up_parent(current, current->real_parent);
2231 read_unlock(&tasklist_lock);
2232 }
2233
2234 /* superblock security operations */
2235
2236 static int selinux_sb_alloc_security(struct super_block *sb)
2237 {
2238 return superblock_alloc_security(sb);
2239 }
2240
2241 static void selinux_sb_free_security(struct super_block *sb)
2242 {
2243 superblock_free_security(sb);
2244 }
2245
2246 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2247 {
2248 if (plen > olen)
2249 return 0;
2250
2251 return !memcmp(prefix, option, plen);
2252 }
2253
2254 static inline int selinux_option(char *option, int len)
2255 {
2256 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2257 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2258 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2259 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2260 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2261 }
2262
2263 static inline void take_option(char **to, char *from, int *first, int len)
2264 {
2265 if (!*first) {
2266 **to = ',';
2267 *to += 1;
2268 } else
2269 *first = 0;
2270 memcpy(*to, from, len);
2271 *to += len;
2272 }
2273
2274 static inline void take_selinux_option(char **to, char *from, int *first,
2275 int len)
2276 {
2277 int current_size = 0;
2278
2279 if (!*first) {
2280 **to = '|';
2281 *to += 1;
2282 } else
2283 *first = 0;
2284
2285 while (current_size < len) {
2286 if (*from != '"') {
2287 **to = *from;
2288 *to += 1;
2289 }
2290 from += 1;
2291 current_size += 1;
2292 }
2293 }
2294
2295 static int selinux_sb_copy_data(char *orig, char *copy)
2296 {
2297 int fnosec, fsec, rc = 0;
2298 char *in_save, *in_curr, *in_end;
2299 char *sec_curr, *nosec_save, *nosec;
2300 int open_quote = 0;
2301
2302 in_curr = orig;
2303 sec_curr = copy;
2304
2305 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2306 if (!nosec) {
2307 rc = -ENOMEM;
2308 goto out;
2309 }
2310
2311 nosec_save = nosec;
2312 fnosec = fsec = 1;
2313 in_save = in_end = orig;
2314
2315 do {
2316 if (*in_end == '"')
2317 open_quote = !open_quote;
2318 if ((*in_end == ',' && open_quote == 0) ||
2319 *in_end == '\0') {
2320 int len = in_end - in_curr;
2321
2322 if (selinux_option(in_curr, len))
2323 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2324 else
2325 take_option(&nosec, in_curr, &fnosec, len);
2326
2327 in_curr = in_end + 1;
2328 }
2329 } while (*in_end++);
2330
2331 strcpy(in_save, nosec_save);
2332 free_page((unsigned long)nosec_save);
2333 out:
2334 return rc;
2335 }
2336
2337 static int selinux_sb_remount(struct super_block *sb, void *data)
2338 {
2339 int rc, i, *flags;
2340 struct security_mnt_opts opts;
2341 char *secdata, **mount_options;
2342 struct superblock_security_struct *sbsec = sb->s_security;
2343
2344 if (!(sbsec->flags & SE_SBINITIALIZED))
2345 return 0;
2346
2347 if (!data)
2348 return 0;
2349
2350 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2351 return 0;
2352
2353 security_init_mnt_opts(&opts);
2354 secdata = alloc_secdata();
2355 if (!secdata)
2356 return -ENOMEM;
2357 rc = selinux_sb_copy_data(data, secdata);
2358 if (rc)
2359 goto out_free_secdata;
2360
2361 rc = selinux_parse_opts_str(secdata, &opts);
2362 if (rc)
2363 goto out_free_secdata;
2364
2365 mount_options = opts.mnt_opts;
2366 flags = opts.mnt_opts_flags;
2367
2368 for (i = 0; i < opts.num_mnt_opts; i++) {
2369 u32 sid;
2370 size_t len;
2371
2372 if (flags[i] == SE_SBLABELSUPP)
2373 continue;
2374 len = strlen(mount_options[i]);
2375 rc = security_context_to_sid(mount_options[i], len, &sid);
2376 if (rc) {
2377 printk(KERN_WARNING "SELinux: security_context_to_sid"
2378 "(%s) failed for (dev %s, type %s) errno=%d\n",
2379 mount_options[i], sb->s_id, sb->s_type->name, rc);
2380 goto out_free_opts;
2381 }
2382 rc = -EINVAL;
2383 switch (flags[i]) {
2384 case FSCONTEXT_MNT:
2385 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2386 goto out_bad_option;
2387 break;
2388 case CONTEXT_MNT:
2389 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2390 goto out_bad_option;
2391 break;
2392 case ROOTCONTEXT_MNT: {
2393 struct inode_security_struct *root_isec;
2394 root_isec = sb->s_root->d_inode->i_security;
2395
2396 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2397 goto out_bad_option;
2398 break;
2399 }
2400 case DEFCONTEXT_MNT:
2401 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2402 goto out_bad_option;
2403 break;
2404 default:
2405 goto out_free_opts;
2406 }
2407 }
2408
2409 rc = 0;
2410 out_free_opts:
2411 security_free_mnt_opts(&opts);
2412 out_free_secdata:
2413 free_secdata(secdata);
2414 return rc;
2415 out_bad_option:
2416 printk(KERN_WARNING "SELinux: unable to change security options "
2417 "during remount (dev %s, type=%s)\n", sb->s_id,
2418 sb->s_type->name);
2419 goto out_free_opts;
2420 }
2421
2422 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2423 {
2424 const struct cred *cred = current_cred();
2425 struct common_audit_data ad;
2426 int rc;
2427
2428 rc = superblock_doinit(sb, data);
2429 if (rc)
2430 return rc;
2431
2432 /* Allow all mounts performed by the kernel */
2433 if (flags & MS_KERNMOUNT)
2434 return 0;
2435
2436 ad.type = LSM_AUDIT_DATA_DENTRY;
2437 ad.u.dentry = sb->s_root;
2438 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2439 }
2440
2441 static int selinux_sb_statfs(struct dentry *dentry)
2442 {
2443 const struct cred *cred = current_cred();
2444 struct common_audit_data ad;
2445
2446 ad.type = LSM_AUDIT_DATA_DENTRY;
2447 ad.u.dentry = dentry->d_sb->s_root;
2448 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2449 }
2450
2451 static int selinux_mount(const char *dev_name,
2452 struct path *path,
2453 const char *type,
2454 unsigned long flags,
2455 void *data)
2456 {
2457 const struct cred *cred = current_cred();
2458
2459 if (flags & MS_REMOUNT)
2460 return superblock_has_perm(cred, path->dentry->d_sb,
2461 FILESYSTEM__REMOUNT, NULL);
2462 else
2463 return path_has_perm(cred, path, FILE__MOUNTON);
2464 }
2465
2466 static int selinux_umount(struct vfsmount *mnt, int flags)
2467 {
2468 const struct cred *cred = current_cred();
2469
2470 return superblock_has_perm(cred, mnt->mnt_sb,
2471 FILESYSTEM__UNMOUNT, NULL);
2472 }
2473
2474 /* inode security operations */
2475
2476 static int selinux_inode_alloc_security(struct inode *inode)
2477 {
2478 return inode_alloc_security(inode);
2479 }
2480
2481 static void selinux_inode_free_security(struct inode *inode)
2482 {
2483 inode_free_security(inode);
2484 }
2485
2486 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2487 const struct qstr *qstr, char **name,
2488 void **value, size_t *len)
2489 {
2490 const struct task_security_struct *tsec = current_security();
2491 struct inode_security_struct *dsec;
2492 struct superblock_security_struct *sbsec;
2493 u32 sid, newsid, clen;
2494 int rc;
2495 char *namep = NULL, *context;
2496
2497 dsec = dir->i_security;
2498 sbsec = dir->i_sb->s_security;
2499
2500 sid = tsec->sid;
2501 newsid = tsec->create_sid;
2502
2503 if ((sbsec->flags & SE_SBINITIALIZED) &&
2504 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2505 newsid = sbsec->mntpoint_sid;
2506 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2507 rc = security_transition_sid(sid, dsec->sid,
2508 inode_mode_to_security_class(inode->i_mode),
2509 qstr, &newsid);
2510 if (rc) {
2511 printk(KERN_WARNING "%s: "
2512 "security_transition_sid failed, rc=%d (dev=%s "
2513 "ino=%ld)\n",
2514 __func__,
2515 -rc, inode->i_sb->s_id, inode->i_ino);
2516 return rc;
2517 }
2518 }
2519
2520 /* Possibly defer initialization to selinux_complete_init. */
2521 if (sbsec->flags & SE_SBINITIALIZED) {
2522 struct inode_security_struct *isec = inode->i_security;
2523 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2524 isec->sid = newsid;
2525 isec->initialized = 1;
2526 }
2527
2528 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2529 return -EOPNOTSUPP;
2530
2531 if (name) {
2532 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2533 if (!namep)
2534 return -ENOMEM;
2535 *name = namep;
2536 }
2537
2538 if (value && len) {
2539 rc = security_sid_to_context_force(newsid, &context, &clen);
2540 if (rc) {
2541 kfree(namep);
2542 return rc;
2543 }
2544 *value = context;
2545 *len = clen;
2546 }
2547
2548 return 0;
2549 }
2550
2551 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2552 {
2553 return may_create(dir, dentry, SECCLASS_FILE);
2554 }
2555
2556 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2557 {
2558 return may_link(dir, old_dentry, MAY_LINK);
2559 }
2560
2561 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2562 {
2563 return may_link(dir, dentry, MAY_UNLINK);
2564 }
2565
2566 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2567 {
2568 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2569 }
2570
2571 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2572 {
2573 return may_create(dir, dentry, SECCLASS_DIR);
2574 }
2575
2576 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2577 {
2578 return may_link(dir, dentry, MAY_RMDIR);
2579 }
2580
2581 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2582 {
2583 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2584 }
2585
2586 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2587 struct inode *new_inode, struct dentry *new_dentry)
2588 {
2589 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2590 }
2591
2592 static int selinux_inode_readlink(struct dentry *dentry)
2593 {
2594 const struct cred *cred = current_cred();
2595
2596 return dentry_has_perm(cred, dentry, FILE__READ);
2597 }
2598
2599 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2600 {
2601 const struct cred *cred = current_cred();
2602
2603 return dentry_has_perm(cred, dentry, FILE__READ);
2604 }
2605
2606 static noinline int audit_inode_permission(struct inode *inode,
2607 u32 perms, u32 audited, u32 denied,
2608 unsigned flags)
2609 {
2610 struct common_audit_data ad;
2611 struct inode_security_struct *isec = inode->i_security;
2612 int rc;
2613
2614 ad.type = LSM_AUDIT_DATA_INODE;
2615 ad.u.inode = inode;
2616
2617 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2618 audited, denied, &ad, flags);
2619 if (rc)
2620 return rc;
2621 return 0;
2622 }
2623
2624 static int selinux_inode_permission(struct inode *inode, int mask)
2625 {
2626 const struct cred *cred = current_cred();
2627 u32 perms;
2628 bool from_access;
2629 unsigned flags = mask & MAY_NOT_BLOCK;
2630 struct inode_security_struct *isec;
2631 u32 sid;
2632 struct av_decision avd;
2633 int rc, rc2;
2634 u32 audited, denied;
2635
2636 from_access = mask & MAY_ACCESS;
2637 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2638
2639 /* No permission to check. Existence test. */
2640 if (!mask)
2641 return 0;
2642
2643 validate_creds(cred);
2644
2645 if (unlikely(IS_PRIVATE(inode)))
2646 return 0;
2647
2648 perms = file_mask_to_av(inode->i_mode, mask);
2649
2650 sid = cred_sid(cred);
2651 isec = inode->i_security;
2652
2653 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2654 audited = avc_audit_required(perms, &avd, rc,
2655 from_access ? FILE__AUDIT_ACCESS : 0,
2656 &denied);
2657 if (likely(!audited))
2658 return rc;
2659
2660 rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2661 if (rc2)
2662 return rc2;
2663 return rc;
2664 }
2665
2666 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2667 {
2668 const struct cred *cred = current_cred();
2669 unsigned int ia_valid = iattr->ia_valid;
2670 __u32 av = FILE__WRITE;
2671
2672 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2673 if (ia_valid & ATTR_FORCE) {
2674 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2675 ATTR_FORCE);
2676 if (!ia_valid)
2677 return 0;
2678 }
2679
2680 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2681 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2682 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2683
2684 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2685 av |= FILE__OPEN;
2686
2687 return dentry_has_perm(cred, dentry, av);
2688 }
2689
2690 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2691 {
2692 const struct cred *cred = current_cred();
2693 struct path path;
2694
2695 path.dentry = dentry;
2696 path.mnt = mnt;
2697
2698 return path_has_perm(cred, &path, FILE__GETATTR);
2699 }
2700
2701 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2702 {
2703 const struct cred *cred = current_cred();
2704
2705 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2706 sizeof XATTR_SECURITY_PREFIX - 1)) {
2707 if (!strcmp(name, XATTR_NAME_CAPS)) {
2708 if (!capable(CAP_SETFCAP))
2709 return -EPERM;
2710 } else if (!capable(CAP_SYS_ADMIN)) {
2711 /* A different attribute in the security namespace.
2712 Restrict to administrator. */
2713 return -EPERM;
2714 }
2715 }
2716
2717 /* Not an attribute we recognize, so just check the
2718 ordinary setattr permission. */
2719 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2720 }
2721
2722 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2723 const void *value, size_t size, int flags)
2724 {
2725 struct inode *inode = dentry->d_inode;
2726 struct inode_security_struct *isec = inode->i_security;
2727 struct superblock_security_struct *sbsec;
2728 struct common_audit_data ad;
2729 u32 newsid, sid = current_sid();
2730 int rc = 0;
2731
2732 if (strcmp(name, XATTR_NAME_SELINUX))
2733 return selinux_inode_setotherxattr(dentry, name);
2734
2735 sbsec = inode->i_sb->s_security;
2736 if (!(sbsec->flags & SE_SBLABELSUPP))
2737 return -EOPNOTSUPP;
2738
2739 if (!inode_owner_or_capable(inode))
2740 return -EPERM;
2741
2742 ad.type = LSM_AUDIT_DATA_DENTRY;
2743 ad.u.dentry = dentry;
2744
2745 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2746 FILE__RELABELFROM, &ad);
2747 if (rc)
2748 return rc;
2749
2750 rc = security_context_to_sid(value, size, &newsid);
2751 if (rc == -EINVAL) {
2752 if (!capable(CAP_MAC_ADMIN)) {
2753 struct audit_buffer *ab;
2754 size_t audit_size;
2755 const char *str;
2756
2757 /* We strip a nul only if it is at the end, otherwise the
2758 * context contains a nul and we should audit that */
2759 if (value) {
2760 str = value;
2761 if (str[size - 1] == '\0')
2762 audit_size = size - 1;
2763 else
2764 audit_size = size;
2765 } else {
2766 str = "";
2767 audit_size = 0;
2768 }
2769 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2770 audit_log_format(ab, "op=setxattr invalid_context=");
2771 audit_log_n_untrustedstring(ab, value, audit_size);
2772 audit_log_end(ab);
2773
2774 return rc;
2775 }
2776 rc = security_context_to_sid_force(value, size, &newsid);
2777 }
2778 if (rc)
2779 return rc;
2780
2781 rc = avc_has_perm(sid, newsid, isec->sclass,
2782 FILE__RELABELTO, &ad);
2783 if (rc)
2784 return rc;
2785
2786 rc = security_validate_transition(isec->sid, newsid, sid,
2787 isec->sclass);
2788 if (rc)
2789 return rc;
2790
2791 return avc_has_perm(newsid,
2792 sbsec->sid,
2793 SECCLASS_FILESYSTEM,
2794 FILESYSTEM__ASSOCIATE,
2795 &ad);
2796 }
2797
2798 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2799 const void *value, size_t size,
2800 int flags)
2801 {
2802 struct inode *inode = dentry->d_inode;
2803 struct inode_security_struct *isec = inode->i_security;
2804 u32 newsid;
2805 int rc;
2806
2807 if (strcmp(name, XATTR_NAME_SELINUX)) {
2808 /* Not an attribute we recognize, so nothing to do. */
2809 return;
2810 }
2811
2812 rc = security_context_to_sid_force(value, size, &newsid);
2813 if (rc) {
2814 printk(KERN_ERR "SELinux: unable to map context to SID"
2815 "for (%s, %lu), rc=%d\n",
2816 inode->i_sb->s_id, inode->i_ino, -rc);
2817 return;
2818 }
2819
2820 isec->sid = newsid;
2821 return;
2822 }
2823
2824 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2825 {
2826 const struct cred *cred = current_cred();
2827
2828 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2829 }
2830
2831 static int selinux_inode_listxattr(struct dentry *dentry)
2832 {
2833 const struct cred *cred = current_cred();
2834
2835 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2836 }
2837
2838 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2839 {
2840 if (strcmp(name, XATTR_NAME_SELINUX))
2841 return selinux_inode_setotherxattr(dentry, name);
2842
2843 /* No one is allowed to remove a SELinux security label.
2844 You can change the label, but all data must be labeled. */
2845 return -EACCES;
2846 }
2847
2848 /*
2849 * Copy the inode security context value to the user.
2850 *
2851 * Permission check is handled by selinux_inode_getxattr hook.
2852 */
2853 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2854 {
2855 u32 size;
2856 int error;
2857 char *context = NULL;
2858 struct inode_security_struct *isec = inode->i_security;
2859
2860 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2861 return -EOPNOTSUPP;
2862
2863 /*
2864 * If the caller has CAP_MAC_ADMIN, then get the raw context
2865 * value even if it is not defined by current policy; otherwise,
2866 * use the in-core value under current policy.
2867 * Use the non-auditing forms of the permission checks since
2868 * getxattr may be called by unprivileged processes commonly
2869 * and lack of permission just means that we fall back to the
2870 * in-core context value, not a denial.
2871 */
2872 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2873 SECURITY_CAP_NOAUDIT);
2874 if (!error)
2875 error = security_sid_to_context_force(isec->sid, &context,
2876 &size);
2877 else
2878 error = security_sid_to_context(isec->sid, &context, &size);
2879 if (error)
2880 return error;
2881 error = size;
2882 if (alloc) {
2883 *buffer = context;
2884 goto out_nofree;
2885 }
2886 kfree(context);
2887 out_nofree:
2888 return error;
2889 }
2890
2891 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2892 const void *value, size_t size, int flags)
2893 {
2894 struct inode_security_struct *isec = inode->i_security;
2895 u32 newsid;
2896 int rc;
2897
2898 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2899 return -EOPNOTSUPP;
2900
2901 if (!value || !size)
2902 return -EACCES;
2903
2904 rc = security_context_to_sid((void *)value, size, &newsid);
2905 if (rc)
2906 return rc;
2907
2908 isec->sid = newsid;
2909 isec->initialized = 1;
2910 return 0;
2911 }
2912
2913 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2914 {
2915 const int len = sizeof(XATTR_NAME_SELINUX);
2916 if (buffer && len <= buffer_size)
2917 memcpy(buffer, XATTR_NAME_SELINUX, len);
2918 return len;
2919 }
2920
2921 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2922 {
2923 struct inode_security_struct *isec = inode->i_security;
2924 *secid = isec->sid;
2925 }
2926
2927 /* file security operations */
2928
2929 static int selinux_revalidate_file_permission(struct file *file, int mask)
2930 {
2931 const struct cred *cred = current_cred();
2932 struct inode *inode = file_inode(file);
2933
2934 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2935 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2936 mask |= MAY_APPEND;
2937
2938 return file_has_perm(cred, file,
2939 file_mask_to_av(inode->i_mode, mask));
2940 }
2941
2942 static int selinux_file_permission(struct file *file, int mask)
2943 {
2944 struct inode *inode = file_inode(file);
2945 struct file_security_struct *fsec = file->f_security;
2946 struct inode_security_struct *isec = inode->i_security;
2947 u32 sid = current_sid();
2948
2949 if (!mask)
2950 /* No permission to check. Existence test. */
2951 return 0;
2952
2953 if (sid == fsec->sid && fsec->isid == isec->sid &&
2954 fsec->pseqno == avc_policy_seqno())
2955 /* No change since file_open check. */
2956 return 0;
2957
2958 return selinux_revalidate_file_permission(file, mask);
2959 }
2960
2961 static int selinux_file_alloc_security(struct file *file)
2962 {
2963 return file_alloc_security(file);
2964 }
2965
2966 static void selinux_file_free_security(struct file *file)
2967 {
2968 file_free_security(file);
2969 }
2970
2971 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2972 unsigned long arg)
2973 {
2974 const struct cred *cred = current_cred();
2975 int error = 0;
2976
2977 switch (cmd) {
2978 case FIONREAD:
2979 /* fall through */
2980 case FIBMAP:
2981 /* fall through */
2982 case FIGETBSZ:
2983 /* fall through */
2984 case FS_IOC_GETFLAGS:
2985 /* fall through */
2986 case FS_IOC_GETVERSION:
2987 error = file_has_perm(cred, file, FILE__GETATTR);
2988 break;
2989
2990 case FS_IOC_SETFLAGS:
2991 /* fall through */
2992 case FS_IOC_SETVERSION:
2993 error = file_has_perm(cred, file, FILE__SETATTR);
2994 break;
2995
2996 /* sys_ioctl() checks */
2997 case FIONBIO:
2998 /* fall through */
2999 case FIOASYNC:
3000 error = file_has_perm(cred, file, 0);
3001 break;
3002
3003 case KDSKBENT:
3004 case KDSKBSENT:
3005 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3006 SECURITY_CAP_AUDIT);
3007 break;
3008
3009 /* default case assumes that the command will go
3010 * to the file's ioctl() function.
3011 */
3012 default:
3013 error = file_has_perm(cred, file, FILE__IOCTL);
3014 }
3015 return error;
3016 }
3017
3018 static int default_noexec;
3019
3020 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3021 {
3022 const struct cred *cred = current_cred();
3023 int rc = 0;
3024
3025 if (default_noexec &&
3026 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3027 /*
3028 * We are making executable an anonymous mapping or a
3029 * private file mapping that will also be writable.
3030 * This has an additional check.
3031 */
3032 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3033 if (rc)
3034 goto error;
3035 }
3036
3037 if (file) {
3038 /* read access is always possible with a mapping */
3039 u32 av = FILE__READ;
3040
3041 /* write access only matters if the mapping is shared */
3042 if (shared && (prot & PROT_WRITE))
3043 av |= FILE__WRITE;
3044
3045 if (prot & PROT_EXEC)
3046 av |= FILE__EXECUTE;
3047
3048 return file_has_perm(cred, file, av);
3049 }
3050
3051 error:
3052 return rc;
3053 }
3054
3055 static int selinux_mmap_addr(unsigned long addr)
3056 {
3057 int rc = 0;
3058 u32 sid = current_sid();
3059
3060 /*
3061 * notice that we are intentionally putting the SELinux check before
3062 * the secondary cap_file_mmap check. This is such a likely attempt
3063 * at bad behaviour/exploit that we always want to get the AVC, even
3064 * if DAC would have also denied the operation.
3065 */
3066 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3067 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3068 MEMPROTECT__MMAP_ZERO, NULL);
3069 if (rc)
3070 return rc;
3071 }
3072
3073 /* do DAC check on address space usage */
3074 return cap_mmap_addr(addr);
3075 }
3076
3077 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3078 unsigned long prot, unsigned long flags)
3079 {
3080 if (selinux_checkreqprot)
3081 prot = reqprot;
3082
3083 return file_map_prot_check(file, prot,
3084 (flags & MAP_TYPE) == MAP_SHARED);
3085 }
3086
3087 static int selinux_file_mprotect(struct vm_area_struct *vma,
3088 unsigned long reqprot,
3089 unsigned long prot)
3090 {
3091 const struct cred *cred = current_cred();
3092
3093 if (selinux_checkreqprot)
3094 prot = reqprot;
3095
3096 if (default_noexec &&
3097 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3098 int rc = 0;
3099 if (vma->vm_start >= vma->vm_mm->start_brk &&
3100 vma->vm_end <= vma->vm_mm->brk) {
3101 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3102 } else if (!vma->vm_file &&
3103 vma->vm_start <= vma->vm_mm->start_stack &&
3104 vma->vm_end >= vma->vm_mm->start_stack) {
3105 rc = current_has_perm(current, PROCESS__EXECSTACK);
3106 } else if (vma->vm_file && vma->anon_vma) {
3107 /*
3108 * We are making executable a file mapping that has
3109 * had some COW done. Since pages might have been
3110 * written, check ability to execute the possibly
3111 * modified content. This typically should only
3112 * occur for text relocations.
3113 */
3114 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3115 }
3116 if (rc)
3117 return rc;
3118 }
3119
3120 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3121 }
3122
3123 static int selinux_file_lock(struct file *file, unsigned int cmd)
3124 {
3125 const struct cred *cred = current_cred();
3126
3127 return file_has_perm(cred, file, FILE__LOCK);
3128 }
3129
3130 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3131 unsigned long arg)
3132 {
3133 const struct cred *cred = current_cred();
3134 int err = 0;
3135
3136 switch (cmd) {
3137 case F_SETFL:
3138 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3139 err = file_has_perm(cred, file, FILE__WRITE);
3140 break;
3141 }
3142 /* fall through */
3143 case F_SETOWN:
3144 case F_SETSIG:
3145 case F_GETFL:
3146 case F_GETOWN:
3147 case F_GETSIG:
3148 case F_GETOWNER_UIDS:
3149 /* Just check FD__USE permission */
3150 err = file_has_perm(cred, file, 0);
3151 break;
3152 case F_GETLK:
3153 case F_SETLK:
3154 case F_SETLKW:
3155 #if BITS_PER_LONG == 32
3156 case F_GETLK64:
3157 case F_SETLK64:
3158 case F_SETLKW64:
3159 #endif
3160 err = file_has_perm(cred, file, FILE__LOCK);
3161 break;
3162 }
3163
3164 return err;
3165 }
3166
3167 static int selinux_file_set_fowner(struct file *file)
3168 {
3169 struct file_security_struct *fsec;
3170
3171 fsec = file->f_security;
3172 fsec->fown_sid = current_sid();
3173
3174 return 0;
3175 }
3176
3177 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3178 struct fown_struct *fown, int signum)
3179 {
3180 struct file *file;
3181 u32 sid = task_sid(tsk);
3182 u32 perm;
3183 struct file_security_struct *fsec;
3184
3185 /* struct fown_struct is never outside the context of a struct file */
3186 file = container_of(fown, struct file, f_owner);
3187
3188 fsec = file->f_security;
3189
3190 if (!signum)
3191 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3192 else
3193 perm = signal_to_av(signum);
3194
3195 return avc_has_perm(fsec->fown_sid, sid,
3196 SECCLASS_PROCESS, perm, NULL);
3197 }
3198
3199 static int selinux_file_receive(struct file *file)
3200 {
3201 const struct cred *cred = current_cred();
3202
3203 return file_has_perm(cred, file, file_to_av(file));
3204 }
3205
3206 static int selinux_file_open(struct file *file, const struct cred *cred)
3207 {
3208 struct file_security_struct *fsec;
3209 struct inode_security_struct *isec;
3210
3211 fsec = file->f_security;
3212 isec = file_inode(file)->i_security;
3213 /*
3214 * Save inode label and policy sequence number
3215 * at open-time so that selinux_file_permission
3216 * can determine whether revalidation is necessary.
3217 * Task label is already saved in the file security
3218 * struct as its SID.
3219 */
3220 fsec->isid = isec->sid;
3221 fsec->pseqno = avc_policy_seqno();
3222 /*
3223 * Since the inode label or policy seqno may have changed
3224 * between the selinux_inode_permission check and the saving
3225 * of state above, recheck that access is still permitted.
3226 * Otherwise, access might never be revalidated against the
3227 * new inode label or new policy.
3228 * This check is not redundant - do not remove.
3229 */
3230 return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3231 }
3232
3233 /* task security operations */
3234
3235 static int selinux_task_create(unsigned long clone_flags)
3236 {
3237 return current_has_perm(current, PROCESS__FORK);
3238 }
3239
3240 /*
3241 * allocate the SELinux part of blank credentials
3242 */
3243 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3244 {
3245 struct task_security_struct *tsec;
3246
3247 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3248 if (!tsec)
3249 return -ENOMEM;
3250
3251 cred->security = tsec;
3252 return 0;
3253 }
3254
3255 /*
3256 * detach and free the LSM part of a set of credentials
3257 */
3258 static void selinux_cred_free(struct cred *cred)
3259 {
3260 struct task_security_struct *tsec = cred->security;
3261
3262 /*
3263 * cred->security == NULL if security_cred_alloc_blank() or
3264 * security_prepare_creds() returned an error.
3265 */
3266 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3267 cred->security = (void *) 0x7UL;
3268 kfree(tsec);
3269 }
3270
3271 /*
3272 * prepare a new set of credentials for modification
3273 */
3274 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3275 gfp_t gfp)
3276 {
3277 const struct task_security_struct *old_tsec;
3278 struct task_security_struct *tsec;
3279
3280 old_tsec = old->security;
3281
3282 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3283 if (!tsec)
3284 return -ENOMEM;
3285
3286 new->security = tsec;
3287 return 0;
3288 }
3289
3290 /*
3291 * transfer the SELinux data to a blank set of creds
3292 */
3293 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3294 {
3295 const struct task_security_struct *old_tsec = old->security;
3296 struct task_security_struct *tsec = new->security;
3297
3298 *tsec = *old_tsec;
3299 }
3300
3301 /*
3302 * set the security data for a kernel service
3303 * - all the creation contexts are set to unlabelled
3304 */
3305 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3306 {
3307 struct task_security_struct *tsec = new->security;
3308 u32 sid = current_sid();
3309 int ret;
3310
3311 ret = avc_has_perm(sid, secid,
3312 SECCLASS_KERNEL_SERVICE,
3313 KERNEL_SERVICE__USE_AS_OVERRIDE,
3314 NULL);
3315 if (ret == 0) {
3316 tsec->sid = secid;
3317 tsec->create_sid = 0;
3318 tsec->keycreate_sid = 0;
3319 tsec->sockcreate_sid = 0;
3320 }
3321 return ret;
3322 }
3323
3324 /*
3325 * set the file creation context in a security record to the same as the
3326 * objective context of the specified inode
3327 */
3328 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3329 {
3330 struct inode_security_struct *isec = inode->i_security;
3331 struct task_security_struct *tsec = new->security;
3332 u32 sid = current_sid();
3333 int ret;
3334
3335 ret = avc_has_perm(sid, isec->sid,
3336 SECCLASS_KERNEL_SERVICE,
3337 KERNEL_SERVICE__CREATE_FILES_AS,
3338 NULL);
3339
3340 if (ret == 0)
3341 tsec->create_sid = isec->sid;
3342 return ret;
3343 }
3344
3345 static int selinux_kernel_module_request(char *kmod_name)
3346 {
3347 u32 sid;
3348 struct common_audit_data ad;
3349
3350 sid = task_sid(current);
3351
3352 ad.type = LSM_AUDIT_DATA_KMOD;
3353 ad.u.kmod_name = kmod_name;
3354
3355 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3356 SYSTEM__MODULE_REQUEST, &ad);
3357 }
3358
3359 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3360 {
3361 return current_has_perm(p, PROCESS__SETPGID);
3362 }
3363
3364 static int selinux_task_getpgid(struct task_struct *p)
3365 {
3366 return current_has_perm(p, PROCESS__GETPGID);
3367 }
3368
3369 static int selinux_task_getsid(struct task_struct *p)
3370 {
3371 return current_has_perm(p, PROCESS__GETSESSION);
3372 }
3373
3374 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3375 {
3376 *secid = task_sid(p);
3377 }
3378
3379 static int selinux_task_setnice(struct task_struct *p, int nice)
3380 {
3381 int rc;
3382
3383 rc = cap_task_setnice(p, nice);
3384 if (rc)
3385 return rc;
3386
3387 return current_has_perm(p, PROCESS__SETSCHED);
3388 }
3389
3390 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3391 {
3392 int rc;
3393
3394 rc = cap_task_setioprio(p, ioprio);
3395 if (rc)
3396 return rc;
3397
3398 return current_has_perm(p, PROCESS__SETSCHED);
3399 }
3400
3401 static int selinux_task_getioprio(struct task_struct *p)
3402 {
3403 return current_has_perm(p, PROCESS__GETSCHED);
3404 }
3405
3406 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3407 struct rlimit *new_rlim)
3408 {
3409 struct rlimit *old_rlim = p->signal->rlim + resource;
3410
3411 /* Control the ability to change the hard limit (whether
3412 lowering or raising it), so that the hard limit can
3413 later be used as a safe reset point for the soft limit
3414 upon context transitions. See selinux_bprm_committing_creds. */
3415 if (old_rlim->rlim_max != new_rlim->rlim_max)
3416 return current_has_perm(p, PROCESS__SETRLIMIT);
3417
3418 return 0;
3419 }
3420
3421 static int selinux_task_setscheduler(struct task_struct *p)
3422 {
3423 int rc;
3424
3425 rc = cap_task_setscheduler(p);
3426 if (rc)
3427 return rc;
3428
3429 return current_has_perm(p, PROCESS__SETSCHED);
3430 }
3431
3432 static int selinux_task_getscheduler(struct task_struct *p)
3433 {
3434 return current_has_perm(p, PROCESS__GETSCHED);
3435 }
3436
3437 static int selinux_task_movememory(struct task_struct *p)
3438 {
3439 return current_has_perm(p, PROCESS__SETSCHED);
3440 }
3441
3442 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3443 int sig, u32 secid)
3444 {
3445 u32 perm;
3446 int rc;
3447
3448 if (!sig)
3449 perm = PROCESS__SIGNULL; /* null signal; existence test */
3450 else
3451 perm = signal_to_av(sig);
3452 if (secid)
3453 rc = avc_has_perm(secid, task_sid(p),
3454 SECCLASS_PROCESS, perm, NULL);
3455 else
3456 rc = current_has_perm(p, perm);
3457 return rc;
3458 }
3459
3460 static int selinux_task_wait(struct task_struct *p)
3461 {
3462 return task_has_perm(p, current, PROCESS__SIGCHLD);
3463 }
3464
3465 static void selinux_task_to_inode(struct task_struct *p,
3466 struct inode *inode)
3467 {
3468 struct inode_security_struct *isec = inode->i_security;
3469 u32 sid = task_sid(p);
3470
3471 isec->sid = sid;
3472 isec->initialized = 1;
3473 }
3474
3475 /* Returns error only if unable to parse addresses */
3476 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3477 struct common_audit_data *ad, u8 *proto)
3478 {
3479 int offset, ihlen, ret = -EINVAL;
3480 struct iphdr _iph, *ih;
3481
3482 offset = skb_network_offset(skb);
3483 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3484 if (ih == NULL)
3485 goto out;
3486
3487 ihlen = ih->ihl * 4;
3488 if (ihlen < sizeof(_iph))
3489 goto out;
3490
3491 ad->u.net->v4info.saddr = ih->saddr;
3492 ad->u.net->v4info.daddr = ih->daddr;
3493 ret = 0;
3494
3495 if (proto)
3496 *proto = ih->protocol;
3497
3498 switch (ih->protocol) {
3499 case IPPROTO_TCP: {
3500 struct tcphdr _tcph, *th;
3501
3502 if (ntohs(ih->frag_off) & IP_OFFSET)
3503 break;
3504
3505 offset += ihlen;
3506 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3507 if (th == NULL)
3508 break;
3509
3510 ad->u.net->sport = th->source;
3511 ad->u.net->dport = th->dest;
3512 break;
3513 }
3514
3515 case IPPROTO_UDP: {
3516 struct udphdr _udph, *uh;
3517
3518 if (ntohs(ih->frag_off) & IP_OFFSET)
3519 break;
3520
3521 offset += ihlen;
3522 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3523 if (uh == NULL)
3524 break;
3525
3526 ad->u.net->sport = uh->source;
3527 ad->u.net->dport = uh->dest;
3528 break;
3529 }
3530
3531 case IPPROTO_DCCP: {
3532 struct dccp_hdr _dccph, *dh;
3533
3534 if (ntohs(ih->frag_off) & IP_OFFSET)
3535 break;
3536
3537 offset += ihlen;
3538 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3539 if (dh == NULL)
3540 break;
3541
3542 ad->u.net->sport = dh->dccph_sport;
3543 ad->u.net->dport = dh->dccph_dport;
3544 break;
3545 }
3546
3547 default:
3548 break;
3549 }
3550 out:
3551 return ret;
3552 }
3553
3554 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3555
3556 /* Returns error only if unable to parse addresses */
3557 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3558 struct common_audit_data *ad, u8 *proto)
3559 {
3560 u8 nexthdr;
3561 int ret = -EINVAL, offset;
3562 struct ipv6hdr _ipv6h, *ip6;
3563 __be16 frag_off;
3564
3565 offset = skb_network_offset(skb);
3566 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3567 if (ip6 == NULL)
3568 goto out;
3569
3570 ad->u.net->v6info.saddr = ip6->saddr;
3571 ad->u.net->v6info.daddr = ip6->daddr;
3572 ret = 0;
3573
3574 nexthdr = ip6->nexthdr;
3575 offset += sizeof(_ipv6h);
3576 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3577 if (offset < 0)
3578 goto out;
3579
3580 if (proto)
3581 *proto = nexthdr;
3582
3583 switch (nexthdr) {
3584 case IPPROTO_TCP: {
3585 struct tcphdr _tcph, *th;
3586
3587 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3588 if (th == NULL)
3589 break;
3590
3591 ad->u.net->sport = th->source;
3592 ad->u.net->dport = th->dest;
3593 break;
3594 }
3595
3596 case IPPROTO_UDP: {
3597 struct udphdr _udph, *uh;
3598
3599 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3600 if (uh == NULL)
3601 break;
3602
3603 ad->u.net->sport = uh->source;
3604 ad->u.net->dport = uh->dest;
3605 break;
3606 }
3607
3608 case IPPROTO_DCCP: {
3609 struct dccp_hdr _dccph, *dh;
3610
3611 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3612 if (dh == NULL)
3613 break;
3614
3615 ad->u.net->sport = dh->dccph_sport;
3616 ad->u.net->dport = dh->dccph_dport;
3617 break;
3618 }
3619
3620 /* includes fragments */
3621 default:
3622 break;
3623 }
3624 out:
3625 return ret;
3626 }
3627
3628 #endif /* IPV6 */
3629
3630 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3631 char **_addrp, int src, u8 *proto)
3632 {
3633 char *addrp;
3634 int ret;
3635
3636 switch (ad->u.net->family) {
3637 case PF_INET:
3638 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3639 if (ret)
3640 goto parse_error;
3641 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3642 &ad->u.net->v4info.daddr);
3643 goto okay;
3644
3645 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3646 case PF_INET6:
3647 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3648 if (ret)
3649 goto parse_error;
3650 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3651 &ad->u.net->v6info.daddr);
3652 goto okay;
3653 #endif /* IPV6 */
3654 default:
3655 addrp = NULL;
3656 goto okay;
3657 }
3658
3659 parse_error:
3660 printk(KERN_WARNING
3661 "SELinux: failure in selinux_parse_skb(),"
3662 " unable to parse packet\n");
3663 return ret;
3664
3665 okay:
3666 if (_addrp)
3667 *_addrp = addrp;
3668 return 0;
3669 }
3670
3671 /**
3672 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3673 * @skb: the packet
3674 * @family: protocol family
3675 * @sid: the packet's peer label SID
3676 *
3677 * Description:
3678 * Check the various different forms of network peer labeling and determine
3679 * the peer label/SID for the packet; most of the magic actually occurs in
3680 * the security server function security_net_peersid_cmp(). The function
3681 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3682 * or -EACCES if @sid is invalid due to inconsistencies with the different
3683 * peer labels.
3684 *
3685 */
3686 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3687 {
3688 int err;
3689 u32 xfrm_sid;
3690 u32 nlbl_sid;
3691 u32 nlbl_type;
3692
3693 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3694 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3695
3696 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3697 if (unlikely(err)) {
3698 printk(KERN_WARNING
3699 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3700 " unable to determine packet's peer label\n");
3701 return -EACCES;
3702 }
3703
3704 return 0;
3705 }
3706
3707 /* socket security operations */
3708
3709 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3710 u16 secclass, u32 *socksid)
3711 {
3712 if (tsec->sockcreate_sid > SECSID_NULL) {
3713 *socksid = tsec->sockcreate_sid;
3714 return 0;
3715 }
3716
3717 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3718 socksid);
3719 }
3720
3721 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3722 {
3723 struct sk_security_struct *sksec = sk->sk_security;
3724 struct common_audit_data ad;
3725 struct lsm_network_audit net = {0,};
3726 u32 tsid = task_sid(task);
3727
3728 if (sksec->sid == SECINITSID_KERNEL)
3729 return 0;
3730
3731 ad.type = LSM_AUDIT_DATA_NET;
3732 ad.u.net = &net;
3733 ad.u.net->sk = sk;
3734
3735 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3736 }
3737
3738 static int selinux_socket_create(int family, int type,
3739 int protocol, int kern)
3740 {
3741 const struct task_security_struct *tsec = current_security();
3742 u32 newsid;
3743 u16 secclass;
3744 int rc;
3745
3746 if (kern)
3747 return 0;
3748
3749 secclass = socket_type_to_security_class(family, type, protocol);
3750 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3751 if (rc)
3752 return rc;
3753
3754 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3755 }
3756
3757 static int selinux_socket_post_create(struct socket *sock, int family,
3758 int type, int protocol, int kern)
3759 {
3760 const struct task_security_struct *tsec = current_security();
3761 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3762 struct sk_security_struct *sksec;
3763 int err = 0;
3764
3765 isec->sclass = socket_type_to_security_class(family, type, protocol);
3766
3767 if (kern)
3768 isec->sid = SECINITSID_KERNEL;
3769 else {
3770 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3771 if (err)
3772 return err;
3773 }
3774
3775 isec->initialized = 1;
3776
3777 if (sock->sk) {
3778 sksec = sock->sk->sk_security;
3779 sksec->sid = isec->sid;
3780 sksec->sclass = isec->sclass;
3781 err = selinux_netlbl_socket_post_create(sock->sk, family);
3782 }
3783
3784 return err;
3785 }
3786
3787 /* Range of port numbers used to automatically bind.
3788 Need to determine whether we should perform a name_bind
3789 permission check between the socket and the port number. */
3790
3791 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3792 {
3793 struct sock *sk = sock->sk;
3794 u16 family;
3795 int err;
3796
3797 err = sock_has_perm(current, sk, SOCKET__BIND);
3798 if (err)
3799 goto out;
3800
3801 /*
3802 * If PF_INET or PF_INET6, check name_bind permission for the port.
3803 * Multiple address binding for SCTP is not supported yet: we just
3804 * check the first address now.
3805 */
3806 family = sk->sk_family;
3807 if (family == PF_INET || family == PF_INET6) {
3808 char *addrp;
3809 struct sk_security_struct *sksec = sk->sk_security;
3810 struct common_audit_data ad;
3811 struct lsm_network_audit net = {0,};
3812 struct sockaddr_in *addr4 = NULL;
3813 struct sockaddr_in6 *addr6 = NULL;
3814 unsigned short snum;
3815 u32 sid, node_perm;
3816
3817 if (family == PF_INET) {
3818 addr4 = (struct sockaddr_in *)address;
3819 snum = ntohs(addr4->sin_port);
3820 addrp = (char *)&addr4->sin_addr.s_addr;
3821 } else {
3822 addr6 = (struct sockaddr_in6 *)address;
3823 snum = ntohs(addr6->sin6_port);
3824 addrp = (char *)&addr6->sin6_addr.s6_addr;
3825 }
3826
3827 if (snum) {
3828 int low, high;
3829
3830 inet_get_local_port_range(&low, &high);
3831
3832 if (snum < max(PROT_SOCK, low) || snum > high) {
3833 err = sel_netport_sid(sk->sk_protocol,
3834 snum, &sid);
3835 if (err)
3836 goto out;
3837 ad.type = LSM_AUDIT_DATA_NET;
3838 ad.u.net = &net;
3839 ad.u.net->sport = htons(snum);
3840 ad.u.net->family = family;
3841 err = avc_has_perm(sksec->sid, sid,
3842 sksec->sclass,
3843 SOCKET__NAME_BIND, &ad);
3844 if (err)
3845 goto out;
3846 }
3847 }
3848
3849 switch (sksec->sclass) {
3850 case SECCLASS_TCP_SOCKET:
3851 node_perm = TCP_SOCKET__NODE_BIND;
3852 break;
3853
3854 case SECCLASS_UDP_SOCKET:
3855 node_perm = UDP_SOCKET__NODE_BIND;
3856 break;
3857
3858 case SECCLASS_DCCP_SOCKET:
3859 node_perm = DCCP_SOCKET__NODE_BIND;
3860 break;
3861
3862 default:
3863 node_perm = RAWIP_SOCKET__NODE_BIND;
3864 break;
3865 }
3866
3867 err = sel_netnode_sid(addrp, family, &sid);
3868 if (err)
3869 goto out;
3870
3871 ad.type = LSM_AUDIT_DATA_NET;
3872 ad.u.net = &net;
3873 ad.u.net->sport = htons(snum);
3874 ad.u.net->family = family;
3875
3876 if (family == PF_INET)
3877 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3878 else
3879 ad.u.net->v6info.saddr = addr6->sin6_addr;
3880
3881 err = avc_has_perm(sksec->sid, sid,
3882 sksec->sclass, node_perm, &ad);
3883 if (err)
3884 goto out;
3885 }
3886 out:
3887 return err;
3888 }
3889
3890 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3891 {
3892 struct sock *sk = sock->sk;
3893 struct sk_security_struct *sksec = sk->sk_security;
3894 int err;
3895
3896 err = sock_has_perm(current, sk, SOCKET__CONNECT);
3897 if (err)
3898 return err;
3899
3900 /*
3901 * If a TCP or DCCP socket, check name_connect permission for the port.
3902 */
3903 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3904 sksec->sclass == SECCLASS_DCCP_SOCKET) {
3905 struct common_audit_data ad;
3906 struct lsm_network_audit net = {0,};
3907 struct sockaddr_in *addr4 = NULL;
3908 struct sockaddr_in6 *addr6 = NULL;
3909 unsigned short snum;
3910 u32 sid, perm;
3911
3912 if (sk->sk_family == PF_INET) {
3913 addr4 = (struct sockaddr_in *)address;
3914 if (addrlen < sizeof(struct sockaddr_in))
3915 return -EINVAL;
3916 snum = ntohs(addr4->sin_port);
3917 } else {
3918 addr6 = (struct sockaddr_in6 *)address;
3919 if (addrlen < SIN6_LEN_RFC2133)
3920 return -EINVAL;
3921 snum = ntohs(addr6->sin6_port);
3922 }
3923
3924 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3925 if (err)
3926 goto out;
3927
3928 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3929 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3930
3931 ad.type = LSM_AUDIT_DATA_NET;
3932 ad.u.net = &net;
3933 ad.u.net->dport = htons(snum);
3934 ad.u.net->family = sk->sk_family;
3935 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3936 if (err)
3937 goto out;
3938 }
3939
3940 err = selinux_netlbl_socket_connect(sk, address);
3941
3942 out:
3943 return err;
3944 }
3945
3946 static int selinux_socket_listen(struct socket *sock, int backlog)
3947 {
3948 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3949 }
3950
3951 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3952 {
3953 int err;
3954 struct inode_security_struct *isec;
3955 struct inode_security_struct *newisec;
3956
3957 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3958 if (err)
3959 return err;
3960
3961 newisec = SOCK_INODE(newsock)->i_security;
3962
3963 isec = SOCK_INODE(sock)->i_security;
3964 newisec->sclass = isec->sclass;
3965 newisec->sid = isec->sid;
3966 newisec->initialized = 1;
3967
3968 return 0;
3969 }
3970
3971 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3972 int size)
3973 {
3974 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3975 }
3976
3977 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3978 int size, int flags)
3979 {
3980 return sock_has_perm(current, sock->sk, SOCKET__READ);
3981 }
3982
3983 static int selinux_socket_getsockname(struct socket *sock)
3984 {
3985 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3986 }
3987
3988 static int selinux_socket_getpeername(struct socket *sock)
3989 {
3990 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3991 }
3992
3993 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3994 {
3995 int err;
3996
3997 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3998 if (err)
3999 return err;
4000
4001 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4002 }
4003
4004 static int selinux_socket_getsockopt(struct socket *sock, int level,
4005 int optname)
4006 {
4007 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4008 }
4009
4010 static int selinux_socket_shutdown(struct socket *sock, int how)
4011 {
4012 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4013 }
4014
4015 static int selinux_socket_unix_stream_connect(struct sock *sock,
4016 struct sock *other,
4017 struct sock *newsk)
4018 {
4019 struct sk_security_struct *sksec_sock = sock->sk_security;
4020 struct sk_security_struct *sksec_other = other->sk_security;
4021 struct sk_security_struct *sksec_new = newsk->sk_security;
4022 struct common_audit_data ad;
4023 struct lsm_network_audit net = {0,};
4024 int err;
4025
4026 ad.type = LSM_AUDIT_DATA_NET;
4027 ad.u.net = &net;
4028 ad.u.net->sk = other;
4029
4030 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4031 sksec_other->sclass,
4032 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4033 if (err)
4034 return err;
4035
4036 /* server child socket */
4037 sksec_new->peer_sid = sksec_sock->sid;
4038 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4039 &sksec_new->sid);
4040 if (err)
4041 return err;
4042
4043 /* connecting socket */
4044 sksec_sock->peer_sid = sksec_new->sid;
4045
4046 return 0;
4047 }
4048
4049 static int selinux_socket_unix_may_send(struct socket *sock,
4050 struct socket *other)
4051 {
4052 struct sk_security_struct *ssec = sock->sk->sk_security;
4053 struct sk_security_struct *osec = other->sk->sk_security;
4054 struct common_audit_data ad;
4055 struct lsm_network_audit net = {0,};
4056
4057 ad.type = LSM_AUDIT_DATA_NET;
4058 ad.u.net = &net;
4059 ad.u.net->sk = other->sk;
4060
4061 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4062 &ad);
4063 }
4064
4065 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4066 u32 peer_sid,
4067 struct common_audit_data *ad)
4068 {
4069 int err;
4070 u32 if_sid;
4071 u32 node_sid;
4072
4073 err = sel_netif_sid(ifindex, &if_sid);
4074 if (err)
4075 return err;
4076 err = avc_has_perm(peer_sid, if_sid,
4077 SECCLASS_NETIF, NETIF__INGRESS, ad);
4078 if (err)
4079 return err;
4080
4081 err = sel_netnode_sid(addrp, family, &node_sid);
4082 if (err)
4083 return err;
4084 return avc_has_perm(peer_sid, node_sid,
4085 SECCLASS_NODE, NODE__RECVFROM, ad);
4086 }
4087
4088 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4089 u16 family)
4090 {
4091 int err = 0;
4092 struct sk_security_struct *sksec = sk->sk_security;
4093 u32 sk_sid = sksec->sid;
4094 struct common_audit_data ad;
4095 struct lsm_network_audit net = {0,};
4096 char *addrp;
4097
4098 ad.type = LSM_AUDIT_DATA_NET;
4099 ad.u.net = &net;
4100 ad.u.net->netif = skb->skb_iif;
4101 ad.u.net->family = family;
4102 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4103 if (err)
4104 return err;
4105
4106 if (selinux_secmark_enabled()) {
4107 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4108 PACKET__RECV, &ad);
4109 if (err)
4110 return err;
4111 }
4112
4113 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4114 if (err)
4115 return err;
4116 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4117
4118 return err;
4119 }
4120
4121 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4122 {
4123 int err;
4124 struct sk_security_struct *sksec = sk->sk_security;
4125 u16 family = sk->sk_family;
4126 u32 sk_sid = sksec->sid;
4127 struct common_audit_data ad;
4128 struct lsm_network_audit net = {0,};
4129 char *addrp;
4130 u8 secmark_active;
4131 u8 peerlbl_active;
4132
4133 if (family != PF_INET && family != PF_INET6)
4134 return 0;
4135
4136 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4137 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4138 family = PF_INET;
4139
4140 /* If any sort of compatibility mode is enabled then handoff processing
4141 * to the selinux_sock_rcv_skb_compat() function to deal with the
4142 * special handling. We do this in an attempt to keep this function
4143 * as fast and as clean as possible. */
4144 if (!selinux_policycap_netpeer)
4145 return selinux_sock_rcv_skb_compat(sk, skb, family);
4146
4147 secmark_active = selinux_secmark_enabled();
4148 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4149 if (!secmark_active && !peerlbl_active)
4150 return 0;
4151
4152 ad.type = LSM_AUDIT_DATA_NET;
4153 ad.u.net = &net;
4154 ad.u.net->netif = skb->skb_iif;
4155 ad.u.net->family = family;
4156 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4157 if (err)
4158 return err;
4159
4160 if (peerlbl_active) {
4161 u32 peer_sid;
4162
4163 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4164 if (err)
4165 return err;
4166 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4167 peer_sid, &ad);
4168 if (err) {
4169 selinux_netlbl_err(skb, err, 0);
4170 return err;
4171 }
4172 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4173 PEER__RECV, &ad);
4174 if (err)
4175 selinux_netlbl_err(skb, err, 0);
4176 }
4177
4178 if (secmark_active) {
4179 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4180 PACKET__RECV, &ad);
4181 if (err)
4182 return err;
4183 }
4184
4185 return err;
4186 }
4187
4188 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4189 int __user *optlen, unsigned len)
4190 {
4191 int err = 0;
4192 char *scontext;
4193 u32 scontext_len;
4194 struct sk_security_struct *sksec = sock->sk->sk_security;
4195 u32 peer_sid = SECSID_NULL;
4196
4197 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4198 sksec->sclass == SECCLASS_TCP_SOCKET)
4199 peer_sid = sksec->peer_sid;
4200 if (peer_sid == SECSID_NULL)
4201 return -ENOPROTOOPT;
4202
4203 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4204 if (err)
4205 return err;
4206
4207 if (scontext_len > len) {
4208 err = -ERANGE;
4209 goto out_len;
4210 }
4211
4212 if (copy_to_user(optval, scontext, scontext_len))
4213 err = -EFAULT;
4214
4215 out_len:
4216 if (put_user(scontext_len, optlen))
4217 err = -EFAULT;
4218 kfree(scontext);
4219 return err;
4220 }
4221
4222 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4223 {
4224 u32 peer_secid = SECSID_NULL;
4225 u16 family;
4226
4227 if (skb && skb->protocol == htons(ETH_P_IP))
4228 family = PF_INET;
4229 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4230 family = PF_INET6;
4231 else if (sock)
4232 family = sock->sk->sk_family;
4233 else
4234 goto out;
4235
4236 if (sock && family == PF_UNIX)
4237 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4238 else if (skb)
4239 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4240
4241 out:
4242 *secid = peer_secid;
4243 if (peer_secid == SECSID_NULL)
4244 return -EINVAL;
4245 return 0;
4246 }
4247
4248 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4249 {
4250 struct sk_security_struct *sksec;
4251
4252 sksec = kzalloc(sizeof(*sksec), priority);
4253 if (!sksec)
4254 return -ENOMEM;
4255
4256 sksec->peer_sid = SECINITSID_UNLABELED;
4257 sksec->sid = SECINITSID_UNLABELED;
4258 selinux_netlbl_sk_security_reset(sksec);
4259 sk->sk_security = sksec;
4260
4261 return 0;
4262 }
4263
4264 static void selinux_sk_free_security(struct sock *sk)
4265 {
4266 struct sk_security_struct *sksec = sk->sk_security;
4267
4268 sk->sk_security = NULL;
4269 selinux_netlbl_sk_security_free(sksec);
4270 kfree(sksec);
4271 }
4272
4273 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4274 {
4275 struct sk_security_struct *sksec = sk->sk_security;
4276 struct sk_security_struct *newsksec = newsk->sk_security;
4277
4278 newsksec->sid = sksec->sid;
4279 newsksec->peer_sid = sksec->peer_sid;
4280 newsksec->sclass = sksec->sclass;
4281
4282 selinux_netlbl_sk_security_reset(newsksec);
4283 }
4284
4285 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4286 {
4287 if (!sk)
4288 *secid = SECINITSID_ANY_SOCKET;
4289 else {
4290 struct sk_security_struct *sksec = sk->sk_security;
4291
4292 *secid = sksec->sid;
4293 }
4294 }
4295
4296 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4297 {
4298 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4299 struct sk_security_struct *sksec = sk->sk_security;
4300
4301 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4302 sk->sk_family == PF_UNIX)
4303 isec->sid = sksec->sid;
4304 sksec->sclass = isec->sclass;
4305 }
4306
4307 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4308 struct request_sock *req)
4309 {
4310 struct sk_security_struct *sksec = sk->sk_security;
4311 int err;
4312 u16 family = sk->sk_family;
4313 u32 newsid;
4314 u32 peersid;
4315
4316 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4317 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4318 family = PF_INET;
4319
4320 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4321 if (err)
4322 return err;
4323 if (peersid == SECSID_NULL) {
4324 req->secid = sksec->sid;
4325 req->peer_secid = SECSID_NULL;
4326 } else {
4327 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4328 if (err)
4329 return err;
4330 req->secid = newsid;
4331 req->peer_secid = peersid;
4332 }
4333
4334 return selinux_netlbl_inet_conn_request(req, family);
4335 }
4336
4337 static void selinux_inet_csk_clone(struct sock *newsk,
4338 const struct request_sock *req)
4339 {
4340 struct sk_security_struct *newsksec = newsk->sk_security;
4341
4342 newsksec->sid = req->secid;
4343 newsksec->peer_sid = req->peer_secid;
4344 /* NOTE: Ideally, we should also get the isec->sid for the
4345 new socket in sync, but we don't have the isec available yet.
4346 So we will wait until sock_graft to do it, by which
4347 time it will have been created and available. */
4348
4349 /* We don't need to take any sort of lock here as we are the only
4350 * thread with access to newsksec */
4351 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4352 }
4353
4354 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4355 {
4356 u16 family = sk->sk_family;
4357 struct sk_security_struct *sksec = sk->sk_security;
4358
4359 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4360 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4361 family = PF_INET;
4362
4363 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4364 }
4365
4366 static int selinux_secmark_relabel_packet(u32 sid)
4367 {
4368 const struct task_security_struct *__tsec;
4369 u32 tsid;
4370
4371 __tsec = current_security();
4372 tsid = __tsec->sid;
4373
4374 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4375 }
4376
4377 static void selinux_secmark_refcount_inc(void)
4378 {
4379 atomic_inc(&selinux_secmark_refcount);
4380 }
4381
4382 static void selinux_secmark_refcount_dec(void)
4383 {
4384 atomic_dec(&selinux_secmark_refcount);
4385 }
4386
4387 static void selinux_req_classify_flow(const struct request_sock *req,
4388 struct flowi *fl)
4389 {
4390 fl->flowi_secid = req->secid;
4391 }
4392
4393 static int selinux_tun_dev_alloc_security(void **security)
4394 {
4395 struct tun_security_struct *tunsec;
4396
4397 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4398 if (!tunsec)
4399 return -ENOMEM;
4400 tunsec->sid = current_sid();
4401
4402 *security = tunsec;
4403 return 0;
4404 }
4405
4406 static void selinux_tun_dev_free_security(void *security)
4407 {
4408 kfree(security);
4409 }
4410
4411 static int selinux_tun_dev_create(void)
4412 {
4413 u32 sid = current_sid();
4414
4415 /* we aren't taking into account the "sockcreate" SID since the socket
4416 * that is being created here is not a socket in the traditional sense,
4417 * instead it is a private sock, accessible only to the kernel, and
4418 * representing a wide range of network traffic spanning multiple
4419 * connections unlike traditional sockets - check the TUN driver to
4420 * get a better understanding of why this socket is special */
4421
4422 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4423 NULL);
4424 }
4425
4426 static int selinux_tun_dev_attach_queue(void *security)
4427 {
4428 struct tun_security_struct *tunsec = security;
4429
4430 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4431 TUN_SOCKET__ATTACH_QUEUE, NULL);
4432 }
4433
4434 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4435 {
4436 struct tun_security_struct *tunsec = security;
4437 struct sk_security_struct *sksec = sk->sk_security;
4438
4439 /* we don't currently perform any NetLabel based labeling here and it
4440 * isn't clear that we would want to do so anyway; while we could apply
4441 * labeling without the support of the TUN user the resulting labeled
4442 * traffic from the other end of the connection would almost certainly
4443 * cause confusion to the TUN user that had no idea network labeling
4444 * protocols were being used */
4445
4446 sksec->sid = tunsec->sid;
4447 sksec->sclass = SECCLASS_TUN_SOCKET;
4448
4449 return 0;
4450 }
4451
4452 static int selinux_tun_dev_open(void *security)
4453 {
4454 struct tun_security_struct *tunsec = security;
4455 u32 sid = current_sid();
4456 int err;
4457
4458 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4459 TUN_SOCKET__RELABELFROM, NULL);
4460 if (err)
4461 return err;
4462 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4463 TUN_SOCKET__RELABELTO, NULL);
4464 if (err)
4465 return err;
4466 tunsec->sid = sid;
4467
4468 return 0;
4469 }
4470
4471 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4472 {
4473 int err = 0;
4474 u32 perm;
4475 struct nlmsghdr *nlh;
4476 struct sk_security_struct *sksec = sk->sk_security;
4477
4478 if (skb->len < NLMSG_SPACE(0)) {
4479 err = -EINVAL;
4480 goto out;
4481 }
4482 nlh = nlmsg_hdr(skb);
4483
4484 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4485 if (err) {
4486 if (err == -EINVAL) {
4487 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4488 "SELinux: unrecognized netlink message"
4489 " type=%hu for sclass=%hu\n",
4490 nlh->nlmsg_type, sksec->sclass);
4491 if (!selinux_enforcing || security_get_allow_unknown())
4492 err = 0;
4493 }
4494
4495 /* Ignore */
4496 if (err == -ENOENT)
4497 err = 0;
4498 goto out;
4499 }
4500
4501 err = sock_has_perm(current, sk, perm);
4502 out:
4503 return err;
4504 }
4505
4506 #ifdef CONFIG_NETFILTER
4507
4508 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4509 u16 family)
4510 {
4511 int err;
4512 char *addrp;
4513 u32 peer_sid;
4514 struct common_audit_data ad;
4515 struct lsm_network_audit net = {0,};
4516 u8 secmark_active;
4517 u8 netlbl_active;
4518 u8 peerlbl_active;
4519
4520 if (!selinux_policycap_netpeer)
4521 return NF_ACCEPT;
4522
4523 secmark_active = selinux_secmark_enabled();
4524 netlbl_active = netlbl_enabled();
4525 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4526 if (!secmark_active && !peerlbl_active)
4527 return NF_ACCEPT;
4528
4529 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4530 return NF_DROP;
4531
4532 ad.type = LSM_AUDIT_DATA_NET;
4533 ad.u.net = &net;
4534 ad.u.net->netif = ifindex;
4535 ad.u.net->family = family;
4536 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4537 return NF_DROP;
4538
4539 if (peerlbl_active) {
4540 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4541 peer_sid, &ad);
4542 if (err) {
4543 selinux_netlbl_err(skb, err, 1);
4544 return NF_DROP;
4545 }
4546 }
4547
4548 if (secmark_active)
4549 if (avc_has_perm(peer_sid, skb->secmark,
4550 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4551 return NF_DROP;
4552
4553 if (netlbl_active)
4554 /* we do this in the FORWARD path and not the POST_ROUTING
4555 * path because we want to make sure we apply the necessary
4556 * labeling before IPsec is applied so we can leverage AH
4557 * protection */
4558 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4559 return NF_DROP;
4560
4561 return NF_ACCEPT;
4562 }
4563
4564 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4565 struct sk_buff *skb,
4566 const struct net_device *in,
4567 const struct net_device *out,
4568 int (*okfn)(struct sk_buff *))
4569 {
4570 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4571 }
4572
4573 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4574 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4575 struct sk_buff *skb,
4576 const struct net_device *in,
4577 const struct net_device *out,
4578 int (*okfn)(struct sk_buff *))
4579 {
4580 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4581 }
4582 #endif /* IPV6 */
4583
4584 static unsigned int selinux_ip_output(struct sk_buff *skb,
4585 u16 family)
4586 {
4587 u32 sid;
4588
4589 if (!netlbl_enabled())
4590 return NF_ACCEPT;
4591
4592 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4593 * because we want to make sure we apply the necessary labeling
4594 * before IPsec is applied so we can leverage AH protection */
4595 if (skb->sk) {
4596 struct sk_security_struct *sksec = skb->sk->sk_security;
4597 sid = sksec->sid;
4598 } else
4599 sid = SECINITSID_KERNEL;
4600 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4601 return NF_DROP;
4602
4603 return NF_ACCEPT;
4604 }
4605
4606 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4607 struct sk_buff *skb,
4608 const struct net_device *in,
4609 const struct net_device *out,
4610 int (*okfn)(struct sk_buff *))
4611 {
4612 return selinux_ip_output(skb, PF_INET);
4613 }
4614
4615 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4616 int ifindex,
4617 u16 family)
4618 {
4619 struct sock *sk = skb->sk;
4620 struct sk_security_struct *sksec;
4621 struct common_audit_data ad;
4622 struct lsm_network_audit net = {0,};
4623 char *addrp;
4624 u8 proto;
4625
4626 if (sk == NULL)
4627 return NF_ACCEPT;
4628 sksec = sk->sk_security;
4629
4630 ad.type = LSM_AUDIT_DATA_NET;
4631 ad.u.net = &net;
4632 ad.u.net->netif = ifindex;
4633 ad.u.net->family = family;
4634 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4635 return NF_DROP;
4636
4637 if (selinux_secmark_enabled())
4638 if (avc_has_perm(sksec->sid, skb->secmark,
4639 SECCLASS_PACKET, PACKET__SEND, &ad))
4640 return NF_DROP_ERR(-ECONNREFUSED);
4641
4642 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4643 return NF_DROP_ERR(-ECONNREFUSED);
4644
4645 return NF_ACCEPT;
4646 }
4647
4648 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4649 u16 family)
4650 {
4651 u32 secmark_perm;
4652 u32 peer_sid;
4653 struct sock *sk;
4654 struct common_audit_data ad;
4655 struct lsm_network_audit net = {0,};
4656 char *addrp;
4657 u8 secmark_active;
4658 u8 peerlbl_active;
4659
4660 /* If any sort of compatibility mode is enabled then handoff processing
4661 * to the selinux_ip_postroute_compat() function to deal with the
4662 * special handling. We do this in an attempt to keep this function
4663 * as fast and as clean as possible. */
4664 if (!selinux_policycap_netpeer)
4665 return selinux_ip_postroute_compat(skb, ifindex, family);
4666 #ifdef CONFIG_XFRM
4667 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4668 * packet transformation so allow the packet to pass without any checks
4669 * since we'll have another chance to perform access control checks
4670 * when the packet is on it's final way out.
4671 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4672 * is NULL, in this case go ahead and apply access control. */
4673 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4674 return NF_ACCEPT;
4675 #endif
4676 secmark_active = selinux_secmark_enabled();
4677 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4678 if (!secmark_active && !peerlbl_active)
4679 return NF_ACCEPT;
4680
4681 /* if the packet is being forwarded then get the peer label from the
4682 * packet itself; otherwise check to see if it is from a local
4683 * application or the kernel, if from an application get the peer label
4684 * from the sending socket, otherwise use the kernel's sid */
4685 sk = skb->sk;
4686 if (sk == NULL) {
4687 if (skb->skb_iif) {
4688 secmark_perm = PACKET__FORWARD_OUT;
4689 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4690 return NF_DROP;
4691 } else {
4692 secmark_perm = PACKET__SEND;
4693 peer_sid = SECINITSID_KERNEL;
4694 }
4695 } else {
4696 struct sk_security_struct *sksec = sk->sk_security;
4697 peer_sid = sksec->sid;
4698 secmark_perm = PACKET__SEND;
4699 }
4700
4701 ad.type = LSM_AUDIT_DATA_NET;
4702 ad.u.net = &net;
4703 ad.u.net->netif = ifindex;
4704 ad.u.net->family = family;
4705 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4706 return NF_DROP;
4707
4708 if (secmark_active)
4709 if (avc_has_perm(peer_sid, skb->secmark,
4710 SECCLASS_PACKET, secmark_perm, &ad))
4711 return NF_DROP_ERR(-ECONNREFUSED);
4712
4713 if (peerlbl_active) {
4714 u32 if_sid;
4715 u32 node_sid;
4716
4717 if (sel_netif_sid(ifindex, &if_sid))
4718 return NF_DROP;
4719 if (avc_has_perm(peer_sid, if_sid,
4720 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4721 return NF_DROP_ERR(-ECONNREFUSED);
4722
4723 if (sel_netnode_sid(addrp, family, &node_sid))
4724 return NF_DROP;
4725 if (avc_has_perm(peer_sid, node_sid,
4726 SECCLASS_NODE, NODE__SENDTO, &ad))
4727 return NF_DROP_ERR(-ECONNREFUSED);
4728 }
4729
4730 return NF_ACCEPT;
4731 }
4732
4733 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4734 struct sk_buff *skb,
4735 const struct net_device *in,
4736 const struct net_device *out,
4737 int (*okfn)(struct sk_buff *))
4738 {
4739 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4740 }
4741
4742 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4743 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4744 struct sk_buff *skb,
4745 const struct net_device *in,
4746 const struct net_device *out,
4747 int (*okfn)(struct sk_buff *))
4748 {
4749 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4750 }
4751 #endif /* IPV6 */
4752
4753 #endif /* CONFIG_NETFILTER */
4754
4755 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4756 {
4757 int err;
4758
4759 err = cap_netlink_send(sk, skb);
4760 if (err)
4761 return err;
4762
4763 return selinux_nlmsg_perm(sk, skb);
4764 }
4765
4766 static int ipc_alloc_security(struct task_struct *task,
4767 struct kern_ipc_perm *perm,
4768 u16 sclass)
4769 {
4770 struct ipc_security_struct *isec;
4771 u32 sid;
4772
4773 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4774 if (!isec)
4775 return -ENOMEM;
4776
4777 sid = task_sid(task);
4778 isec->sclass = sclass;
4779 isec->sid = sid;
4780 perm->security = isec;
4781
4782 return 0;
4783 }
4784
4785 static void ipc_free_security(struct kern_ipc_perm *perm)
4786 {
4787 struct ipc_security_struct *isec = perm->security;
4788 perm->security = NULL;
4789 kfree(isec);
4790 }
4791
4792 static int msg_msg_alloc_security(struct msg_msg *msg)
4793 {
4794 struct msg_security_struct *msec;
4795
4796 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4797 if (!msec)
4798 return -ENOMEM;
4799
4800 msec->sid = SECINITSID_UNLABELED;
4801 msg->security = msec;
4802
4803 return 0;
4804 }
4805
4806 static void msg_msg_free_security(struct msg_msg *msg)
4807 {
4808 struct msg_security_struct *msec = msg->security;
4809
4810 msg->security = NULL;
4811 kfree(msec);
4812 }
4813
4814 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4815 u32 perms)
4816 {
4817 struct ipc_security_struct *isec;
4818 struct common_audit_data ad;
4819 u32 sid = current_sid();
4820
4821 isec = ipc_perms->security;
4822
4823 ad.type = LSM_AUDIT_DATA_IPC;
4824 ad.u.ipc_id = ipc_perms->key;
4825
4826 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4827 }
4828
4829 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4830 {
4831 return msg_msg_alloc_security(msg);
4832 }
4833
4834 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4835 {
4836 msg_msg_free_security(msg);
4837 }
4838
4839 /* message queue security operations */
4840 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4841 {
4842 struct ipc_security_struct *isec;
4843 struct common_audit_data ad;
4844 u32 sid = current_sid();
4845 int rc;
4846
4847 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4848 if (rc)
4849 return rc;
4850
4851 isec = msq->q_perm.security;
4852
4853 ad.type = LSM_AUDIT_DATA_IPC;
4854 ad.u.ipc_id = msq->q_perm.key;
4855
4856 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4857 MSGQ__CREATE, &ad);
4858 if (rc) {
4859 ipc_free_security(&msq->q_perm);
4860 return rc;
4861 }
4862 return 0;
4863 }
4864
4865 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4866 {
4867 ipc_free_security(&msq->q_perm);
4868 }
4869
4870 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4871 {
4872 struct ipc_security_struct *isec;
4873 struct common_audit_data ad;
4874 u32 sid = current_sid();
4875
4876 isec = msq->q_perm.security;
4877
4878 ad.type = LSM_AUDIT_DATA_IPC;
4879 ad.u.ipc_id = msq->q_perm.key;
4880
4881 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4882 MSGQ__ASSOCIATE, &ad);
4883 }
4884
4885 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4886 {
4887 int err;
4888 int perms;
4889
4890 switch (cmd) {
4891 case IPC_INFO:
4892 case MSG_INFO:
4893 /* No specific object, just general system-wide information. */
4894 return task_has_system(current, SYSTEM__IPC_INFO);
4895 case IPC_STAT:
4896 case MSG_STAT:
4897 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4898 break;
4899 case IPC_SET:
4900 perms = MSGQ__SETATTR;
4901 break;
4902 case IPC_RMID:
4903 perms = MSGQ__DESTROY;
4904 break;
4905 default:
4906 return 0;
4907 }
4908
4909 err = ipc_has_perm(&msq->q_perm, perms);
4910 return err;
4911 }
4912
4913 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4914 {
4915 struct ipc_security_struct *isec;
4916 struct msg_security_struct *msec;
4917 struct common_audit_data ad;
4918 u32 sid = current_sid();
4919 int rc;
4920
4921 isec = msq->q_perm.security;
4922 msec = msg->security;
4923
4924 /*
4925 * First time through, need to assign label to the message
4926 */
4927 if (msec->sid == SECINITSID_UNLABELED) {
4928 /*
4929 * Compute new sid based on current process and
4930 * message queue this message will be stored in
4931 */
4932 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4933 NULL, &msec->sid);
4934 if (rc)
4935 return rc;
4936 }
4937
4938 ad.type = LSM_AUDIT_DATA_IPC;
4939 ad.u.ipc_id = msq->q_perm.key;
4940
4941 /* Can this process write to the queue? */
4942 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4943 MSGQ__WRITE, &ad);
4944 if (!rc)
4945 /* Can this process send the message */
4946 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4947 MSG__SEND, &ad);
4948 if (!rc)
4949 /* Can the message be put in the queue? */
4950 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4951 MSGQ__ENQUEUE, &ad);
4952
4953 return rc;
4954 }
4955
4956 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4957 struct task_struct *target,
4958 long type, int mode)
4959 {
4960 struct ipc_security_struct *isec;
4961 struct msg_security_struct *msec;
4962 struct common_audit_data ad;
4963 u32 sid = task_sid(target);
4964 int rc;
4965
4966 isec = msq->q_perm.security;
4967 msec = msg->security;
4968
4969 ad.type = LSM_AUDIT_DATA_IPC;
4970 ad.u.ipc_id = msq->q_perm.key;
4971
4972 rc = avc_has_perm(sid, isec->sid,
4973 SECCLASS_MSGQ, MSGQ__READ, &ad);
4974 if (!rc)
4975 rc = avc_has_perm(sid, msec->sid,
4976 SECCLASS_MSG, MSG__RECEIVE, &ad);
4977 return rc;
4978 }
4979
4980 /* Shared Memory security operations */
4981 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4982 {
4983 struct ipc_security_struct *isec;
4984 struct common_audit_data ad;
4985 u32 sid = current_sid();
4986 int rc;
4987
4988 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4989 if (rc)
4990 return rc;
4991
4992 isec = shp->shm_perm.security;
4993
4994 ad.type = LSM_AUDIT_DATA_IPC;
4995 ad.u.ipc_id = shp->shm_perm.key;
4996
4997 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4998 SHM__CREATE, &ad);
4999 if (rc) {
5000 ipc_free_security(&shp->shm_perm);
5001 return rc;
5002 }
5003 return 0;
5004 }
5005
5006 static void selinux_shm_free_security(struct shmid_kernel *shp)
5007 {
5008 ipc_free_security(&shp->shm_perm);
5009 }
5010
5011 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5012 {
5013 struct ipc_security_struct *isec;
5014 struct common_audit_data ad;
5015 u32 sid = current_sid();
5016
5017 isec = shp->shm_perm.security;
5018
5019 ad.type = LSM_AUDIT_DATA_IPC;
5020 ad.u.ipc_id = shp->shm_perm.key;
5021
5022 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5023 SHM__ASSOCIATE, &ad);
5024 }
5025
5026 /* Note, at this point, shp is locked down */
5027 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5028 {
5029 int perms;
5030 int err;
5031
5032 switch (cmd) {
5033 case IPC_INFO:
5034 case SHM_INFO:
5035 /* No specific object, just general system-wide information. */
5036 return task_has_system(current, SYSTEM__IPC_INFO);
5037 case IPC_STAT:
5038 case SHM_STAT:
5039 perms = SHM__GETATTR | SHM__ASSOCIATE;
5040 break;
5041 case IPC_SET:
5042 perms = SHM__SETATTR;
5043 break;
5044 case SHM_LOCK:
5045 case SHM_UNLOCK:
5046 perms = SHM__LOCK;
5047 break;
5048 case IPC_RMID:
5049 perms = SHM__DESTROY;
5050 break;
5051 default:
5052 return 0;
5053 }
5054
5055 err = ipc_has_perm(&shp->shm_perm, perms);
5056 return err;
5057 }
5058
5059 static int selinux_shm_shmat(struct shmid_kernel *shp,
5060 char __user *shmaddr, int shmflg)
5061 {
5062 u32 perms;
5063
5064 if (shmflg & SHM_RDONLY)
5065 perms = SHM__READ;
5066 else
5067 perms = SHM__READ | SHM__WRITE;
5068
5069 return ipc_has_perm(&shp->shm_perm, perms);
5070 }
5071
5072 /* Semaphore security operations */
5073 static int selinux_sem_alloc_security(struct sem_array *sma)
5074 {
5075 struct ipc_security_struct *isec;
5076 struct common_audit_data ad;
5077 u32 sid = current_sid();
5078 int rc;
5079
5080 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5081 if (rc)
5082 return rc;
5083
5084 isec = sma->sem_perm.security;
5085
5086 ad.type = LSM_AUDIT_DATA_IPC;
5087 ad.u.ipc_id = sma->sem_perm.key;
5088
5089 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5090 SEM__CREATE, &ad);
5091 if (rc) {
5092 ipc_free_security(&sma->sem_perm);
5093 return rc;
5094 }
5095 return 0;
5096 }
5097
5098 static void selinux_sem_free_security(struct sem_array *sma)
5099 {
5100 ipc_free_security(&sma->sem_perm);
5101 }
5102
5103 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5104 {
5105 struct ipc_security_struct *isec;
5106 struct common_audit_data ad;
5107 u32 sid = current_sid();
5108
5109 isec = sma->sem_perm.security;
5110
5111 ad.type = LSM_AUDIT_DATA_IPC;
5112 ad.u.ipc_id = sma->sem_perm.key;
5113
5114 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5115 SEM__ASSOCIATE, &ad);
5116 }
5117
5118 /* Note, at this point, sma is locked down */
5119 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5120 {
5121 int err;
5122 u32 perms;
5123
5124 switch (cmd) {
5125 case IPC_INFO:
5126 case SEM_INFO:
5127 /* No specific object, just general system-wide information. */
5128 return task_has_system(current, SYSTEM__IPC_INFO);
5129 case GETPID:
5130 case GETNCNT:
5131 case GETZCNT:
5132 perms = SEM__GETATTR;
5133 break;
5134 case GETVAL:
5135 case GETALL:
5136 perms = SEM__READ;
5137 break;
5138 case SETVAL:
5139 case SETALL:
5140 perms = SEM__WRITE;
5141 break;
5142 case IPC_RMID:
5143 perms = SEM__DESTROY;
5144 break;
5145 case IPC_SET:
5146 perms = SEM__SETATTR;
5147 break;
5148 case IPC_STAT:
5149 case SEM_STAT:
5150 perms = SEM__GETATTR | SEM__ASSOCIATE;
5151 break;
5152 default:
5153 return 0;
5154 }
5155
5156 err = ipc_has_perm(&sma->sem_perm, perms);
5157 return err;
5158 }
5159
5160 static int selinux_sem_semop(struct sem_array *sma,
5161 struct sembuf *sops, unsigned nsops, int alter)
5162 {
5163 u32 perms;
5164
5165 if (alter)
5166 perms = SEM__READ | SEM__WRITE;
5167 else
5168 perms = SEM__READ;
5169
5170 return ipc_has_perm(&sma->sem_perm, perms);
5171 }
5172
5173 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5174 {
5175 u32 av = 0;
5176
5177 av = 0;
5178 if (flag & S_IRUGO)
5179 av |= IPC__UNIX_READ;
5180 if (flag & S_IWUGO)
5181 av |= IPC__UNIX_WRITE;
5182
5183 if (av == 0)
5184 return 0;
5185
5186 return ipc_has_perm(ipcp, av);
5187 }
5188
5189 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5190 {
5191 struct ipc_security_struct *isec = ipcp->security;
5192 *secid = isec->sid;
5193 }
5194
5195 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5196 {
5197 if (inode)
5198 inode_doinit_with_dentry(inode, dentry);
5199 }
5200
5201 static int selinux_getprocattr(struct task_struct *p,
5202 char *name, char **value)
5203 {
5204 const struct task_security_struct *__tsec;
5205 u32 sid;
5206 int error;
5207 unsigned len;
5208
5209 if (current != p) {
5210 error = current_has_perm(p, PROCESS__GETATTR);
5211 if (error)
5212 return error;
5213 }
5214
5215 rcu_read_lock();
5216 __tsec = __task_cred(p)->security;
5217
5218 if (!strcmp(name, "current"))
5219 sid = __tsec->sid;
5220 else if (!strcmp(name, "prev"))
5221 sid = __tsec->osid;
5222 else if (!strcmp(name, "exec"))
5223 sid = __tsec->exec_sid;
5224 else if (!strcmp(name, "fscreate"))
5225 sid = __tsec->create_sid;
5226 else if (!strcmp(name, "keycreate"))
5227 sid = __tsec->keycreate_sid;
5228 else if (!strcmp(name, "sockcreate"))
5229 sid = __tsec->sockcreate_sid;
5230 else
5231 goto invalid;
5232 rcu_read_unlock();
5233
5234 if (!sid)
5235 return 0;
5236
5237 error = security_sid_to_context(sid, value, &len);
5238 if (error)
5239 return error;
5240 return len;
5241
5242 invalid:
5243 rcu_read_unlock();
5244 return -EINVAL;
5245 }
5246
5247 static int selinux_setprocattr(struct task_struct *p,
5248 char *name, void *value, size_t size)
5249 {
5250 struct task_security_struct *tsec;
5251 struct task_struct *tracer;
5252 struct cred *new;
5253 u32 sid = 0, ptsid;
5254 int error;
5255 char *str = value;
5256
5257 if (current != p) {
5258 /* SELinux only allows a process to change its own
5259 security attributes. */
5260 return -EACCES;
5261 }
5262
5263 /*
5264 * Basic control over ability to set these attributes at all.
5265 * current == p, but we'll pass them separately in case the
5266 * above restriction is ever removed.
5267 */
5268 if (!strcmp(name, "exec"))
5269 error = current_has_perm(p, PROCESS__SETEXEC);
5270 else if (!strcmp(name, "fscreate"))
5271 error = current_has_perm(p, PROCESS__SETFSCREATE);
5272 else if (!strcmp(name, "keycreate"))
5273 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5274 else if (!strcmp(name, "sockcreate"))
5275 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5276 else if (!strcmp(name, "current"))
5277 error = current_has_perm(p, PROCESS__SETCURRENT);
5278 else
5279 error = -EINVAL;
5280 if (error)
5281 return error;
5282
5283 /* Obtain a SID for the context, if one was specified. */
5284 if (size && str[1] && str[1] != '\n') {
5285 if (str[size-1] == '\n') {
5286 str[size-1] = 0;
5287 size--;
5288 }
5289 error = security_context_to_sid(value, size, &sid);
5290 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5291 if (!capable(CAP_MAC_ADMIN)) {
5292 struct audit_buffer *ab;
5293 size_t audit_size;
5294
5295 /* We strip a nul only if it is at the end, otherwise the
5296 * context contains a nul and we should audit that */
5297 if (str[size - 1] == '\0')
5298 audit_size = size - 1;
5299 else
5300 audit_size = size;
5301 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5302 audit_log_format(ab, "op=fscreate invalid_context=");
5303 audit_log_n_untrustedstring(ab, value, audit_size);
5304 audit_log_end(ab);
5305
5306 return error;
5307 }
5308 error = security_context_to_sid_force(value, size,
5309 &sid);
5310 }
5311 if (error)
5312 return error;
5313 }
5314
5315 new = prepare_creds();
5316 if (!new)
5317 return -ENOMEM;
5318
5319 /* Permission checking based on the specified context is
5320 performed during the actual operation (execve,
5321 open/mkdir/...), when we know the full context of the
5322 operation. See selinux_bprm_set_creds for the execve
5323 checks and may_create for the file creation checks. The
5324 operation will then fail if the context is not permitted. */
5325 tsec = new->security;
5326 if (!strcmp(name, "exec")) {
5327 tsec->exec_sid = sid;
5328 } else if (!strcmp(name, "fscreate")) {
5329 tsec->create_sid = sid;
5330 } else if (!strcmp(name, "keycreate")) {
5331 error = may_create_key(sid, p);
5332 if (error)
5333 goto abort_change;
5334 tsec->keycreate_sid = sid;
5335 } else if (!strcmp(name, "sockcreate")) {
5336 tsec->sockcreate_sid = sid;
5337 } else if (!strcmp(name, "current")) {
5338 error = -EINVAL;
5339 if (sid == 0)
5340 goto abort_change;
5341
5342 /* Only allow single threaded processes to change context */
5343 error = -EPERM;
5344 if (!current_is_single_threaded()) {
5345 error = security_bounded_transition(tsec->sid, sid);
5346 if (error)
5347 goto abort_change;
5348 }
5349
5350 /* Check permissions for the transition. */
5351 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5352 PROCESS__DYNTRANSITION, NULL);
5353 if (error)
5354 goto abort_change;
5355
5356 /* Check for ptracing, and update the task SID if ok.
5357 Otherwise, leave SID unchanged and fail. */
5358 ptsid = 0;
5359 task_lock(p);
5360 tracer = ptrace_parent(p);
5361 if (tracer)
5362 ptsid = task_sid(tracer);
5363 task_unlock(p);
5364
5365 if (tracer) {
5366 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5367 PROCESS__PTRACE, NULL);
5368 if (error)
5369 goto abort_change;
5370 }
5371
5372 tsec->sid = sid;
5373 } else {
5374 error = -EINVAL;
5375 goto abort_change;
5376 }
5377
5378 commit_creds(new);
5379 return size;
5380
5381 abort_change:
5382 abort_creds(new);
5383 return error;
5384 }
5385
5386 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5387 {
5388 return security_sid_to_context(secid, secdata, seclen);
5389 }
5390
5391 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5392 {
5393 return security_context_to_sid(secdata, seclen, secid);
5394 }
5395
5396 static void selinux_release_secctx(char *secdata, u32 seclen)
5397 {
5398 kfree(secdata);
5399 }
5400
5401 /*
5402 * called with inode->i_mutex locked
5403 */
5404 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5405 {
5406 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5407 }
5408
5409 /*
5410 * called with inode->i_mutex locked
5411 */
5412 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5413 {
5414 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5415 }
5416
5417 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5418 {
5419 int len = 0;
5420 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5421 ctx, true);
5422 if (len < 0)
5423 return len;
5424 *ctxlen = len;
5425 return 0;
5426 }
5427 #ifdef CONFIG_KEYS
5428
5429 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5430 unsigned long flags)
5431 {
5432 const struct task_security_struct *tsec;
5433 struct key_security_struct *ksec;
5434
5435 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5436 if (!ksec)
5437 return -ENOMEM;
5438
5439 tsec = cred->security;
5440 if (tsec->keycreate_sid)
5441 ksec->sid = tsec->keycreate_sid;
5442 else
5443 ksec->sid = tsec->sid;
5444
5445 k->security = ksec;
5446 return 0;
5447 }
5448
5449 static void selinux_key_free(struct key *k)
5450 {
5451 struct key_security_struct *ksec = k->security;
5452
5453 k->security = NULL;
5454 kfree(ksec);
5455 }
5456
5457 static int selinux_key_permission(key_ref_t key_ref,
5458 const struct cred *cred,
5459 key_perm_t perm)
5460 {
5461 struct key *key;
5462 struct key_security_struct *ksec;
5463 u32 sid;
5464
5465 /* if no specific permissions are requested, we skip the
5466 permission check. No serious, additional covert channels
5467 appear to be created. */
5468 if (perm == 0)
5469 return 0;
5470
5471 sid = cred_sid(cred);
5472
5473 key = key_ref_to_ptr(key_ref);
5474 ksec = key->security;
5475
5476 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5477 }
5478
5479 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5480 {
5481 struct key_security_struct *ksec = key->security;
5482 char *context = NULL;
5483 unsigned len;
5484 int rc;
5485
5486 rc = security_sid_to_context(ksec->sid, &context, &len);
5487 if (!rc)
5488 rc = len;
5489 *_buffer = context;
5490 return rc;
5491 }
5492
5493 #endif
5494
5495 static struct security_operations selinux_ops = {
5496 .name = "selinux",
5497
5498 .ptrace_access_check = selinux_ptrace_access_check,
5499 .ptrace_traceme = selinux_ptrace_traceme,
5500 .capget = selinux_capget,
5501 .capset = selinux_capset,
5502 .capable = selinux_capable,
5503 .quotactl = selinux_quotactl,
5504 .quota_on = selinux_quota_on,
5505 .syslog = selinux_syslog,
5506 .vm_enough_memory = selinux_vm_enough_memory,
5507
5508 .netlink_send = selinux_netlink_send,
5509
5510 .bprm_set_creds = selinux_bprm_set_creds,
5511 .bprm_committing_creds = selinux_bprm_committing_creds,
5512 .bprm_committed_creds = selinux_bprm_committed_creds,
5513 .bprm_secureexec = selinux_bprm_secureexec,
5514
5515 .sb_alloc_security = selinux_sb_alloc_security,
5516 .sb_free_security = selinux_sb_free_security,
5517 .sb_copy_data = selinux_sb_copy_data,
5518 .sb_remount = selinux_sb_remount,
5519 .sb_kern_mount = selinux_sb_kern_mount,
5520 .sb_show_options = selinux_sb_show_options,
5521 .sb_statfs = selinux_sb_statfs,
5522 .sb_mount = selinux_mount,
5523 .sb_umount = selinux_umount,
5524 .sb_set_mnt_opts = selinux_set_mnt_opts,
5525 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5526 .sb_parse_opts_str = selinux_parse_opts_str,
5527
5528
5529 .inode_alloc_security = selinux_inode_alloc_security,
5530 .inode_free_security = selinux_inode_free_security,
5531 .inode_init_security = selinux_inode_init_security,
5532 .inode_create = selinux_inode_create,
5533 .inode_link = selinux_inode_link,
5534 .inode_unlink = selinux_inode_unlink,
5535 .inode_symlink = selinux_inode_symlink,
5536 .inode_mkdir = selinux_inode_mkdir,
5537 .inode_rmdir = selinux_inode_rmdir,
5538 .inode_mknod = selinux_inode_mknod,
5539 .inode_rename = selinux_inode_rename,
5540 .inode_readlink = selinux_inode_readlink,
5541 .inode_follow_link = selinux_inode_follow_link,
5542 .inode_permission = selinux_inode_permission,
5543 .inode_setattr = selinux_inode_setattr,
5544 .inode_getattr = selinux_inode_getattr,
5545 .inode_setxattr = selinux_inode_setxattr,
5546 .inode_post_setxattr = selinux_inode_post_setxattr,
5547 .inode_getxattr = selinux_inode_getxattr,
5548 .inode_listxattr = selinux_inode_listxattr,
5549 .inode_removexattr = selinux_inode_removexattr,
5550 .inode_getsecurity = selinux_inode_getsecurity,
5551 .inode_setsecurity = selinux_inode_setsecurity,
5552 .inode_listsecurity = selinux_inode_listsecurity,
5553 .inode_getsecid = selinux_inode_getsecid,
5554
5555 .file_permission = selinux_file_permission,
5556 .file_alloc_security = selinux_file_alloc_security,
5557 .file_free_security = selinux_file_free_security,
5558 .file_ioctl = selinux_file_ioctl,
5559 .mmap_file = selinux_mmap_file,
5560 .mmap_addr = selinux_mmap_addr,
5561 .file_mprotect = selinux_file_mprotect,
5562 .file_lock = selinux_file_lock,
5563 .file_fcntl = selinux_file_fcntl,
5564 .file_set_fowner = selinux_file_set_fowner,
5565 .file_send_sigiotask = selinux_file_send_sigiotask,
5566 .file_receive = selinux_file_receive,
5567
5568 .file_open = selinux_file_open,
5569
5570 .task_create = selinux_task_create,
5571 .cred_alloc_blank = selinux_cred_alloc_blank,
5572 .cred_free = selinux_cred_free,
5573 .cred_prepare = selinux_cred_prepare,
5574 .cred_transfer = selinux_cred_transfer,
5575 .kernel_act_as = selinux_kernel_act_as,
5576 .kernel_create_files_as = selinux_kernel_create_files_as,
5577 .kernel_module_request = selinux_kernel_module_request,
5578 .task_setpgid = selinux_task_setpgid,
5579 .task_getpgid = selinux_task_getpgid,
5580 .task_getsid = selinux_task_getsid,
5581 .task_getsecid = selinux_task_getsecid,
5582 .task_setnice = selinux_task_setnice,
5583 .task_setioprio = selinux_task_setioprio,
5584 .task_getioprio = selinux_task_getioprio,
5585 .task_setrlimit = selinux_task_setrlimit,
5586 .task_setscheduler = selinux_task_setscheduler,
5587 .task_getscheduler = selinux_task_getscheduler,
5588 .task_movememory = selinux_task_movememory,
5589 .task_kill = selinux_task_kill,
5590 .task_wait = selinux_task_wait,
5591 .task_to_inode = selinux_task_to_inode,
5592
5593 .ipc_permission = selinux_ipc_permission,
5594 .ipc_getsecid = selinux_ipc_getsecid,
5595
5596 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5597 .msg_msg_free_security = selinux_msg_msg_free_security,
5598
5599 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5600 .msg_queue_free_security = selinux_msg_queue_free_security,
5601 .msg_queue_associate = selinux_msg_queue_associate,
5602 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5603 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5604 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5605
5606 .shm_alloc_security = selinux_shm_alloc_security,
5607 .shm_free_security = selinux_shm_free_security,
5608 .shm_associate = selinux_shm_associate,
5609 .shm_shmctl = selinux_shm_shmctl,
5610 .shm_shmat = selinux_shm_shmat,
5611
5612 .sem_alloc_security = selinux_sem_alloc_security,
5613 .sem_free_security = selinux_sem_free_security,
5614 .sem_associate = selinux_sem_associate,
5615 .sem_semctl = selinux_sem_semctl,
5616 .sem_semop = selinux_sem_semop,
5617
5618 .d_instantiate = selinux_d_instantiate,
5619
5620 .getprocattr = selinux_getprocattr,
5621 .setprocattr = selinux_setprocattr,
5622
5623 .secid_to_secctx = selinux_secid_to_secctx,
5624 .secctx_to_secid = selinux_secctx_to_secid,
5625 .release_secctx = selinux_release_secctx,
5626 .inode_notifysecctx = selinux_inode_notifysecctx,
5627 .inode_setsecctx = selinux_inode_setsecctx,
5628 .inode_getsecctx = selinux_inode_getsecctx,
5629
5630 .unix_stream_connect = selinux_socket_unix_stream_connect,
5631 .unix_may_send = selinux_socket_unix_may_send,
5632
5633 .socket_create = selinux_socket_create,
5634 .socket_post_create = selinux_socket_post_create,
5635 .socket_bind = selinux_socket_bind,
5636 .socket_connect = selinux_socket_connect,
5637 .socket_listen = selinux_socket_listen,
5638 .socket_accept = selinux_socket_accept,
5639 .socket_sendmsg = selinux_socket_sendmsg,
5640 .socket_recvmsg = selinux_socket_recvmsg,
5641 .socket_getsockname = selinux_socket_getsockname,
5642 .socket_getpeername = selinux_socket_getpeername,
5643 .socket_getsockopt = selinux_socket_getsockopt,
5644 .socket_setsockopt = selinux_socket_setsockopt,
5645 .socket_shutdown = selinux_socket_shutdown,
5646 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5647 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5648 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5649 .sk_alloc_security = selinux_sk_alloc_security,
5650 .sk_free_security = selinux_sk_free_security,
5651 .sk_clone_security = selinux_sk_clone_security,
5652 .sk_getsecid = selinux_sk_getsecid,
5653 .sock_graft = selinux_sock_graft,
5654 .inet_conn_request = selinux_inet_conn_request,
5655 .inet_csk_clone = selinux_inet_csk_clone,
5656 .inet_conn_established = selinux_inet_conn_established,
5657 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5658 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5659 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5660 .req_classify_flow = selinux_req_classify_flow,
5661 .tun_dev_alloc_security = selinux_tun_dev_alloc_security,
5662 .tun_dev_free_security = selinux_tun_dev_free_security,
5663 .tun_dev_create = selinux_tun_dev_create,
5664 .tun_dev_attach_queue = selinux_tun_dev_attach_queue,
5665 .tun_dev_attach = selinux_tun_dev_attach,
5666 .tun_dev_open = selinux_tun_dev_open,
5667
5668 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5669 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5670 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5671 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5672 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5673 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5674 .xfrm_state_free_security = selinux_xfrm_state_free,
5675 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5676 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5677 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5678 .xfrm_decode_session = selinux_xfrm_decode_session,
5679 #endif
5680
5681 #ifdef CONFIG_KEYS
5682 .key_alloc = selinux_key_alloc,
5683 .key_free = selinux_key_free,
5684 .key_permission = selinux_key_permission,
5685 .key_getsecurity = selinux_key_getsecurity,
5686 #endif
5687
5688 #ifdef CONFIG_AUDIT
5689 .audit_rule_init = selinux_audit_rule_init,
5690 .audit_rule_known = selinux_audit_rule_known,
5691 .audit_rule_match = selinux_audit_rule_match,
5692 .audit_rule_free = selinux_audit_rule_free,
5693 #endif
5694 };
5695
5696 static __init int selinux_init(void)
5697 {
5698 if (!security_module_enable(&selinux_ops)) {
5699 selinux_enabled = 0;
5700 return 0;
5701 }
5702
5703 if (!selinux_enabled) {
5704 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5705 return 0;
5706 }
5707
5708 printk(KERN_INFO "SELinux: Initializing.\n");
5709
5710 /* Set the security state for the initial task. */
5711 cred_init_security();
5712
5713 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5714
5715 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5716 sizeof(struct inode_security_struct),
5717 0, SLAB_PANIC, NULL);
5718 avc_init();
5719
5720 if (register_security(&selinux_ops))
5721 panic("SELinux: Unable to register with kernel.\n");
5722
5723 if (selinux_enforcing)
5724 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5725 else
5726 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5727
5728 return 0;
5729 }
5730
5731 static void delayed_superblock_init(struct super_block *sb, void *unused)
5732 {
5733 superblock_doinit(sb, NULL);
5734 }
5735
5736 void selinux_complete_init(void)
5737 {
5738 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5739
5740 /* Set up any superblocks initialized prior to the policy load. */
5741 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5742 iterate_supers(delayed_superblock_init, NULL);
5743 }
5744
5745 /* SELinux requires early initialization in order to label
5746 all processes and objects when they are created. */
5747 security_initcall(selinux_init);
5748
5749 #if defined(CONFIG_NETFILTER)
5750
5751 static struct nf_hook_ops selinux_ipv4_ops[] = {
5752 {
5753 .hook = selinux_ipv4_postroute,
5754 .owner = THIS_MODULE,
5755 .pf = NFPROTO_IPV4,
5756 .hooknum = NF_INET_POST_ROUTING,
5757 .priority = NF_IP_PRI_SELINUX_LAST,
5758 },
5759 {
5760 .hook = selinux_ipv4_forward,
5761 .owner = THIS_MODULE,
5762 .pf = NFPROTO_IPV4,
5763 .hooknum = NF_INET_FORWARD,
5764 .priority = NF_IP_PRI_SELINUX_FIRST,
5765 },
5766 {
5767 .hook = selinux_ipv4_output,
5768 .owner = THIS_MODULE,
5769 .pf = NFPROTO_IPV4,
5770 .hooknum = NF_INET_LOCAL_OUT,
5771 .priority = NF_IP_PRI_SELINUX_FIRST,
5772 }
5773 };
5774
5775 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5776
5777 static struct nf_hook_ops selinux_ipv6_ops[] = {
5778 {
5779 .hook = selinux_ipv6_postroute,
5780 .owner = THIS_MODULE,
5781 .pf = NFPROTO_IPV6,
5782 .hooknum = NF_INET_POST_ROUTING,
5783 .priority = NF_IP6_PRI_SELINUX_LAST,
5784 },
5785 {
5786 .hook = selinux_ipv6_forward,
5787 .owner = THIS_MODULE,
5788 .pf = NFPROTO_IPV6,
5789 .hooknum = NF_INET_FORWARD,
5790 .priority = NF_IP6_PRI_SELINUX_FIRST,
5791 }
5792 };
5793
5794 #endif /* IPV6 */
5795
5796 static int __init selinux_nf_ip_init(void)
5797 {
5798 int err = 0;
5799
5800 if (!selinux_enabled)
5801 goto out;
5802
5803 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5804
5805 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5806 if (err)
5807 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5808
5809 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5810 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5811 if (err)
5812 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5813 #endif /* IPV6 */
5814
5815 out:
5816 return err;
5817 }
5818
5819 __initcall(selinux_nf_ip_init);
5820
5821 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5822 static void selinux_nf_ip_exit(void)
5823 {
5824 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5825
5826 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5827 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5828 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5829 #endif /* IPV6 */
5830 }
5831 #endif
5832
5833 #else /* CONFIG_NETFILTER */
5834
5835 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5836 #define selinux_nf_ip_exit()
5837 #endif
5838
5839 #endif /* CONFIG_NETFILTER */
5840
5841 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5842 static int selinux_disabled;
5843
5844 int selinux_disable(void)
5845 {
5846 if (ss_initialized) {
5847 /* Not permitted after initial policy load. */
5848 return -EINVAL;
5849 }
5850
5851 if (selinux_disabled) {
5852 /* Only do this once. */
5853 return -EINVAL;
5854 }
5855
5856 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5857
5858 selinux_disabled = 1;
5859 selinux_enabled = 0;
5860
5861 reset_security_ops();
5862
5863 /* Try to destroy the avc node cache */
5864 avc_disable();
5865
5866 /* Unregister netfilter hooks. */
5867 selinux_nf_ip_exit();
5868
5869 /* Unregister selinuxfs. */
5870 exit_sel_fs();
5871
5872 return 0;
5873 }
5874 #endif