]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - security/selinux/hooks.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-nmw
[mirror_ubuntu-artful-kernel.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul.moore@hp.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h> /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h> /* for Unix socket types */
67 #include <net/af_unix.h> /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 #include <linux/syslog.h>
80
81 #include "avc.h"
82 #include "objsec.h"
83 #include "netif.h"
84 #include "netnode.h"
85 #include "netport.h"
86 #include "xfrm.h"
87 #include "netlabel.h"
88 #include "audit.h"
89
90 #define XATTR_SELINUX_SUFFIX "selinux"
91 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
92
93 #define NUM_SEL_MNT_OPTS 5
94
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106 unsigned long enforcing;
107 if (!strict_strtoul(str, 0, &enforcing))
108 selinux_enforcing = enforcing ? 1 : 0;
109 return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119 unsigned long enabled;
120 if (!strict_strtoul(str, 0, &enabled))
121 selinux_enabled = enabled ? 1 : 0;
122 return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129 /* Lists of inode and superblock security structures initialized
130 before the policy was loaded. */
131 static LIST_HEAD(superblock_security_head);
132 static DEFINE_SPINLOCK(sb_security_lock);
133
134 static struct kmem_cache *sel_inode_cache;
135
136 /**
137 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
138 *
139 * Description:
140 * This function checks the SECMARK reference counter to see if any SECMARK
141 * targets are currently configured, if the reference counter is greater than
142 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
143 * enabled, false (0) if SECMARK is disabled.
144 *
145 */
146 static int selinux_secmark_enabled(void)
147 {
148 return (atomic_read(&selinux_secmark_refcount) > 0);
149 }
150
151 /*
152 * initialise the security for the init task
153 */
154 static void cred_init_security(void)
155 {
156 struct cred *cred = (struct cred *) current->real_cred;
157 struct task_security_struct *tsec;
158
159 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
160 if (!tsec)
161 panic("SELinux: Failed to initialize initial task.\n");
162
163 tsec->osid = tsec->sid = SECINITSID_KERNEL;
164 cred->security = tsec;
165 }
166
167 /*
168 * get the security ID of a set of credentials
169 */
170 static inline u32 cred_sid(const struct cred *cred)
171 {
172 const struct task_security_struct *tsec;
173
174 tsec = cred->security;
175 return tsec->sid;
176 }
177
178 /*
179 * get the objective security ID of a task
180 */
181 static inline u32 task_sid(const struct task_struct *task)
182 {
183 u32 sid;
184
185 rcu_read_lock();
186 sid = cred_sid(__task_cred(task));
187 rcu_read_unlock();
188 return sid;
189 }
190
191 /*
192 * get the subjective security ID of the current task
193 */
194 static inline u32 current_sid(void)
195 {
196 const struct task_security_struct *tsec = current_cred()->security;
197
198 return tsec->sid;
199 }
200
201 /* Allocate and free functions for each kind of security blob. */
202
203 static int inode_alloc_security(struct inode *inode)
204 {
205 struct inode_security_struct *isec;
206 u32 sid = current_sid();
207
208 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
209 if (!isec)
210 return -ENOMEM;
211
212 mutex_init(&isec->lock);
213 INIT_LIST_HEAD(&isec->list);
214 isec->inode = inode;
215 isec->sid = SECINITSID_UNLABELED;
216 isec->sclass = SECCLASS_FILE;
217 isec->task_sid = sid;
218 inode->i_security = isec;
219
220 return 0;
221 }
222
223 static void inode_free_security(struct inode *inode)
224 {
225 struct inode_security_struct *isec = inode->i_security;
226 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
227
228 spin_lock(&sbsec->isec_lock);
229 if (!list_empty(&isec->list))
230 list_del_init(&isec->list);
231 spin_unlock(&sbsec->isec_lock);
232
233 inode->i_security = NULL;
234 kmem_cache_free(sel_inode_cache, isec);
235 }
236
237 static int file_alloc_security(struct file *file)
238 {
239 struct file_security_struct *fsec;
240 u32 sid = current_sid();
241
242 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
243 if (!fsec)
244 return -ENOMEM;
245
246 fsec->sid = sid;
247 fsec->fown_sid = sid;
248 file->f_security = fsec;
249
250 return 0;
251 }
252
253 static void file_free_security(struct file *file)
254 {
255 struct file_security_struct *fsec = file->f_security;
256 file->f_security = NULL;
257 kfree(fsec);
258 }
259
260 static int superblock_alloc_security(struct super_block *sb)
261 {
262 struct superblock_security_struct *sbsec;
263
264 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
265 if (!sbsec)
266 return -ENOMEM;
267
268 mutex_init(&sbsec->lock);
269 INIT_LIST_HEAD(&sbsec->list);
270 INIT_LIST_HEAD(&sbsec->isec_head);
271 spin_lock_init(&sbsec->isec_lock);
272 sbsec->sb = sb;
273 sbsec->sid = SECINITSID_UNLABELED;
274 sbsec->def_sid = SECINITSID_FILE;
275 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
276 sb->s_security = sbsec;
277
278 return 0;
279 }
280
281 static void superblock_free_security(struct super_block *sb)
282 {
283 struct superblock_security_struct *sbsec = sb->s_security;
284
285 spin_lock(&sb_security_lock);
286 if (!list_empty(&sbsec->list))
287 list_del_init(&sbsec->list);
288 spin_unlock(&sb_security_lock);
289
290 sb->s_security = NULL;
291 kfree(sbsec);
292 }
293
294 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
295 {
296 struct sk_security_struct *sksec;
297
298 sksec = kzalloc(sizeof(*sksec), priority);
299 if (!sksec)
300 return -ENOMEM;
301
302 sksec->peer_sid = SECINITSID_UNLABELED;
303 sksec->sid = SECINITSID_UNLABELED;
304 sk->sk_security = sksec;
305
306 selinux_netlbl_sk_security_reset(sksec);
307
308 return 0;
309 }
310
311 static void sk_free_security(struct sock *sk)
312 {
313 struct sk_security_struct *sksec = sk->sk_security;
314
315 sk->sk_security = NULL;
316 selinux_netlbl_sk_security_free(sksec);
317 kfree(sksec);
318 }
319
320 /* The security server must be initialized before
321 any labeling or access decisions can be provided. */
322 extern int ss_initialized;
323
324 /* The file system's label must be initialized prior to use. */
325
326 static const char *labeling_behaviors[6] = {
327 "uses xattr",
328 "uses transition SIDs",
329 "uses task SIDs",
330 "uses genfs_contexts",
331 "not configured for labeling",
332 "uses mountpoint labeling",
333 };
334
335 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
336
337 static inline int inode_doinit(struct inode *inode)
338 {
339 return inode_doinit_with_dentry(inode, NULL);
340 }
341
342 enum {
343 Opt_error = -1,
344 Opt_context = 1,
345 Opt_fscontext = 2,
346 Opt_defcontext = 3,
347 Opt_rootcontext = 4,
348 Opt_labelsupport = 5,
349 };
350
351 static const match_table_t tokens = {
352 {Opt_context, CONTEXT_STR "%s"},
353 {Opt_fscontext, FSCONTEXT_STR "%s"},
354 {Opt_defcontext, DEFCONTEXT_STR "%s"},
355 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
356 {Opt_labelsupport, LABELSUPP_STR},
357 {Opt_error, NULL},
358 };
359
360 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
361
362 static int may_context_mount_sb_relabel(u32 sid,
363 struct superblock_security_struct *sbsec,
364 const struct cred *cred)
365 {
366 const struct task_security_struct *tsec = cred->security;
367 int rc;
368
369 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
370 FILESYSTEM__RELABELFROM, NULL);
371 if (rc)
372 return rc;
373
374 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
375 FILESYSTEM__RELABELTO, NULL);
376 return rc;
377 }
378
379 static int may_context_mount_inode_relabel(u32 sid,
380 struct superblock_security_struct *sbsec,
381 const struct cred *cred)
382 {
383 const struct task_security_struct *tsec = cred->security;
384 int rc;
385 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
386 FILESYSTEM__RELABELFROM, NULL);
387 if (rc)
388 return rc;
389
390 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
391 FILESYSTEM__ASSOCIATE, NULL);
392 return rc;
393 }
394
395 static int sb_finish_set_opts(struct super_block *sb)
396 {
397 struct superblock_security_struct *sbsec = sb->s_security;
398 struct dentry *root = sb->s_root;
399 struct inode *root_inode = root->d_inode;
400 int rc = 0;
401
402 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
403 /* Make sure that the xattr handler exists and that no
404 error other than -ENODATA is returned by getxattr on
405 the root directory. -ENODATA is ok, as this may be
406 the first boot of the SELinux kernel before we have
407 assigned xattr values to the filesystem. */
408 if (!root_inode->i_op->getxattr) {
409 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
410 "xattr support\n", sb->s_id, sb->s_type->name);
411 rc = -EOPNOTSUPP;
412 goto out;
413 }
414 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
415 if (rc < 0 && rc != -ENODATA) {
416 if (rc == -EOPNOTSUPP)
417 printk(KERN_WARNING "SELinux: (dev %s, type "
418 "%s) has no security xattr handler\n",
419 sb->s_id, sb->s_type->name);
420 else
421 printk(KERN_WARNING "SELinux: (dev %s, type "
422 "%s) getxattr errno %d\n", sb->s_id,
423 sb->s_type->name, -rc);
424 goto out;
425 }
426 }
427
428 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
429
430 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
431 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
432 sb->s_id, sb->s_type->name);
433 else
434 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
435 sb->s_id, sb->s_type->name,
436 labeling_behaviors[sbsec->behavior-1]);
437
438 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
439 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
440 sbsec->behavior == SECURITY_FS_USE_NONE ||
441 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
442 sbsec->flags &= ~SE_SBLABELSUPP;
443
444 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
445 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
446 sbsec->flags |= SE_SBLABELSUPP;
447
448 /* Initialize the root inode. */
449 rc = inode_doinit_with_dentry(root_inode, root);
450
451 /* Initialize any other inodes associated with the superblock, e.g.
452 inodes created prior to initial policy load or inodes created
453 during get_sb by a pseudo filesystem that directly
454 populates itself. */
455 spin_lock(&sbsec->isec_lock);
456 next_inode:
457 if (!list_empty(&sbsec->isec_head)) {
458 struct inode_security_struct *isec =
459 list_entry(sbsec->isec_head.next,
460 struct inode_security_struct, list);
461 struct inode *inode = isec->inode;
462 spin_unlock(&sbsec->isec_lock);
463 inode = igrab(inode);
464 if (inode) {
465 if (!IS_PRIVATE(inode))
466 inode_doinit(inode);
467 iput(inode);
468 }
469 spin_lock(&sbsec->isec_lock);
470 list_del_init(&isec->list);
471 goto next_inode;
472 }
473 spin_unlock(&sbsec->isec_lock);
474 out:
475 return rc;
476 }
477
478 /*
479 * This function should allow an FS to ask what it's mount security
480 * options were so it can use those later for submounts, displaying
481 * mount options, or whatever.
482 */
483 static int selinux_get_mnt_opts(const struct super_block *sb,
484 struct security_mnt_opts *opts)
485 {
486 int rc = 0, i;
487 struct superblock_security_struct *sbsec = sb->s_security;
488 char *context = NULL;
489 u32 len;
490 char tmp;
491
492 security_init_mnt_opts(opts);
493
494 if (!(sbsec->flags & SE_SBINITIALIZED))
495 return -EINVAL;
496
497 if (!ss_initialized)
498 return -EINVAL;
499
500 tmp = sbsec->flags & SE_MNTMASK;
501 /* count the number of mount options for this sb */
502 for (i = 0; i < 8; i++) {
503 if (tmp & 0x01)
504 opts->num_mnt_opts++;
505 tmp >>= 1;
506 }
507 /* Check if the Label support flag is set */
508 if (sbsec->flags & SE_SBLABELSUPP)
509 opts->num_mnt_opts++;
510
511 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
512 if (!opts->mnt_opts) {
513 rc = -ENOMEM;
514 goto out_free;
515 }
516
517 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
518 if (!opts->mnt_opts_flags) {
519 rc = -ENOMEM;
520 goto out_free;
521 }
522
523 i = 0;
524 if (sbsec->flags & FSCONTEXT_MNT) {
525 rc = security_sid_to_context(sbsec->sid, &context, &len);
526 if (rc)
527 goto out_free;
528 opts->mnt_opts[i] = context;
529 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
530 }
531 if (sbsec->flags & CONTEXT_MNT) {
532 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
533 if (rc)
534 goto out_free;
535 opts->mnt_opts[i] = context;
536 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
537 }
538 if (sbsec->flags & DEFCONTEXT_MNT) {
539 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
540 if (rc)
541 goto out_free;
542 opts->mnt_opts[i] = context;
543 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
544 }
545 if (sbsec->flags & ROOTCONTEXT_MNT) {
546 struct inode *root = sbsec->sb->s_root->d_inode;
547 struct inode_security_struct *isec = root->i_security;
548
549 rc = security_sid_to_context(isec->sid, &context, &len);
550 if (rc)
551 goto out_free;
552 opts->mnt_opts[i] = context;
553 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
554 }
555 if (sbsec->flags & SE_SBLABELSUPP) {
556 opts->mnt_opts[i] = NULL;
557 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
558 }
559
560 BUG_ON(i != opts->num_mnt_opts);
561
562 return 0;
563
564 out_free:
565 security_free_mnt_opts(opts);
566 return rc;
567 }
568
569 static int bad_option(struct superblock_security_struct *sbsec, char flag,
570 u32 old_sid, u32 new_sid)
571 {
572 char mnt_flags = sbsec->flags & SE_MNTMASK;
573
574 /* check if the old mount command had the same options */
575 if (sbsec->flags & SE_SBINITIALIZED)
576 if (!(sbsec->flags & flag) ||
577 (old_sid != new_sid))
578 return 1;
579
580 /* check if we were passed the same options twice,
581 * aka someone passed context=a,context=b
582 */
583 if (!(sbsec->flags & SE_SBINITIALIZED))
584 if (mnt_flags & flag)
585 return 1;
586 return 0;
587 }
588
589 /*
590 * Allow filesystems with binary mount data to explicitly set mount point
591 * labeling information.
592 */
593 static int selinux_set_mnt_opts(struct super_block *sb,
594 struct security_mnt_opts *opts)
595 {
596 const struct cred *cred = current_cred();
597 int rc = 0, i;
598 struct superblock_security_struct *sbsec = sb->s_security;
599 const char *name = sb->s_type->name;
600 struct inode *inode = sbsec->sb->s_root->d_inode;
601 struct inode_security_struct *root_isec = inode->i_security;
602 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
603 u32 defcontext_sid = 0;
604 char **mount_options = opts->mnt_opts;
605 int *flags = opts->mnt_opts_flags;
606 int num_opts = opts->num_mnt_opts;
607
608 mutex_lock(&sbsec->lock);
609
610 if (!ss_initialized) {
611 if (!num_opts) {
612 /* Defer initialization until selinux_complete_init,
613 after the initial policy is loaded and the security
614 server is ready to handle calls. */
615 spin_lock(&sb_security_lock);
616 if (list_empty(&sbsec->list))
617 list_add(&sbsec->list, &superblock_security_head);
618 spin_unlock(&sb_security_lock);
619 goto out;
620 }
621 rc = -EINVAL;
622 printk(KERN_WARNING "SELinux: Unable to set superblock options "
623 "before the security server is initialized\n");
624 goto out;
625 }
626
627 /*
628 * Binary mount data FS will come through this function twice. Once
629 * from an explicit call and once from the generic calls from the vfs.
630 * Since the generic VFS calls will not contain any security mount data
631 * we need to skip the double mount verification.
632 *
633 * This does open a hole in which we will not notice if the first
634 * mount using this sb set explict options and a second mount using
635 * this sb does not set any security options. (The first options
636 * will be used for both mounts)
637 */
638 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
639 && (num_opts == 0))
640 goto out;
641
642 /*
643 * parse the mount options, check if they are valid sids.
644 * also check if someone is trying to mount the same sb more
645 * than once with different security options.
646 */
647 for (i = 0; i < num_opts; i++) {
648 u32 sid;
649
650 if (flags[i] == SE_SBLABELSUPP)
651 continue;
652 rc = security_context_to_sid(mount_options[i],
653 strlen(mount_options[i]), &sid);
654 if (rc) {
655 printk(KERN_WARNING "SELinux: security_context_to_sid"
656 "(%s) failed for (dev %s, type %s) errno=%d\n",
657 mount_options[i], sb->s_id, name, rc);
658 goto out;
659 }
660 switch (flags[i]) {
661 case FSCONTEXT_MNT:
662 fscontext_sid = sid;
663
664 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
665 fscontext_sid))
666 goto out_double_mount;
667
668 sbsec->flags |= FSCONTEXT_MNT;
669 break;
670 case CONTEXT_MNT:
671 context_sid = sid;
672
673 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
674 context_sid))
675 goto out_double_mount;
676
677 sbsec->flags |= CONTEXT_MNT;
678 break;
679 case ROOTCONTEXT_MNT:
680 rootcontext_sid = sid;
681
682 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
683 rootcontext_sid))
684 goto out_double_mount;
685
686 sbsec->flags |= ROOTCONTEXT_MNT;
687
688 break;
689 case DEFCONTEXT_MNT:
690 defcontext_sid = sid;
691
692 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
693 defcontext_sid))
694 goto out_double_mount;
695
696 sbsec->flags |= DEFCONTEXT_MNT;
697
698 break;
699 default:
700 rc = -EINVAL;
701 goto out;
702 }
703 }
704
705 if (sbsec->flags & SE_SBINITIALIZED) {
706 /* previously mounted with options, but not on this attempt? */
707 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
708 goto out_double_mount;
709 rc = 0;
710 goto out;
711 }
712
713 if (strcmp(sb->s_type->name, "proc") == 0)
714 sbsec->flags |= SE_SBPROC;
715
716 /* Determine the labeling behavior to use for this filesystem type. */
717 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
718 if (rc) {
719 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
720 __func__, sb->s_type->name, rc);
721 goto out;
722 }
723
724 /* sets the context of the superblock for the fs being mounted. */
725 if (fscontext_sid) {
726 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
727 if (rc)
728 goto out;
729
730 sbsec->sid = fscontext_sid;
731 }
732
733 /*
734 * Switch to using mount point labeling behavior.
735 * sets the label used on all file below the mountpoint, and will set
736 * the superblock context if not already set.
737 */
738 if (context_sid) {
739 if (!fscontext_sid) {
740 rc = may_context_mount_sb_relabel(context_sid, sbsec,
741 cred);
742 if (rc)
743 goto out;
744 sbsec->sid = context_sid;
745 } else {
746 rc = may_context_mount_inode_relabel(context_sid, sbsec,
747 cred);
748 if (rc)
749 goto out;
750 }
751 if (!rootcontext_sid)
752 rootcontext_sid = context_sid;
753
754 sbsec->mntpoint_sid = context_sid;
755 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
756 }
757
758 if (rootcontext_sid) {
759 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
760 cred);
761 if (rc)
762 goto out;
763
764 root_isec->sid = rootcontext_sid;
765 root_isec->initialized = 1;
766 }
767
768 if (defcontext_sid) {
769 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
770 rc = -EINVAL;
771 printk(KERN_WARNING "SELinux: defcontext option is "
772 "invalid for this filesystem type\n");
773 goto out;
774 }
775
776 if (defcontext_sid != sbsec->def_sid) {
777 rc = may_context_mount_inode_relabel(defcontext_sid,
778 sbsec, cred);
779 if (rc)
780 goto out;
781 }
782
783 sbsec->def_sid = defcontext_sid;
784 }
785
786 rc = sb_finish_set_opts(sb);
787 out:
788 mutex_unlock(&sbsec->lock);
789 return rc;
790 out_double_mount:
791 rc = -EINVAL;
792 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
793 "security settings for (dev %s, type %s)\n", sb->s_id, name);
794 goto out;
795 }
796
797 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
798 struct super_block *newsb)
799 {
800 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
801 struct superblock_security_struct *newsbsec = newsb->s_security;
802
803 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
804 int set_context = (oldsbsec->flags & CONTEXT_MNT);
805 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
806
807 /*
808 * if the parent was able to be mounted it clearly had no special lsm
809 * mount options. thus we can safely put this sb on the list and deal
810 * with it later
811 */
812 if (!ss_initialized) {
813 spin_lock(&sb_security_lock);
814 if (list_empty(&newsbsec->list))
815 list_add(&newsbsec->list, &superblock_security_head);
816 spin_unlock(&sb_security_lock);
817 return;
818 }
819
820 /* how can we clone if the old one wasn't set up?? */
821 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
822
823 /* if fs is reusing a sb, just let its options stand... */
824 if (newsbsec->flags & SE_SBINITIALIZED)
825 return;
826
827 mutex_lock(&newsbsec->lock);
828
829 newsbsec->flags = oldsbsec->flags;
830
831 newsbsec->sid = oldsbsec->sid;
832 newsbsec->def_sid = oldsbsec->def_sid;
833 newsbsec->behavior = oldsbsec->behavior;
834
835 if (set_context) {
836 u32 sid = oldsbsec->mntpoint_sid;
837
838 if (!set_fscontext)
839 newsbsec->sid = sid;
840 if (!set_rootcontext) {
841 struct inode *newinode = newsb->s_root->d_inode;
842 struct inode_security_struct *newisec = newinode->i_security;
843 newisec->sid = sid;
844 }
845 newsbsec->mntpoint_sid = sid;
846 }
847 if (set_rootcontext) {
848 const struct inode *oldinode = oldsb->s_root->d_inode;
849 const struct inode_security_struct *oldisec = oldinode->i_security;
850 struct inode *newinode = newsb->s_root->d_inode;
851 struct inode_security_struct *newisec = newinode->i_security;
852
853 newisec->sid = oldisec->sid;
854 }
855
856 sb_finish_set_opts(newsb);
857 mutex_unlock(&newsbsec->lock);
858 }
859
860 static int selinux_parse_opts_str(char *options,
861 struct security_mnt_opts *opts)
862 {
863 char *p;
864 char *context = NULL, *defcontext = NULL;
865 char *fscontext = NULL, *rootcontext = NULL;
866 int rc, num_mnt_opts = 0;
867
868 opts->num_mnt_opts = 0;
869
870 /* Standard string-based options. */
871 while ((p = strsep(&options, "|")) != NULL) {
872 int token;
873 substring_t args[MAX_OPT_ARGS];
874
875 if (!*p)
876 continue;
877
878 token = match_token(p, tokens, args);
879
880 switch (token) {
881 case Opt_context:
882 if (context || defcontext) {
883 rc = -EINVAL;
884 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
885 goto out_err;
886 }
887 context = match_strdup(&args[0]);
888 if (!context) {
889 rc = -ENOMEM;
890 goto out_err;
891 }
892 break;
893
894 case Opt_fscontext:
895 if (fscontext) {
896 rc = -EINVAL;
897 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
898 goto out_err;
899 }
900 fscontext = match_strdup(&args[0]);
901 if (!fscontext) {
902 rc = -ENOMEM;
903 goto out_err;
904 }
905 break;
906
907 case Opt_rootcontext:
908 if (rootcontext) {
909 rc = -EINVAL;
910 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
911 goto out_err;
912 }
913 rootcontext = match_strdup(&args[0]);
914 if (!rootcontext) {
915 rc = -ENOMEM;
916 goto out_err;
917 }
918 break;
919
920 case Opt_defcontext:
921 if (context || defcontext) {
922 rc = -EINVAL;
923 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
924 goto out_err;
925 }
926 defcontext = match_strdup(&args[0]);
927 if (!defcontext) {
928 rc = -ENOMEM;
929 goto out_err;
930 }
931 break;
932 case Opt_labelsupport:
933 break;
934 default:
935 rc = -EINVAL;
936 printk(KERN_WARNING "SELinux: unknown mount option\n");
937 goto out_err;
938
939 }
940 }
941
942 rc = -ENOMEM;
943 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
944 if (!opts->mnt_opts)
945 goto out_err;
946
947 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
948 if (!opts->mnt_opts_flags) {
949 kfree(opts->mnt_opts);
950 goto out_err;
951 }
952
953 if (fscontext) {
954 opts->mnt_opts[num_mnt_opts] = fscontext;
955 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
956 }
957 if (context) {
958 opts->mnt_opts[num_mnt_opts] = context;
959 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
960 }
961 if (rootcontext) {
962 opts->mnt_opts[num_mnt_opts] = rootcontext;
963 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
964 }
965 if (defcontext) {
966 opts->mnt_opts[num_mnt_opts] = defcontext;
967 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
968 }
969
970 opts->num_mnt_opts = num_mnt_opts;
971 return 0;
972
973 out_err:
974 kfree(context);
975 kfree(defcontext);
976 kfree(fscontext);
977 kfree(rootcontext);
978 return rc;
979 }
980 /*
981 * string mount options parsing and call set the sbsec
982 */
983 static int superblock_doinit(struct super_block *sb, void *data)
984 {
985 int rc = 0;
986 char *options = data;
987 struct security_mnt_opts opts;
988
989 security_init_mnt_opts(&opts);
990
991 if (!data)
992 goto out;
993
994 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
995
996 rc = selinux_parse_opts_str(options, &opts);
997 if (rc)
998 goto out_err;
999
1000 out:
1001 rc = selinux_set_mnt_opts(sb, &opts);
1002
1003 out_err:
1004 security_free_mnt_opts(&opts);
1005 return rc;
1006 }
1007
1008 static void selinux_write_opts(struct seq_file *m,
1009 struct security_mnt_opts *opts)
1010 {
1011 int i;
1012 char *prefix;
1013
1014 for (i = 0; i < opts->num_mnt_opts; i++) {
1015 char *has_comma;
1016
1017 if (opts->mnt_opts[i])
1018 has_comma = strchr(opts->mnt_opts[i], ',');
1019 else
1020 has_comma = NULL;
1021
1022 switch (opts->mnt_opts_flags[i]) {
1023 case CONTEXT_MNT:
1024 prefix = CONTEXT_STR;
1025 break;
1026 case FSCONTEXT_MNT:
1027 prefix = FSCONTEXT_STR;
1028 break;
1029 case ROOTCONTEXT_MNT:
1030 prefix = ROOTCONTEXT_STR;
1031 break;
1032 case DEFCONTEXT_MNT:
1033 prefix = DEFCONTEXT_STR;
1034 break;
1035 case SE_SBLABELSUPP:
1036 seq_putc(m, ',');
1037 seq_puts(m, LABELSUPP_STR);
1038 continue;
1039 default:
1040 BUG();
1041 };
1042 /* we need a comma before each option */
1043 seq_putc(m, ',');
1044 seq_puts(m, prefix);
1045 if (has_comma)
1046 seq_putc(m, '\"');
1047 seq_puts(m, opts->mnt_opts[i]);
1048 if (has_comma)
1049 seq_putc(m, '\"');
1050 }
1051 }
1052
1053 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1054 {
1055 struct security_mnt_opts opts;
1056 int rc;
1057
1058 rc = selinux_get_mnt_opts(sb, &opts);
1059 if (rc) {
1060 /* before policy load we may get EINVAL, don't show anything */
1061 if (rc == -EINVAL)
1062 rc = 0;
1063 return rc;
1064 }
1065
1066 selinux_write_opts(m, &opts);
1067
1068 security_free_mnt_opts(&opts);
1069
1070 return rc;
1071 }
1072
1073 static inline u16 inode_mode_to_security_class(umode_t mode)
1074 {
1075 switch (mode & S_IFMT) {
1076 case S_IFSOCK:
1077 return SECCLASS_SOCK_FILE;
1078 case S_IFLNK:
1079 return SECCLASS_LNK_FILE;
1080 case S_IFREG:
1081 return SECCLASS_FILE;
1082 case S_IFBLK:
1083 return SECCLASS_BLK_FILE;
1084 case S_IFDIR:
1085 return SECCLASS_DIR;
1086 case S_IFCHR:
1087 return SECCLASS_CHR_FILE;
1088 case S_IFIFO:
1089 return SECCLASS_FIFO_FILE;
1090
1091 }
1092
1093 return SECCLASS_FILE;
1094 }
1095
1096 static inline int default_protocol_stream(int protocol)
1097 {
1098 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1099 }
1100
1101 static inline int default_protocol_dgram(int protocol)
1102 {
1103 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1104 }
1105
1106 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1107 {
1108 switch (family) {
1109 case PF_UNIX:
1110 switch (type) {
1111 case SOCK_STREAM:
1112 case SOCK_SEQPACKET:
1113 return SECCLASS_UNIX_STREAM_SOCKET;
1114 case SOCK_DGRAM:
1115 return SECCLASS_UNIX_DGRAM_SOCKET;
1116 }
1117 break;
1118 case PF_INET:
1119 case PF_INET6:
1120 switch (type) {
1121 case SOCK_STREAM:
1122 if (default_protocol_stream(protocol))
1123 return SECCLASS_TCP_SOCKET;
1124 else
1125 return SECCLASS_RAWIP_SOCKET;
1126 case SOCK_DGRAM:
1127 if (default_protocol_dgram(protocol))
1128 return SECCLASS_UDP_SOCKET;
1129 else
1130 return SECCLASS_RAWIP_SOCKET;
1131 case SOCK_DCCP:
1132 return SECCLASS_DCCP_SOCKET;
1133 default:
1134 return SECCLASS_RAWIP_SOCKET;
1135 }
1136 break;
1137 case PF_NETLINK:
1138 switch (protocol) {
1139 case NETLINK_ROUTE:
1140 return SECCLASS_NETLINK_ROUTE_SOCKET;
1141 case NETLINK_FIREWALL:
1142 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1143 case NETLINK_INET_DIAG:
1144 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1145 case NETLINK_NFLOG:
1146 return SECCLASS_NETLINK_NFLOG_SOCKET;
1147 case NETLINK_XFRM:
1148 return SECCLASS_NETLINK_XFRM_SOCKET;
1149 case NETLINK_SELINUX:
1150 return SECCLASS_NETLINK_SELINUX_SOCKET;
1151 case NETLINK_AUDIT:
1152 return SECCLASS_NETLINK_AUDIT_SOCKET;
1153 case NETLINK_IP6_FW:
1154 return SECCLASS_NETLINK_IP6FW_SOCKET;
1155 case NETLINK_DNRTMSG:
1156 return SECCLASS_NETLINK_DNRT_SOCKET;
1157 case NETLINK_KOBJECT_UEVENT:
1158 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1159 default:
1160 return SECCLASS_NETLINK_SOCKET;
1161 }
1162 case PF_PACKET:
1163 return SECCLASS_PACKET_SOCKET;
1164 case PF_KEY:
1165 return SECCLASS_KEY_SOCKET;
1166 case PF_APPLETALK:
1167 return SECCLASS_APPLETALK_SOCKET;
1168 }
1169
1170 return SECCLASS_SOCKET;
1171 }
1172
1173 #ifdef CONFIG_PROC_FS
1174 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1175 u16 tclass,
1176 u32 *sid)
1177 {
1178 int buflen, rc;
1179 char *buffer, *path, *end;
1180
1181 buffer = (char *)__get_free_page(GFP_KERNEL);
1182 if (!buffer)
1183 return -ENOMEM;
1184
1185 buflen = PAGE_SIZE;
1186 end = buffer+buflen;
1187 *--end = '\0';
1188 buflen--;
1189 path = end-1;
1190 *path = '/';
1191 while (de && de != de->parent) {
1192 buflen -= de->namelen + 1;
1193 if (buflen < 0)
1194 break;
1195 end -= de->namelen;
1196 memcpy(end, de->name, de->namelen);
1197 *--end = '/';
1198 path = end;
1199 de = de->parent;
1200 }
1201 rc = security_genfs_sid("proc", path, tclass, sid);
1202 free_page((unsigned long)buffer);
1203 return rc;
1204 }
1205 #else
1206 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1207 u16 tclass,
1208 u32 *sid)
1209 {
1210 return -EINVAL;
1211 }
1212 #endif
1213
1214 /* The inode's security attributes must be initialized before first use. */
1215 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1216 {
1217 struct superblock_security_struct *sbsec = NULL;
1218 struct inode_security_struct *isec = inode->i_security;
1219 u32 sid;
1220 struct dentry *dentry;
1221 #define INITCONTEXTLEN 255
1222 char *context = NULL;
1223 unsigned len = 0;
1224 int rc = 0;
1225
1226 if (isec->initialized)
1227 goto out;
1228
1229 mutex_lock(&isec->lock);
1230 if (isec->initialized)
1231 goto out_unlock;
1232
1233 sbsec = inode->i_sb->s_security;
1234 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1235 /* Defer initialization until selinux_complete_init,
1236 after the initial policy is loaded and the security
1237 server is ready to handle calls. */
1238 spin_lock(&sbsec->isec_lock);
1239 if (list_empty(&isec->list))
1240 list_add(&isec->list, &sbsec->isec_head);
1241 spin_unlock(&sbsec->isec_lock);
1242 goto out_unlock;
1243 }
1244
1245 switch (sbsec->behavior) {
1246 case SECURITY_FS_USE_XATTR:
1247 if (!inode->i_op->getxattr) {
1248 isec->sid = sbsec->def_sid;
1249 break;
1250 }
1251
1252 /* Need a dentry, since the xattr API requires one.
1253 Life would be simpler if we could just pass the inode. */
1254 if (opt_dentry) {
1255 /* Called from d_instantiate or d_splice_alias. */
1256 dentry = dget(opt_dentry);
1257 } else {
1258 /* Called from selinux_complete_init, try to find a dentry. */
1259 dentry = d_find_alias(inode);
1260 }
1261 if (!dentry) {
1262 /*
1263 * this is can be hit on boot when a file is accessed
1264 * before the policy is loaded. When we load policy we
1265 * may find inodes that have no dentry on the
1266 * sbsec->isec_head list. No reason to complain as these
1267 * will get fixed up the next time we go through
1268 * inode_doinit with a dentry, before these inodes could
1269 * be used again by userspace.
1270 */
1271 goto out_unlock;
1272 }
1273
1274 len = INITCONTEXTLEN;
1275 context = kmalloc(len+1, GFP_NOFS);
1276 if (!context) {
1277 rc = -ENOMEM;
1278 dput(dentry);
1279 goto out_unlock;
1280 }
1281 context[len] = '\0';
1282 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1283 context, len);
1284 if (rc == -ERANGE) {
1285 kfree(context);
1286
1287 /* Need a larger buffer. Query for the right size. */
1288 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1289 NULL, 0);
1290 if (rc < 0) {
1291 dput(dentry);
1292 goto out_unlock;
1293 }
1294 len = rc;
1295 context = kmalloc(len+1, GFP_NOFS);
1296 if (!context) {
1297 rc = -ENOMEM;
1298 dput(dentry);
1299 goto out_unlock;
1300 }
1301 context[len] = '\0';
1302 rc = inode->i_op->getxattr(dentry,
1303 XATTR_NAME_SELINUX,
1304 context, len);
1305 }
1306 dput(dentry);
1307 if (rc < 0) {
1308 if (rc != -ENODATA) {
1309 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1310 "%d for dev=%s ino=%ld\n", __func__,
1311 -rc, inode->i_sb->s_id, inode->i_ino);
1312 kfree(context);
1313 goto out_unlock;
1314 }
1315 /* Map ENODATA to the default file SID */
1316 sid = sbsec->def_sid;
1317 rc = 0;
1318 } else {
1319 rc = security_context_to_sid_default(context, rc, &sid,
1320 sbsec->def_sid,
1321 GFP_NOFS);
1322 if (rc) {
1323 char *dev = inode->i_sb->s_id;
1324 unsigned long ino = inode->i_ino;
1325
1326 if (rc == -EINVAL) {
1327 if (printk_ratelimit())
1328 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1329 "context=%s. This indicates you may need to relabel the inode or the "
1330 "filesystem in question.\n", ino, dev, context);
1331 } else {
1332 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1333 "returned %d for dev=%s ino=%ld\n",
1334 __func__, context, -rc, dev, ino);
1335 }
1336 kfree(context);
1337 /* Leave with the unlabeled SID */
1338 rc = 0;
1339 break;
1340 }
1341 }
1342 kfree(context);
1343 isec->sid = sid;
1344 break;
1345 case SECURITY_FS_USE_TASK:
1346 isec->sid = isec->task_sid;
1347 break;
1348 case SECURITY_FS_USE_TRANS:
1349 /* Default to the fs SID. */
1350 isec->sid = sbsec->sid;
1351
1352 /* Try to obtain a transition SID. */
1353 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1354 rc = security_transition_sid(isec->task_sid,
1355 sbsec->sid,
1356 isec->sclass,
1357 &sid);
1358 if (rc)
1359 goto out_unlock;
1360 isec->sid = sid;
1361 break;
1362 case SECURITY_FS_USE_MNTPOINT:
1363 isec->sid = sbsec->mntpoint_sid;
1364 break;
1365 default:
1366 /* Default to the fs superblock SID. */
1367 isec->sid = sbsec->sid;
1368
1369 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1370 struct proc_inode *proci = PROC_I(inode);
1371 if (proci->pde) {
1372 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1373 rc = selinux_proc_get_sid(proci->pde,
1374 isec->sclass,
1375 &sid);
1376 if (rc)
1377 goto out_unlock;
1378 isec->sid = sid;
1379 }
1380 }
1381 break;
1382 }
1383
1384 isec->initialized = 1;
1385
1386 out_unlock:
1387 mutex_unlock(&isec->lock);
1388 out:
1389 if (isec->sclass == SECCLASS_FILE)
1390 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1391 return rc;
1392 }
1393
1394 /* Convert a Linux signal to an access vector. */
1395 static inline u32 signal_to_av(int sig)
1396 {
1397 u32 perm = 0;
1398
1399 switch (sig) {
1400 case SIGCHLD:
1401 /* Commonly granted from child to parent. */
1402 perm = PROCESS__SIGCHLD;
1403 break;
1404 case SIGKILL:
1405 /* Cannot be caught or ignored */
1406 perm = PROCESS__SIGKILL;
1407 break;
1408 case SIGSTOP:
1409 /* Cannot be caught or ignored */
1410 perm = PROCESS__SIGSTOP;
1411 break;
1412 default:
1413 /* All other signals. */
1414 perm = PROCESS__SIGNAL;
1415 break;
1416 }
1417
1418 return perm;
1419 }
1420
1421 /*
1422 * Check permission between a pair of credentials
1423 * fork check, ptrace check, etc.
1424 */
1425 static int cred_has_perm(const struct cred *actor,
1426 const struct cred *target,
1427 u32 perms)
1428 {
1429 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1430
1431 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1432 }
1433
1434 /*
1435 * Check permission between a pair of tasks, e.g. signal checks,
1436 * fork check, ptrace check, etc.
1437 * tsk1 is the actor and tsk2 is the target
1438 * - this uses the default subjective creds of tsk1
1439 */
1440 static int task_has_perm(const struct task_struct *tsk1,
1441 const struct task_struct *tsk2,
1442 u32 perms)
1443 {
1444 const struct task_security_struct *__tsec1, *__tsec2;
1445 u32 sid1, sid2;
1446
1447 rcu_read_lock();
1448 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1449 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1450 rcu_read_unlock();
1451 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1452 }
1453
1454 /*
1455 * Check permission between current and another task, e.g. signal checks,
1456 * fork check, ptrace check, etc.
1457 * current is the actor and tsk2 is the target
1458 * - this uses current's subjective creds
1459 */
1460 static int current_has_perm(const struct task_struct *tsk,
1461 u32 perms)
1462 {
1463 u32 sid, tsid;
1464
1465 sid = current_sid();
1466 tsid = task_sid(tsk);
1467 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1468 }
1469
1470 #if CAP_LAST_CAP > 63
1471 #error Fix SELinux to handle capabilities > 63.
1472 #endif
1473
1474 /* Check whether a task is allowed to use a capability. */
1475 static int task_has_capability(struct task_struct *tsk,
1476 const struct cred *cred,
1477 int cap, int audit)
1478 {
1479 struct common_audit_data ad;
1480 struct av_decision avd;
1481 u16 sclass;
1482 u32 sid = cred_sid(cred);
1483 u32 av = CAP_TO_MASK(cap);
1484 int rc;
1485
1486 COMMON_AUDIT_DATA_INIT(&ad, CAP);
1487 ad.tsk = tsk;
1488 ad.u.cap = cap;
1489
1490 switch (CAP_TO_INDEX(cap)) {
1491 case 0:
1492 sclass = SECCLASS_CAPABILITY;
1493 break;
1494 case 1:
1495 sclass = SECCLASS_CAPABILITY2;
1496 break;
1497 default:
1498 printk(KERN_ERR
1499 "SELinux: out of range capability %d\n", cap);
1500 BUG();
1501 }
1502
1503 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1504 if (audit == SECURITY_CAP_AUDIT)
1505 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1506 return rc;
1507 }
1508
1509 /* Check whether a task is allowed to use a system operation. */
1510 static int task_has_system(struct task_struct *tsk,
1511 u32 perms)
1512 {
1513 u32 sid = task_sid(tsk);
1514
1515 return avc_has_perm(sid, SECINITSID_KERNEL,
1516 SECCLASS_SYSTEM, perms, NULL);
1517 }
1518
1519 /* Check whether a task has a particular permission to an inode.
1520 The 'adp' parameter is optional and allows other audit
1521 data to be passed (e.g. the dentry). */
1522 static int inode_has_perm(const struct cred *cred,
1523 struct inode *inode,
1524 u32 perms,
1525 struct common_audit_data *adp)
1526 {
1527 struct inode_security_struct *isec;
1528 struct common_audit_data ad;
1529 u32 sid;
1530
1531 validate_creds(cred);
1532
1533 if (unlikely(IS_PRIVATE(inode)))
1534 return 0;
1535
1536 sid = cred_sid(cred);
1537 isec = inode->i_security;
1538
1539 if (!adp) {
1540 adp = &ad;
1541 COMMON_AUDIT_DATA_INIT(&ad, FS);
1542 ad.u.fs.inode = inode;
1543 }
1544
1545 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1546 }
1547
1548 /* Same as inode_has_perm, but pass explicit audit data containing
1549 the dentry to help the auditing code to more easily generate the
1550 pathname if needed. */
1551 static inline int dentry_has_perm(const struct cred *cred,
1552 struct vfsmount *mnt,
1553 struct dentry *dentry,
1554 u32 av)
1555 {
1556 struct inode *inode = dentry->d_inode;
1557 struct common_audit_data ad;
1558
1559 COMMON_AUDIT_DATA_INIT(&ad, FS);
1560 ad.u.fs.path.mnt = mnt;
1561 ad.u.fs.path.dentry = dentry;
1562 return inode_has_perm(cred, inode, av, &ad);
1563 }
1564
1565 /* Check whether a task can use an open file descriptor to
1566 access an inode in a given way. Check access to the
1567 descriptor itself, and then use dentry_has_perm to
1568 check a particular permission to the file.
1569 Access to the descriptor is implicitly granted if it
1570 has the same SID as the process. If av is zero, then
1571 access to the file is not checked, e.g. for cases
1572 where only the descriptor is affected like seek. */
1573 static int file_has_perm(const struct cred *cred,
1574 struct file *file,
1575 u32 av)
1576 {
1577 struct file_security_struct *fsec = file->f_security;
1578 struct inode *inode = file->f_path.dentry->d_inode;
1579 struct common_audit_data ad;
1580 u32 sid = cred_sid(cred);
1581 int rc;
1582
1583 COMMON_AUDIT_DATA_INIT(&ad, FS);
1584 ad.u.fs.path = file->f_path;
1585
1586 if (sid != fsec->sid) {
1587 rc = avc_has_perm(sid, fsec->sid,
1588 SECCLASS_FD,
1589 FD__USE,
1590 &ad);
1591 if (rc)
1592 goto out;
1593 }
1594
1595 /* av is zero if only checking access to the descriptor. */
1596 rc = 0;
1597 if (av)
1598 rc = inode_has_perm(cred, inode, av, &ad);
1599
1600 out:
1601 return rc;
1602 }
1603
1604 /* Check whether a task can create a file. */
1605 static int may_create(struct inode *dir,
1606 struct dentry *dentry,
1607 u16 tclass)
1608 {
1609 const struct cred *cred = current_cred();
1610 const struct task_security_struct *tsec = cred->security;
1611 struct inode_security_struct *dsec;
1612 struct superblock_security_struct *sbsec;
1613 u32 sid, newsid;
1614 struct common_audit_data ad;
1615 int rc;
1616
1617 dsec = dir->i_security;
1618 sbsec = dir->i_sb->s_security;
1619
1620 sid = tsec->sid;
1621 newsid = tsec->create_sid;
1622
1623 COMMON_AUDIT_DATA_INIT(&ad, FS);
1624 ad.u.fs.path.dentry = dentry;
1625
1626 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1627 DIR__ADD_NAME | DIR__SEARCH,
1628 &ad);
1629 if (rc)
1630 return rc;
1631
1632 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1633 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1634 if (rc)
1635 return rc;
1636 }
1637
1638 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1639 if (rc)
1640 return rc;
1641
1642 return avc_has_perm(newsid, sbsec->sid,
1643 SECCLASS_FILESYSTEM,
1644 FILESYSTEM__ASSOCIATE, &ad);
1645 }
1646
1647 /* Check whether a task can create a key. */
1648 static int may_create_key(u32 ksid,
1649 struct task_struct *ctx)
1650 {
1651 u32 sid = task_sid(ctx);
1652
1653 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1654 }
1655
1656 #define MAY_LINK 0
1657 #define MAY_UNLINK 1
1658 #define MAY_RMDIR 2
1659
1660 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1661 static int may_link(struct inode *dir,
1662 struct dentry *dentry,
1663 int kind)
1664
1665 {
1666 struct inode_security_struct *dsec, *isec;
1667 struct common_audit_data ad;
1668 u32 sid = current_sid();
1669 u32 av;
1670 int rc;
1671
1672 dsec = dir->i_security;
1673 isec = dentry->d_inode->i_security;
1674
1675 COMMON_AUDIT_DATA_INIT(&ad, FS);
1676 ad.u.fs.path.dentry = dentry;
1677
1678 av = DIR__SEARCH;
1679 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1680 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1681 if (rc)
1682 return rc;
1683
1684 switch (kind) {
1685 case MAY_LINK:
1686 av = FILE__LINK;
1687 break;
1688 case MAY_UNLINK:
1689 av = FILE__UNLINK;
1690 break;
1691 case MAY_RMDIR:
1692 av = DIR__RMDIR;
1693 break;
1694 default:
1695 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1696 __func__, kind);
1697 return 0;
1698 }
1699
1700 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1701 return rc;
1702 }
1703
1704 static inline int may_rename(struct inode *old_dir,
1705 struct dentry *old_dentry,
1706 struct inode *new_dir,
1707 struct dentry *new_dentry)
1708 {
1709 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1710 struct common_audit_data ad;
1711 u32 sid = current_sid();
1712 u32 av;
1713 int old_is_dir, new_is_dir;
1714 int rc;
1715
1716 old_dsec = old_dir->i_security;
1717 old_isec = old_dentry->d_inode->i_security;
1718 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1719 new_dsec = new_dir->i_security;
1720
1721 COMMON_AUDIT_DATA_INIT(&ad, FS);
1722
1723 ad.u.fs.path.dentry = old_dentry;
1724 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1725 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1726 if (rc)
1727 return rc;
1728 rc = avc_has_perm(sid, old_isec->sid,
1729 old_isec->sclass, FILE__RENAME, &ad);
1730 if (rc)
1731 return rc;
1732 if (old_is_dir && new_dir != old_dir) {
1733 rc = avc_has_perm(sid, old_isec->sid,
1734 old_isec->sclass, DIR__REPARENT, &ad);
1735 if (rc)
1736 return rc;
1737 }
1738
1739 ad.u.fs.path.dentry = new_dentry;
1740 av = DIR__ADD_NAME | DIR__SEARCH;
1741 if (new_dentry->d_inode)
1742 av |= DIR__REMOVE_NAME;
1743 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1744 if (rc)
1745 return rc;
1746 if (new_dentry->d_inode) {
1747 new_isec = new_dentry->d_inode->i_security;
1748 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1749 rc = avc_has_perm(sid, new_isec->sid,
1750 new_isec->sclass,
1751 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1752 if (rc)
1753 return rc;
1754 }
1755
1756 return 0;
1757 }
1758
1759 /* Check whether a task can perform a filesystem operation. */
1760 static int superblock_has_perm(const struct cred *cred,
1761 struct super_block *sb,
1762 u32 perms,
1763 struct common_audit_data *ad)
1764 {
1765 struct superblock_security_struct *sbsec;
1766 u32 sid = cred_sid(cred);
1767
1768 sbsec = sb->s_security;
1769 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1770 }
1771
1772 /* Convert a Linux mode and permission mask to an access vector. */
1773 static inline u32 file_mask_to_av(int mode, int mask)
1774 {
1775 u32 av = 0;
1776
1777 if ((mode & S_IFMT) != S_IFDIR) {
1778 if (mask & MAY_EXEC)
1779 av |= FILE__EXECUTE;
1780 if (mask & MAY_READ)
1781 av |= FILE__READ;
1782
1783 if (mask & MAY_APPEND)
1784 av |= FILE__APPEND;
1785 else if (mask & MAY_WRITE)
1786 av |= FILE__WRITE;
1787
1788 } else {
1789 if (mask & MAY_EXEC)
1790 av |= DIR__SEARCH;
1791 if (mask & MAY_WRITE)
1792 av |= DIR__WRITE;
1793 if (mask & MAY_READ)
1794 av |= DIR__READ;
1795 }
1796
1797 return av;
1798 }
1799
1800 /* Convert a Linux file to an access vector. */
1801 static inline u32 file_to_av(struct file *file)
1802 {
1803 u32 av = 0;
1804
1805 if (file->f_mode & FMODE_READ)
1806 av |= FILE__READ;
1807 if (file->f_mode & FMODE_WRITE) {
1808 if (file->f_flags & O_APPEND)
1809 av |= FILE__APPEND;
1810 else
1811 av |= FILE__WRITE;
1812 }
1813 if (!av) {
1814 /*
1815 * Special file opened with flags 3 for ioctl-only use.
1816 */
1817 av = FILE__IOCTL;
1818 }
1819
1820 return av;
1821 }
1822
1823 /*
1824 * Convert a file to an access vector and include the correct open
1825 * open permission.
1826 */
1827 static inline u32 open_file_to_av(struct file *file)
1828 {
1829 u32 av = file_to_av(file);
1830
1831 if (selinux_policycap_openperm) {
1832 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1833 /*
1834 * lnk files and socks do not really have an 'open'
1835 */
1836 if (S_ISREG(mode))
1837 av |= FILE__OPEN;
1838 else if (S_ISCHR(mode))
1839 av |= CHR_FILE__OPEN;
1840 else if (S_ISBLK(mode))
1841 av |= BLK_FILE__OPEN;
1842 else if (S_ISFIFO(mode))
1843 av |= FIFO_FILE__OPEN;
1844 else if (S_ISDIR(mode))
1845 av |= DIR__OPEN;
1846 else if (S_ISSOCK(mode))
1847 av |= SOCK_FILE__OPEN;
1848 else
1849 printk(KERN_ERR "SELinux: WARNING: inside %s with "
1850 "unknown mode:%o\n", __func__, mode);
1851 }
1852 return av;
1853 }
1854
1855 /* Hook functions begin here. */
1856
1857 static int selinux_ptrace_access_check(struct task_struct *child,
1858 unsigned int mode)
1859 {
1860 int rc;
1861
1862 rc = cap_ptrace_access_check(child, mode);
1863 if (rc)
1864 return rc;
1865
1866 if (mode == PTRACE_MODE_READ) {
1867 u32 sid = current_sid();
1868 u32 csid = task_sid(child);
1869 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1870 }
1871
1872 return current_has_perm(child, PROCESS__PTRACE);
1873 }
1874
1875 static int selinux_ptrace_traceme(struct task_struct *parent)
1876 {
1877 int rc;
1878
1879 rc = cap_ptrace_traceme(parent);
1880 if (rc)
1881 return rc;
1882
1883 return task_has_perm(parent, current, PROCESS__PTRACE);
1884 }
1885
1886 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1887 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1888 {
1889 int error;
1890
1891 error = current_has_perm(target, PROCESS__GETCAP);
1892 if (error)
1893 return error;
1894
1895 return cap_capget(target, effective, inheritable, permitted);
1896 }
1897
1898 static int selinux_capset(struct cred *new, const struct cred *old,
1899 const kernel_cap_t *effective,
1900 const kernel_cap_t *inheritable,
1901 const kernel_cap_t *permitted)
1902 {
1903 int error;
1904
1905 error = cap_capset(new, old,
1906 effective, inheritable, permitted);
1907 if (error)
1908 return error;
1909
1910 return cred_has_perm(old, new, PROCESS__SETCAP);
1911 }
1912
1913 /*
1914 * (This comment used to live with the selinux_task_setuid hook,
1915 * which was removed).
1916 *
1917 * Since setuid only affects the current process, and since the SELinux
1918 * controls are not based on the Linux identity attributes, SELinux does not
1919 * need to control this operation. However, SELinux does control the use of
1920 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1921 */
1922
1923 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1924 int cap, int audit)
1925 {
1926 int rc;
1927
1928 rc = cap_capable(tsk, cred, cap, audit);
1929 if (rc)
1930 return rc;
1931
1932 return task_has_capability(tsk, cred, cap, audit);
1933 }
1934
1935 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1936 {
1937 int buflen, rc;
1938 char *buffer, *path, *end;
1939
1940 rc = -ENOMEM;
1941 buffer = (char *)__get_free_page(GFP_KERNEL);
1942 if (!buffer)
1943 goto out;
1944
1945 buflen = PAGE_SIZE;
1946 end = buffer+buflen;
1947 *--end = '\0';
1948 buflen--;
1949 path = end-1;
1950 *path = '/';
1951 while (table) {
1952 const char *name = table->procname;
1953 size_t namelen = strlen(name);
1954 buflen -= namelen + 1;
1955 if (buflen < 0)
1956 goto out_free;
1957 end -= namelen;
1958 memcpy(end, name, namelen);
1959 *--end = '/';
1960 path = end;
1961 table = table->parent;
1962 }
1963 buflen -= 4;
1964 if (buflen < 0)
1965 goto out_free;
1966 end -= 4;
1967 memcpy(end, "/sys", 4);
1968 path = end;
1969 rc = security_genfs_sid("proc", path, tclass, sid);
1970 out_free:
1971 free_page((unsigned long)buffer);
1972 out:
1973 return rc;
1974 }
1975
1976 static int selinux_sysctl(ctl_table *table, int op)
1977 {
1978 int error = 0;
1979 u32 av;
1980 u32 tsid, sid;
1981 int rc;
1982
1983 sid = current_sid();
1984
1985 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1986 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1987 if (rc) {
1988 /* Default to the well-defined sysctl SID. */
1989 tsid = SECINITSID_SYSCTL;
1990 }
1991
1992 /* The op values are "defined" in sysctl.c, thereby creating
1993 * a bad coupling between this module and sysctl.c */
1994 if (op == 001) {
1995 error = avc_has_perm(sid, tsid,
1996 SECCLASS_DIR, DIR__SEARCH, NULL);
1997 } else {
1998 av = 0;
1999 if (op & 004)
2000 av |= FILE__READ;
2001 if (op & 002)
2002 av |= FILE__WRITE;
2003 if (av)
2004 error = avc_has_perm(sid, tsid,
2005 SECCLASS_FILE, av, NULL);
2006 }
2007
2008 return error;
2009 }
2010
2011 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2012 {
2013 const struct cred *cred = current_cred();
2014 int rc = 0;
2015
2016 if (!sb)
2017 return 0;
2018
2019 switch (cmds) {
2020 case Q_SYNC:
2021 case Q_QUOTAON:
2022 case Q_QUOTAOFF:
2023 case Q_SETINFO:
2024 case Q_SETQUOTA:
2025 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2026 break;
2027 case Q_GETFMT:
2028 case Q_GETINFO:
2029 case Q_GETQUOTA:
2030 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2031 break;
2032 default:
2033 rc = 0; /* let the kernel handle invalid cmds */
2034 break;
2035 }
2036 return rc;
2037 }
2038
2039 static int selinux_quota_on(struct dentry *dentry)
2040 {
2041 const struct cred *cred = current_cred();
2042
2043 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2044 }
2045
2046 static int selinux_syslog(int type, bool from_file)
2047 {
2048 int rc;
2049
2050 rc = cap_syslog(type, from_file);
2051 if (rc)
2052 return rc;
2053
2054 switch (type) {
2055 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2056 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2057 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2058 break;
2059 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2060 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2061 /* Set level of messages printed to console */
2062 case SYSLOG_ACTION_CONSOLE_LEVEL:
2063 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2064 break;
2065 case SYSLOG_ACTION_CLOSE: /* Close log */
2066 case SYSLOG_ACTION_OPEN: /* Open log */
2067 case SYSLOG_ACTION_READ: /* Read from log */
2068 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2069 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2070 default:
2071 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2072 break;
2073 }
2074 return rc;
2075 }
2076
2077 /*
2078 * Check that a process has enough memory to allocate a new virtual
2079 * mapping. 0 means there is enough memory for the allocation to
2080 * succeed and -ENOMEM implies there is not.
2081 *
2082 * Do not audit the selinux permission check, as this is applied to all
2083 * processes that allocate mappings.
2084 */
2085 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2086 {
2087 int rc, cap_sys_admin = 0;
2088
2089 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2090 SECURITY_CAP_NOAUDIT);
2091 if (rc == 0)
2092 cap_sys_admin = 1;
2093
2094 return __vm_enough_memory(mm, pages, cap_sys_admin);
2095 }
2096
2097 /* binprm security operations */
2098
2099 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2100 {
2101 const struct task_security_struct *old_tsec;
2102 struct task_security_struct *new_tsec;
2103 struct inode_security_struct *isec;
2104 struct common_audit_data ad;
2105 struct inode *inode = bprm->file->f_path.dentry->d_inode;
2106 int rc;
2107
2108 rc = cap_bprm_set_creds(bprm);
2109 if (rc)
2110 return rc;
2111
2112 /* SELinux context only depends on initial program or script and not
2113 * the script interpreter */
2114 if (bprm->cred_prepared)
2115 return 0;
2116
2117 old_tsec = current_security();
2118 new_tsec = bprm->cred->security;
2119 isec = inode->i_security;
2120
2121 /* Default to the current task SID. */
2122 new_tsec->sid = old_tsec->sid;
2123 new_tsec->osid = old_tsec->sid;
2124
2125 /* Reset fs, key, and sock SIDs on execve. */
2126 new_tsec->create_sid = 0;
2127 new_tsec->keycreate_sid = 0;
2128 new_tsec->sockcreate_sid = 0;
2129
2130 if (old_tsec->exec_sid) {
2131 new_tsec->sid = old_tsec->exec_sid;
2132 /* Reset exec SID on execve. */
2133 new_tsec->exec_sid = 0;
2134 } else {
2135 /* Check for a default transition on this program. */
2136 rc = security_transition_sid(old_tsec->sid, isec->sid,
2137 SECCLASS_PROCESS, &new_tsec->sid);
2138 if (rc)
2139 return rc;
2140 }
2141
2142 COMMON_AUDIT_DATA_INIT(&ad, FS);
2143 ad.u.fs.path = bprm->file->f_path;
2144
2145 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2146 new_tsec->sid = old_tsec->sid;
2147
2148 if (new_tsec->sid == old_tsec->sid) {
2149 rc = avc_has_perm(old_tsec->sid, isec->sid,
2150 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2151 if (rc)
2152 return rc;
2153 } else {
2154 /* Check permissions for the transition. */
2155 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2156 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2157 if (rc)
2158 return rc;
2159
2160 rc = avc_has_perm(new_tsec->sid, isec->sid,
2161 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2162 if (rc)
2163 return rc;
2164
2165 /* Check for shared state */
2166 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2167 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2168 SECCLASS_PROCESS, PROCESS__SHARE,
2169 NULL);
2170 if (rc)
2171 return -EPERM;
2172 }
2173
2174 /* Make sure that anyone attempting to ptrace over a task that
2175 * changes its SID has the appropriate permit */
2176 if (bprm->unsafe &
2177 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2178 struct task_struct *tracer;
2179 struct task_security_struct *sec;
2180 u32 ptsid = 0;
2181
2182 rcu_read_lock();
2183 tracer = tracehook_tracer_task(current);
2184 if (likely(tracer != NULL)) {
2185 sec = __task_cred(tracer)->security;
2186 ptsid = sec->sid;
2187 }
2188 rcu_read_unlock();
2189
2190 if (ptsid != 0) {
2191 rc = avc_has_perm(ptsid, new_tsec->sid,
2192 SECCLASS_PROCESS,
2193 PROCESS__PTRACE, NULL);
2194 if (rc)
2195 return -EPERM;
2196 }
2197 }
2198
2199 /* Clear any possibly unsafe personality bits on exec: */
2200 bprm->per_clear |= PER_CLEAR_ON_SETID;
2201 }
2202
2203 return 0;
2204 }
2205
2206 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2207 {
2208 const struct cred *cred = current_cred();
2209 const struct task_security_struct *tsec = cred->security;
2210 u32 sid, osid;
2211 int atsecure = 0;
2212
2213 sid = tsec->sid;
2214 osid = tsec->osid;
2215
2216 if (osid != sid) {
2217 /* Enable secure mode for SIDs transitions unless
2218 the noatsecure permission is granted between
2219 the two SIDs, i.e. ahp returns 0. */
2220 atsecure = avc_has_perm(osid, sid,
2221 SECCLASS_PROCESS,
2222 PROCESS__NOATSECURE, NULL);
2223 }
2224
2225 return (atsecure || cap_bprm_secureexec(bprm));
2226 }
2227
2228 extern struct vfsmount *selinuxfs_mount;
2229 extern struct dentry *selinux_null;
2230
2231 /* Derived from fs/exec.c:flush_old_files. */
2232 static inline void flush_unauthorized_files(const struct cred *cred,
2233 struct files_struct *files)
2234 {
2235 struct common_audit_data ad;
2236 struct file *file, *devnull = NULL;
2237 struct tty_struct *tty;
2238 struct fdtable *fdt;
2239 long j = -1;
2240 int drop_tty = 0;
2241
2242 tty = get_current_tty();
2243 if (tty) {
2244 file_list_lock();
2245 if (!list_empty(&tty->tty_files)) {
2246 struct inode *inode;
2247
2248 /* Revalidate access to controlling tty.
2249 Use inode_has_perm on the tty inode directly rather
2250 than using file_has_perm, as this particular open
2251 file may belong to another process and we are only
2252 interested in the inode-based check here. */
2253 file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2254 inode = file->f_path.dentry->d_inode;
2255 if (inode_has_perm(cred, inode,
2256 FILE__READ | FILE__WRITE, NULL)) {
2257 drop_tty = 1;
2258 }
2259 }
2260 file_list_unlock();
2261 tty_kref_put(tty);
2262 }
2263 /* Reset controlling tty. */
2264 if (drop_tty)
2265 no_tty();
2266
2267 /* Revalidate access to inherited open files. */
2268
2269 COMMON_AUDIT_DATA_INIT(&ad, FS);
2270
2271 spin_lock(&files->file_lock);
2272 for (;;) {
2273 unsigned long set, i;
2274 int fd;
2275
2276 j++;
2277 i = j * __NFDBITS;
2278 fdt = files_fdtable(files);
2279 if (i >= fdt->max_fds)
2280 break;
2281 set = fdt->open_fds->fds_bits[j];
2282 if (!set)
2283 continue;
2284 spin_unlock(&files->file_lock);
2285 for ( ; set ; i++, set >>= 1) {
2286 if (set & 1) {
2287 file = fget(i);
2288 if (!file)
2289 continue;
2290 if (file_has_perm(cred,
2291 file,
2292 file_to_av(file))) {
2293 sys_close(i);
2294 fd = get_unused_fd();
2295 if (fd != i) {
2296 if (fd >= 0)
2297 put_unused_fd(fd);
2298 fput(file);
2299 continue;
2300 }
2301 if (devnull) {
2302 get_file(devnull);
2303 } else {
2304 devnull = dentry_open(
2305 dget(selinux_null),
2306 mntget(selinuxfs_mount),
2307 O_RDWR, cred);
2308 if (IS_ERR(devnull)) {
2309 devnull = NULL;
2310 put_unused_fd(fd);
2311 fput(file);
2312 continue;
2313 }
2314 }
2315 fd_install(fd, devnull);
2316 }
2317 fput(file);
2318 }
2319 }
2320 spin_lock(&files->file_lock);
2321
2322 }
2323 spin_unlock(&files->file_lock);
2324 }
2325
2326 /*
2327 * Prepare a process for imminent new credential changes due to exec
2328 */
2329 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2330 {
2331 struct task_security_struct *new_tsec;
2332 struct rlimit *rlim, *initrlim;
2333 int rc, i;
2334
2335 new_tsec = bprm->cred->security;
2336 if (new_tsec->sid == new_tsec->osid)
2337 return;
2338
2339 /* Close files for which the new task SID is not authorized. */
2340 flush_unauthorized_files(bprm->cred, current->files);
2341
2342 /* Always clear parent death signal on SID transitions. */
2343 current->pdeath_signal = 0;
2344
2345 /* Check whether the new SID can inherit resource limits from the old
2346 * SID. If not, reset all soft limits to the lower of the current
2347 * task's hard limit and the init task's soft limit.
2348 *
2349 * Note that the setting of hard limits (even to lower them) can be
2350 * controlled by the setrlimit check. The inclusion of the init task's
2351 * soft limit into the computation is to avoid resetting soft limits
2352 * higher than the default soft limit for cases where the default is
2353 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2354 */
2355 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2356 PROCESS__RLIMITINH, NULL);
2357 if (rc) {
2358 for (i = 0; i < RLIM_NLIMITS; i++) {
2359 rlim = current->signal->rlim + i;
2360 initrlim = init_task.signal->rlim + i;
2361 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2362 }
2363 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur);
2364 }
2365 }
2366
2367 /*
2368 * Clean up the process immediately after the installation of new credentials
2369 * due to exec
2370 */
2371 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2372 {
2373 const struct task_security_struct *tsec = current_security();
2374 struct itimerval itimer;
2375 u32 osid, sid;
2376 int rc, i;
2377
2378 osid = tsec->osid;
2379 sid = tsec->sid;
2380
2381 if (sid == osid)
2382 return;
2383
2384 /* Check whether the new SID can inherit signal state from the old SID.
2385 * If not, clear itimers to avoid subsequent signal generation and
2386 * flush and unblock signals.
2387 *
2388 * This must occur _after_ the task SID has been updated so that any
2389 * kill done after the flush will be checked against the new SID.
2390 */
2391 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2392 if (rc) {
2393 memset(&itimer, 0, sizeof itimer);
2394 for (i = 0; i < 3; i++)
2395 do_setitimer(i, &itimer, NULL);
2396 spin_lock_irq(&current->sighand->siglock);
2397 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2398 __flush_signals(current);
2399 flush_signal_handlers(current, 1);
2400 sigemptyset(&current->blocked);
2401 }
2402 spin_unlock_irq(&current->sighand->siglock);
2403 }
2404
2405 /* Wake up the parent if it is waiting so that it can recheck
2406 * wait permission to the new task SID. */
2407 read_lock(&tasklist_lock);
2408 __wake_up_parent(current, current->real_parent);
2409 read_unlock(&tasklist_lock);
2410 }
2411
2412 /* superblock security operations */
2413
2414 static int selinux_sb_alloc_security(struct super_block *sb)
2415 {
2416 return superblock_alloc_security(sb);
2417 }
2418
2419 static void selinux_sb_free_security(struct super_block *sb)
2420 {
2421 superblock_free_security(sb);
2422 }
2423
2424 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2425 {
2426 if (plen > olen)
2427 return 0;
2428
2429 return !memcmp(prefix, option, plen);
2430 }
2431
2432 static inline int selinux_option(char *option, int len)
2433 {
2434 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2435 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2436 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2437 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2438 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2439 }
2440
2441 static inline void take_option(char **to, char *from, int *first, int len)
2442 {
2443 if (!*first) {
2444 **to = ',';
2445 *to += 1;
2446 } else
2447 *first = 0;
2448 memcpy(*to, from, len);
2449 *to += len;
2450 }
2451
2452 static inline void take_selinux_option(char **to, char *from, int *first,
2453 int len)
2454 {
2455 int current_size = 0;
2456
2457 if (!*first) {
2458 **to = '|';
2459 *to += 1;
2460 } else
2461 *first = 0;
2462
2463 while (current_size < len) {
2464 if (*from != '"') {
2465 **to = *from;
2466 *to += 1;
2467 }
2468 from += 1;
2469 current_size += 1;
2470 }
2471 }
2472
2473 static int selinux_sb_copy_data(char *orig, char *copy)
2474 {
2475 int fnosec, fsec, rc = 0;
2476 char *in_save, *in_curr, *in_end;
2477 char *sec_curr, *nosec_save, *nosec;
2478 int open_quote = 0;
2479
2480 in_curr = orig;
2481 sec_curr = copy;
2482
2483 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2484 if (!nosec) {
2485 rc = -ENOMEM;
2486 goto out;
2487 }
2488
2489 nosec_save = nosec;
2490 fnosec = fsec = 1;
2491 in_save = in_end = orig;
2492
2493 do {
2494 if (*in_end == '"')
2495 open_quote = !open_quote;
2496 if ((*in_end == ',' && open_quote == 0) ||
2497 *in_end == '\0') {
2498 int len = in_end - in_curr;
2499
2500 if (selinux_option(in_curr, len))
2501 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2502 else
2503 take_option(&nosec, in_curr, &fnosec, len);
2504
2505 in_curr = in_end + 1;
2506 }
2507 } while (*in_end++);
2508
2509 strcpy(in_save, nosec_save);
2510 free_page((unsigned long)nosec_save);
2511 out:
2512 return rc;
2513 }
2514
2515 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2516 {
2517 const struct cred *cred = current_cred();
2518 struct common_audit_data ad;
2519 int rc;
2520
2521 rc = superblock_doinit(sb, data);
2522 if (rc)
2523 return rc;
2524
2525 /* Allow all mounts performed by the kernel */
2526 if (flags & MS_KERNMOUNT)
2527 return 0;
2528
2529 COMMON_AUDIT_DATA_INIT(&ad, FS);
2530 ad.u.fs.path.dentry = sb->s_root;
2531 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2532 }
2533
2534 static int selinux_sb_statfs(struct dentry *dentry)
2535 {
2536 const struct cred *cred = current_cred();
2537 struct common_audit_data ad;
2538
2539 COMMON_AUDIT_DATA_INIT(&ad, FS);
2540 ad.u.fs.path.dentry = dentry->d_sb->s_root;
2541 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2542 }
2543
2544 static int selinux_mount(char *dev_name,
2545 struct path *path,
2546 char *type,
2547 unsigned long flags,
2548 void *data)
2549 {
2550 const struct cred *cred = current_cred();
2551
2552 if (flags & MS_REMOUNT)
2553 return superblock_has_perm(cred, path->mnt->mnt_sb,
2554 FILESYSTEM__REMOUNT, NULL);
2555 else
2556 return dentry_has_perm(cred, path->mnt, path->dentry,
2557 FILE__MOUNTON);
2558 }
2559
2560 static int selinux_umount(struct vfsmount *mnt, int flags)
2561 {
2562 const struct cred *cred = current_cred();
2563
2564 return superblock_has_perm(cred, mnt->mnt_sb,
2565 FILESYSTEM__UNMOUNT, NULL);
2566 }
2567
2568 /* inode security operations */
2569
2570 static int selinux_inode_alloc_security(struct inode *inode)
2571 {
2572 return inode_alloc_security(inode);
2573 }
2574
2575 static void selinux_inode_free_security(struct inode *inode)
2576 {
2577 inode_free_security(inode);
2578 }
2579
2580 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2581 char **name, void **value,
2582 size_t *len)
2583 {
2584 const struct cred *cred = current_cred();
2585 const struct task_security_struct *tsec = cred->security;
2586 struct inode_security_struct *dsec;
2587 struct superblock_security_struct *sbsec;
2588 u32 sid, newsid, clen;
2589 int rc;
2590 char *namep = NULL, *context;
2591
2592 dsec = dir->i_security;
2593 sbsec = dir->i_sb->s_security;
2594
2595 sid = tsec->sid;
2596 newsid = tsec->create_sid;
2597
2598 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2599 rc = security_transition_sid(sid, dsec->sid,
2600 inode_mode_to_security_class(inode->i_mode),
2601 &newsid);
2602 if (rc) {
2603 printk(KERN_WARNING "%s: "
2604 "security_transition_sid failed, rc=%d (dev=%s "
2605 "ino=%ld)\n",
2606 __func__,
2607 -rc, inode->i_sb->s_id, inode->i_ino);
2608 return rc;
2609 }
2610 }
2611
2612 /* Possibly defer initialization to selinux_complete_init. */
2613 if (sbsec->flags & SE_SBINITIALIZED) {
2614 struct inode_security_struct *isec = inode->i_security;
2615 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2616 isec->sid = newsid;
2617 isec->initialized = 1;
2618 }
2619
2620 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2621 return -EOPNOTSUPP;
2622
2623 if (name) {
2624 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2625 if (!namep)
2626 return -ENOMEM;
2627 *name = namep;
2628 }
2629
2630 if (value && len) {
2631 rc = security_sid_to_context_force(newsid, &context, &clen);
2632 if (rc) {
2633 kfree(namep);
2634 return rc;
2635 }
2636 *value = context;
2637 *len = clen;
2638 }
2639
2640 return 0;
2641 }
2642
2643 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2644 {
2645 return may_create(dir, dentry, SECCLASS_FILE);
2646 }
2647
2648 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2649 {
2650 return may_link(dir, old_dentry, MAY_LINK);
2651 }
2652
2653 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2654 {
2655 return may_link(dir, dentry, MAY_UNLINK);
2656 }
2657
2658 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2659 {
2660 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2661 }
2662
2663 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2664 {
2665 return may_create(dir, dentry, SECCLASS_DIR);
2666 }
2667
2668 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2669 {
2670 return may_link(dir, dentry, MAY_RMDIR);
2671 }
2672
2673 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2674 {
2675 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2676 }
2677
2678 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2679 struct inode *new_inode, struct dentry *new_dentry)
2680 {
2681 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2682 }
2683
2684 static int selinux_inode_readlink(struct dentry *dentry)
2685 {
2686 const struct cred *cred = current_cred();
2687
2688 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2689 }
2690
2691 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2692 {
2693 const struct cred *cred = current_cred();
2694
2695 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2696 }
2697
2698 static int selinux_inode_permission(struct inode *inode, int mask)
2699 {
2700 const struct cred *cred = current_cred();
2701
2702 if (!mask) {
2703 /* No permission to check. Existence test. */
2704 return 0;
2705 }
2706
2707 return inode_has_perm(cred, inode,
2708 file_mask_to_av(inode->i_mode, mask), NULL);
2709 }
2710
2711 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2712 {
2713 const struct cred *cred = current_cred();
2714 unsigned int ia_valid = iattr->ia_valid;
2715
2716 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2717 if (ia_valid & ATTR_FORCE) {
2718 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2719 ATTR_FORCE);
2720 if (!ia_valid)
2721 return 0;
2722 }
2723
2724 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2725 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2726 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2727
2728 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2729 }
2730
2731 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2732 {
2733 const struct cred *cred = current_cred();
2734
2735 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2736 }
2737
2738 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2739 {
2740 const struct cred *cred = current_cred();
2741
2742 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2743 sizeof XATTR_SECURITY_PREFIX - 1)) {
2744 if (!strcmp(name, XATTR_NAME_CAPS)) {
2745 if (!capable(CAP_SETFCAP))
2746 return -EPERM;
2747 } else if (!capable(CAP_SYS_ADMIN)) {
2748 /* A different attribute in the security namespace.
2749 Restrict to administrator. */
2750 return -EPERM;
2751 }
2752 }
2753
2754 /* Not an attribute we recognize, so just check the
2755 ordinary setattr permission. */
2756 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2757 }
2758
2759 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2760 const void *value, size_t size, int flags)
2761 {
2762 struct inode *inode = dentry->d_inode;
2763 struct inode_security_struct *isec = inode->i_security;
2764 struct superblock_security_struct *sbsec;
2765 struct common_audit_data ad;
2766 u32 newsid, sid = current_sid();
2767 int rc = 0;
2768
2769 if (strcmp(name, XATTR_NAME_SELINUX))
2770 return selinux_inode_setotherxattr(dentry, name);
2771
2772 sbsec = inode->i_sb->s_security;
2773 if (!(sbsec->flags & SE_SBLABELSUPP))
2774 return -EOPNOTSUPP;
2775
2776 if (!is_owner_or_cap(inode))
2777 return -EPERM;
2778
2779 COMMON_AUDIT_DATA_INIT(&ad, FS);
2780 ad.u.fs.path.dentry = dentry;
2781
2782 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2783 FILE__RELABELFROM, &ad);
2784 if (rc)
2785 return rc;
2786
2787 rc = security_context_to_sid(value, size, &newsid);
2788 if (rc == -EINVAL) {
2789 if (!capable(CAP_MAC_ADMIN))
2790 return rc;
2791 rc = security_context_to_sid_force(value, size, &newsid);
2792 }
2793 if (rc)
2794 return rc;
2795
2796 rc = avc_has_perm(sid, newsid, isec->sclass,
2797 FILE__RELABELTO, &ad);
2798 if (rc)
2799 return rc;
2800
2801 rc = security_validate_transition(isec->sid, newsid, sid,
2802 isec->sclass);
2803 if (rc)
2804 return rc;
2805
2806 return avc_has_perm(newsid,
2807 sbsec->sid,
2808 SECCLASS_FILESYSTEM,
2809 FILESYSTEM__ASSOCIATE,
2810 &ad);
2811 }
2812
2813 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2814 const void *value, size_t size,
2815 int flags)
2816 {
2817 struct inode *inode = dentry->d_inode;
2818 struct inode_security_struct *isec = inode->i_security;
2819 u32 newsid;
2820 int rc;
2821
2822 if (strcmp(name, XATTR_NAME_SELINUX)) {
2823 /* Not an attribute we recognize, so nothing to do. */
2824 return;
2825 }
2826
2827 rc = security_context_to_sid_force(value, size, &newsid);
2828 if (rc) {
2829 printk(KERN_ERR "SELinux: unable to map context to SID"
2830 "for (%s, %lu), rc=%d\n",
2831 inode->i_sb->s_id, inode->i_ino, -rc);
2832 return;
2833 }
2834
2835 isec->sid = newsid;
2836 return;
2837 }
2838
2839 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2840 {
2841 const struct cred *cred = current_cred();
2842
2843 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2844 }
2845
2846 static int selinux_inode_listxattr(struct dentry *dentry)
2847 {
2848 const struct cred *cred = current_cred();
2849
2850 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2851 }
2852
2853 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2854 {
2855 if (strcmp(name, XATTR_NAME_SELINUX))
2856 return selinux_inode_setotherxattr(dentry, name);
2857
2858 /* No one is allowed to remove a SELinux security label.
2859 You can change the label, but all data must be labeled. */
2860 return -EACCES;
2861 }
2862
2863 /*
2864 * Copy the inode security context value to the user.
2865 *
2866 * Permission check is handled by selinux_inode_getxattr hook.
2867 */
2868 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2869 {
2870 u32 size;
2871 int error;
2872 char *context = NULL;
2873 struct inode_security_struct *isec = inode->i_security;
2874
2875 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2876 return -EOPNOTSUPP;
2877
2878 /*
2879 * If the caller has CAP_MAC_ADMIN, then get the raw context
2880 * value even if it is not defined by current policy; otherwise,
2881 * use the in-core value under current policy.
2882 * Use the non-auditing forms of the permission checks since
2883 * getxattr may be called by unprivileged processes commonly
2884 * and lack of permission just means that we fall back to the
2885 * in-core context value, not a denial.
2886 */
2887 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2888 SECURITY_CAP_NOAUDIT);
2889 if (!error)
2890 error = security_sid_to_context_force(isec->sid, &context,
2891 &size);
2892 else
2893 error = security_sid_to_context(isec->sid, &context, &size);
2894 if (error)
2895 return error;
2896 error = size;
2897 if (alloc) {
2898 *buffer = context;
2899 goto out_nofree;
2900 }
2901 kfree(context);
2902 out_nofree:
2903 return error;
2904 }
2905
2906 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2907 const void *value, size_t size, int flags)
2908 {
2909 struct inode_security_struct *isec = inode->i_security;
2910 u32 newsid;
2911 int rc;
2912
2913 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2914 return -EOPNOTSUPP;
2915
2916 if (!value || !size)
2917 return -EACCES;
2918
2919 rc = security_context_to_sid((void *)value, size, &newsid);
2920 if (rc)
2921 return rc;
2922
2923 isec->sid = newsid;
2924 isec->initialized = 1;
2925 return 0;
2926 }
2927
2928 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2929 {
2930 const int len = sizeof(XATTR_NAME_SELINUX);
2931 if (buffer && len <= buffer_size)
2932 memcpy(buffer, XATTR_NAME_SELINUX, len);
2933 return len;
2934 }
2935
2936 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2937 {
2938 struct inode_security_struct *isec = inode->i_security;
2939 *secid = isec->sid;
2940 }
2941
2942 /* file security operations */
2943
2944 static int selinux_revalidate_file_permission(struct file *file, int mask)
2945 {
2946 const struct cred *cred = current_cred();
2947 struct inode *inode = file->f_path.dentry->d_inode;
2948
2949 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2950 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2951 mask |= MAY_APPEND;
2952
2953 return file_has_perm(cred, file,
2954 file_mask_to_av(inode->i_mode, mask));
2955 }
2956
2957 static int selinux_file_permission(struct file *file, int mask)
2958 {
2959 struct inode *inode = file->f_path.dentry->d_inode;
2960 struct file_security_struct *fsec = file->f_security;
2961 struct inode_security_struct *isec = inode->i_security;
2962 u32 sid = current_sid();
2963
2964 if (!mask)
2965 /* No permission to check. Existence test. */
2966 return 0;
2967
2968 if (sid == fsec->sid && fsec->isid == isec->sid &&
2969 fsec->pseqno == avc_policy_seqno())
2970 /* No change since dentry_open check. */
2971 return 0;
2972
2973 return selinux_revalidate_file_permission(file, mask);
2974 }
2975
2976 static int selinux_file_alloc_security(struct file *file)
2977 {
2978 return file_alloc_security(file);
2979 }
2980
2981 static void selinux_file_free_security(struct file *file)
2982 {
2983 file_free_security(file);
2984 }
2985
2986 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2987 unsigned long arg)
2988 {
2989 const struct cred *cred = current_cred();
2990 u32 av = 0;
2991
2992 if (_IOC_DIR(cmd) & _IOC_WRITE)
2993 av |= FILE__WRITE;
2994 if (_IOC_DIR(cmd) & _IOC_READ)
2995 av |= FILE__READ;
2996 if (!av)
2997 av = FILE__IOCTL;
2998
2999 return file_has_perm(cred, file, av);
3000 }
3001
3002 static int default_noexec;
3003
3004 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3005 {
3006 const struct cred *cred = current_cred();
3007 int rc = 0;
3008
3009 if (default_noexec &&
3010 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3011 /*
3012 * We are making executable an anonymous mapping or a
3013 * private file mapping that will also be writable.
3014 * This has an additional check.
3015 */
3016 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3017 if (rc)
3018 goto error;
3019 }
3020
3021 if (file) {
3022 /* read access is always possible with a mapping */
3023 u32 av = FILE__READ;
3024
3025 /* write access only matters if the mapping is shared */
3026 if (shared && (prot & PROT_WRITE))
3027 av |= FILE__WRITE;
3028
3029 if (prot & PROT_EXEC)
3030 av |= FILE__EXECUTE;
3031
3032 return file_has_perm(cred, file, av);
3033 }
3034
3035 error:
3036 return rc;
3037 }
3038
3039 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3040 unsigned long prot, unsigned long flags,
3041 unsigned long addr, unsigned long addr_only)
3042 {
3043 int rc = 0;
3044 u32 sid = current_sid();
3045
3046 /*
3047 * notice that we are intentionally putting the SELinux check before
3048 * the secondary cap_file_mmap check. This is such a likely attempt
3049 * at bad behaviour/exploit that we always want to get the AVC, even
3050 * if DAC would have also denied the operation.
3051 */
3052 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3053 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3054 MEMPROTECT__MMAP_ZERO, NULL);
3055 if (rc)
3056 return rc;
3057 }
3058
3059 /* do DAC check on address space usage */
3060 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3061 if (rc || addr_only)
3062 return rc;
3063
3064 if (selinux_checkreqprot)
3065 prot = reqprot;
3066
3067 return file_map_prot_check(file, prot,
3068 (flags & MAP_TYPE) == MAP_SHARED);
3069 }
3070
3071 static int selinux_file_mprotect(struct vm_area_struct *vma,
3072 unsigned long reqprot,
3073 unsigned long prot)
3074 {
3075 const struct cred *cred = current_cred();
3076
3077 if (selinux_checkreqprot)
3078 prot = reqprot;
3079
3080 if (default_noexec &&
3081 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3082 int rc = 0;
3083 if (vma->vm_start >= vma->vm_mm->start_brk &&
3084 vma->vm_end <= vma->vm_mm->brk) {
3085 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3086 } else if (!vma->vm_file &&
3087 vma->vm_start <= vma->vm_mm->start_stack &&
3088 vma->vm_end >= vma->vm_mm->start_stack) {
3089 rc = current_has_perm(current, PROCESS__EXECSTACK);
3090 } else if (vma->vm_file && vma->anon_vma) {
3091 /*
3092 * We are making executable a file mapping that has
3093 * had some COW done. Since pages might have been
3094 * written, check ability to execute the possibly
3095 * modified content. This typically should only
3096 * occur for text relocations.
3097 */
3098 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3099 }
3100 if (rc)
3101 return rc;
3102 }
3103
3104 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3105 }
3106
3107 static int selinux_file_lock(struct file *file, unsigned int cmd)
3108 {
3109 const struct cred *cred = current_cred();
3110
3111 return file_has_perm(cred, file, FILE__LOCK);
3112 }
3113
3114 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3115 unsigned long arg)
3116 {
3117 const struct cred *cred = current_cred();
3118 int err = 0;
3119
3120 switch (cmd) {
3121 case F_SETFL:
3122 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3123 err = -EINVAL;
3124 break;
3125 }
3126
3127 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3128 err = file_has_perm(cred, file, FILE__WRITE);
3129 break;
3130 }
3131 /* fall through */
3132 case F_SETOWN:
3133 case F_SETSIG:
3134 case F_GETFL:
3135 case F_GETOWN:
3136 case F_GETSIG:
3137 /* Just check FD__USE permission */
3138 err = file_has_perm(cred, file, 0);
3139 break;
3140 case F_GETLK:
3141 case F_SETLK:
3142 case F_SETLKW:
3143 #if BITS_PER_LONG == 32
3144 case F_GETLK64:
3145 case F_SETLK64:
3146 case F_SETLKW64:
3147 #endif
3148 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3149 err = -EINVAL;
3150 break;
3151 }
3152 err = file_has_perm(cred, file, FILE__LOCK);
3153 break;
3154 }
3155
3156 return err;
3157 }
3158
3159 static int selinux_file_set_fowner(struct file *file)
3160 {
3161 struct file_security_struct *fsec;
3162
3163 fsec = file->f_security;
3164 fsec->fown_sid = current_sid();
3165
3166 return 0;
3167 }
3168
3169 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3170 struct fown_struct *fown, int signum)
3171 {
3172 struct file *file;
3173 u32 sid = task_sid(tsk);
3174 u32 perm;
3175 struct file_security_struct *fsec;
3176
3177 /* struct fown_struct is never outside the context of a struct file */
3178 file = container_of(fown, struct file, f_owner);
3179
3180 fsec = file->f_security;
3181
3182 if (!signum)
3183 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3184 else
3185 perm = signal_to_av(signum);
3186
3187 return avc_has_perm(fsec->fown_sid, sid,
3188 SECCLASS_PROCESS, perm, NULL);
3189 }
3190
3191 static int selinux_file_receive(struct file *file)
3192 {
3193 const struct cred *cred = current_cred();
3194
3195 return file_has_perm(cred, file, file_to_av(file));
3196 }
3197
3198 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3199 {
3200 struct file_security_struct *fsec;
3201 struct inode *inode;
3202 struct inode_security_struct *isec;
3203
3204 inode = file->f_path.dentry->d_inode;
3205 fsec = file->f_security;
3206 isec = inode->i_security;
3207 /*
3208 * Save inode label and policy sequence number
3209 * at open-time so that selinux_file_permission
3210 * can determine whether revalidation is necessary.
3211 * Task label is already saved in the file security
3212 * struct as its SID.
3213 */
3214 fsec->isid = isec->sid;
3215 fsec->pseqno = avc_policy_seqno();
3216 /*
3217 * Since the inode label or policy seqno may have changed
3218 * between the selinux_inode_permission check and the saving
3219 * of state above, recheck that access is still permitted.
3220 * Otherwise, access might never be revalidated against the
3221 * new inode label or new policy.
3222 * This check is not redundant - do not remove.
3223 */
3224 return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3225 }
3226
3227 /* task security operations */
3228
3229 static int selinux_task_create(unsigned long clone_flags)
3230 {
3231 return current_has_perm(current, PROCESS__FORK);
3232 }
3233
3234 /*
3235 * allocate the SELinux part of blank credentials
3236 */
3237 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3238 {
3239 struct task_security_struct *tsec;
3240
3241 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3242 if (!tsec)
3243 return -ENOMEM;
3244
3245 cred->security = tsec;
3246 return 0;
3247 }
3248
3249 /*
3250 * detach and free the LSM part of a set of credentials
3251 */
3252 static void selinux_cred_free(struct cred *cred)
3253 {
3254 struct task_security_struct *tsec = cred->security;
3255
3256 BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3257 cred->security = (void *) 0x7UL;
3258 kfree(tsec);
3259 }
3260
3261 /*
3262 * prepare a new set of credentials for modification
3263 */
3264 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3265 gfp_t gfp)
3266 {
3267 const struct task_security_struct *old_tsec;
3268 struct task_security_struct *tsec;
3269
3270 old_tsec = old->security;
3271
3272 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3273 if (!tsec)
3274 return -ENOMEM;
3275
3276 new->security = tsec;
3277 return 0;
3278 }
3279
3280 /*
3281 * transfer the SELinux data to a blank set of creds
3282 */
3283 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3284 {
3285 const struct task_security_struct *old_tsec = old->security;
3286 struct task_security_struct *tsec = new->security;
3287
3288 *tsec = *old_tsec;
3289 }
3290
3291 /*
3292 * set the security data for a kernel service
3293 * - all the creation contexts are set to unlabelled
3294 */
3295 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3296 {
3297 struct task_security_struct *tsec = new->security;
3298 u32 sid = current_sid();
3299 int ret;
3300
3301 ret = avc_has_perm(sid, secid,
3302 SECCLASS_KERNEL_SERVICE,
3303 KERNEL_SERVICE__USE_AS_OVERRIDE,
3304 NULL);
3305 if (ret == 0) {
3306 tsec->sid = secid;
3307 tsec->create_sid = 0;
3308 tsec->keycreate_sid = 0;
3309 tsec->sockcreate_sid = 0;
3310 }
3311 return ret;
3312 }
3313
3314 /*
3315 * set the file creation context in a security record to the same as the
3316 * objective context of the specified inode
3317 */
3318 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3319 {
3320 struct inode_security_struct *isec = inode->i_security;
3321 struct task_security_struct *tsec = new->security;
3322 u32 sid = current_sid();
3323 int ret;
3324
3325 ret = avc_has_perm(sid, isec->sid,
3326 SECCLASS_KERNEL_SERVICE,
3327 KERNEL_SERVICE__CREATE_FILES_AS,
3328 NULL);
3329
3330 if (ret == 0)
3331 tsec->create_sid = isec->sid;
3332 return ret;
3333 }
3334
3335 static int selinux_kernel_module_request(char *kmod_name)
3336 {
3337 u32 sid;
3338 struct common_audit_data ad;
3339
3340 sid = task_sid(current);
3341
3342 COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3343 ad.u.kmod_name = kmod_name;
3344
3345 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3346 SYSTEM__MODULE_REQUEST, &ad);
3347 }
3348
3349 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3350 {
3351 return current_has_perm(p, PROCESS__SETPGID);
3352 }
3353
3354 static int selinux_task_getpgid(struct task_struct *p)
3355 {
3356 return current_has_perm(p, PROCESS__GETPGID);
3357 }
3358
3359 static int selinux_task_getsid(struct task_struct *p)
3360 {
3361 return current_has_perm(p, PROCESS__GETSESSION);
3362 }
3363
3364 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3365 {
3366 *secid = task_sid(p);
3367 }
3368
3369 static int selinux_task_setnice(struct task_struct *p, int nice)
3370 {
3371 int rc;
3372
3373 rc = cap_task_setnice(p, nice);
3374 if (rc)
3375 return rc;
3376
3377 return current_has_perm(p, PROCESS__SETSCHED);
3378 }
3379
3380 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3381 {
3382 int rc;
3383
3384 rc = cap_task_setioprio(p, ioprio);
3385 if (rc)
3386 return rc;
3387
3388 return current_has_perm(p, PROCESS__SETSCHED);
3389 }
3390
3391 static int selinux_task_getioprio(struct task_struct *p)
3392 {
3393 return current_has_perm(p, PROCESS__GETSCHED);
3394 }
3395
3396 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3397 {
3398 struct rlimit *old_rlim = current->signal->rlim + resource;
3399
3400 /* Control the ability to change the hard limit (whether
3401 lowering or raising it), so that the hard limit can
3402 later be used as a safe reset point for the soft limit
3403 upon context transitions. See selinux_bprm_committing_creds. */
3404 if (old_rlim->rlim_max != new_rlim->rlim_max)
3405 return current_has_perm(current, PROCESS__SETRLIMIT);
3406
3407 return 0;
3408 }
3409
3410 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3411 {
3412 int rc;
3413
3414 rc = cap_task_setscheduler(p, policy, lp);
3415 if (rc)
3416 return rc;
3417
3418 return current_has_perm(p, PROCESS__SETSCHED);
3419 }
3420
3421 static int selinux_task_getscheduler(struct task_struct *p)
3422 {
3423 return current_has_perm(p, PROCESS__GETSCHED);
3424 }
3425
3426 static int selinux_task_movememory(struct task_struct *p)
3427 {
3428 return current_has_perm(p, PROCESS__SETSCHED);
3429 }
3430
3431 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3432 int sig, u32 secid)
3433 {
3434 u32 perm;
3435 int rc;
3436
3437 if (!sig)
3438 perm = PROCESS__SIGNULL; /* null signal; existence test */
3439 else
3440 perm = signal_to_av(sig);
3441 if (secid)
3442 rc = avc_has_perm(secid, task_sid(p),
3443 SECCLASS_PROCESS, perm, NULL);
3444 else
3445 rc = current_has_perm(p, perm);
3446 return rc;
3447 }
3448
3449 static int selinux_task_wait(struct task_struct *p)
3450 {
3451 return task_has_perm(p, current, PROCESS__SIGCHLD);
3452 }
3453
3454 static void selinux_task_to_inode(struct task_struct *p,
3455 struct inode *inode)
3456 {
3457 struct inode_security_struct *isec = inode->i_security;
3458 u32 sid = task_sid(p);
3459
3460 isec->sid = sid;
3461 isec->initialized = 1;
3462 }
3463
3464 /* Returns error only if unable to parse addresses */
3465 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3466 struct common_audit_data *ad, u8 *proto)
3467 {
3468 int offset, ihlen, ret = -EINVAL;
3469 struct iphdr _iph, *ih;
3470
3471 offset = skb_network_offset(skb);
3472 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3473 if (ih == NULL)
3474 goto out;
3475
3476 ihlen = ih->ihl * 4;
3477 if (ihlen < sizeof(_iph))
3478 goto out;
3479
3480 ad->u.net.v4info.saddr = ih->saddr;
3481 ad->u.net.v4info.daddr = ih->daddr;
3482 ret = 0;
3483
3484 if (proto)
3485 *proto = ih->protocol;
3486
3487 switch (ih->protocol) {
3488 case IPPROTO_TCP: {
3489 struct tcphdr _tcph, *th;
3490
3491 if (ntohs(ih->frag_off) & IP_OFFSET)
3492 break;
3493
3494 offset += ihlen;
3495 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3496 if (th == NULL)
3497 break;
3498
3499 ad->u.net.sport = th->source;
3500 ad->u.net.dport = th->dest;
3501 break;
3502 }
3503
3504 case IPPROTO_UDP: {
3505 struct udphdr _udph, *uh;
3506
3507 if (ntohs(ih->frag_off) & IP_OFFSET)
3508 break;
3509
3510 offset += ihlen;
3511 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3512 if (uh == NULL)
3513 break;
3514
3515 ad->u.net.sport = uh->source;
3516 ad->u.net.dport = uh->dest;
3517 break;
3518 }
3519
3520 case IPPROTO_DCCP: {
3521 struct dccp_hdr _dccph, *dh;
3522
3523 if (ntohs(ih->frag_off) & IP_OFFSET)
3524 break;
3525
3526 offset += ihlen;
3527 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3528 if (dh == NULL)
3529 break;
3530
3531 ad->u.net.sport = dh->dccph_sport;
3532 ad->u.net.dport = dh->dccph_dport;
3533 break;
3534 }
3535
3536 default:
3537 break;
3538 }
3539 out:
3540 return ret;
3541 }
3542
3543 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3544
3545 /* Returns error only if unable to parse addresses */
3546 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3547 struct common_audit_data *ad, u8 *proto)
3548 {
3549 u8 nexthdr;
3550 int ret = -EINVAL, offset;
3551 struct ipv6hdr _ipv6h, *ip6;
3552
3553 offset = skb_network_offset(skb);
3554 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3555 if (ip6 == NULL)
3556 goto out;
3557
3558 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3559 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3560 ret = 0;
3561
3562 nexthdr = ip6->nexthdr;
3563 offset += sizeof(_ipv6h);
3564 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3565 if (offset < 0)
3566 goto out;
3567
3568 if (proto)
3569 *proto = nexthdr;
3570
3571 switch (nexthdr) {
3572 case IPPROTO_TCP: {
3573 struct tcphdr _tcph, *th;
3574
3575 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3576 if (th == NULL)
3577 break;
3578
3579 ad->u.net.sport = th->source;
3580 ad->u.net.dport = th->dest;
3581 break;
3582 }
3583
3584 case IPPROTO_UDP: {
3585 struct udphdr _udph, *uh;
3586
3587 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3588 if (uh == NULL)
3589 break;
3590
3591 ad->u.net.sport = uh->source;
3592 ad->u.net.dport = uh->dest;
3593 break;
3594 }
3595
3596 case IPPROTO_DCCP: {
3597 struct dccp_hdr _dccph, *dh;
3598
3599 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3600 if (dh == NULL)
3601 break;
3602
3603 ad->u.net.sport = dh->dccph_sport;
3604 ad->u.net.dport = dh->dccph_dport;
3605 break;
3606 }
3607
3608 /* includes fragments */
3609 default:
3610 break;
3611 }
3612 out:
3613 return ret;
3614 }
3615
3616 #endif /* IPV6 */
3617
3618 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3619 char **_addrp, int src, u8 *proto)
3620 {
3621 char *addrp;
3622 int ret;
3623
3624 switch (ad->u.net.family) {
3625 case PF_INET:
3626 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3627 if (ret)
3628 goto parse_error;
3629 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3630 &ad->u.net.v4info.daddr);
3631 goto okay;
3632
3633 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3634 case PF_INET6:
3635 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3636 if (ret)
3637 goto parse_error;
3638 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3639 &ad->u.net.v6info.daddr);
3640 goto okay;
3641 #endif /* IPV6 */
3642 default:
3643 addrp = NULL;
3644 goto okay;
3645 }
3646
3647 parse_error:
3648 printk(KERN_WARNING
3649 "SELinux: failure in selinux_parse_skb(),"
3650 " unable to parse packet\n");
3651 return ret;
3652
3653 okay:
3654 if (_addrp)
3655 *_addrp = addrp;
3656 return 0;
3657 }
3658
3659 /**
3660 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3661 * @skb: the packet
3662 * @family: protocol family
3663 * @sid: the packet's peer label SID
3664 *
3665 * Description:
3666 * Check the various different forms of network peer labeling and determine
3667 * the peer label/SID for the packet; most of the magic actually occurs in
3668 * the security server function security_net_peersid_cmp(). The function
3669 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3670 * or -EACCES if @sid is invalid due to inconsistencies with the different
3671 * peer labels.
3672 *
3673 */
3674 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3675 {
3676 int err;
3677 u32 xfrm_sid;
3678 u32 nlbl_sid;
3679 u32 nlbl_type;
3680
3681 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3682 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3683
3684 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3685 if (unlikely(err)) {
3686 printk(KERN_WARNING
3687 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3688 " unable to determine packet's peer label\n");
3689 return -EACCES;
3690 }
3691
3692 return 0;
3693 }
3694
3695 /* socket security operations */
3696 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3697 u32 perms)
3698 {
3699 struct inode_security_struct *isec;
3700 struct common_audit_data ad;
3701 u32 sid;
3702 int err = 0;
3703
3704 isec = SOCK_INODE(sock)->i_security;
3705
3706 if (isec->sid == SECINITSID_KERNEL)
3707 goto out;
3708 sid = task_sid(task);
3709
3710 COMMON_AUDIT_DATA_INIT(&ad, NET);
3711 ad.u.net.sk = sock->sk;
3712 err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3713
3714 out:
3715 return err;
3716 }
3717
3718 static int selinux_socket_create(int family, int type,
3719 int protocol, int kern)
3720 {
3721 const struct cred *cred = current_cred();
3722 const struct task_security_struct *tsec = cred->security;
3723 u32 sid, newsid;
3724 u16 secclass;
3725 int err = 0;
3726
3727 if (kern)
3728 goto out;
3729
3730 sid = tsec->sid;
3731 newsid = tsec->sockcreate_sid ?: sid;
3732
3733 secclass = socket_type_to_security_class(family, type, protocol);
3734 err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3735
3736 out:
3737 return err;
3738 }
3739
3740 static int selinux_socket_post_create(struct socket *sock, int family,
3741 int type, int protocol, int kern)
3742 {
3743 const struct cred *cred = current_cred();
3744 const struct task_security_struct *tsec = cred->security;
3745 struct inode_security_struct *isec;
3746 struct sk_security_struct *sksec;
3747 u32 sid, newsid;
3748 int err = 0;
3749
3750 sid = tsec->sid;
3751 newsid = tsec->sockcreate_sid;
3752
3753 isec = SOCK_INODE(sock)->i_security;
3754
3755 if (kern)
3756 isec->sid = SECINITSID_KERNEL;
3757 else if (newsid)
3758 isec->sid = newsid;
3759 else
3760 isec->sid = sid;
3761
3762 isec->sclass = socket_type_to_security_class(family, type, protocol);
3763 isec->initialized = 1;
3764
3765 if (sock->sk) {
3766 sksec = sock->sk->sk_security;
3767 sksec->sid = isec->sid;
3768 sksec->sclass = isec->sclass;
3769 err = selinux_netlbl_socket_post_create(sock->sk, family);
3770 }
3771
3772 return err;
3773 }
3774
3775 /* Range of port numbers used to automatically bind.
3776 Need to determine whether we should perform a name_bind
3777 permission check between the socket and the port number. */
3778
3779 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3780 {
3781 u16 family;
3782 int err;
3783
3784 err = socket_has_perm(current, sock, SOCKET__BIND);
3785 if (err)
3786 goto out;
3787
3788 /*
3789 * If PF_INET or PF_INET6, check name_bind permission for the port.
3790 * Multiple address binding for SCTP is not supported yet: we just
3791 * check the first address now.
3792 */
3793 family = sock->sk->sk_family;
3794 if (family == PF_INET || family == PF_INET6) {
3795 char *addrp;
3796 struct inode_security_struct *isec;
3797 struct common_audit_data ad;
3798 struct sockaddr_in *addr4 = NULL;
3799 struct sockaddr_in6 *addr6 = NULL;
3800 unsigned short snum;
3801 struct sock *sk = sock->sk;
3802 u32 sid, node_perm;
3803
3804 isec = SOCK_INODE(sock)->i_security;
3805
3806 if (family == PF_INET) {
3807 addr4 = (struct sockaddr_in *)address;
3808 snum = ntohs(addr4->sin_port);
3809 addrp = (char *)&addr4->sin_addr.s_addr;
3810 } else {
3811 addr6 = (struct sockaddr_in6 *)address;
3812 snum = ntohs(addr6->sin6_port);
3813 addrp = (char *)&addr6->sin6_addr.s6_addr;
3814 }
3815
3816 if (snum) {
3817 int low, high;
3818
3819 inet_get_local_port_range(&low, &high);
3820
3821 if (snum < max(PROT_SOCK, low) || snum > high) {
3822 err = sel_netport_sid(sk->sk_protocol,
3823 snum, &sid);
3824 if (err)
3825 goto out;
3826 COMMON_AUDIT_DATA_INIT(&ad, NET);
3827 ad.u.net.sport = htons(snum);
3828 ad.u.net.family = family;
3829 err = avc_has_perm(isec->sid, sid,
3830 isec->sclass,
3831 SOCKET__NAME_BIND, &ad);
3832 if (err)
3833 goto out;
3834 }
3835 }
3836
3837 switch (isec->sclass) {
3838 case SECCLASS_TCP_SOCKET:
3839 node_perm = TCP_SOCKET__NODE_BIND;
3840 break;
3841
3842 case SECCLASS_UDP_SOCKET:
3843 node_perm = UDP_SOCKET__NODE_BIND;
3844 break;
3845
3846 case SECCLASS_DCCP_SOCKET:
3847 node_perm = DCCP_SOCKET__NODE_BIND;
3848 break;
3849
3850 default:
3851 node_perm = RAWIP_SOCKET__NODE_BIND;
3852 break;
3853 }
3854
3855 err = sel_netnode_sid(addrp, family, &sid);
3856 if (err)
3857 goto out;
3858
3859 COMMON_AUDIT_DATA_INIT(&ad, NET);
3860 ad.u.net.sport = htons(snum);
3861 ad.u.net.family = family;
3862
3863 if (family == PF_INET)
3864 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3865 else
3866 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3867
3868 err = avc_has_perm(isec->sid, sid,
3869 isec->sclass, node_perm, &ad);
3870 if (err)
3871 goto out;
3872 }
3873 out:
3874 return err;
3875 }
3876
3877 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3878 {
3879 struct sock *sk = sock->sk;
3880 struct inode_security_struct *isec;
3881 int err;
3882
3883 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3884 if (err)
3885 return err;
3886
3887 /*
3888 * If a TCP or DCCP socket, check name_connect permission for the port.
3889 */
3890 isec = SOCK_INODE(sock)->i_security;
3891 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3892 isec->sclass == SECCLASS_DCCP_SOCKET) {
3893 struct common_audit_data ad;
3894 struct sockaddr_in *addr4 = NULL;
3895 struct sockaddr_in6 *addr6 = NULL;
3896 unsigned short snum;
3897 u32 sid, perm;
3898
3899 if (sk->sk_family == PF_INET) {
3900 addr4 = (struct sockaddr_in *)address;
3901 if (addrlen < sizeof(struct sockaddr_in))
3902 return -EINVAL;
3903 snum = ntohs(addr4->sin_port);
3904 } else {
3905 addr6 = (struct sockaddr_in6 *)address;
3906 if (addrlen < SIN6_LEN_RFC2133)
3907 return -EINVAL;
3908 snum = ntohs(addr6->sin6_port);
3909 }
3910
3911 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3912 if (err)
3913 goto out;
3914
3915 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3916 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3917
3918 COMMON_AUDIT_DATA_INIT(&ad, NET);
3919 ad.u.net.dport = htons(snum);
3920 ad.u.net.family = sk->sk_family;
3921 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3922 if (err)
3923 goto out;
3924 }
3925
3926 err = selinux_netlbl_socket_connect(sk, address);
3927
3928 out:
3929 return err;
3930 }
3931
3932 static int selinux_socket_listen(struct socket *sock, int backlog)
3933 {
3934 return socket_has_perm(current, sock, SOCKET__LISTEN);
3935 }
3936
3937 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3938 {
3939 int err;
3940 struct inode_security_struct *isec;
3941 struct inode_security_struct *newisec;
3942
3943 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3944 if (err)
3945 return err;
3946
3947 newisec = SOCK_INODE(newsock)->i_security;
3948
3949 isec = SOCK_INODE(sock)->i_security;
3950 newisec->sclass = isec->sclass;
3951 newisec->sid = isec->sid;
3952 newisec->initialized = 1;
3953
3954 return 0;
3955 }
3956
3957 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3958 int size)
3959 {
3960 return socket_has_perm(current, sock, SOCKET__WRITE);
3961 }
3962
3963 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3964 int size, int flags)
3965 {
3966 return socket_has_perm(current, sock, SOCKET__READ);
3967 }
3968
3969 static int selinux_socket_getsockname(struct socket *sock)
3970 {
3971 return socket_has_perm(current, sock, SOCKET__GETATTR);
3972 }
3973
3974 static int selinux_socket_getpeername(struct socket *sock)
3975 {
3976 return socket_has_perm(current, sock, SOCKET__GETATTR);
3977 }
3978
3979 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3980 {
3981 int err;
3982
3983 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3984 if (err)
3985 return err;
3986
3987 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3988 }
3989
3990 static int selinux_socket_getsockopt(struct socket *sock, int level,
3991 int optname)
3992 {
3993 return socket_has_perm(current, sock, SOCKET__GETOPT);
3994 }
3995
3996 static int selinux_socket_shutdown(struct socket *sock, int how)
3997 {
3998 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3999 }
4000
4001 static int selinux_socket_unix_stream_connect(struct socket *sock,
4002 struct socket *other,
4003 struct sock *newsk)
4004 {
4005 struct sk_security_struct *sksec;
4006 struct inode_security_struct *isec;
4007 struct inode_security_struct *other_isec;
4008 struct common_audit_data ad;
4009 int err;
4010
4011 isec = SOCK_INODE(sock)->i_security;
4012 other_isec = SOCK_INODE(other)->i_security;
4013
4014 COMMON_AUDIT_DATA_INIT(&ad, NET);
4015 ad.u.net.sk = other->sk;
4016
4017 err = avc_has_perm(isec->sid, other_isec->sid,
4018 isec->sclass,
4019 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4020 if (err)
4021 return err;
4022
4023 /* connecting socket */
4024 sksec = sock->sk->sk_security;
4025 sksec->peer_sid = other_isec->sid;
4026
4027 /* server child socket */
4028 sksec = newsk->sk_security;
4029 sksec->peer_sid = isec->sid;
4030 err = security_sid_mls_copy(other_isec->sid, sksec->peer_sid, &sksec->sid);
4031
4032 return err;
4033 }
4034
4035 static int selinux_socket_unix_may_send(struct socket *sock,
4036 struct socket *other)
4037 {
4038 struct inode_security_struct *isec;
4039 struct inode_security_struct *other_isec;
4040 struct common_audit_data ad;
4041 int err;
4042
4043 isec = SOCK_INODE(sock)->i_security;
4044 other_isec = SOCK_INODE(other)->i_security;
4045
4046 COMMON_AUDIT_DATA_INIT(&ad, NET);
4047 ad.u.net.sk = other->sk;
4048
4049 err = avc_has_perm(isec->sid, other_isec->sid,
4050 isec->sclass, SOCKET__SENDTO, &ad);
4051 if (err)
4052 return err;
4053
4054 return 0;
4055 }
4056
4057 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4058 u32 peer_sid,
4059 struct common_audit_data *ad)
4060 {
4061 int err;
4062 u32 if_sid;
4063 u32 node_sid;
4064
4065 err = sel_netif_sid(ifindex, &if_sid);
4066 if (err)
4067 return err;
4068 err = avc_has_perm(peer_sid, if_sid,
4069 SECCLASS_NETIF, NETIF__INGRESS, ad);
4070 if (err)
4071 return err;
4072
4073 err = sel_netnode_sid(addrp, family, &node_sid);
4074 if (err)
4075 return err;
4076 return avc_has_perm(peer_sid, node_sid,
4077 SECCLASS_NODE, NODE__RECVFROM, ad);
4078 }
4079
4080 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4081 u16 family)
4082 {
4083 int err = 0;
4084 struct sk_security_struct *sksec = sk->sk_security;
4085 u32 peer_sid;
4086 u32 sk_sid = sksec->sid;
4087 struct common_audit_data ad;
4088 char *addrp;
4089
4090 COMMON_AUDIT_DATA_INIT(&ad, NET);
4091 ad.u.net.netif = skb->skb_iif;
4092 ad.u.net.family = family;
4093 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4094 if (err)
4095 return err;
4096
4097 if (selinux_secmark_enabled()) {
4098 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4099 PACKET__RECV, &ad);
4100 if (err)
4101 return err;
4102 }
4103
4104 if (selinux_policycap_netpeer) {
4105 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4106 if (err)
4107 return err;
4108 err = avc_has_perm(sk_sid, peer_sid,
4109 SECCLASS_PEER, PEER__RECV, &ad);
4110 if (err)
4111 selinux_netlbl_err(skb, err, 0);
4112 } else {
4113 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4114 if (err)
4115 return err;
4116 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4117 }
4118
4119 return err;
4120 }
4121
4122 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4123 {
4124 int err;
4125 struct sk_security_struct *sksec = sk->sk_security;
4126 u16 family = sk->sk_family;
4127 u32 sk_sid = sksec->sid;
4128 struct common_audit_data ad;
4129 char *addrp;
4130 u8 secmark_active;
4131 u8 peerlbl_active;
4132
4133 if (family != PF_INET && family != PF_INET6)
4134 return 0;
4135
4136 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4137 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4138 family = PF_INET;
4139
4140 /* If any sort of compatibility mode is enabled then handoff processing
4141 * to the selinux_sock_rcv_skb_compat() function to deal with the
4142 * special handling. We do this in an attempt to keep this function
4143 * as fast and as clean as possible. */
4144 if (!selinux_policycap_netpeer)
4145 return selinux_sock_rcv_skb_compat(sk, skb, family);
4146
4147 secmark_active = selinux_secmark_enabled();
4148 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4149 if (!secmark_active && !peerlbl_active)
4150 return 0;
4151
4152 COMMON_AUDIT_DATA_INIT(&ad, NET);
4153 ad.u.net.netif = skb->skb_iif;
4154 ad.u.net.family = family;
4155 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4156 if (err)
4157 return err;
4158
4159 if (peerlbl_active) {
4160 u32 peer_sid;
4161
4162 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4163 if (err)
4164 return err;
4165 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4166 peer_sid, &ad);
4167 if (err) {
4168 selinux_netlbl_err(skb, err, 0);
4169 return err;
4170 }
4171 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4172 PEER__RECV, &ad);
4173 if (err)
4174 selinux_netlbl_err(skb, err, 0);
4175 }
4176
4177 if (secmark_active) {
4178 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4179 PACKET__RECV, &ad);
4180 if (err)
4181 return err;
4182 }
4183
4184 return err;
4185 }
4186
4187 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4188 int __user *optlen, unsigned len)
4189 {
4190 int err = 0;
4191 char *scontext;
4192 u32 scontext_len;
4193 struct sk_security_struct *sksec;
4194 struct inode_security_struct *isec;
4195 u32 peer_sid = SECSID_NULL;
4196
4197 isec = SOCK_INODE(sock)->i_security;
4198
4199 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4200 isec->sclass == SECCLASS_TCP_SOCKET) {
4201 sksec = sock->sk->sk_security;
4202 peer_sid = sksec->peer_sid;
4203 }
4204 if (peer_sid == SECSID_NULL) {
4205 err = -ENOPROTOOPT;
4206 goto out;
4207 }
4208
4209 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4210
4211 if (err)
4212 goto out;
4213
4214 if (scontext_len > len) {
4215 err = -ERANGE;
4216 goto out_len;
4217 }
4218
4219 if (copy_to_user(optval, scontext, scontext_len))
4220 err = -EFAULT;
4221
4222 out_len:
4223 if (put_user(scontext_len, optlen))
4224 err = -EFAULT;
4225
4226 kfree(scontext);
4227 out:
4228 return err;
4229 }
4230
4231 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4232 {
4233 u32 peer_secid = SECSID_NULL;
4234 u16 family;
4235
4236 if (skb && skb->protocol == htons(ETH_P_IP))
4237 family = PF_INET;
4238 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4239 family = PF_INET6;
4240 else if (sock)
4241 family = sock->sk->sk_family;
4242 else
4243 goto out;
4244
4245 if (sock && family == PF_UNIX)
4246 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4247 else if (skb)
4248 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4249
4250 out:
4251 *secid = peer_secid;
4252 if (peer_secid == SECSID_NULL)
4253 return -EINVAL;
4254 return 0;
4255 }
4256
4257 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4258 {
4259 return sk_alloc_security(sk, family, priority);
4260 }
4261
4262 static void selinux_sk_free_security(struct sock *sk)
4263 {
4264 sk_free_security(sk);
4265 }
4266
4267 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4268 {
4269 struct sk_security_struct *sksec = sk->sk_security;
4270 struct sk_security_struct *newsksec = newsk->sk_security;
4271
4272 newsksec->sid = sksec->sid;
4273 newsksec->peer_sid = sksec->peer_sid;
4274 newsksec->sclass = sksec->sclass;
4275
4276 selinux_netlbl_sk_security_reset(newsksec);
4277 }
4278
4279 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4280 {
4281 if (!sk)
4282 *secid = SECINITSID_ANY_SOCKET;
4283 else {
4284 struct sk_security_struct *sksec = sk->sk_security;
4285
4286 *secid = sksec->sid;
4287 }
4288 }
4289
4290 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4291 {
4292 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4293 struct sk_security_struct *sksec = sk->sk_security;
4294
4295 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4296 sk->sk_family == PF_UNIX)
4297 isec->sid = sksec->sid;
4298 sksec->sclass = isec->sclass;
4299 }
4300
4301 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4302 struct request_sock *req)
4303 {
4304 struct sk_security_struct *sksec = sk->sk_security;
4305 int err;
4306 u16 family = sk->sk_family;
4307 u32 newsid;
4308 u32 peersid;
4309
4310 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4311 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4312 family = PF_INET;
4313
4314 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4315 if (err)
4316 return err;
4317 if (peersid == SECSID_NULL) {
4318 req->secid = sksec->sid;
4319 req->peer_secid = SECSID_NULL;
4320 } else {
4321 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4322 if (err)
4323 return err;
4324 req->secid = newsid;
4325 req->peer_secid = peersid;
4326 }
4327
4328 return selinux_netlbl_inet_conn_request(req, family);
4329 }
4330
4331 static void selinux_inet_csk_clone(struct sock *newsk,
4332 const struct request_sock *req)
4333 {
4334 struct sk_security_struct *newsksec = newsk->sk_security;
4335
4336 newsksec->sid = req->secid;
4337 newsksec->peer_sid = req->peer_secid;
4338 /* NOTE: Ideally, we should also get the isec->sid for the
4339 new socket in sync, but we don't have the isec available yet.
4340 So we will wait until sock_graft to do it, by which
4341 time it will have been created and available. */
4342
4343 /* We don't need to take any sort of lock here as we are the only
4344 * thread with access to newsksec */
4345 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4346 }
4347
4348 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4349 {
4350 u16 family = sk->sk_family;
4351 struct sk_security_struct *sksec = sk->sk_security;
4352
4353 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4354 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4355 family = PF_INET;
4356
4357 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4358 }
4359
4360 static void selinux_req_classify_flow(const struct request_sock *req,
4361 struct flowi *fl)
4362 {
4363 fl->secid = req->secid;
4364 }
4365
4366 static int selinux_tun_dev_create(void)
4367 {
4368 u32 sid = current_sid();
4369
4370 /* we aren't taking into account the "sockcreate" SID since the socket
4371 * that is being created here is not a socket in the traditional sense,
4372 * instead it is a private sock, accessible only to the kernel, and
4373 * representing a wide range of network traffic spanning multiple
4374 * connections unlike traditional sockets - check the TUN driver to
4375 * get a better understanding of why this socket is special */
4376
4377 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4378 NULL);
4379 }
4380
4381 static void selinux_tun_dev_post_create(struct sock *sk)
4382 {
4383 struct sk_security_struct *sksec = sk->sk_security;
4384
4385 /* we don't currently perform any NetLabel based labeling here and it
4386 * isn't clear that we would want to do so anyway; while we could apply
4387 * labeling without the support of the TUN user the resulting labeled
4388 * traffic from the other end of the connection would almost certainly
4389 * cause confusion to the TUN user that had no idea network labeling
4390 * protocols were being used */
4391
4392 /* see the comments in selinux_tun_dev_create() about why we don't use
4393 * the sockcreate SID here */
4394
4395 sksec->sid = current_sid();
4396 sksec->sclass = SECCLASS_TUN_SOCKET;
4397 }
4398
4399 static int selinux_tun_dev_attach(struct sock *sk)
4400 {
4401 struct sk_security_struct *sksec = sk->sk_security;
4402 u32 sid = current_sid();
4403 int err;
4404
4405 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4406 TUN_SOCKET__RELABELFROM, NULL);
4407 if (err)
4408 return err;
4409 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4410 TUN_SOCKET__RELABELTO, NULL);
4411 if (err)
4412 return err;
4413
4414 sksec->sid = sid;
4415
4416 return 0;
4417 }
4418
4419 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4420 {
4421 int err = 0;
4422 u32 perm;
4423 struct nlmsghdr *nlh;
4424 struct socket *sock = sk->sk_socket;
4425 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4426
4427 if (skb->len < NLMSG_SPACE(0)) {
4428 err = -EINVAL;
4429 goto out;
4430 }
4431 nlh = nlmsg_hdr(skb);
4432
4433 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4434 if (err) {
4435 if (err == -EINVAL) {
4436 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4437 "SELinux: unrecognized netlink message"
4438 " type=%hu for sclass=%hu\n",
4439 nlh->nlmsg_type, isec->sclass);
4440 if (!selinux_enforcing || security_get_allow_unknown())
4441 err = 0;
4442 }
4443
4444 /* Ignore */
4445 if (err == -ENOENT)
4446 err = 0;
4447 goto out;
4448 }
4449
4450 err = socket_has_perm(current, sock, perm);
4451 out:
4452 return err;
4453 }
4454
4455 #ifdef CONFIG_NETFILTER
4456
4457 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4458 u16 family)
4459 {
4460 int err;
4461 char *addrp;
4462 u32 peer_sid;
4463 struct common_audit_data ad;
4464 u8 secmark_active;
4465 u8 netlbl_active;
4466 u8 peerlbl_active;
4467
4468 if (!selinux_policycap_netpeer)
4469 return NF_ACCEPT;
4470
4471 secmark_active = selinux_secmark_enabled();
4472 netlbl_active = netlbl_enabled();
4473 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4474 if (!secmark_active && !peerlbl_active)
4475 return NF_ACCEPT;
4476
4477 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4478 return NF_DROP;
4479
4480 COMMON_AUDIT_DATA_INIT(&ad, NET);
4481 ad.u.net.netif = ifindex;
4482 ad.u.net.family = family;
4483 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4484 return NF_DROP;
4485
4486 if (peerlbl_active) {
4487 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4488 peer_sid, &ad);
4489 if (err) {
4490 selinux_netlbl_err(skb, err, 1);
4491 return NF_DROP;
4492 }
4493 }
4494
4495 if (secmark_active)
4496 if (avc_has_perm(peer_sid, skb->secmark,
4497 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4498 return NF_DROP;
4499
4500 if (netlbl_active)
4501 /* we do this in the FORWARD path and not the POST_ROUTING
4502 * path because we want to make sure we apply the necessary
4503 * labeling before IPsec is applied so we can leverage AH
4504 * protection */
4505 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4506 return NF_DROP;
4507
4508 return NF_ACCEPT;
4509 }
4510
4511 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4512 struct sk_buff *skb,
4513 const struct net_device *in,
4514 const struct net_device *out,
4515 int (*okfn)(struct sk_buff *))
4516 {
4517 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4518 }
4519
4520 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4521 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4522 struct sk_buff *skb,
4523 const struct net_device *in,
4524 const struct net_device *out,
4525 int (*okfn)(struct sk_buff *))
4526 {
4527 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4528 }
4529 #endif /* IPV6 */
4530
4531 static unsigned int selinux_ip_output(struct sk_buff *skb,
4532 u16 family)
4533 {
4534 u32 sid;
4535
4536 if (!netlbl_enabled())
4537 return NF_ACCEPT;
4538
4539 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4540 * because we want to make sure we apply the necessary labeling
4541 * before IPsec is applied so we can leverage AH protection */
4542 if (skb->sk) {
4543 struct sk_security_struct *sksec = skb->sk->sk_security;
4544 sid = sksec->sid;
4545 } else
4546 sid = SECINITSID_KERNEL;
4547 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4548 return NF_DROP;
4549
4550 return NF_ACCEPT;
4551 }
4552
4553 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4554 struct sk_buff *skb,
4555 const struct net_device *in,
4556 const struct net_device *out,
4557 int (*okfn)(struct sk_buff *))
4558 {
4559 return selinux_ip_output(skb, PF_INET);
4560 }
4561
4562 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4563 int ifindex,
4564 u16 family)
4565 {
4566 struct sock *sk = skb->sk;
4567 struct sk_security_struct *sksec;
4568 struct common_audit_data ad;
4569 char *addrp;
4570 u8 proto;
4571
4572 if (sk == NULL)
4573 return NF_ACCEPT;
4574 sksec = sk->sk_security;
4575
4576 COMMON_AUDIT_DATA_INIT(&ad, NET);
4577 ad.u.net.netif = ifindex;
4578 ad.u.net.family = family;
4579 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4580 return NF_DROP;
4581
4582 if (selinux_secmark_enabled())
4583 if (avc_has_perm(sksec->sid, skb->secmark,
4584 SECCLASS_PACKET, PACKET__SEND, &ad))
4585 return NF_DROP;
4586
4587 if (selinux_policycap_netpeer)
4588 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4589 return NF_DROP;
4590
4591 return NF_ACCEPT;
4592 }
4593
4594 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4595 u16 family)
4596 {
4597 u32 secmark_perm;
4598 u32 peer_sid;
4599 struct sock *sk;
4600 struct common_audit_data ad;
4601 char *addrp;
4602 u8 secmark_active;
4603 u8 peerlbl_active;
4604
4605 /* If any sort of compatibility mode is enabled then handoff processing
4606 * to the selinux_ip_postroute_compat() function to deal with the
4607 * special handling. We do this in an attempt to keep this function
4608 * as fast and as clean as possible. */
4609 if (!selinux_policycap_netpeer)
4610 return selinux_ip_postroute_compat(skb, ifindex, family);
4611 #ifdef CONFIG_XFRM
4612 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4613 * packet transformation so allow the packet to pass without any checks
4614 * since we'll have another chance to perform access control checks
4615 * when the packet is on it's final way out.
4616 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4617 * is NULL, in this case go ahead and apply access control. */
4618 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4619 return NF_ACCEPT;
4620 #endif
4621 secmark_active = selinux_secmark_enabled();
4622 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4623 if (!secmark_active && !peerlbl_active)
4624 return NF_ACCEPT;
4625
4626 /* if the packet is being forwarded then get the peer label from the
4627 * packet itself; otherwise check to see if it is from a local
4628 * application or the kernel, if from an application get the peer label
4629 * from the sending socket, otherwise use the kernel's sid */
4630 sk = skb->sk;
4631 if (sk == NULL) {
4632 switch (family) {
4633 case PF_INET:
4634 if (IPCB(skb)->flags & IPSKB_FORWARDED)
4635 secmark_perm = PACKET__FORWARD_OUT;
4636 else
4637 secmark_perm = PACKET__SEND;
4638 break;
4639 case PF_INET6:
4640 if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4641 secmark_perm = PACKET__FORWARD_OUT;
4642 else
4643 secmark_perm = PACKET__SEND;
4644 break;
4645 default:
4646 return NF_DROP;
4647 }
4648 if (secmark_perm == PACKET__FORWARD_OUT) {
4649 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4650 return NF_DROP;
4651 } else
4652 peer_sid = SECINITSID_KERNEL;
4653 } else {
4654 struct sk_security_struct *sksec = sk->sk_security;
4655 peer_sid = sksec->sid;
4656 secmark_perm = PACKET__SEND;
4657 }
4658
4659 COMMON_AUDIT_DATA_INIT(&ad, NET);
4660 ad.u.net.netif = ifindex;
4661 ad.u.net.family = family;
4662 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4663 return NF_DROP;
4664
4665 if (secmark_active)
4666 if (avc_has_perm(peer_sid, skb->secmark,
4667 SECCLASS_PACKET, secmark_perm, &ad))
4668 return NF_DROP;
4669
4670 if (peerlbl_active) {
4671 u32 if_sid;
4672 u32 node_sid;
4673
4674 if (sel_netif_sid(ifindex, &if_sid))
4675 return NF_DROP;
4676 if (avc_has_perm(peer_sid, if_sid,
4677 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4678 return NF_DROP;
4679
4680 if (sel_netnode_sid(addrp, family, &node_sid))
4681 return NF_DROP;
4682 if (avc_has_perm(peer_sid, node_sid,
4683 SECCLASS_NODE, NODE__SENDTO, &ad))
4684 return NF_DROP;
4685 }
4686
4687 return NF_ACCEPT;
4688 }
4689
4690 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4691 struct sk_buff *skb,
4692 const struct net_device *in,
4693 const struct net_device *out,
4694 int (*okfn)(struct sk_buff *))
4695 {
4696 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4697 }
4698
4699 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4700 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4701 struct sk_buff *skb,
4702 const struct net_device *in,
4703 const struct net_device *out,
4704 int (*okfn)(struct sk_buff *))
4705 {
4706 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4707 }
4708 #endif /* IPV6 */
4709
4710 #endif /* CONFIG_NETFILTER */
4711
4712 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4713 {
4714 int err;
4715
4716 err = cap_netlink_send(sk, skb);
4717 if (err)
4718 return err;
4719
4720 return selinux_nlmsg_perm(sk, skb);
4721 }
4722
4723 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4724 {
4725 int err;
4726 struct common_audit_data ad;
4727
4728 err = cap_netlink_recv(skb, capability);
4729 if (err)
4730 return err;
4731
4732 COMMON_AUDIT_DATA_INIT(&ad, CAP);
4733 ad.u.cap = capability;
4734
4735 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4736 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4737 }
4738
4739 static int ipc_alloc_security(struct task_struct *task,
4740 struct kern_ipc_perm *perm,
4741 u16 sclass)
4742 {
4743 struct ipc_security_struct *isec;
4744 u32 sid;
4745
4746 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4747 if (!isec)
4748 return -ENOMEM;
4749
4750 sid = task_sid(task);
4751 isec->sclass = sclass;
4752 isec->sid = sid;
4753 perm->security = isec;
4754
4755 return 0;
4756 }
4757
4758 static void ipc_free_security(struct kern_ipc_perm *perm)
4759 {
4760 struct ipc_security_struct *isec = perm->security;
4761 perm->security = NULL;
4762 kfree(isec);
4763 }
4764
4765 static int msg_msg_alloc_security(struct msg_msg *msg)
4766 {
4767 struct msg_security_struct *msec;
4768
4769 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4770 if (!msec)
4771 return -ENOMEM;
4772
4773 msec->sid = SECINITSID_UNLABELED;
4774 msg->security = msec;
4775
4776 return 0;
4777 }
4778
4779 static void msg_msg_free_security(struct msg_msg *msg)
4780 {
4781 struct msg_security_struct *msec = msg->security;
4782
4783 msg->security = NULL;
4784 kfree(msec);
4785 }
4786
4787 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4788 u32 perms)
4789 {
4790 struct ipc_security_struct *isec;
4791 struct common_audit_data ad;
4792 u32 sid = current_sid();
4793
4794 isec = ipc_perms->security;
4795
4796 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4797 ad.u.ipc_id = ipc_perms->key;
4798
4799 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4800 }
4801
4802 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4803 {
4804 return msg_msg_alloc_security(msg);
4805 }
4806
4807 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4808 {
4809 msg_msg_free_security(msg);
4810 }
4811
4812 /* message queue security operations */
4813 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4814 {
4815 struct ipc_security_struct *isec;
4816 struct common_audit_data ad;
4817 u32 sid = current_sid();
4818 int rc;
4819
4820 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4821 if (rc)
4822 return rc;
4823
4824 isec = msq->q_perm.security;
4825
4826 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4827 ad.u.ipc_id = msq->q_perm.key;
4828
4829 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4830 MSGQ__CREATE, &ad);
4831 if (rc) {
4832 ipc_free_security(&msq->q_perm);
4833 return rc;
4834 }
4835 return 0;
4836 }
4837
4838 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4839 {
4840 ipc_free_security(&msq->q_perm);
4841 }
4842
4843 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4844 {
4845 struct ipc_security_struct *isec;
4846 struct common_audit_data ad;
4847 u32 sid = current_sid();
4848
4849 isec = msq->q_perm.security;
4850
4851 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4852 ad.u.ipc_id = msq->q_perm.key;
4853
4854 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4855 MSGQ__ASSOCIATE, &ad);
4856 }
4857
4858 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4859 {
4860 int err;
4861 int perms;
4862
4863 switch (cmd) {
4864 case IPC_INFO:
4865 case MSG_INFO:
4866 /* No specific object, just general system-wide information. */
4867 return task_has_system(current, SYSTEM__IPC_INFO);
4868 case IPC_STAT:
4869 case MSG_STAT:
4870 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4871 break;
4872 case IPC_SET:
4873 perms = MSGQ__SETATTR;
4874 break;
4875 case IPC_RMID:
4876 perms = MSGQ__DESTROY;
4877 break;
4878 default:
4879 return 0;
4880 }
4881
4882 err = ipc_has_perm(&msq->q_perm, perms);
4883 return err;
4884 }
4885
4886 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4887 {
4888 struct ipc_security_struct *isec;
4889 struct msg_security_struct *msec;
4890 struct common_audit_data ad;
4891 u32 sid = current_sid();
4892 int rc;
4893
4894 isec = msq->q_perm.security;
4895 msec = msg->security;
4896
4897 /*
4898 * First time through, need to assign label to the message
4899 */
4900 if (msec->sid == SECINITSID_UNLABELED) {
4901 /*
4902 * Compute new sid based on current process and
4903 * message queue this message will be stored in
4904 */
4905 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4906 &msec->sid);
4907 if (rc)
4908 return rc;
4909 }
4910
4911 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4912 ad.u.ipc_id = msq->q_perm.key;
4913
4914 /* Can this process write to the queue? */
4915 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4916 MSGQ__WRITE, &ad);
4917 if (!rc)
4918 /* Can this process send the message */
4919 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4920 MSG__SEND, &ad);
4921 if (!rc)
4922 /* Can the message be put in the queue? */
4923 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4924 MSGQ__ENQUEUE, &ad);
4925
4926 return rc;
4927 }
4928
4929 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4930 struct task_struct *target,
4931 long type, int mode)
4932 {
4933 struct ipc_security_struct *isec;
4934 struct msg_security_struct *msec;
4935 struct common_audit_data ad;
4936 u32 sid = task_sid(target);
4937 int rc;
4938
4939 isec = msq->q_perm.security;
4940 msec = msg->security;
4941
4942 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4943 ad.u.ipc_id = msq->q_perm.key;
4944
4945 rc = avc_has_perm(sid, isec->sid,
4946 SECCLASS_MSGQ, MSGQ__READ, &ad);
4947 if (!rc)
4948 rc = avc_has_perm(sid, msec->sid,
4949 SECCLASS_MSG, MSG__RECEIVE, &ad);
4950 return rc;
4951 }
4952
4953 /* Shared Memory security operations */
4954 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4955 {
4956 struct ipc_security_struct *isec;
4957 struct common_audit_data ad;
4958 u32 sid = current_sid();
4959 int rc;
4960
4961 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4962 if (rc)
4963 return rc;
4964
4965 isec = shp->shm_perm.security;
4966
4967 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4968 ad.u.ipc_id = shp->shm_perm.key;
4969
4970 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4971 SHM__CREATE, &ad);
4972 if (rc) {
4973 ipc_free_security(&shp->shm_perm);
4974 return rc;
4975 }
4976 return 0;
4977 }
4978
4979 static void selinux_shm_free_security(struct shmid_kernel *shp)
4980 {
4981 ipc_free_security(&shp->shm_perm);
4982 }
4983
4984 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4985 {
4986 struct ipc_security_struct *isec;
4987 struct common_audit_data ad;
4988 u32 sid = current_sid();
4989
4990 isec = shp->shm_perm.security;
4991
4992 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4993 ad.u.ipc_id = shp->shm_perm.key;
4994
4995 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4996 SHM__ASSOCIATE, &ad);
4997 }
4998
4999 /* Note, at this point, shp is locked down */
5000 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5001 {
5002 int perms;
5003 int err;
5004
5005 switch (cmd) {
5006 case IPC_INFO:
5007 case SHM_INFO:
5008 /* No specific object, just general system-wide information. */
5009 return task_has_system(current, SYSTEM__IPC_INFO);
5010 case IPC_STAT:
5011 case SHM_STAT:
5012 perms = SHM__GETATTR | SHM__ASSOCIATE;
5013 break;
5014 case IPC_SET:
5015 perms = SHM__SETATTR;
5016 break;
5017 case SHM_LOCK:
5018 case SHM_UNLOCK:
5019 perms = SHM__LOCK;
5020 break;
5021 case IPC_RMID:
5022 perms = SHM__DESTROY;
5023 break;
5024 default:
5025 return 0;
5026 }
5027
5028 err = ipc_has_perm(&shp->shm_perm, perms);
5029 return err;
5030 }
5031
5032 static int selinux_shm_shmat(struct shmid_kernel *shp,
5033 char __user *shmaddr, int shmflg)
5034 {
5035 u32 perms;
5036
5037 if (shmflg & SHM_RDONLY)
5038 perms = SHM__READ;
5039 else
5040 perms = SHM__READ | SHM__WRITE;
5041
5042 return ipc_has_perm(&shp->shm_perm, perms);
5043 }
5044
5045 /* Semaphore security operations */
5046 static int selinux_sem_alloc_security(struct sem_array *sma)
5047 {
5048 struct ipc_security_struct *isec;
5049 struct common_audit_data ad;
5050 u32 sid = current_sid();
5051 int rc;
5052
5053 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5054 if (rc)
5055 return rc;
5056
5057 isec = sma->sem_perm.security;
5058
5059 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5060 ad.u.ipc_id = sma->sem_perm.key;
5061
5062 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5063 SEM__CREATE, &ad);
5064 if (rc) {
5065 ipc_free_security(&sma->sem_perm);
5066 return rc;
5067 }
5068 return 0;
5069 }
5070
5071 static void selinux_sem_free_security(struct sem_array *sma)
5072 {
5073 ipc_free_security(&sma->sem_perm);
5074 }
5075
5076 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5077 {
5078 struct ipc_security_struct *isec;
5079 struct common_audit_data ad;
5080 u32 sid = current_sid();
5081
5082 isec = sma->sem_perm.security;
5083
5084 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5085 ad.u.ipc_id = sma->sem_perm.key;
5086
5087 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5088 SEM__ASSOCIATE, &ad);
5089 }
5090
5091 /* Note, at this point, sma is locked down */
5092 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5093 {
5094 int err;
5095 u32 perms;
5096
5097 switch (cmd) {
5098 case IPC_INFO:
5099 case SEM_INFO:
5100 /* No specific object, just general system-wide information. */
5101 return task_has_system(current, SYSTEM__IPC_INFO);
5102 case GETPID:
5103 case GETNCNT:
5104 case GETZCNT:
5105 perms = SEM__GETATTR;
5106 break;
5107 case GETVAL:
5108 case GETALL:
5109 perms = SEM__READ;
5110 break;
5111 case SETVAL:
5112 case SETALL:
5113 perms = SEM__WRITE;
5114 break;
5115 case IPC_RMID:
5116 perms = SEM__DESTROY;
5117 break;
5118 case IPC_SET:
5119 perms = SEM__SETATTR;
5120 break;
5121 case IPC_STAT:
5122 case SEM_STAT:
5123 perms = SEM__GETATTR | SEM__ASSOCIATE;
5124 break;
5125 default:
5126 return 0;
5127 }
5128
5129 err = ipc_has_perm(&sma->sem_perm, perms);
5130 return err;
5131 }
5132
5133 static int selinux_sem_semop(struct sem_array *sma,
5134 struct sembuf *sops, unsigned nsops, int alter)
5135 {
5136 u32 perms;
5137
5138 if (alter)
5139 perms = SEM__READ | SEM__WRITE;
5140 else
5141 perms = SEM__READ;
5142
5143 return ipc_has_perm(&sma->sem_perm, perms);
5144 }
5145
5146 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5147 {
5148 u32 av = 0;
5149
5150 av = 0;
5151 if (flag & S_IRUGO)
5152 av |= IPC__UNIX_READ;
5153 if (flag & S_IWUGO)
5154 av |= IPC__UNIX_WRITE;
5155
5156 if (av == 0)
5157 return 0;
5158
5159 return ipc_has_perm(ipcp, av);
5160 }
5161
5162 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5163 {
5164 struct ipc_security_struct *isec = ipcp->security;
5165 *secid = isec->sid;
5166 }
5167
5168 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5169 {
5170 if (inode)
5171 inode_doinit_with_dentry(inode, dentry);
5172 }
5173
5174 static int selinux_getprocattr(struct task_struct *p,
5175 char *name, char **value)
5176 {
5177 const struct task_security_struct *__tsec;
5178 u32 sid;
5179 int error;
5180 unsigned len;
5181
5182 if (current != p) {
5183 error = current_has_perm(p, PROCESS__GETATTR);
5184 if (error)
5185 return error;
5186 }
5187
5188 rcu_read_lock();
5189 __tsec = __task_cred(p)->security;
5190
5191 if (!strcmp(name, "current"))
5192 sid = __tsec->sid;
5193 else if (!strcmp(name, "prev"))
5194 sid = __tsec->osid;
5195 else if (!strcmp(name, "exec"))
5196 sid = __tsec->exec_sid;
5197 else if (!strcmp(name, "fscreate"))
5198 sid = __tsec->create_sid;
5199 else if (!strcmp(name, "keycreate"))
5200 sid = __tsec->keycreate_sid;
5201 else if (!strcmp(name, "sockcreate"))
5202 sid = __tsec->sockcreate_sid;
5203 else
5204 goto invalid;
5205 rcu_read_unlock();
5206
5207 if (!sid)
5208 return 0;
5209
5210 error = security_sid_to_context(sid, value, &len);
5211 if (error)
5212 return error;
5213 return len;
5214
5215 invalid:
5216 rcu_read_unlock();
5217 return -EINVAL;
5218 }
5219
5220 static int selinux_setprocattr(struct task_struct *p,
5221 char *name, void *value, size_t size)
5222 {
5223 struct task_security_struct *tsec;
5224 struct task_struct *tracer;
5225 struct cred *new;
5226 u32 sid = 0, ptsid;
5227 int error;
5228 char *str = value;
5229
5230 if (current != p) {
5231 /* SELinux only allows a process to change its own
5232 security attributes. */
5233 return -EACCES;
5234 }
5235
5236 /*
5237 * Basic control over ability to set these attributes at all.
5238 * current == p, but we'll pass them separately in case the
5239 * above restriction is ever removed.
5240 */
5241 if (!strcmp(name, "exec"))
5242 error = current_has_perm(p, PROCESS__SETEXEC);
5243 else if (!strcmp(name, "fscreate"))
5244 error = current_has_perm(p, PROCESS__SETFSCREATE);
5245 else if (!strcmp(name, "keycreate"))
5246 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5247 else if (!strcmp(name, "sockcreate"))
5248 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5249 else if (!strcmp(name, "current"))
5250 error = current_has_perm(p, PROCESS__SETCURRENT);
5251 else
5252 error = -EINVAL;
5253 if (error)
5254 return error;
5255
5256 /* Obtain a SID for the context, if one was specified. */
5257 if (size && str[1] && str[1] != '\n') {
5258 if (str[size-1] == '\n') {
5259 str[size-1] = 0;
5260 size--;
5261 }
5262 error = security_context_to_sid(value, size, &sid);
5263 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5264 if (!capable(CAP_MAC_ADMIN))
5265 return error;
5266 error = security_context_to_sid_force(value, size,
5267 &sid);
5268 }
5269 if (error)
5270 return error;
5271 }
5272
5273 new = prepare_creds();
5274 if (!new)
5275 return -ENOMEM;
5276
5277 /* Permission checking based on the specified context is
5278 performed during the actual operation (execve,
5279 open/mkdir/...), when we know the full context of the
5280 operation. See selinux_bprm_set_creds for the execve
5281 checks and may_create for the file creation checks. The
5282 operation will then fail if the context is not permitted. */
5283 tsec = new->security;
5284 if (!strcmp(name, "exec")) {
5285 tsec->exec_sid = sid;
5286 } else if (!strcmp(name, "fscreate")) {
5287 tsec->create_sid = sid;
5288 } else if (!strcmp(name, "keycreate")) {
5289 error = may_create_key(sid, p);
5290 if (error)
5291 goto abort_change;
5292 tsec->keycreate_sid = sid;
5293 } else if (!strcmp(name, "sockcreate")) {
5294 tsec->sockcreate_sid = sid;
5295 } else if (!strcmp(name, "current")) {
5296 error = -EINVAL;
5297 if (sid == 0)
5298 goto abort_change;
5299
5300 /* Only allow single threaded processes to change context */
5301 error = -EPERM;
5302 if (!current_is_single_threaded()) {
5303 error = security_bounded_transition(tsec->sid, sid);
5304 if (error)
5305 goto abort_change;
5306 }
5307
5308 /* Check permissions for the transition. */
5309 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5310 PROCESS__DYNTRANSITION, NULL);
5311 if (error)
5312 goto abort_change;
5313
5314 /* Check for ptracing, and update the task SID if ok.
5315 Otherwise, leave SID unchanged and fail. */
5316 ptsid = 0;
5317 task_lock(p);
5318 tracer = tracehook_tracer_task(p);
5319 if (tracer)
5320 ptsid = task_sid(tracer);
5321 task_unlock(p);
5322
5323 if (tracer) {
5324 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5325 PROCESS__PTRACE, NULL);
5326 if (error)
5327 goto abort_change;
5328 }
5329
5330 tsec->sid = sid;
5331 } else {
5332 error = -EINVAL;
5333 goto abort_change;
5334 }
5335
5336 commit_creds(new);
5337 return size;
5338
5339 abort_change:
5340 abort_creds(new);
5341 return error;
5342 }
5343
5344 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5345 {
5346 return security_sid_to_context(secid, secdata, seclen);
5347 }
5348
5349 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5350 {
5351 return security_context_to_sid(secdata, seclen, secid);
5352 }
5353
5354 static void selinux_release_secctx(char *secdata, u32 seclen)
5355 {
5356 kfree(secdata);
5357 }
5358
5359 /*
5360 * called with inode->i_mutex locked
5361 */
5362 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5363 {
5364 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5365 }
5366
5367 /*
5368 * called with inode->i_mutex locked
5369 */
5370 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5371 {
5372 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5373 }
5374
5375 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5376 {
5377 int len = 0;
5378 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5379 ctx, true);
5380 if (len < 0)
5381 return len;
5382 *ctxlen = len;
5383 return 0;
5384 }
5385 #ifdef CONFIG_KEYS
5386
5387 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5388 unsigned long flags)
5389 {
5390 const struct task_security_struct *tsec;
5391 struct key_security_struct *ksec;
5392
5393 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5394 if (!ksec)
5395 return -ENOMEM;
5396
5397 tsec = cred->security;
5398 if (tsec->keycreate_sid)
5399 ksec->sid = tsec->keycreate_sid;
5400 else
5401 ksec->sid = tsec->sid;
5402
5403 k->security = ksec;
5404 return 0;
5405 }
5406
5407 static void selinux_key_free(struct key *k)
5408 {
5409 struct key_security_struct *ksec = k->security;
5410
5411 k->security = NULL;
5412 kfree(ksec);
5413 }
5414
5415 static int selinux_key_permission(key_ref_t key_ref,
5416 const struct cred *cred,
5417 key_perm_t perm)
5418 {
5419 struct key *key;
5420 struct key_security_struct *ksec;
5421 u32 sid;
5422
5423 /* if no specific permissions are requested, we skip the
5424 permission check. No serious, additional covert channels
5425 appear to be created. */
5426 if (perm == 0)
5427 return 0;
5428
5429 sid = cred_sid(cred);
5430
5431 key = key_ref_to_ptr(key_ref);
5432 ksec = key->security;
5433
5434 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5435 }
5436
5437 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5438 {
5439 struct key_security_struct *ksec = key->security;
5440 char *context = NULL;
5441 unsigned len;
5442 int rc;
5443
5444 rc = security_sid_to_context(ksec->sid, &context, &len);
5445 if (!rc)
5446 rc = len;
5447 *_buffer = context;
5448 return rc;
5449 }
5450
5451 #endif
5452
5453 static struct security_operations selinux_ops = {
5454 .name = "selinux",
5455
5456 .ptrace_access_check = selinux_ptrace_access_check,
5457 .ptrace_traceme = selinux_ptrace_traceme,
5458 .capget = selinux_capget,
5459 .capset = selinux_capset,
5460 .sysctl = selinux_sysctl,
5461 .capable = selinux_capable,
5462 .quotactl = selinux_quotactl,
5463 .quota_on = selinux_quota_on,
5464 .syslog = selinux_syslog,
5465 .vm_enough_memory = selinux_vm_enough_memory,
5466
5467 .netlink_send = selinux_netlink_send,
5468 .netlink_recv = selinux_netlink_recv,
5469
5470 .bprm_set_creds = selinux_bprm_set_creds,
5471 .bprm_committing_creds = selinux_bprm_committing_creds,
5472 .bprm_committed_creds = selinux_bprm_committed_creds,
5473 .bprm_secureexec = selinux_bprm_secureexec,
5474
5475 .sb_alloc_security = selinux_sb_alloc_security,
5476 .sb_free_security = selinux_sb_free_security,
5477 .sb_copy_data = selinux_sb_copy_data,
5478 .sb_kern_mount = selinux_sb_kern_mount,
5479 .sb_show_options = selinux_sb_show_options,
5480 .sb_statfs = selinux_sb_statfs,
5481 .sb_mount = selinux_mount,
5482 .sb_umount = selinux_umount,
5483 .sb_set_mnt_opts = selinux_set_mnt_opts,
5484 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5485 .sb_parse_opts_str = selinux_parse_opts_str,
5486
5487
5488 .inode_alloc_security = selinux_inode_alloc_security,
5489 .inode_free_security = selinux_inode_free_security,
5490 .inode_init_security = selinux_inode_init_security,
5491 .inode_create = selinux_inode_create,
5492 .inode_link = selinux_inode_link,
5493 .inode_unlink = selinux_inode_unlink,
5494 .inode_symlink = selinux_inode_symlink,
5495 .inode_mkdir = selinux_inode_mkdir,
5496 .inode_rmdir = selinux_inode_rmdir,
5497 .inode_mknod = selinux_inode_mknod,
5498 .inode_rename = selinux_inode_rename,
5499 .inode_readlink = selinux_inode_readlink,
5500 .inode_follow_link = selinux_inode_follow_link,
5501 .inode_permission = selinux_inode_permission,
5502 .inode_setattr = selinux_inode_setattr,
5503 .inode_getattr = selinux_inode_getattr,
5504 .inode_setxattr = selinux_inode_setxattr,
5505 .inode_post_setxattr = selinux_inode_post_setxattr,
5506 .inode_getxattr = selinux_inode_getxattr,
5507 .inode_listxattr = selinux_inode_listxattr,
5508 .inode_removexattr = selinux_inode_removexattr,
5509 .inode_getsecurity = selinux_inode_getsecurity,
5510 .inode_setsecurity = selinux_inode_setsecurity,
5511 .inode_listsecurity = selinux_inode_listsecurity,
5512 .inode_getsecid = selinux_inode_getsecid,
5513
5514 .file_permission = selinux_file_permission,
5515 .file_alloc_security = selinux_file_alloc_security,
5516 .file_free_security = selinux_file_free_security,
5517 .file_ioctl = selinux_file_ioctl,
5518 .file_mmap = selinux_file_mmap,
5519 .file_mprotect = selinux_file_mprotect,
5520 .file_lock = selinux_file_lock,
5521 .file_fcntl = selinux_file_fcntl,
5522 .file_set_fowner = selinux_file_set_fowner,
5523 .file_send_sigiotask = selinux_file_send_sigiotask,
5524 .file_receive = selinux_file_receive,
5525
5526 .dentry_open = selinux_dentry_open,
5527
5528 .task_create = selinux_task_create,
5529 .cred_alloc_blank = selinux_cred_alloc_blank,
5530 .cred_free = selinux_cred_free,
5531 .cred_prepare = selinux_cred_prepare,
5532 .cred_transfer = selinux_cred_transfer,
5533 .kernel_act_as = selinux_kernel_act_as,
5534 .kernel_create_files_as = selinux_kernel_create_files_as,
5535 .kernel_module_request = selinux_kernel_module_request,
5536 .task_setpgid = selinux_task_setpgid,
5537 .task_getpgid = selinux_task_getpgid,
5538 .task_getsid = selinux_task_getsid,
5539 .task_getsecid = selinux_task_getsecid,
5540 .task_setnice = selinux_task_setnice,
5541 .task_setioprio = selinux_task_setioprio,
5542 .task_getioprio = selinux_task_getioprio,
5543 .task_setrlimit = selinux_task_setrlimit,
5544 .task_setscheduler = selinux_task_setscheduler,
5545 .task_getscheduler = selinux_task_getscheduler,
5546 .task_movememory = selinux_task_movememory,
5547 .task_kill = selinux_task_kill,
5548 .task_wait = selinux_task_wait,
5549 .task_to_inode = selinux_task_to_inode,
5550
5551 .ipc_permission = selinux_ipc_permission,
5552 .ipc_getsecid = selinux_ipc_getsecid,
5553
5554 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5555 .msg_msg_free_security = selinux_msg_msg_free_security,
5556
5557 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5558 .msg_queue_free_security = selinux_msg_queue_free_security,
5559 .msg_queue_associate = selinux_msg_queue_associate,
5560 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5561 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5562 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5563
5564 .shm_alloc_security = selinux_shm_alloc_security,
5565 .shm_free_security = selinux_shm_free_security,
5566 .shm_associate = selinux_shm_associate,
5567 .shm_shmctl = selinux_shm_shmctl,
5568 .shm_shmat = selinux_shm_shmat,
5569
5570 .sem_alloc_security = selinux_sem_alloc_security,
5571 .sem_free_security = selinux_sem_free_security,
5572 .sem_associate = selinux_sem_associate,
5573 .sem_semctl = selinux_sem_semctl,
5574 .sem_semop = selinux_sem_semop,
5575
5576 .d_instantiate = selinux_d_instantiate,
5577
5578 .getprocattr = selinux_getprocattr,
5579 .setprocattr = selinux_setprocattr,
5580
5581 .secid_to_secctx = selinux_secid_to_secctx,
5582 .secctx_to_secid = selinux_secctx_to_secid,
5583 .release_secctx = selinux_release_secctx,
5584 .inode_notifysecctx = selinux_inode_notifysecctx,
5585 .inode_setsecctx = selinux_inode_setsecctx,
5586 .inode_getsecctx = selinux_inode_getsecctx,
5587
5588 .unix_stream_connect = selinux_socket_unix_stream_connect,
5589 .unix_may_send = selinux_socket_unix_may_send,
5590
5591 .socket_create = selinux_socket_create,
5592 .socket_post_create = selinux_socket_post_create,
5593 .socket_bind = selinux_socket_bind,
5594 .socket_connect = selinux_socket_connect,
5595 .socket_listen = selinux_socket_listen,
5596 .socket_accept = selinux_socket_accept,
5597 .socket_sendmsg = selinux_socket_sendmsg,
5598 .socket_recvmsg = selinux_socket_recvmsg,
5599 .socket_getsockname = selinux_socket_getsockname,
5600 .socket_getpeername = selinux_socket_getpeername,
5601 .socket_getsockopt = selinux_socket_getsockopt,
5602 .socket_setsockopt = selinux_socket_setsockopt,
5603 .socket_shutdown = selinux_socket_shutdown,
5604 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5605 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5606 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5607 .sk_alloc_security = selinux_sk_alloc_security,
5608 .sk_free_security = selinux_sk_free_security,
5609 .sk_clone_security = selinux_sk_clone_security,
5610 .sk_getsecid = selinux_sk_getsecid,
5611 .sock_graft = selinux_sock_graft,
5612 .inet_conn_request = selinux_inet_conn_request,
5613 .inet_csk_clone = selinux_inet_csk_clone,
5614 .inet_conn_established = selinux_inet_conn_established,
5615 .req_classify_flow = selinux_req_classify_flow,
5616 .tun_dev_create = selinux_tun_dev_create,
5617 .tun_dev_post_create = selinux_tun_dev_post_create,
5618 .tun_dev_attach = selinux_tun_dev_attach,
5619
5620 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5621 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5622 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5623 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5624 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5625 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5626 .xfrm_state_free_security = selinux_xfrm_state_free,
5627 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5628 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5629 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5630 .xfrm_decode_session = selinux_xfrm_decode_session,
5631 #endif
5632
5633 #ifdef CONFIG_KEYS
5634 .key_alloc = selinux_key_alloc,
5635 .key_free = selinux_key_free,
5636 .key_permission = selinux_key_permission,
5637 .key_getsecurity = selinux_key_getsecurity,
5638 #endif
5639
5640 #ifdef CONFIG_AUDIT
5641 .audit_rule_init = selinux_audit_rule_init,
5642 .audit_rule_known = selinux_audit_rule_known,
5643 .audit_rule_match = selinux_audit_rule_match,
5644 .audit_rule_free = selinux_audit_rule_free,
5645 #endif
5646 };
5647
5648 static __init int selinux_init(void)
5649 {
5650 if (!security_module_enable(&selinux_ops)) {
5651 selinux_enabled = 0;
5652 return 0;
5653 }
5654
5655 if (!selinux_enabled) {
5656 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5657 return 0;
5658 }
5659
5660 printk(KERN_INFO "SELinux: Initializing.\n");
5661
5662 /* Set the security state for the initial task. */
5663 cred_init_security();
5664
5665 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5666
5667 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5668 sizeof(struct inode_security_struct),
5669 0, SLAB_PANIC, NULL);
5670 avc_init();
5671
5672 if (register_security(&selinux_ops))
5673 panic("SELinux: Unable to register with kernel.\n");
5674
5675 if (selinux_enforcing)
5676 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5677 else
5678 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5679
5680 return 0;
5681 }
5682
5683 void selinux_complete_init(void)
5684 {
5685 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5686
5687 /* Set up any superblocks initialized prior to the policy load. */
5688 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5689 spin_lock(&sb_lock);
5690 spin_lock(&sb_security_lock);
5691 next_sb:
5692 if (!list_empty(&superblock_security_head)) {
5693 struct superblock_security_struct *sbsec =
5694 list_entry(superblock_security_head.next,
5695 struct superblock_security_struct,
5696 list);
5697 struct super_block *sb = sbsec->sb;
5698 sb->s_count++;
5699 spin_unlock(&sb_security_lock);
5700 spin_unlock(&sb_lock);
5701 down_read(&sb->s_umount);
5702 if (sb->s_root)
5703 superblock_doinit(sb, NULL);
5704 drop_super(sb);
5705 spin_lock(&sb_lock);
5706 spin_lock(&sb_security_lock);
5707 list_del_init(&sbsec->list);
5708 goto next_sb;
5709 }
5710 spin_unlock(&sb_security_lock);
5711 spin_unlock(&sb_lock);
5712 }
5713
5714 /* SELinux requires early initialization in order to label
5715 all processes and objects when they are created. */
5716 security_initcall(selinux_init);
5717
5718 #if defined(CONFIG_NETFILTER)
5719
5720 static struct nf_hook_ops selinux_ipv4_ops[] = {
5721 {
5722 .hook = selinux_ipv4_postroute,
5723 .owner = THIS_MODULE,
5724 .pf = PF_INET,
5725 .hooknum = NF_INET_POST_ROUTING,
5726 .priority = NF_IP_PRI_SELINUX_LAST,
5727 },
5728 {
5729 .hook = selinux_ipv4_forward,
5730 .owner = THIS_MODULE,
5731 .pf = PF_INET,
5732 .hooknum = NF_INET_FORWARD,
5733 .priority = NF_IP_PRI_SELINUX_FIRST,
5734 },
5735 {
5736 .hook = selinux_ipv4_output,
5737 .owner = THIS_MODULE,
5738 .pf = PF_INET,
5739 .hooknum = NF_INET_LOCAL_OUT,
5740 .priority = NF_IP_PRI_SELINUX_FIRST,
5741 }
5742 };
5743
5744 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5745
5746 static struct nf_hook_ops selinux_ipv6_ops[] = {
5747 {
5748 .hook = selinux_ipv6_postroute,
5749 .owner = THIS_MODULE,
5750 .pf = PF_INET6,
5751 .hooknum = NF_INET_POST_ROUTING,
5752 .priority = NF_IP6_PRI_SELINUX_LAST,
5753 },
5754 {
5755 .hook = selinux_ipv6_forward,
5756 .owner = THIS_MODULE,
5757 .pf = PF_INET6,
5758 .hooknum = NF_INET_FORWARD,
5759 .priority = NF_IP6_PRI_SELINUX_FIRST,
5760 }
5761 };
5762
5763 #endif /* IPV6 */
5764
5765 static int __init selinux_nf_ip_init(void)
5766 {
5767 int err = 0;
5768
5769 if (!selinux_enabled)
5770 goto out;
5771
5772 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5773
5774 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5775 if (err)
5776 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5777
5778 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5779 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5780 if (err)
5781 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5782 #endif /* IPV6 */
5783
5784 out:
5785 return err;
5786 }
5787
5788 __initcall(selinux_nf_ip_init);
5789
5790 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5791 static void selinux_nf_ip_exit(void)
5792 {
5793 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5794
5795 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5796 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5797 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5798 #endif /* IPV6 */
5799 }
5800 #endif
5801
5802 #else /* CONFIG_NETFILTER */
5803
5804 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5805 #define selinux_nf_ip_exit()
5806 #endif
5807
5808 #endif /* CONFIG_NETFILTER */
5809
5810 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5811 static int selinux_disabled;
5812
5813 int selinux_disable(void)
5814 {
5815 extern void exit_sel_fs(void);
5816
5817 if (ss_initialized) {
5818 /* Not permitted after initial policy load. */
5819 return -EINVAL;
5820 }
5821
5822 if (selinux_disabled) {
5823 /* Only do this once. */
5824 return -EINVAL;
5825 }
5826
5827 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5828
5829 selinux_disabled = 1;
5830 selinux_enabled = 0;
5831
5832 reset_security_ops();
5833
5834 /* Try to destroy the avc node cache */
5835 avc_disable();
5836
5837 /* Unregister netfilter hooks. */
5838 selinux_nf_ip_exit();
5839
5840 /* Unregister selinuxfs. */
5841 exit_sel_fs();
5842
5843 return 0;
5844 }
5845 #endif