]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - security/selinux/hooks.c
Merge branch 'for-3.15' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-zesty-kernel.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h> /* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h> /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/quota.h>
70 #include <linux/un.h> /* for Unix socket types */
71 #include <net/af_unix.h> /* for Unix socket types */
72 #include <linux/parser.h>
73 #include <linux/nfs_mount.h>
74 #include <net/ipv6.h>
75 #include <linux/hugetlb.h>
76 #include <linux/personality.h>
77 #include <linux/audit.h>
78 #include <linux/string.h>
79 #include <linux/selinux.h>
80 #include <linux/mutex.h>
81 #include <linux/posix-timers.h>
82 #include <linux/syslog.h>
83 #include <linux/user_namespace.h>
84 #include <linux/export.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97
98 extern struct security_operations *security_ops;
99
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105
106 static int __init enforcing_setup(char *str)
107 {
108 unsigned long enforcing;
109 if (!kstrtoul(str, 0, &enforcing))
110 selinux_enforcing = enforcing ? 1 : 0;
111 return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119 static int __init selinux_enabled_setup(char *str)
120 {
121 unsigned long enabled;
122 if (!kstrtoul(str, 0, &enabled))
123 selinux_enabled = enabled ? 1 : 0;
124 return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130
131 static struct kmem_cache *sel_inode_cache;
132
133 /**
134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135 *
136 * Description:
137 * This function checks the SECMARK reference counter to see if any SECMARK
138 * targets are currently configured, if the reference counter is greater than
139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
140 * enabled, false (0) if SECMARK is disabled. If the always_check_network
141 * policy capability is enabled, SECMARK is always considered enabled.
142 *
143 */
144 static int selinux_secmark_enabled(void)
145 {
146 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
147 }
148
149 /**
150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
151 *
152 * Description:
153 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
154 * (1) if any are enabled or false (0) if neither are enabled. If the
155 * always_check_network policy capability is enabled, peer labeling
156 * is always considered enabled.
157 *
158 */
159 static int selinux_peerlbl_enabled(void)
160 {
161 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
162 }
163
164 /*
165 * initialise the security for the init task
166 */
167 static void cred_init_security(void)
168 {
169 struct cred *cred = (struct cred *) current->real_cred;
170 struct task_security_struct *tsec;
171
172 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
173 if (!tsec)
174 panic("SELinux: Failed to initialize initial task.\n");
175
176 tsec->osid = tsec->sid = SECINITSID_KERNEL;
177 cred->security = tsec;
178 }
179
180 /*
181 * get the security ID of a set of credentials
182 */
183 static inline u32 cred_sid(const struct cred *cred)
184 {
185 const struct task_security_struct *tsec;
186
187 tsec = cred->security;
188 return tsec->sid;
189 }
190
191 /*
192 * get the objective security ID of a task
193 */
194 static inline u32 task_sid(const struct task_struct *task)
195 {
196 u32 sid;
197
198 rcu_read_lock();
199 sid = cred_sid(__task_cred(task));
200 rcu_read_unlock();
201 return sid;
202 }
203
204 /*
205 * get the subjective security ID of the current task
206 */
207 static inline u32 current_sid(void)
208 {
209 const struct task_security_struct *tsec = current_security();
210
211 return tsec->sid;
212 }
213
214 /* Allocate and free functions for each kind of security blob. */
215
216 static int inode_alloc_security(struct inode *inode)
217 {
218 struct inode_security_struct *isec;
219 u32 sid = current_sid();
220
221 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
222 if (!isec)
223 return -ENOMEM;
224
225 mutex_init(&isec->lock);
226 INIT_LIST_HEAD(&isec->list);
227 isec->inode = inode;
228 isec->sid = SECINITSID_UNLABELED;
229 isec->sclass = SECCLASS_FILE;
230 isec->task_sid = sid;
231 inode->i_security = isec;
232
233 return 0;
234 }
235
236 static void inode_free_rcu(struct rcu_head *head)
237 {
238 struct inode_security_struct *isec;
239
240 isec = container_of(head, struct inode_security_struct, rcu);
241 kmem_cache_free(sel_inode_cache, isec);
242 }
243
244 static void inode_free_security(struct inode *inode)
245 {
246 struct inode_security_struct *isec = inode->i_security;
247 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
248
249 spin_lock(&sbsec->isec_lock);
250 if (!list_empty(&isec->list))
251 list_del_init(&isec->list);
252 spin_unlock(&sbsec->isec_lock);
253
254 /*
255 * The inode may still be referenced in a path walk and
256 * a call to selinux_inode_permission() can be made
257 * after inode_free_security() is called. Ideally, the VFS
258 * wouldn't do this, but fixing that is a much harder
259 * job. For now, simply free the i_security via RCU, and
260 * leave the current inode->i_security pointer intact.
261 * The inode will be freed after the RCU grace period too.
262 */
263 call_rcu(&isec->rcu, inode_free_rcu);
264 }
265
266 static int file_alloc_security(struct file *file)
267 {
268 struct file_security_struct *fsec;
269 u32 sid = current_sid();
270
271 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
272 if (!fsec)
273 return -ENOMEM;
274
275 fsec->sid = sid;
276 fsec->fown_sid = sid;
277 file->f_security = fsec;
278
279 return 0;
280 }
281
282 static void file_free_security(struct file *file)
283 {
284 struct file_security_struct *fsec = file->f_security;
285 file->f_security = NULL;
286 kfree(fsec);
287 }
288
289 static int superblock_alloc_security(struct super_block *sb)
290 {
291 struct superblock_security_struct *sbsec;
292
293 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
294 if (!sbsec)
295 return -ENOMEM;
296
297 mutex_init(&sbsec->lock);
298 INIT_LIST_HEAD(&sbsec->isec_head);
299 spin_lock_init(&sbsec->isec_lock);
300 sbsec->sb = sb;
301 sbsec->sid = SECINITSID_UNLABELED;
302 sbsec->def_sid = SECINITSID_FILE;
303 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
304 sb->s_security = sbsec;
305
306 return 0;
307 }
308
309 static void superblock_free_security(struct super_block *sb)
310 {
311 struct superblock_security_struct *sbsec = sb->s_security;
312 sb->s_security = NULL;
313 kfree(sbsec);
314 }
315
316 /* The file system's label must be initialized prior to use. */
317
318 static const char *labeling_behaviors[7] = {
319 "uses xattr",
320 "uses transition SIDs",
321 "uses task SIDs",
322 "uses genfs_contexts",
323 "not configured for labeling",
324 "uses mountpoint labeling",
325 "uses native labeling",
326 };
327
328 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
329
330 static inline int inode_doinit(struct inode *inode)
331 {
332 return inode_doinit_with_dentry(inode, NULL);
333 }
334
335 enum {
336 Opt_error = -1,
337 Opt_context = 1,
338 Opt_fscontext = 2,
339 Opt_defcontext = 3,
340 Opt_rootcontext = 4,
341 Opt_labelsupport = 5,
342 Opt_nextmntopt = 6,
343 };
344
345 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
346
347 static const match_table_t tokens = {
348 {Opt_context, CONTEXT_STR "%s"},
349 {Opt_fscontext, FSCONTEXT_STR "%s"},
350 {Opt_defcontext, DEFCONTEXT_STR "%s"},
351 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
352 {Opt_labelsupport, LABELSUPP_STR},
353 {Opt_error, NULL},
354 };
355
356 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
357
358 static int may_context_mount_sb_relabel(u32 sid,
359 struct superblock_security_struct *sbsec,
360 const struct cred *cred)
361 {
362 const struct task_security_struct *tsec = cred->security;
363 int rc;
364
365 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
366 FILESYSTEM__RELABELFROM, NULL);
367 if (rc)
368 return rc;
369
370 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
371 FILESYSTEM__RELABELTO, NULL);
372 return rc;
373 }
374
375 static int may_context_mount_inode_relabel(u32 sid,
376 struct superblock_security_struct *sbsec,
377 const struct cred *cred)
378 {
379 const struct task_security_struct *tsec = cred->security;
380 int rc;
381 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
382 FILESYSTEM__RELABELFROM, NULL);
383 if (rc)
384 return rc;
385
386 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
387 FILESYSTEM__ASSOCIATE, NULL);
388 return rc;
389 }
390
391 static int selinux_is_sblabel_mnt(struct super_block *sb)
392 {
393 struct superblock_security_struct *sbsec = sb->s_security;
394
395 if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
396 sbsec->behavior == SECURITY_FS_USE_TRANS ||
397 sbsec->behavior == SECURITY_FS_USE_TASK)
398 return 1;
399
400 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
401 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
402 return 1;
403
404 /*
405 * Special handling for rootfs. Is genfs but supports
406 * setting SELinux context on in-core inodes.
407 */
408 if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
409 return 1;
410
411 return 0;
412 }
413
414 static int sb_finish_set_opts(struct super_block *sb)
415 {
416 struct superblock_security_struct *sbsec = sb->s_security;
417 struct dentry *root = sb->s_root;
418 struct inode *root_inode = root->d_inode;
419 int rc = 0;
420
421 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422 /* Make sure that the xattr handler exists and that no
423 error other than -ENODATA is returned by getxattr on
424 the root directory. -ENODATA is ok, as this may be
425 the first boot of the SELinux kernel before we have
426 assigned xattr values to the filesystem. */
427 if (!root_inode->i_op->getxattr) {
428 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429 "xattr support\n", sb->s_id, sb->s_type->name);
430 rc = -EOPNOTSUPP;
431 goto out;
432 }
433 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434 if (rc < 0 && rc != -ENODATA) {
435 if (rc == -EOPNOTSUPP)
436 printk(KERN_WARNING "SELinux: (dev %s, type "
437 "%s) has no security xattr handler\n",
438 sb->s_id, sb->s_type->name);
439 else
440 printk(KERN_WARNING "SELinux: (dev %s, type "
441 "%s) getxattr errno %d\n", sb->s_id,
442 sb->s_type->name, -rc);
443 goto out;
444 }
445 }
446
447 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449 sb->s_id, sb->s_type->name);
450 else
451 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
452 sb->s_id, sb->s_type->name,
453 labeling_behaviors[sbsec->behavior-1]);
454
455 sbsec->flags |= SE_SBINITIALIZED;
456 if (selinux_is_sblabel_mnt(sb))
457 sbsec->flags |= SBLABEL_MNT;
458
459 /* Initialize the root inode. */
460 rc = inode_doinit_with_dentry(root_inode, root);
461
462 /* Initialize any other inodes associated with the superblock, e.g.
463 inodes created prior to initial policy load or inodes created
464 during get_sb by a pseudo filesystem that directly
465 populates itself. */
466 spin_lock(&sbsec->isec_lock);
467 next_inode:
468 if (!list_empty(&sbsec->isec_head)) {
469 struct inode_security_struct *isec =
470 list_entry(sbsec->isec_head.next,
471 struct inode_security_struct, list);
472 struct inode *inode = isec->inode;
473 spin_unlock(&sbsec->isec_lock);
474 inode = igrab(inode);
475 if (inode) {
476 if (!IS_PRIVATE(inode))
477 inode_doinit(inode);
478 iput(inode);
479 }
480 spin_lock(&sbsec->isec_lock);
481 list_del_init(&isec->list);
482 goto next_inode;
483 }
484 spin_unlock(&sbsec->isec_lock);
485 out:
486 return rc;
487 }
488
489 /*
490 * This function should allow an FS to ask what it's mount security
491 * options were so it can use those later for submounts, displaying
492 * mount options, or whatever.
493 */
494 static int selinux_get_mnt_opts(const struct super_block *sb,
495 struct security_mnt_opts *opts)
496 {
497 int rc = 0, i;
498 struct superblock_security_struct *sbsec = sb->s_security;
499 char *context = NULL;
500 u32 len;
501 char tmp;
502
503 security_init_mnt_opts(opts);
504
505 if (!(sbsec->flags & SE_SBINITIALIZED))
506 return -EINVAL;
507
508 if (!ss_initialized)
509 return -EINVAL;
510
511 /* make sure we always check enough bits to cover the mask */
512 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
513
514 tmp = sbsec->flags & SE_MNTMASK;
515 /* count the number of mount options for this sb */
516 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
517 if (tmp & 0x01)
518 opts->num_mnt_opts++;
519 tmp >>= 1;
520 }
521 /* Check if the Label support flag is set */
522 if (sbsec->flags & SBLABEL_MNT)
523 opts->num_mnt_opts++;
524
525 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
526 if (!opts->mnt_opts) {
527 rc = -ENOMEM;
528 goto out_free;
529 }
530
531 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
532 if (!opts->mnt_opts_flags) {
533 rc = -ENOMEM;
534 goto out_free;
535 }
536
537 i = 0;
538 if (sbsec->flags & FSCONTEXT_MNT) {
539 rc = security_sid_to_context(sbsec->sid, &context, &len);
540 if (rc)
541 goto out_free;
542 opts->mnt_opts[i] = context;
543 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
544 }
545 if (sbsec->flags & CONTEXT_MNT) {
546 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
547 if (rc)
548 goto out_free;
549 opts->mnt_opts[i] = context;
550 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
551 }
552 if (sbsec->flags & DEFCONTEXT_MNT) {
553 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
554 if (rc)
555 goto out_free;
556 opts->mnt_opts[i] = context;
557 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
558 }
559 if (sbsec->flags & ROOTCONTEXT_MNT) {
560 struct inode *root = sbsec->sb->s_root->d_inode;
561 struct inode_security_struct *isec = root->i_security;
562
563 rc = security_sid_to_context(isec->sid, &context, &len);
564 if (rc)
565 goto out_free;
566 opts->mnt_opts[i] = context;
567 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
568 }
569 if (sbsec->flags & SBLABEL_MNT) {
570 opts->mnt_opts[i] = NULL;
571 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
572 }
573
574 BUG_ON(i != opts->num_mnt_opts);
575
576 return 0;
577
578 out_free:
579 security_free_mnt_opts(opts);
580 return rc;
581 }
582
583 static int bad_option(struct superblock_security_struct *sbsec, char flag,
584 u32 old_sid, u32 new_sid)
585 {
586 char mnt_flags = sbsec->flags & SE_MNTMASK;
587
588 /* check if the old mount command had the same options */
589 if (sbsec->flags & SE_SBINITIALIZED)
590 if (!(sbsec->flags & flag) ||
591 (old_sid != new_sid))
592 return 1;
593
594 /* check if we were passed the same options twice,
595 * aka someone passed context=a,context=b
596 */
597 if (!(sbsec->flags & SE_SBINITIALIZED))
598 if (mnt_flags & flag)
599 return 1;
600 return 0;
601 }
602
603 /*
604 * Allow filesystems with binary mount data to explicitly set mount point
605 * labeling information.
606 */
607 static int selinux_set_mnt_opts(struct super_block *sb,
608 struct security_mnt_opts *opts,
609 unsigned long kern_flags,
610 unsigned long *set_kern_flags)
611 {
612 const struct cred *cred = current_cred();
613 int rc = 0, i;
614 struct superblock_security_struct *sbsec = sb->s_security;
615 const char *name = sb->s_type->name;
616 struct inode *inode = sbsec->sb->s_root->d_inode;
617 struct inode_security_struct *root_isec = inode->i_security;
618 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
619 u32 defcontext_sid = 0;
620 char **mount_options = opts->mnt_opts;
621 int *flags = opts->mnt_opts_flags;
622 int num_opts = opts->num_mnt_opts;
623
624 mutex_lock(&sbsec->lock);
625
626 if (!ss_initialized) {
627 if (!num_opts) {
628 /* Defer initialization until selinux_complete_init,
629 after the initial policy is loaded and the security
630 server is ready to handle calls. */
631 goto out;
632 }
633 rc = -EINVAL;
634 printk(KERN_WARNING "SELinux: Unable to set superblock options "
635 "before the security server is initialized\n");
636 goto out;
637 }
638 if (kern_flags && !set_kern_flags) {
639 /* Specifying internal flags without providing a place to
640 * place the results is not allowed */
641 rc = -EINVAL;
642 goto out;
643 }
644
645 /*
646 * Binary mount data FS will come through this function twice. Once
647 * from an explicit call and once from the generic calls from the vfs.
648 * Since the generic VFS calls will not contain any security mount data
649 * we need to skip the double mount verification.
650 *
651 * This does open a hole in which we will not notice if the first
652 * mount using this sb set explict options and a second mount using
653 * this sb does not set any security options. (The first options
654 * will be used for both mounts)
655 */
656 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
657 && (num_opts == 0))
658 goto out;
659
660 /*
661 * parse the mount options, check if they are valid sids.
662 * also check if someone is trying to mount the same sb more
663 * than once with different security options.
664 */
665 for (i = 0; i < num_opts; i++) {
666 u32 sid;
667
668 if (flags[i] == SBLABEL_MNT)
669 continue;
670 rc = security_context_to_sid(mount_options[i],
671 strlen(mount_options[i]), &sid, GFP_KERNEL);
672 if (rc) {
673 printk(KERN_WARNING "SELinux: security_context_to_sid"
674 "(%s) failed for (dev %s, type %s) errno=%d\n",
675 mount_options[i], sb->s_id, name, rc);
676 goto out;
677 }
678 switch (flags[i]) {
679 case FSCONTEXT_MNT:
680 fscontext_sid = sid;
681
682 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
683 fscontext_sid))
684 goto out_double_mount;
685
686 sbsec->flags |= FSCONTEXT_MNT;
687 break;
688 case CONTEXT_MNT:
689 context_sid = sid;
690
691 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
692 context_sid))
693 goto out_double_mount;
694
695 sbsec->flags |= CONTEXT_MNT;
696 break;
697 case ROOTCONTEXT_MNT:
698 rootcontext_sid = sid;
699
700 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
701 rootcontext_sid))
702 goto out_double_mount;
703
704 sbsec->flags |= ROOTCONTEXT_MNT;
705
706 break;
707 case DEFCONTEXT_MNT:
708 defcontext_sid = sid;
709
710 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
711 defcontext_sid))
712 goto out_double_mount;
713
714 sbsec->flags |= DEFCONTEXT_MNT;
715
716 break;
717 default:
718 rc = -EINVAL;
719 goto out;
720 }
721 }
722
723 if (sbsec->flags & SE_SBINITIALIZED) {
724 /* previously mounted with options, but not on this attempt? */
725 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
726 goto out_double_mount;
727 rc = 0;
728 goto out;
729 }
730
731 if (strcmp(sb->s_type->name, "proc") == 0)
732 sbsec->flags |= SE_SBPROC;
733
734 if (!sbsec->behavior) {
735 /*
736 * Determine the labeling behavior to use for this
737 * filesystem type.
738 */
739 rc = security_fs_use(sb);
740 if (rc) {
741 printk(KERN_WARNING
742 "%s: security_fs_use(%s) returned %d\n",
743 __func__, sb->s_type->name, rc);
744 goto out;
745 }
746 }
747 /* sets the context of the superblock for the fs being mounted. */
748 if (fscontext_sid) {
749 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
750 if (rc)
751 goto out;
752
753 sbsec->sid = fscontext_sid;
754 }
755
756 /*
757 * Switch to using mount point labeling behavior.
758 * sets the label used on all file below the mountpoint, and will set
759 * the superblock context if not already set.
760 */
761 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
762 sbsec->behavior = SECURITY_FS_USE_NATIVE;
763 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
764 }
765
766 if (context_sid) {
767 if (!fscontext_sid) {
768 rc = may_context_mount_sb_relabel(context_sid, sbsec,
769 cred);
770 if (rc)
771 goto out;
772 sbsec->sid = context_sid;
773 } else {
774 rc = may_context_mount_inode_relabel(context_sid, sbsec,
775 cred);
776 if (rc)
777 goto out;
778 }
779 if (!rootcontext_sid)
780 rootcontext_sid = context_sid;
781
782 sbsec->mntpoint_sid = context_sid;
783 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
784 }
785
786 if (rootcontext_sid) {
787 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
788 cred);
789 if (rc)
790 goto out;
791
792 root_isec->sid = rootcontext_sid;
793 root_isec->initialized = 1;
794 }
795
796 if (defcontext_sid) {
797 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
798 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
799 rc = -EINVAL;
800 printk(KERN_WARNING "SELinux: defcontext option is "
801 "invalid for this filesystem type\n");
802 goto out;
803 }
804
805 if (defcontext_sid != sbsec->def_sid) {
806 rc = may_context_mount_inode_relabel(defcontext_sid,
807 sbsec, cred);
808 if (rc)
809 goto out;
810 }
811
812 sbsec->def_sid = defcontext_sid;
813 }
814
815 rc = sb_finish_set_opts(sb);
816 out:
817 mutex_unlock(&sbsec->lock);
818 return rc;
819 out_double_mount:
820 rc = -EINVAL;
821 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
822 "security settings for (dev %s, type %s)\n", sb->s_id, name);
823 goto out;
824 }
825
826 static int selinux_cmp_sb_context(const struct super_block *oldsb,
827 const struct super_block *newsb)
828 {
829 struct superblock_security_struct *old = oldsb->s_security;
830 struct superblock_security_struct *new = newsb->s_security;
831 char oldflags = old->flags & SE_MNTMASK;
832 char newflags = new->flags & SE_MNTMASK;
833
834 if (oldflags != newflags)
835 goto mismatch;
836 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
837 goto mismatch;
838 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
839 goto mismatch;
840 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
841 goto mismatch;
842 if (oldflags & ROOTCONTEXT_MNT) {
843 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
844 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
845 if (oldroot->sid != newroot->sid)
846 goto mismatch;
847 }
848 return 0;
849 mismatch:
850 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
851 "different security settings for (dev %s, "
852 "type %s)\n", newsb->s_id, newsb->s_type->name);
853 return -EBUSY;
854 }
855
856 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
857 struct super_block *newsb)
858 {
859 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
860 struct superblock_security_struct *newsbsec = newsb->s_security;
861
862 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
863 int set_context = (oldsbsec->flags & CONTEXT_MNT);
864 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
865
866 /*
867 * if the parent was able to be mounted it clearly had no special lsm
868 * mount options. thus we can safely deal with this superblock later
869 */
870 if (!ss_initialized)
871 return 0;
872
873 /* how can we clone if the old one wasn't set up?? */
874 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
875
876 /* if fs is reusing a sb, make sure that the contexts match */
877 if (newsbsec->flags & SE_SBINITIALIZED)
878 return selinux_cmp_sb_context(oldsb, newsb);
879
880 mutex_lock(&newsbsec->lock);
881
882 newsbsec->flags = oldsbsec->flags;
883
884 newsbsec->sid = oldsbsec->sid;
885 newsbsec->def_sid = oldsbsec->def_sid;
886 newsbsec->behavior = oldsbsec->behavior;
887
888 if (set_context) {
889 u32 sid = oldsbsec->mntpoint_sid;
890
891 if (!set_fscontext)
892 newsbsec->sid = sid;
893 if (!set_rootcontext) {
894 struct inode *newinode = newsb->s_root->d_inode;
895 struct inode_security_struct *newisec = newinode->i_security;
896 newisec->sid = sid;
897 }
898 newsbsec->mntpoint_sid = sid;
899 }
900 if (set_rootcontext) {
901 const struct inode *oldinode = oldsb->s_root->d_inode;
902 const struct inode_security_struct *oldisec = oldinode->i_security;
903 struct inode *newinode = newsb->s_root->d_inode;
904 struct inode_security_struct *newisec = newinode->i_security;
905
906 newisec->sid = oldisec->sid;
907 }
908
909 sb_finish_set_opts(newsb);
910 mutex_unlock(&newsbsec->lock);
911 return 0;
912 }
913
914 static int selinux_parse_opts_str(char *options,
915 struct security_mnt_opts *opts)
916 {
917 char *p;
918 char *context = NULL, *defcontext = NULL;
919 char *fscontext = NULL, *rootcontext = NULL;
920 int rc, num_mnt_opts = 0;
921
922 opts->num_mnt_opts = 0;
923
924 /* Standard string-based options. */
925 while ((p = strsep(&options, "|")) != NULL) {
926 int token;
927 substring_t args[MAX_OPT_ARGS];
928
929 if (!*p)
930 continue;
931
932 token = match_token(p, tokens, args);
933
934 switch (token) {
935 case Opt_context:
936 if (context || defcontext) {
937 rc = -EINVAL;
938 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
939 goto out_err;
940 }
941 context = match_strdup(&args[0]);
942 if (!context) {
943 rc = -ENOMEM;
944 goto out_err;
945 }
946 break;
947
948 case Opt_fscontext:
949 if (fscontext) {
950 rc = -EINVAL;
951 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
952 goto out_err;
953 }
954 fscontext = match_strdup(&args[0]);
955 if (!fscontext) {
956 rc = -ENOMEM;
957 goto out_err;
958 }
959 break;
960
961 case Opt_rootcontext:
962 if (rootcontext) {
963 rc = -EINVAL;
964 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
965 goto out_err;
966 }
967 rootcontext = match_strdup(&args[0]);
968 if (!rootcontext) {
969 rc = -ENOMEM;
970 goto out_err;
971 }
972 break;
973
974 case Opt_defcontext:
975 if (context || defcontext) {
976 rc = -EINVAL;
977 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
978 goto out_err;
979 }
980 defcontext = match_strdup(&args[0]);
981 if (!defcontext) {
982 rc = -ENOMEM;
983 goto out_err;
984 }
985 break;
986 case Opt_labelsupport:
987 break;
988 default:
989 rc = -EINVAL;
990 printk(KERN_WARNING "SELinux: unknown mount option\n");
991 goto out_err;
992
993 }
994 }
995
996 rc = -ENOMEM;
997 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
998 if (!opts->mnt_opts)
999 goto out_err;
1000
1001 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1002 if (!opts->mnt_opts_flags) {
1003 kfree(opts->mnt_opts);
1004 goto out_err;
1005 }
1006
1007 if (fscontext) {
1008 opts->mnt_opts[num_mnt_opts] = fscontext;
1009 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1010 }
1011 if (context) {
1012 opts->mnt_opts[num_mnt_opts] = context;
1013 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1014 }
1015 if (rootcontext) {
1016 opts->mnt_opts[num_mnt_opts] = rootcontext;
1017 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1018 }
1019 if (defcontext) {
1020 opts->mnt_opts[num_mnt_opts] = defcontext;
1021 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1022 }
1023
1024 opts->num_mnt_opts = num_mnt_opts;
1025 return 0;
1026
1027 out_err:
1028 kfree(context);
1029 kfree(defcontext);
1030 kfree(fscontext);
1031 kfree(rootcontext);
1032 return rc;
1033 }
1034 /*
1035 * string mount options parsing and call set the sbsec
1036 */
1037 static int superblock_doinit(struct super_block *sb, void *data)
1038 {
1039 int rc = 0;
1040 char *options = data;
1041 struct security_mnt_opts opts;
1042
1043 security_init_mnt_opts(&opts);
1044
1045 if (!data)
1046 goto out;
1047
1048 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1049
1050 rc = selinux_parse_opts_str(options, &opts);
1051 if (rc)
1052 goto out_err;
1053
1054 out:
1055 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1056
1057 out_err:
1058 security_free_mnt_opts(&opts);
1059 return rc;
1060 }
1061
1062 static void selinux_write_opts(struct seq_file *m,
1063 struct security_mnt_opts *opts)
1064 {
1065 int i;
1066 char *prefix;
1067
1068 for (i = 0; i < opts->num_mnt_opts; i++) {
1069 char *has_comma;
1070
1071 if (opts->mnt_opts[i])
1072 has_comma = strchr(opts->mnt_opts[i], ',');
1073 else
1074 has_comma = NULL;
1075
1076 switch (opts->mnt_opts_flags[i]) {
1077 case CONTEXT_MNT:
1078 prefix = CONTEXT_STR;
1079 break;
1080 case FSCONTEXT_MNT:
1081 prefix = FSCONTEXT_STR;
1082 break;
1083 case ROOTCONTEXT_MNT:
1084 prefix = ROOTCONTEXT_STR;
1085 break;
1086 case DEFCONTEXT_MNT:
1087 prefix = DEFCONTEXT_STR;
1088 break;
1089 case SBLABEL_MNT:
1090 seq_putc(m, ',');
1091 seq_puts(m, LABELSUPP_STR);
1092 continue;
1093 default:
1094 BUG();
1095 return;
1096 };
1097 /* we need a comma before each option */
1098 seq_putc(m, ',');
1099 seq_puts(m, prefix);
1100 if (has_comma)
1101 seq_putc(m, '\"');
1102 seq_puts(m, opts->mnt_opts[i]);
1103 if (has_comma)
1104 seq_putc(m, '\"');
1105 }
1106 }
1107
1108 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109 {
1110 struct security_mnt_opts opts;
1111 int rc;
1112
1113 rc = selinux_get_mnt_opts(sb, &opts);
1114 if (rc) {
1115 /* before policy load we may get EINVAL, don't show anything */
1116 if (rc == -EINVAL)
1117 rc = 0;
1118 return rc;
1119 }
1120
1121 selinux_write_opts(m, &opts);
1122
1123 security_free_mnt_opts(&opts);
1124
1125 return rc;
1126 }
1127
1128 static inline u16 inode_mode_to_security_class(umode_t mode)
1129 {
1130 switch (mode & S_IFMT) {
1131 case S_IFSOCK:
1132 return SECCLASS_SOCK_FILE;
1133 case S_IFLNK:
1134 return SECCLASS_LNK_FILE;
1135 case S_IFREG:
1136 return SECCLASS_FILE;
1137 case S_IFBLK:
1138 return SECCLASS_BLK_FILE;
1139 case S_IFDIR:
1140 return SECCLASS_DIR;
1141 case S_IFCHR:
1142 return SECCLASS_CHR_FILE;
1143 case S_IFIFO:
1144 return SECCLASS_FIFO_FILE;
1145
1146 }
1147
1148 return SECCLASS_FILE;
1149 }
1150
1151 static inline int default_protocol_stream(int protocol)
1152 {
1153 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1154 }
1155
1156 static inline int default_protocol_dgram(int protocol)
1157 {
1158 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1159 }
1160
1161 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1162 {
1163 switch (family) {
1164 case PF_UNIX:
1165 switch (type) {
1166 case SOCK_STREAM:
1167 case SOCK_SEQPACKET:
1168 return SECCLASS_UNIX_STREAM_SOCKET;
1169 case SOCK_DGRAM:
1170 return SECCLASS_UNIX_DGRAM_SOCKET;
1171 }
1172 break;
1173 case PF_INET:
1174 case PF_INET6:
1175 switch (type) {
1176 case SOCK_STREAM:
1177 if (default_protocol_stream(protocol))
1178 return SECCLASS_TCP_SOCKET;
1179 else
1180 return SECCLASS_RAWIP_SOCKET;
1181 case SOCK_DGRAM:
1182 if (default_protocol_dgram(protocol))
1183 return SECCLASS_UDP_SOCKET;
1184 else
1185 return SECCLASS_RAWIP_SOCKET;
1186 case SOCK_DCCP:
1187 return SECCLASS_DCCP_SOCKET;
1188 default:
1189 return SECCLASS_RAWIP_SOCKET;
1190 }
1191 break;
1192 case PF_NETLINK:
1193 switch (protocol) {
1194 case NETLINK_ROUTE:
1195 return SECCLASS_NETLINK_ROUTE_SOCKET;
1196 case NETLINK_FIREWALL:
1197 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1198 case NETLINK_SOCK_DIAG:
1199 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1200 case NETLINK_NFLOG:
1201 return SECCLASS_NETLINK_NFLOG_SOCKET;
1202 case NETLINK_XFRM:
1203 return SECCLASS_NETLINK_XFRM_SOCKET;
1204 case NETLINK_SELINUX:
1205 return SECCLASS_NETLINK_SELINUX_SOCKET;
1206 case NETLINK_AUDIT:
1207 return SECCLASS_NETLINK_AUDIT_SOCKET;
1208 case NETLINK_IP6_FW:
1209 return SECCLASS_NETLINK_IP6FW_SOCKET;
1210 case NETLINK_DNRTMSG:
1211 return SECCLASS_NETLINK_DNRT_SOCKET;
1212 case NETLINK_KOBJECT_UEVENT:
1213 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1214 default:
1215 return SECCLASS_NETLINK_SOCKET;
1216 }
1217 case PF_PACKET:
1218 return SECCLASS_PACKET_SOCKET;
1219 case PF_KEY:
1220 return SECCLASS_KEY_SOCKET;
1221 case PF_APPLETALK:
1222 return SECCLASS_APPLETALK_SOCKET;
1223 }
1224
1225 return SECCLASS_SOCKET;
1226 }
1227
1228 #ifdef CONFIG_PROC_FS
1229 static int selinux_proc_get_sid(struct dentry *dentry,
1230 u16 tclass,
1231 u32 *sid)
1232 {
1233 int rc;
1234 char *buffer, *path;
1235
1236 buffer = (char *)__get_free_page(GFP_KERNEL);
1237 if (!buffer)
1238 return -ENOMEM;
1239
1240 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1241 if (IS_ERR(path))
1242 rc = PTR_ERR(path);
1243 else {
1244 /* each process gets a /proc/PID/ entry. Strip off the
1245 * PID part to get a valid selinux labeling.
1246 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1247 while (path[1] >= '0' && path[1] <= '9') {
1248 path[1] = '/';
1249 path++;
1250 }
1251 rc = security_genfs_sid("proc", path, tclass, sid);
1252 }
1253 free_page((unsigned long)buffer);
1254 return rc;
1255 }
1256 #else
1257 static int selinux_proc_get_sid(struct dentry *dentry,
1258 u16 tclass,
1259 u32 *sid)
1260 {
1261 return -EINVAL;
1262 }
1263 #endif
1264
1265 /* The inode's security attributes must be initialized before first use. */
1266 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1267 {
1268 struct superblock_security_struct *sbsec = NULL;
1269 struct inode_security_struct *isec = inode->i_security;
1270 u32 sid;
1271 struct dentry *dentry;
1272 #define INITCONTEXTLEN 255
1273 char *context = NULL;
1274 unsigned len = 0;
1275 int rc = 0;
1276
1277 if (isec->initialized)
1278 goto out;
1279
1280 mutex_lock(&isec->lock);
1281 if (isec->initialized)
1282 goto out_unlock;
1283
1284 sbsec = inode->i_sb->s_security;
1285 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1286 /* Defer initialization until selinux_complete_init,
1287 after the initial policy is loaded and the security
1288 server is ready to handle calls. */
1289 spin_lock(&sbsec->isec_lock);
1290 if (list_empty(&isec->list))
1291 list_add(&isec->list, &sbsec->isec_head);
1292 spin_unlock(&sbsec->isec_lock);
1293 goto out_unlock;
1294 }
1295
1296 switch (sbsec->behavior) {
1297 case SECURITY_FS_USE_NATIVE:
1298 break;
1299 case SECURITY_FS_USE_XATTR:
1300 if (!inode->i_op->getxattr) {
1301 isec->sid = sbsec->def_sid;
1302 break;
1303 }
1304
1305 /* Need a dentry, since the xattr API requires one.
1306 Life would be simpler if we could just pass the inode. */
1307 if (opt_dentry) {
1308 /* Called from d_instantiate or d_splice_alias. */
1309 dentry = dget(opt_dentry);
1310 } else {
1311 /* Called from selinux_complete_init, try to find a dentry. */
1312 dentry = d_find_alias(inode);
1313 }
1314 if (!dentry) {
1315 /*
1316 * this is can be hit on boot when a file is accessed
1317 * before the policy is loaded. When we load policy we
1318 * may find inodes that have no dentry on the
1319 * sbsec->isec_head list. No reason to complain as these
1320 * will get fixed up the next time we go through
1321 * inode_doinit with a dentry, before these inodes could
1322 * be used again by userspace.
1323 */
1324 goto out_unlock;
1325 }
1326
1327 len = INITCONTEXTLEN;
1328 context = kmalloc(len+1, GFP_NOFS);
1329 if (!context) {
1330 rc = -ENOMEM;
1331 dput(dentry);
1332 goto out_unlock;
1333 }
1334 context[len] = '\0';
1335 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1336 context, len);
1337 if (rc == -ERANGE) {
1338 kfree(context);
1339
1340 /* Need a larger buffer. Query for the right size. */
1341 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1342 NULL, 0);
1343 if (rc < 0) {
1344 dput(dentry);
1345 goto out_unlock;
1346 }
1347 len = rc;
1348 context = kmalloc(len+1, GFP_NOFS);
1349 if (!context) {
1350 rc = -ENOMEM;
1351 dput(dentry);
1352 goto out_unlock;
1353 }
1354 context[len] = '\0';
1355 rc = inode->i_op->getxattr(dentry,
1356 XATTR_NAME_SELINUX,
1357 context, len);
1358 }
1359 dput(dentry);
1360 if (rc < 0) {
1361 if (rc != -ENODATA) {
1362 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1363 "%d for dev=%s ino=%ld\n", __func__,
1364 -rc, inode->i_sb->s_id, inode->i_ino);
1365 kfree(context);
1366 goto out_unlock;
1367 }
1368 /* Map ENODATA to the default file SID */
1369 sid = sbsec->def_sid;
1370 rc = 0;
1371 } else {
1372 rc = security_context_to_sid_default(context, rc, &sid,
1373 sbsec->def_sid,
1374 GFP_NOFS);
1375 if (rc) {
1376 char *dev = inode->i_sb->s_id;
1377 unsigned long ino = inode->i_ino;
1378
1379 if (rc == -EINVAL) {
1380 if (printk_ratelimit())
1381 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1382 "context=%s. This indicates you may need to relabel the inode or the "
1383 "filesystem in question.\n", ino, dev, context);
1384 } else {
1385 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1386 "returned %d for dev=%s ino=%ld\n",
1387 __func__, context, -rc, dev, ino);
1388 }
1389 kfree(context);
1390 /* Leave with the unlabeled SID */
1391 rc = 0;
1392 break;
1393 }
1394 }
1395 kfree(context);
1396 isec->sid = sid;
1397 break;
1398 case SECURITY_FS_USE_TASK:
1399 isec->sid = isec->task_sid;
1400 break;
1401 case SECURITY_FS_USE_TRANS:
1402 /* Default to the fs SID. */
1403 isec->sid = sbsec->sid;
1404
1405 /* Try to obtain a transition SID. */
1406 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1408 isec->sclass, NULL, &sid);
1409 if (rc)
1410 goto out_unlock;
1411 isec->sid = sid;
1412 break;
1413 case SECURITY_FS_USE_MNTPOINT:
1414 isec->sid = sbsec->mntpoint_sid;
1415 break;
1416 default:
1417 /* Default to the fs superblock SID. */
1418 isec->sid = sbsec->sid;
1419
1420 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1421 /* We must have a dentry to determine the label on
1422 * procfs inodes */
1423 if (opt_dentry)
1424 /* Called from d_instantiate or
1425 * d_splice_alias. */
1426 dentry = dget(opt_dentry);
1427 else
1428 /* Called from selinux_complete_init, try to
1429 * find a dentry. */
1430 dentry = d_find_alias(inode);
1431 /*
1432 * This can be hit on boot when a file is accessed
1433 * before the policy is loaded. When we load policy we
1434 * may find inodes that have no dentry on the
1435 * sbsec->isec_head list. No reason to complain as
1436 * these will get fixed up the next time we go through
1437 * inode_doinit() with a dentry, before these inodes
1438 * could be used again by userspace.
1439 */
1440 if (!dentry)
1441 goto out_unlock;
1442 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1443 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1444 dput(dentry);
1445 if (rc)
1446 goto out_unlock;
1447 isec->sid = sid;
1448 }
1449 break;
1450 }
1451
1452 isec->initialized = 1;
1453
1454 out_unlock:
1455 mutex_unlock(&isec->lock);
1456 out:
1457 if (isec->sclass == SECCLASS_FILE)
1458 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1459 return rc;
1460 }
1461
1462 /* Convert a Linux signal to an access vector. */
1463 static inline u32 signal_to_av(int sig)
1464 {
1465 u32 perm = 0;
1466
1467 switch (sig) {
1468 case SIGCHLD:
1469 /* Commonly granted from child to parent. */
1470 perm = PROCESS__SIGCHLD;
1471 break;
1472 case SIGKILL:
1473 /* Cannot be caught or ignored */
1474 perm = PROCESS__SIGKILL;
1475 break;
1476 case SIGSTOP:
1477 /* Cannot be caught or ignored */
1478 perm = PROCESS__SIGSTOP;
1479 break;
1480 default:
1481 /* All other signals. */
1482 perm = PROCESS__SIGNAL;
1483 break;
1484 }
1485
1486 return perm;
1487 }
1488
1489 /*
1490 * Check permission between a pair of credentials
1491 * fork check, ptrace check, etc.
1492 */
1493 static int cred_has_perm(const struct cred *actor,
1494 const struct cred *target,
1495 u32 perms)
1496 {
1497 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1498
1499 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1500 }
1501
1502 /*
1503 * Check permission between a pair of tasks, e.g. signal checks,
1504 * fork check, ptrace check, etc.
1505 * tsk1 is the actor and tsk2 is the target
1506 * - this uses the default subjective creds of tsk1
1507 */
1508 static int task_has_perm(const struct task_struct *tsk1,
1509 const struct task_struct *tsk2,
1510 u32 perms)
1511 {
1512 const struct task_security_struct *__tsec1, *__tsec2;
1513 u32 sid1, sid2;
1514
1515 rcu_read_lock();
1516 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1517 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1518 rcu_read_unlock();
1519 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1520 }
1521
1522 /*
1523 * Check permission between current and another task, e.g. signal checks,
1524 * fork check, ptrace check, etc.
1525 * current is the actor and tsk2 is the target
1526 * - this uses current's subjective creds
1527 */
1528 static int current_has_perm(const struct task_struct *tsk,
1529 u32 perms)
1530 {
1531 u32 sid, tsid;
1532
1533 sid = current_sid();
1534 tsid = task_sid(tsk);
1535 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1536 }
1537
1538 #if CAP_LAST_CAP > 63
1539 #error Fix SELinux to handle capabilities > 63.
1540 #endif
1541
1542 /* Check whether a task is allowed to use a capability. */
1543 static int cred_has_capability(const struct cred *cred,
1544 int cap, int audit)
1545 {
1546 struct common_audit_data ad;
1547 struct av_decision avd;
1548 u16 sclass;
1549 u32 sid = cred_sid(cred);
1550 u32 av = CAP_TO_MASK(cap);
1551 int rc;
1552
1553 ad.type = LSM_AUDIT_DATA_CAP;
1554 ad.u.cap = cap;
1555
1556 switch (CAP_TO_INDEX(cap)) {
1557 case 0:
1558 sclass = SECCLASS_CAPABILITY;
1559 break;
1560 case 1:
1561 sclass = SECCLASS_CAPABILITY2;
1562 break;
1563 default:
1564 printk(KERN_ERR
1565 "SELinux: out of range capability %d\n", cap);
1566 BUG();
1567 return -EINVAL;
1568 }
1569
1570 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1571 if (audit == SECURITY_CAP_AUDIT) {
1572 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1573 if (rc2)
1574 return rc2;
1575 }
1576 return rc;
1577 }
1578
1579 /* Check whether a task is allowed to use a system operation. */
1580 static int task_has_system(struct task_struct *tsk,
1581 u32 perms)
1582 {
1583 u32 sid = task_sid(tsk);
1584
1585 return avc_has_perm(sid, SECINITSID_KERNEL,
1586 SECCLASS_SYSTEM, perms, NULL);
1587 }
1588
1589 /* Check whether a task has a particular permission to an inode.
1590 The 'adp' parameter is optional and allows other audit
1591 data to be passed (e.g. the dentry). */
1592 static int inode_has_perm(const struct cred *cred,
1593 struct inode *inode,
1594 u32 perms,
1595 struct common_audit_data *adp)
1596 {
1597 struct inode_security_struct *isec;
1598 u32 sid;
1599
1600 validate_creds(cred);
1601
1602 if (unlikely(IS_PRIVATE(inode)))
1603 return 0;
1604
1605 sid = cred_sid(cred);
1606 isec = inode->i_security;
1607
1608 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1609 }
1610
1611 /* Same as inode_has_perm, but pass explicit audit data containing
1612 the dentry to help the auditing code to more easily generate the
1613 pathname if needed. */
1614 static inline int dentry_has_perm(const struct cred *cred,
1615 struct dentry *dentry,
1616 u32 av)
1617 {
1618 struct inode *inode = dentry->d_inode;
1619 struct common_audit_data ad;
1620
1621 ad.type = LSM_AUDIT_DATA_DENTRY;
1622 ad.u.dentry = dentry;
1623 return inode_has_perm(cred, inode, av, &ad);
1624 }
1625
1626 /* Same as inode_has_perm, but pass explicit audit data containing
1627 the path to help the auditing code to more easily generate the
1628 pathname if needed. */
1629 static inline int path_has_perm(const struct cred *cred,
1630 struct path *path,
1631 u32 av)
1632 {
1633 struct inode *inode = path->dentry->d_inode;
1634 struct common_audit_data ad;
1635
1636 ad.type = LSM_AUDIT_DATA_PATH;
1637 ad.u.path = *path;
1638 return inode_has_perm(cred, inode, av, &ad);
1639 }
1640
1641 /* Same as path_has_perm, but uses the inode from the file struct. */
1642 static inline int file_path_has_perm(const struct cred *cred,
1643 struct file *file,
1644 u32 av)
1645 {
1646 struct common_audit_data ad;
1647
1648 ad.type = LSM_AUDIT_DATA_PATH;
1649 ad.u.path = file->f_path;
1650 return inode_has_perm(cred, file_inode(file), av, &ad);
1651 }
1652
1653 /* Check whether a task can use an open file descriptor to
1654 access an inode in a given way. Check access to the
1655 descriptor itself, and then use dentry_has_perm to
1656 check a particular permission to the file.
1657 Access to the descriptor is implicitly granted if it
1658 has the same SID as the process. If av is zero, then
1659 access to the file is not checked, e.g. for cases
1660 where only the descriptor is affected like seek. */
1661 static int file_has_perm(const struct cred *cred,
1662 struct file *file,
1663 u32 av)
1664 {
1665 struct file_security_struct *fsec = file->f_security;
1666 struct inode *inode = file_inode(file);
1667 struct common_audit_data ad;
1668 u32 sid = cred_sid(cred);
1669 int rc;
1670
1671 ad.type = LSM_AUDIT_DATA_PATH;
1672 ad.u.path = file->f_path;
1673
1674 if (sid != fsec->sid) {
1675 rc = avc_has_perm(sid, fsec->sid,
1676 SECCLASS_FD,
1677 FD__USE,
1678 &ad);
1679 if (rc)
1680 goto out;
1681 }
1682
1683 /* av is zero if only checking access to the descriptor. */
1684 rc = 0;
1685 if (av)
1686 rc = inode_has_perm(cred, inode, av, &ad);
1687
1688 out:
1689 return rc;
1690 }
1691
1692 /* Check whether a task can create a file. */
1693 static int may_create(struct inode *dir,
1694 struct dentry *dentry,
1695 u16 tclass)
1696 {
1697 const struct task_security_struct *tsec = current_security();
1698 struct inode_security_struct *dsec;
1699 struct superblock_security_struct *sbsec;
1700 u32 sid, newsid;
1701 struct common_audit_data ad;
1702 int rc;
1703
1704 dsec = dir->i_security;
1705 sbsec = dir->i_sb->s_security;
1706
1707 sid = tsec->sid;
1708 newsid = tsec->create_sid;
1709
1710 ad.type = LSM_AUDIT_DATA_DENTRY;
1711 ad.u.dentry = dentry;
1712
1713 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1714 DIR__ADD_NAME | DIR__SEARCH,
1715 &ad);
1716 if (rc)
1717 return rc;
1718
1719 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1720 rc = security_transition_sid(sid, dsec->sid, tclass,
1721 &dentry->d_name, &newsid);
1722 if (rc)
1723 return rc;
1724 }
1725
1726 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1727 if (rc)
1728 return rc;
1729
1730 return avc_has_perm(newsid, sbsec->sid,
1731 SECCLASS_FILESYSTEM,
1732 FILESYSTEM__ASSOCIATE, &ad);
1733 }
1734
1735 /* Check whether a task can create a key. */
1736 static int may_create_key(u32 ksid,
1737 struct task_struct *ctx)
1738 {
1739 u32 sid = task_sid(ctx);
1740
1741 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1742 }
1743
1744 #define MAY_LINK 0
1745 #define MAY_UNLINK 1
1746 #define MAY_RMDIR 2
1747
1748 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1749 static int may_link(struct inode *dir,
1750 struct dentry *dentry,
1751 int kind)
1752
1753 {
1754 struct inode_security_struct *dsec, *isec;
1755 struct common_audit_data ad;
1756 u32 sid = current_sid();
1757 u32 av;
1758 int rc;
1759
1760 dsec = dir->i_security;
1761 isec = dentry->d_inode->i_security;
1762
1763 ad.type = LSM_AUDIT_DATA_DENTRY;
1764 ad.u.dentry = dentry;
1765
1766 av = DIR__SEARCH;
1767 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1768 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1769 if (rc)
1770 return rc;
1771
1772 switch (kind) {
1773 case MAY_LINK:
1774 av = FILE__LINK;
1775 break;
1776 case MAY_UNLINK:
1777 av = FILE__UNLINK;
1778 break;
1779 case MAY_RMDIR:
1780 av = DIR__RMDIR;
1781 break;
1782 default:
1783 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1784 __func__, kind);
1785 return 0;
1786 }
1787
1788 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1789 return rc;
1790 }
1791
1792 static inline int may_rename(struct inode *old_dir,
1793 struct dentry *old_dentry,
1794 struct inode *new_dir,
1795 struct dentry *new_dentry)
1796 {
1797 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1798 struct common_audit_data ad;
1799 u32 sid = current_sid();
1800 u32 av;
1801 int old_is_dir, new_is_dir;
1802 int rc;
1803
1804 old_dsec = old_dir->i_security;
1805 old_isec = old_dentry->d_inode->i_security;
1806 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1807 new_dsec = new_dir->i_security;
1808
1809 ad.type = LSM_AUDIT_DATA_DENTRY;
1810
1811 ad.u.dentry = old_dentry;
1812 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1813 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1814 if (rc)
1815 return rc;
1816 rc = avc_has_perm(sid, old_isec->sid,
1817 old_isec->sclass, FILE__RENAME, &ad);
1818 if (rc)
1819 return rc;
1820 if (old_is_dir && new_dir != old_dir) {
1821 rc = avc_has_perm(sid, old_isec->sid,
1822 old_isec->sclass, DIR__REPARENT, &ad);
1823 if (rc)
1824 return rc;
1825 }
1826
1827 ad.u.dentry = new_dentry;
1828 av = DIR__ADD_NAME | DIR__SEARCH;
1829 if (new_dentry->d_inode)
1830 av |= DIR__REMOVE_NAME;
1831 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1832 if (rc)
1833 return rc;
1834 if (new_dentry->d_inode) {
1835 new_isec = new_dentry->d_inode->i_security;
1836 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1837 rc = avc_has_perm(sid, new_isec->sid,
1838 new_isec->sclass,
1839 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1840 if (rc)
1841 return rc;
1842 }
1843
1844 return 0;
1845 }
1846
1847 /* Check whether a task can perform a filesystem operation. */
1848 static int superblock_has_perm(const struct cred *cred,
1849 struct super_block *sb,
1850 u32 perms,
1851 struct common_audit_data *ad)
1852 {
1853 struct superblock_security_struct *sbsec;
1854 u32 sid = cred_sid(cred);
1855
1856 sbsec = sb->s_security;
1857 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1858 }
1859
1860 /* Convert a Linux mode and permission mask to an access vector. */
1861 static inline u32 file_mask_to_av(int mode, int mask)
1862 {
1863 u32 av = 0;
1864
1865 if (!S_ISDIR(mode)) {
1866 if (mask & MAY_EXEC)
1867 av |= FILE__EXECUTE;
1868 if (mask & MAY_READ)
1869 av |= FILE__READ;
1870
1871 if (mask & MAY_APPEND)
1872 av |= FILE__APPEND;
1873 else if (mask & MAY_WRITE)
1874 av |= FILE__WRITE;
1875
1876 } else {
1877 if (mask & MAY_EXEC)
1878 av |= DIR__SEARCH;
1879 if (mask & MAY_WRITE)
1880 av |= DIR__WRITE;
1881 if (mask & MAY_READ)
1882 av |= DIR__READ;
1883 }
1884
1885 return av;
1886 }
1887
1888 /* Convert a Linux file to an access vector. */
1889 static inline u32 file_to_av(struct file *file)
1890 {
1891 u32 av = 0;
1892
1893 if (file->f_mode & FMODE_READ)
1894 av |= FILE__READ;
1895 if (file->f_mode & FMODE_WRITE) {
1896 if (file->f_flags & O_APPEND)
1897 av |= FILE__APPEND;
1898 else
1899 av |= FILE__WRITE;
1900 }
1901 if (!av) {
1902 /*
1903 * Special file opened with flags 3 for ioctl-only use.
1904 */
1905 av = FILE__IOCTL;
1906 }
1907
1908 return av;
1909 }
1910
1911 /*
1912 * Convert a file to an access vector and include the correct open
1913 * open permission.
1914 */
1915 static inline u32 open_file_to_av(struct file *file)
1916 {
1917 u32 av = file_to_av(file);
1918
1919 if (selinux_policycap_openperm)
1920 av |= FILE__OPEN;
1921
1922 return av;
1923 }
1924
1925 /* Hook functions begin here. */
1926
1927 static int selinux_ptrace_access_check(struct task_struct *child,
1928 unsigned int mode)
1929 {
1930 int rc;
1931
1932 rc = cap_ptrace_access_check(child, mode);
1933 if (rc)
1934 return rc;
1935
1936 if (mode & PTRACE_MODE_READ) {
1937 u32 sid = current_sid();
1938 u32 csid = task_sid(child);
1939 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1940 }
1941
1942 return current_has_perm(child, PROCESS__PTRACE);
1943 }
1944
1945 static int selinux_ptrace_traceme(struct task_struct *parent)
1946 {
1947 int rc;
1948
1949 rc = cap_ptrace_traceme(parent);
1950 if (rc)
1951 return rc;
1952
1953 return task_has_perm(parent, current, PROCESS__PTRACE);
1954 }
1955
1956 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1957 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1958 {
1959 int error;
1960
1961 error = current_has_perm(target, PROCESS__GETCAP);
1962 if (error)
1963 return error;
1964
1965 return cap_capget(target, effective, inheritable, permitted);
1966 }
1967
1968 static int selinux_capset(struct cred *new, const struct cred *old,
1969 const kernel_cap_t *effective,
1970 const kernel_cap_t *inheritable,
1971 const kernel_cap_t *permitted)
1972 {
1973 int error;
1974
1975 error = cap_capset(new, old,
1976 effective, inheritable, permitted);
1977 if (error)
1978 return error;
1979
1980 return cred_has_perm(old, new, PROCESS__SETCAP);
1981 }
1982
1983 /*
1984 * (This comment used to live with the selinux_task_setuid hook,
1985 * which was removed).
1986 *
1987 * Since setuid only affects the current process, and since the SELinux
1988 * controls are not based on the Linux identity attributes, SELinux does not
1989 * need to control this operation. However, SELinux does control the use of
1990 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1991 */
1992
1993 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1994 int cap, int audit)
1995 {
1996 int rc;
1997
1998 rc = cap_capable(cred, ns, cap, audit);
1999 if (rc)
2000 return rc;
2001
2002 return cred_has_capability(cred, cap, audit);
2003 }
2004
2005 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2006 {
2007 const struct cred *cred = current_cred();
2008 int rc = 0;
2009
2010 if (!sb)
2011 return 0;
2012
2013 switch (cmds) {
2014 case Q_SYNC:
2015 case Q_QUOTAON:
2016 case Q_QUOTAOFF:
2017 case Q_SETINFO:
2018 case Q_SETQUOTA:
2019 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2020 break;
2021 case Q_GETFMT:
2022 case Q_GETINFO:
2023 case Q_GETQUOTA:
2024 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2025 break;
2026 default:
2027 rc = 0; /* let the kernel handle invalid cmds */
2028 break;
2029 }
2030 return rc;
2031 }
2032
2033 static int selinux_quota_on(struct dentry *dentry)
2034 {
2035 const struct cred *cred = current_cred();
2036
2037 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2038 }
2039
2040 static int selinux_syslog(int type)
2041 {
2042 int rc;
2043
2044 switch (type) {
2045 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2046 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2047 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2048 break;
2049 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2050 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2051 /* Set level of messages printed to console */
2052 case SYSLOG_ACTION_CONSOLE_LEVEL:
2053 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2054 break;
2055 case SYSLOG_ACTION_CLOSE: /* Close log */
2056 case SYSLOG_ACTION_OPEN: /* Open log */
2057 case SYSLOG_ACTION_READ: /* Read from log */
2058 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2059 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2060 default:
2061 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2062 break;
2063 }
2064 return rc;
2065 }
2066
2067 /*
2068 * Check that a process has enough memory to allocate a new virtual
2069 * mapping. 0 means there is enough memory for the allocation to
2070 * succeed and -ENOMEM implies there is not.
2071 *
2072 * Do not audit the selinux permission check, as this is applied to all
2073 * processes that allocate mappings.
2074 */
2075 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2076 {
2077 int rc, cap_sys_admin = 0;
2078
2079 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2080 SECURITY_CAP_NOAUDIT);
2081 if (rc == 0)
2082 cap_sys_admin = 1;
2083
2084 return __vm_enough_memory(mm, pages, cap_sys_admin);
2085 }
2086
2087 /* binprm security operations */
2088
2089 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2090 {
2091 const struct task_security_struct *old_tsec;
2092 struct task_security_struct *new_tsec;
2093 struct inode_security_struct *isec;
2094 struct common_audit_data ad;
2095 struct inode *inode = file_inode(bprm->file);
2096 int rc;
2097
2098 rc = cap_bprm_set_creds(bprm);
2099 if (rc)
2100 return rc;
2101
2102 /* SELinux context only depends on initial program or script and not
2103 * the script interpreter */
2104 if (bprm->cred_prepared)
2105 return 0;
2106
2107 old_tsec = current_security();
2108 new_tsec = bprm->cred->security;
2109 isec = inode->i_security;
2110
2111 /* Default to the current task SID. */
2112 new_tsec->sid = old_tsec->sid;
2113 new_tsec->osid = old_tsec->sid;
2114
2115 /* Reset fs, key, and sock SIDs on execve. */
2116 new_tsec->create_sid = 0;
2117 new_tsec->keycreate_sid = 0;
2118 new_tsec->sockcreate_sid = 0;
2119
2120 if (old_tsec->exec_sid) {
2121 new_tsec->sid = old_tsec->exec_sid;
2122 /* Reset exec SID on execve. */
2123 new_tsec->exec_sid = 0;
2124
2125 /*
2126 * Minimize confusion: if no_new_privs and a transition is
2127 * explicitly requested, then fail the exec.
2128 */
2129 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2130 return -EPERM;
2131 } else {
2132 /* Check for a default transition on this program. */
2133 rc = security_transition_sid(old_tsec->sid, isec->sid,
2134 SECCLASS_PROCESS, NULL,
2135 &new_tsec->sid);
2136 if (rc)
2137 return rc;
2138 }
2139
2140 ad.type = LSM_AUDIT_DATA_PATH;
2141 ad.u.path = bprm->file->f_path;
2142
2143 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2144 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2145 new_tsec->sid = old_tsec->sid;
2146
2147 if (new_tsec->sid == old_tsec->sid) {
2148 rc = avc_has_perm(old_tsec->sid, isec->sid,
2149 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2150 if (rc)
2151 return rc;
2152 } else {
2153 /* Check permissions for the transition. */
2154 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2155 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2156 if (rc)
2157 return rc;
2158
2159 rc = avc_has_perm(new_tsec->sid, isec->sid,
2160 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2161 if (rc)
2162 return rc;
2163
2164 /* Check for shared state */
2165 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2167 SECCLASS_PROCESS, PROCESS__SHARE,
2168 NULL);
2169 if (rc)
2170 return -EPERM;
2171 }
2172
2173 /* Make sure that anyone attempting to ptrace over a task that
2174 * changes its SID has the appropriate permit */
2175 if (bprm->unsafe &
2176 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177 struct task_struct *tracer;
2178 struct task_security_struct *sec;
2179 u32 ptsid = 0;
2180
2181 rcu_read_lock();
2182 tracer = ptrace_parent(current);
2183 if (likely(tracer != NULL)) {
2184 sec = __task_cred(tracer)->security;
2185 ptsid = sec->sid;
2186 }
2187 rcu_read_unlock();
2188
2189 if (ptsid != 0) {
2190 rc = avc_has_perm(ptsid, new_tsec->sid,
2191 SECCLASS_PROCESS,
2192 PROCESS__PTRACE, NULL);
2193 if (rc)
2194 return -EPERM;
2195 }
2196 }
2197
2198 /* Clear any possibly unsafe personality bits on exec: */
2199 bprm->per_clear |= PER_CLEAR_ON_SETID;
2200 }
2201
2202 return 0;
2203 }
2204
2205 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2206 {
2207 const struct task_security_struct *tsec = current_security();
2208 u32 sid, osid;
2209 int atsecure = 0;
2210
2211 sid = tsec->sid;
2212 osid = tsec->osid;
2213
2214 if (osid != sid) {
2215 /* Enable secure mode for SIDs transitions unless
2216 the noatsecure permission is granted between
2217 the two SIDs, i.e. ahp returns 0. */
2218 atsecure = avc_has_perm(osid, sid,
2219 SECCLASS_PROCESS,
2220 PROCESS__NOATSECURE, NULL);
2221 }
2222
2223 return (atsecure || cap_bprm_secureexec(bprm));
2224 }
2225
2226 static int match_file(const void *p, struct file *file, unsigned fd)
2227 {
2228 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2229 }
2230
2231 /* Derived from fs/exec.c:flush_old_files. */
2232 static inline void flush_unauthorized_files(const struct cred *cred,
2233 struct files_struct *files)
2234 {
2235 struct file *file, *devnull = NULL;
2236 struct tty_struct *tty;
2237 int drop_tty = 0;
2238 unsigned n;
2239
2240 tty = get_current_tty();
2241 if (tty) {
2242 spin_lock(&tty_files_lock);
2243 if (!list_empty(&tty->tty_files)) {
2244 struct tty_file_private *file_priv;
2245
2246 /* Revalidate access to controlling tty.
2247 Use file_path_has_perm on the tty path directly
2248 rather than using file_has_perm, as this particular
2249 open file may belong to another process and we are
2250 only interested in the inode-based check here. */
2251 file_priv = list_first_entry(&tty->tty_files,
2252 struct tty_file_private, list);
2253 file = file_priv->file;
2254 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2255 drop_tty = 1;
2256 }
2257 spin_unlock(&tty_files_lock);
2258 tty_kref_put(tty);
2259 }
2260 /* Reset controlling tty. */
2261 if (drop_tty)
2262 no_tty();
2263
2264 /* Revalidate access to inherited open files. */
2265 n = iterate_fd(files, 0, match_file, cred);
2266 if (!n) /* none found? */
2267 return;
2268
2269 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2270 if (IS_ERR(devnull))
2271 devnull = NULL;
2272 /* replace all the matching ones with this */
2273 do {
2274 replace_fd(n - 1, devnull, 0);
2275 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2276 if (devnull)
2277 fput(devnull);
2278 }
2279
2280 /*
2281 * Prepare a process for imminent new credential changes due to exec
2282 */
2283 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2284 {
2285 struct task_security_struct *new_tsec;
2286 struct rlimit *rlim, *initrlim;
2287 int rc, i;
2288
2289 new_tsec = bprm->cred->security;
2290 if (new_tsec->sid == new_tsec->osid)
2291 return;
2292
2293 /* Close files for which the new task SID is not authorized. */
2294 flush_unauthorized_files(bprm->cred, current->files);
2295
2296 /* Always clear parent death signal on SID transitions. */
2297 current->pdeath_signal = 0;
2298
2299 /* Check whether the new SID can inherit resource limits from the old
2300 * SID. If not, reset all soft limits to the lower of the current
2301 * task's hard limit and the init task's soft limit.
2302 *
2303 * Note that the setting of hard limits (even to lower them) can be
2304 * controlled by the setrlimit check. The inclusion of the init task's
2305 * soft limit into the computation is to avoid resetting soft limits
2306 * higher than the default soft limit for cases where the default is
2307 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2308 */
2309 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2310 PROCESS__RLIMITINH, NULL);
2311 if (rc) {
2312 /* protect against do_prlimit() */
2313 task_lock(current);
2314 for (i = 0; i < RLIM_NLIMITS; i++) {
2315 rlim = current->signal->rlim + i;
2316 initrlim = init_task.signal->rlim + i;
2317 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2318 }
2319 task_unlock(current);
2320 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2321 }
2322 }
2323
2324 /*
2325 * Clean up the process immediately after the installation of new credentials
2326 * due to exec
2327 */
2328 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2329 {
2330 const struct task_security_struct *tsec = current_security();
2331 struct itimerval itimer;
2332 u32 osid, sid;
2333 int rc, i;
2334
2335 osid = tsec->osid;
2336 sid = tsec->sid;
2337
2338 if (sid == osid)
2339 return;
2340
2341 /* Check whether the new SID can inherit signal state from the old SID.
2342 * If not, clear itimers to avoid subsequent signal generation and
2343 * flush and unblock signals.
2344 *
2345 * This must occur _after_ the task SID has been updated so that any
2346 * kill done after the flush will be checked against the new SID.
2347 */
2348 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2349 if (rc) {
2350 memset(&itimer, 0, sizeof itimer);
2351 for (i = 0; i < 3; i++)
2352 do_setitimer(i, &itimer, NULL);
2353 spin_lock_irq(&current->sighand->siglock);
2354 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2355 __flush_signals(current);
2356 flush_signal_handlers(current, 1);
2357 sigemptyset(&current->blocked);
2358 }
2359 spin_unlock_irq(&current->sighand->siglock);
2360 }
2361
2362 /* Wake up the parent if it is waiting so that it can recheck
2363 * wait permission to the new task SID. */
2364 read_lock(&tasklist_lock);
2365 __wake_up_parent(current, current->real_parent);
2366 read_unlock(&tasklist_lock);
2367 }
2368
2369 /* superblock security operations */
2370
2371 static int selinux_sb_alloc_security(struct super_block *sb)
2372 {
2373 return superblock_alloc_security(sb);
2374 }
2375
2376 static void selinux_sb_free_security(struct super_block *sb)
2377 {
2378 superblock_free_security(sb);
2379 }
2380
2381 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2382 {
2383 if (plen > olen)
2384 return 0;
2385
2386 return !memcmp(prefix, option, plen);
2387 }
2388
2389 static inline int selinux_option(char *option, int len)
2390 {
2391 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2392 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2393 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2394 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2395 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2396 }
2397
2398 static inline void take_option(char **to, char *from, int *first, int len)
2399 {
2400 if (!*first) {
2401 **to = ',';
2402 *to += 1;
2403 } else
2404 *first = 0;
2405 memcpy(*to, from, len);
2406 *to += len;
2407 }
2408
2409 static inline void take_selinux_option(char **to, char *from, int *first,
2410 int len)
2411 {
2412 int current_size = 0;
2413
2414 if (!*first) {
2415 **to = '|';
2416 *to += 1;
2417 } else
2418 *first = 0;
2419
2420 while (current_size < len) {
2421 if (*from != '"') {
2422 **to = *from;
2423 *to += 1;
2424 }
2425 from += 1;
2426 current_size += 1;
2427 }
2428 }
2429
2430 static int selinux_sb_copy_data(char *orig, char *copy)
2431 {
2432 int fnosec, fsec, rc = 0;
2433 char *in_save, *in_curr, *in_end;
2434 char *sec_curr, *nosec_save, *nosec;
2435 int open_quote = 0;
2436
2437 in_curr = orig;
2438 sec_curr = copy;
2439
2440 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2441 if (!nosec) {
2442 rc = -ENOMEM;
2443 goto out;
2444 }
2445
2446 nosec_save = nosec;
2447 fnosec = fsec = 1;
2448 in_save = in_end = orig;
2449
2450 do {
2451 if (*in_end == '"')
2452 open_quote = !open_quote;
2453 if ((*in_end == ',' && open_quote == 0) ||
2454 *in_end == '\0') {
2455 int len = in_end - in_curr;
2456
2457 if (selinux_option(in_curr, len))
2458 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2459 else
2460 take_option(&nosec, in_curr, &fnosec, len);
2461
2462 in_curr = in_end + 1;
2463 }
2464 } while (*in_end++);
2465
2466 strcpy(in_save, nosec_save);
2467 free_page((unsigned long)nosec_save);
2468 out:
2469 return rc;
2470 }
2471
2472 static int selinux_sb_remount(struct super_block *sb, void *data)
2473 {
2474 int rc, i, *flags;
2475 struct security_mnt_opts opts;
2476 char *secdata, **mount_options;
2477 struct superblock_security_struct *sbsec = sb->s_security;
2478
2479 if (!(sbsec->flags & SE_SBINITIALIZED))
2480 return 0;
2481
2482 if (!data)
2483 return 0;
2484
2485 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2486 return 0;
2487
2488 security_init_mnt_opts(&opts);
2489 secdata = alloc_secdata();
2490 if (!secdata)
2491 return -ENOMEM;
2492 rc = selinux_sb_copy_data(data, secdata);
2493 if (rc)
2494 goto out_free_secdata;
2495
2496 rc = selinux_parse_opts_str(secdata, &opts);
2497 if (rc)
2498 goto out_free_secdata;
2499
2500 mount_options = opts.mnt_opts;
2501 flags = opts.mnt_opts_flags;
2502
2503 for (i = 0; i < opts.num_mnt_opts; i++) {
2504 u32 sid;
2505 size_t len;
2506
2507 if (flags[i] == SBLABEL_MNT)
2508 continue;
2509 len = strlen(mount_options[i]);
2510 rc = security_context_to_sid(mount_options[i], len, &sid,
2511 GFP_KERNEL);
2512 if (rc) {
2513 printk(KERN_WARNING "SELinux: security_context_to_sid"
2514 "(%s) failed for (dev %s, type %s) errno=%d\n",
2515 mount_options[i], sb->s_id, sb->s_type->name, rc);
2516 goto out_free_opts;
2517 }
2518 rc = -EINVAL;
2519 switch (flags[i]) {
2520 case FSCONTEXT_MNT:
2521 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2522 goto out_bad_option;
2523 break;
2524 case CONTEXT_MNT:
2525 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2526 goto out_bad_option;
2527 break;
2528 case ROOTCONTEXT_MNT: {
2529 struct inode_security_struct *root_isec;
2530 root_isec = sb->s_root->d_inode->i_security;
2531
2532 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2533 goto out_bad_option;
2534 break;
2535 }
2536 case DEFCONTEXT_MNT:
2537 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2538 goto out_bad_option;
2539 break;
2540 default:
2541 goto out_free_opts;
2542 }
2543 }
2544
2545 rc = 0;
2546 out_free_opts:
2547 security_free_mnt_opts(&opts);
2548 out_free_secdata:
2549 free_secdata(secdata);
2550 return rc;
2551 out_bad_option:
2552 printk(KERN_WARNING "SELinux: unable to change security options "
2553 "during remount (dev %s, type=%s)\n", sb->s_id,
2554 sb->s_type->name);
2555 goto out_free_opts;
2556 }
2557
2558 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2559 {
2560 const struct cred *cred = current_cred();
2561 struct common_audit_data ad;
2562 int rc;
2563
2564 rc = superblock_doinit(sb, data);
2565 if (rc)
2566 return rc;
2567
2568 /* Allow all mounts performed by the kernel */
2569 if (flags & MS_KERNMOUNT)
2570 return 0;
2571
2572 ad.type = LSM_AUDIT_DATA_DENTRY;
2573 ad.u.dentry = sb->s_root;
2574 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2575 }
2576
2577 static int selinux_sb_statfs(struct dentry *dentry)
2578 {
2579 const struct cred *cred = current_cred();
2580 struct common_audit_data ad;
2581
2582 ad.type = LSM_AUDIT_DATA_DENTRY;
2583 ad.u.dentry = dentry->d_sb->s_root;
2584 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2585 }
2586
2587 static int selinux_mount(const char *dev_name,
2588 struct path *path,
2589 const char *type,
2590 unsigned long flags,
2591 void *data)
2592 {
2593 const struct cred *cred = current_cred();
2594
2595 if (flags & MS_REMOUNT)
2596 return superblock_has_perm(cred, path->dentry->d_sb,
2597 FILESYSTEM__REMOUNT, NULL);
2598 else
2599 return path_has_perm(cred, path, FILE__MOUNTON);
2600 }
2601
2602 static int selinux_umount(struct vfsmount *mnt, int flags)
2603 {
2604 const struct cred *cred = current_cred();
2605
2606 return superblock_has_perm(cred, mnt->mnt_sb,
2607 FILESYSTEM__UNMOUNT, NULL);
2608 }
2609
2610 /* inode security operations */
2611
2612 static int selinux_inode_alloc_security(struct inode *inode)
2613 {
2614 return inode_alloc_security(inode);
2615 }
2616
2617 static void selinux_inode_free_security(struct inode *inode)
2618 {
2619 inode_free_security(inode);
2620 }
2621
2622 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2623 struct qstr *name, void **ctx,
2624 u32 *ctxlen)
2625 {
2626 const struct cred *cred = current_cred();
2627 struct task_security_struct *tsec;
2628 struct inode_security_struct *dsec;
2629 struct superblock_security_struct *sbsec;
2630 struct inode *dir = dentry->d_parent->d_inode;
2631 u32 newsid;
2632 int rc;
2633
2634 tsec = cred->security;
2635 dsec = dir->i_security;
2636 sbsec = dir->i_sb->s_security;
2637
2638 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2639 newsid = tsec->create_sid;
2640 } else {
2641 rc = security_transition_sid(tsec->sid, dsec->sid,
2642 inode_mode_to_security_class(mode),
2643 name,
2644 &newsid);
2645 if (rc) {
2646 printk(KERN_WARNING
2647 "%s: security_transition_sid failed, rc=%d\n",
2648 __func__, -rc);
2649 return rc;
2650 }
2651 }
2652
2653 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2654 }
2655
2656 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2657 const struct qstr *qstr,
2658 const char **name,
2659 void **value, size_t *len)
2660 {
2661 const struct task_security_struct *tsec = current_security();
2662 struct inode_security_struct *dsec;
2663 struct superblock_security_struct *sbsec;
2664 u32 sid, newsid, clen;
2665 int rc;
2666 char *context;
2667
2668 dsec = dir->i_security;
2669 sbsec = dir->i_sb->s_security;
2670
2671 sid = tsec->sid;
2672 newsid = tsec->create_sid;
2673
2674 if ((sbsec->flags & SE_SBINITIALIZED) &&
2675 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2676 newsid = sbsec->mntpoint_sid;
2677 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2678 rc = security_transition_sid(sid, dsec->sid,
2679 inode_mode_to_security_class(inode->i_mode),
2680 qstr, &newsid);
2681 if (rc) {
2682 printk(KERN_WARNING "%s: "
2683 "security_transition_sid failed, rc=%d (dev=%s "
2684 "ino=%ld)\n",
2685 __func__,
2686 -rc, inode->i_sb->s_id, inode->i_ino);
2687 return rc;
2688 }
2689 }
2690
2691 /* Possibly defer initialization to selinux_complete_init. */
2692 if (sbsec->flags & SE_SBINITIALIZED) {
2693 struct inode_security_struct *isec = inode->i_security;
2694 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2695 isec->sid = newsid;
2696 isec->initialized = 1;
2697 }
2698
2699 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2700 return -EOPNOTSUPP;
2701
2702 if (name)
2703 *name = XATTR_SELINUX_SUFFIX;
2704
2705 if (value && len) {
2706 rc = security_sid_to_context_force(newsid, &context, &clen);
2707 if (rc)
2708 return rc;
2709 *value = context;
2710 *len = clen;
2711 }
2712
2713 return 0;
2714 }
2715
2716 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2717 {
2718 return may_create(dir, dentry, SECCLASS_FILE);
2719 }
2720
2721 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2722 {
2723 return may_link(dir, old_dentry, MAY_LINK);
2724 }
2725
2726 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2727 {
2728 return may_link(dir, dentry, MAY_UNLINK);
2729 }
2730
2731 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2732 {
2733 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2734 }
2735
2736 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2737 {
2738 return may_create(dir, dentry, SECCLASS_DIR);
2739 }
2740
2741 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2742 {
2743 return may_link(dir, dentry, MAY_RMDIR);
2744 }
2745
2746 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2747 {
2748 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2749 }
2750
2751 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2752 struct inode *new_inode, struct dentry *new_dentry)
2753 {
2754 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2755 }
2756
2757 static int selinux_inode_readlink(struct dentry *dentry)
2758 {
2759 const struct cred *cred = current_cred();
2760
2761 return dentry_has_perm(cred, dentry, FILE__READ);
2762 }
2763
2764 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2765 {
2766 const struct cred *cred = current_cred();
2767
2768 return dentry_has_perm(cred, dentry, FILE__READ);
2769 }
2770
2771 static noinline int audit_inode_permission(struct inode *inode,
2772 u32 perms, u32 audited, u32 denied,
2773 unsigned flags)
2774 {
2775 struct common_audit_data ad;
2776 struct inode_security_struct *isec = inode->i_security;
2777 int rc;
2778
2779 ad.type = LSM_AUDIT_DATA_INODE;
2780 ad.u.inode = inode;
2781
2782 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2783 audited, denied, &ad, flags);
2784 if (rc)
2785 return rc;
2786 return 0;
2787 }
2788
2789 static int selinux_inode_permission(struct inode *inode, int mask)
2790 {
2791 const struct cred *cred = current_cred();
2792 u32 perms;
2793 bool from_access;
2794 unsigned flags = mask & MAY_NOT_BLOCK;
2795 struct inode_security_struct *isec;
2796 u32 sid;
2797 struct av_decision avd;
2798 int rc, rc2;
2799 u32 audited, denied;
2800
2801 from_access = mask & MAY_ACCESS;
2802 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2803
2804 /* No permission to check. Existence test. */
2805 if (!mask)
2806 return 0;
2807
2808 validate_creds(cred);
2809
2810 if (unlikely(IS_PRIVATE(inode)))
2811 return 0;
2812
2813 perms = file_mask_to_av(inode->i_mode, mask);
2814
2815 sid = cred_sid(cred);
2816 isec = inode->i_security;
2817
2818 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2819 audited = avc_audit_required(perms, &avd, rc,
2820 from_access ? FILE__AUDIT_ACCESS : 0,
2821 &denied);
2822 if (likely(!audited))
2823 return rc;
2824
2825 rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2826 if (rc2)
2827 return rc2;
2828 return rc;
2829 }
2830
2831 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2832 {
2833 const struct cred *cred = current_cred();
2834 unsigned int ia_valid = iattr->ia_valid;
2835 __u32 av = FILE__WRITE;
2836
2837 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2838 if (ia_valid & ATTR_FORCE) {
2839 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2840 ATTR_FORCE);
2841 if (!ia_valid)
2842 return 0;
2843 }
2844
2845 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2846 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2847 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2848
2849 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2850 av |= FILE__OPEN;
2851
2852 return dentry_has_perm(cred, dentry, av);
2853 }
2854
2855 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2856 {
2857 const struct cred *cred = current_cred();
2858 struct path path;
2859
2860 path.dentry = dentry;
2861 path.mnt = mnt;
2862
2863 return path_has_perm(cred, &path, FILE__GETATTR);
2864 }
2865
2866 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2867 {
2868 const struct cred *cred = current_cred();
2869
2870 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2871 sizeof XATTR_SECURITY_PREFIX - 1)) {
2872 if (!strcmp(name, XATTR_NAME_CAPS)) {
2873 if (!capable(CAP_SETFCAP))
2874 return -EPERM;
2875 } else if (!capable(CAP_SYS_ADMIN)) {
2876 /* A different attribute in the security namespace.
2877 Restrict to administrator. */
2878 return -EPERM;
2879 }
2880 }
2881
2882 /* Not an attribute we recognize, so just check the
2883 ordinary setattr permission. */
2884 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2885 }
2886
2887 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2888 const void *value, size_t size, int flags)
2889 {
2890 struct inode *inode = dentry->d_inode;
2891 struct inode_security_struct *isec = inode->i_security;
2892 struct superblock_security_struct *sbsec;
2893 struct common_audit_data ad;
2894 u32 newsid, sid = current_sid();
2895 int rc = 0;
2896
2897 if (strcmp(name, XATTR_NAME_SELINUX))
2898 return selinux_inode_setotherxattr(dentry, name);
2899
2900 sbsec = inode->i_sb->s_security;
2901 if (!(sbsec->flags & SBLABEL_MNT))
2902 return -EOPNOTSUPP;
2903
2904 if (!inode_owner_or_capable(inode))
2905 return -EPERM;
2906
2907 ad.type = LSM_AUDIT_DATA_DENTRY;
2908 ad.u.dentry = dentry;
2909
2910 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2911 FILE__RELABELFROM, &ad);
2912 if (rc)
2913 return rc;
2914
2915 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
2916 if (rc == -EINVAL) {
2917 if (!capable(CAP_MAC_ADMIN)) {
2918 struct audit_buffer *ab;
2919 size_t audit_size;
2920 const char *str;
2921
2922 /* We strip a nul only if it is at the end, otherwise the
2923 * context contains a nul and we should audit that */
2924 if (value) {
2925 str = value;
2926 if (str[size - 1] == '\0')
2927 audit_size = size - 1;
2928 else
2929 audit_size = size;
2930 } else {
2931 str = "";
2932 audit_size = 0;
2933 }
2934 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2935 audit_log_format(ab, "op=setxattr invalid_context=");
2936 audit_log_n_untrustedstring(ab, value, audit_size);
2937 audit_log_end(ab);
2938
2939 return rc;
2940 }
2941 rc = security_context_to_sid_force(value, size, &newsid);
2942 }
2943 if (rc)
2944 return rc;
2945
2946 rc = avc_has_perm(sid, newsid, isec->sclass,
2947 FILE__RELABELTO, &ad);
2948 if (rc)
2949 return rc;
2950
2951 rc = security_validate_transition(isec->sid, newsid, sid,
2952 isec->sclass);
2953 if (rc)
2954 return rc;
2955
2956 return avc_has_perm(newsid,
2957 sbsec->sid,
2958 SECCLASS_FILESYSTEM,
2959 FILESYSTEM__ASSOCIATE,
2960 &ad);
2961 }
2962
2963 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2964 const void *value, size_t size,
2965 int flags)
2966 {
2967 struct inode *inode = dentry->d_inode;
2968 struct inode_security_struct *isec = inode->i_security;
2969 u32 newsid;
2970 int rc;
2971
2972 if (strcmp(name, XATTR_NAME_SELINUX)) {
2973 /* Not an attribute we recognize, so nothing to do. */
2974 return;
2975 }
2976
2977 rc = security_context_to_sid_force(value, size, &newsid);
2978 if (rc) {
2979 printk(KERN_ERR "SELinux: unable to map context to SID"
2980 "for (%s, %lu), rc=%d\n",
2981 inode->i_sb->s_id, inode->i_ino, -rc);
2982 return;
2983 }
2984
2985 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2986 isec->sid = newsid;
2987 isec->initialized = 1;
2988
2989 return;
2990 }
2991
2992 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2993 {
2994 const struct cred *cred = current_cred();
2995
2996 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2997 }
2998
2999 static int selinux_inode_listxattr(struct dentry *dentry)
3000 {
3001 const struct cred *cred = current_cred();
3002
3003 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3004 }
3005
3006 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3007 {
3008 if (strcmp(name, XATTR_NAME_SELINUX))
3009 return selinux_inode_setotherxattr(dentry, name);
3010
3011 /* No one is allowed to remove a SELinux security label.
3012 You can change the label, but all data must be labeled. */
3013 return -EACCES;
3014 }
3015
3016 /*
3017 * Copy the inode security context value to the user.
3018 *
3019 * Permission check is handled by selinux_inode_getxattr hook.
3020 */
3021 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3022 {
3023 u32 size;
3024 int error;
3025 char *context = NULL;
3026 struct inode_security_struct *isec = inode->i_security;
3027
3028 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3029 return -EOPNOTSUPP;
3030
3031 /*
3032 * If the caller has CAP_MAC_ADMIN, then get the raw context
3033 * value even if it is not defined by current policy; otherwise,
3034 * use the in-core value under current policy.
3035 * Use the non-auditing forms of the permission checks since
3036 * getxattr may be called by unprivileged processes commonly
3037 * and lack of permission just means that we fall back to the
3038 * in-core context value, not a denial.
3039 */
3040 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3041 SECURITY_CAP_NOAUDIT);
3042 if (!error)
3043 error = security_sid_to_context_force(isec->sid, &context,
3044 &size);
3045 else
3046 error = security_sid_to_context(isec->sid, &context, &size);
3047 if (error)
3048 return error;
3049 error = size;
3050 if (alloc) {
3051 *buffer = context;
3052 goto out_nofree;
3053 }
3054 kfree(context);
3055 out_nofree:
3056 return error;
3057 }
3058
3059 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3060 const void *value, size_t size, int flags)
3061 {
3062 struct inode_security_struct *isec = inode->i_security;
3063 u32 newsid;
3064 int rc;
3065
3066 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3067 return -EOPNOTSUPP;
3068
3069 if (!value || !size)
3070 return -EACCES;
3071
3072 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3073 if (rc)
3074 return rc;
3075
3076 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3077 isec->sid = newsid;
3078 isec->initialized = 1;
3079 return 0;
3080 }
3081
3082 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3083 {
3084 const int len = sizeof(XATTR_NAME_SELINUX);
3085 if (buffer && len <= buffer_size)
3086 memcpy(buffer, XATTR_NAME_SELINUX, len);
3087 return len;
3088 }
3089
3090 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3091 {
3092 struct inode_security_struct *isec = inode->i_security;
3093 *secid = isec->sid;
3094 }
3095
3096 /* file security operations */
3097
3098 static int selinux_revalidate_file_permission(struct file *file, int mask)
3099 {
3100 const struct cred *cred = current_cred();
3101 struct inode *inode = file_inode(file);
3102
3103 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3104 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3105 mask |= MAY_APPEND;
3106
3107 return file_has_perm(cred, file,
3108 file_mask_to_av(inode->i_mode, mask));
3109 }
3110
3111 static int selinux_file_permission(struct file *file, int mask)
3112 {
3113 struct inode *inode = file_inode(file);
3114 struct file_security_struct *fsec = file->f_security;
3115 struct inode_security_struct *isec = inode->i_security;
3116 u32 sid = current_sid();
3117
3118 if (!mask)
3119 /* No permission to check. Existence test. */
3120 return 0;
3121
3122 if (sid == fsec->sid && fsec->isid == isec->sid &&
3123 fsec->pseqno == avc_policy_seqno())
3124 /* No change since file_open check. */
3125 return 0;
3126
3127 return selinux_revalidate_file_permission(file, mask);
3128 }
3129
3130 static int selinux_file_alloc_security(struct file *file)
3131 {
3132 return file_alloc_security(file);
3133 }
3134
3135 static void selinux_file_free_security(struct file *file)
3136 {
3137 file_free_security(file);
3138 }
3139
3140 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3141 unsigned long arg)
3142 {
3143 const struct cred *cred = current_cred();
3144 int error = 0;
3145
3146 switch (cmd) {
3147 case FIONREAD:
3148 /* fall through */
3149 case FIBMAP:
3150 /* fall through */
3151 case FIGETBSZ:
3152 /* fall through */
3153 case FS_IOC_GETFLAGS:
3154 /* fall through */
3155 case FS_IOC_GETVERSION:
3156 error = file_has_perm(cred, file, FILE__GETATTR);
3157 break;
3158
3159 case FS_IOC_SETFLAGS:
3160 /* fall through */
3161 case FS_IOC_SETVERSION:
3162 error = file_has_perm(cred, file, FILE__SETATTR);
3163 break;
3164
3165 /* sys_ioctl() checks */
3166 case FIONBIO:
3167 /* fall through */
3168 case FIOASYNC:
3169 error = file_has_perm(cred, file, 0);
3170 break;
3171
3172 case KDSKBENT:
3173 case KDSKBSENT:
3174 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3175 SECURITY_CAP_AUDIT);
3176 break;
3177
3178 /* default case assumes that the command will go
3179 * to the file's ioctl() function.
3180 */
3181 default:
3182 error = file_has_perm(cred, file, FILE__IOCTL);
3183 }
3184 return error;
3185 }
3186
3187 static int default_noexec;
3188
3189 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3190 {
3191 const struct cred *cred = current_cred();
3192 int rc = 0;
3193
3194 if (default_noexec &&
3195 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3196 /*
3197 * We are making executable an anonymous mapping or a
3198 * private file mapping that will also be writable.
3199 * This has an additional check.
3200 */
3201 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3202 if (rc)
3203 goto error;
3204 }
3205
3206 if (file) {
3207 /* read access is always possible with a mapping */
3208 u32 av = FILE__READ;
3209
3210 /* write access only matters if the mapping is shared */
3211 if (shared && (prot & PROT_WRITE))
3212 av |= FILE__WRITE;
3213
3214 if (prot & PROT_EXEC)
3215 av |= FILE__EXECUTE;
3216
3217 return file_has_perm(cred, file, av);
3218 }
3219
3220 error:
3221 return rc;
3222 }
3223
3224 static int selinux_mmap_addr(unsigned long addr)
3225 {
3226 int rc;
3227
3228 /* do DAC check on address space usage */
3229 rc = cap_mmap_addr(addr);
3230 if (rc)
3231 return rc;
3232
3233 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3234 u32 sid = current_sid();
3235 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3236 MEMPROTECT__MMAP_ZERO, NULL);
3237 }
3238
3239 return rc;
3240 }
3241
3242 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3243 unsigned long prot, unsigned long flags)
3244 {
3245 if (selinux_checkreqprot)
3246 prot = reqprot;
3247
3248 return file_map_prot_check(file, prot,
3249 (flags & MAP_TYPE) == MAP_SHARED);
3250 }
3251
3252 static int selinux_file_mprotect(struct vm_area_struct *vma,
3253 unsigned long reqprot,
3254 unsigned long prot)
3255 {
3256 const struct cred *cred = current_cred();
3257
3258 if (selinux_checkreqprot)
3259 prot = reqprot;
3260
3261 if (default_noexec &&
3262 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3263 int rc = 0;
3264 if (vma->vm_start >= vma->vm_mm->start_brk &&
3265 vma->vm_end <= vma->vm_mm->brk) {
3266 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3267 } else if (!vma->vm_file &&
3268 vma->vm_start <= vma->vm_mm->start_stack &&
3269 vma->vm_end >= vma->vm_mm->start_stack) {
3270 rc = current_has_perm(current, PROCESS__EXECSTACK);
3271 } else if (vma->vm_file && vma->anon_vma) {
3272 /*
3273 * We are making executable a file mapping that has
3274 * had some COW done. Since pages might have been
3275 * written, check ability to execute the possibly
3276 * modified content. This typically should only
3277 * occur for text relocations.
3278 */
3279 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3280 }
3281 if (rc)
3282 return rc;
3283 }
3284
3285 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3286 }
3287
3288 static int selinux_file_lock(struct file *file, unsigned int cmd)
3289 {
3290 const struct cred *cred = current_cred();
3291
3292 return file_has_perm(cred, file, FILE__LOCK);
3293 }
3294
3295 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3296 unsigned long arg)
3297 {
3298 const struct cred *cred = current_cred();
3299 int err = 0;
3300
3301 switch (cmd) {
3302 case F_SETFL:
3303 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3304 err = file_has_perm(cred, file, FILE__WRITE);
3305 break;
3306 }
3307 /* fall through */
3308 case F_SETOWN:
3309 case F_SETSIG:
3310 case F_GETFL:
3311 case F_GETOWN:
3312 case F_GETSIG:
3313 case F_GETOWNER_UIDS:
3314 /* Just check FD__USE permission */
3315 err = file_has_perm(cred, file, 0);
3316 break;
3317 case F_GETLK:
3318 case F_SETLK:
3319 case F_SETLKW:
3320 case F_OFD_GETLK:
3321 case F_OFD_SETLK:
3322 case F_OFD_SETLKW:
3323 #if BITS_PER_LONG == 32
3324 case F_GETLK64:
3325 case F_SETLK64:
3326 case F_SETLKW64:
3327 #endif
3328 err = file_has_perm(cred, file, FILE__LOCK);
3329 break;
3330 }
3331
3332 return err;
3333 }
3334
3335 static int selinux_file_set_fowner(struct file *file)
3336 {
3337 struct file_security_struct *fsec;
3338
3339 fsec = file->f_security;
3340 fsec->fown_sid = current_sid();
3341
3342 return 0;
3343 }
3344
3345 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3346 struct fown_struct *fown, int signum)
3347 {
3348 struct file *file;
3349 u32 sid = task_sid(tsk);
3350 u32 perm;
3351 struct file_security_struct *fsec;
3352
3353 /* struct fown_struct is never outside the context of a struct file */
3354 file = container_of(fown, struct file, f_owner);
3355
3356 fsec = file->f_security;
3357
3358 if (!signum)
3359 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3360 else
3361 perm = signal_to_av(signum);
3362
3363 return avc_has_perm(fsec->fown_sid, sid,
3364 SECCLASS_PROCESS, perm, NULL);
3365 }
3366
3367 static int selinux_file_receive(struct file *file)
3368 {
3369 const struct cred *cred = current_cred();
3370
3371 return file_has_perm(cred, file, file_to_av(file));
3372 }
3373
3374 static int selinux_file_open(struct file *file, const struct cred *cred)
3375 {
3376 struct file_security_struct *fsec;
3377 struct inode_security_struct *isec;
3378
3379 fsec = file->f_security;
3380 isec = file_inode(file)->i_security;
3381 /*
3382 * Save inode label and policy sequence number
3383 * at open-time so that selinux_file_permission
3384 * can determine whether revalidation is necessary.
3385 * Task label is already saved in the file security
3386 * struct as its SID.
3387 */
3388 fsec->isid = isec->sid;
3389 fsec->pseqno = avc_policy_seqno();
3390 /*
3391 * Since the inode label or policy seqno may have changed
3392 * between the selinux_inode_permission check and the saving
3393 * of state above, recheck that access is still permitted.
3394 * Otherwise, access might never be revalidated against the
3395 * new inode label or new policy.
3396 * This check is not redundant - do not remove.
3397 */
3398 return file_path_has_perm(cred, file, open_file_to_av(file));
3399 }
3400
3401 /* task security operations */
3402
3403 static int selinux_task_create(unsigned long clone_flags)
3404 {
3405 return current_has_perm(current, PROCESS__FORK);
3406 }
3407
3408 /*
3409 * allocate the SELinux part of blank credentials
3410 */
3411 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3412 {
3413 struct task_security_struct *tsec;
3414
3415 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3416 if (!tsec)
3417 return -ENOMEM;
3418
3419 cred->security = tsec;
3420 return 0;
3421 }
3422
3423 /*
3424 * detach and free the LSM part of a set of credentials
3425 */
3426 static void selinux_cred_free(struct cred *cred)
3427 {
3428 struct task_security_struct *tsec = cred->security;
3429
3430 /*
3431 * cred->security == NULL if security_cred_alloc_blank() or
3432 * security_prepare_creds() returned an error.
3433 */
3434 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3435 cred->security = (void *) 0x7UL;
3436 kfree(tsec);
3437 }
3438
3439 /*
3440 * prepare a new set of credentials for modification
3441 */
3442 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3443 gfp_t gfp)
3444 {
3445 const struct task_security_struct *old_tsec;
3446 struct task_security_struct *tsec;
3447
3448 old_tsec = old->security;
3449
3450 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3451 if (!tsec)
3452 return -ENOMEM;
3453
3454 new->security = tsec;
3455 return 0;
3456 }
3457
3458 /*
3459 * transfer the SELinux data to a blank set of creds
3460 */
3461 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3462 {
3463 const struct task_security_struct *old_tsec = old->security;
3464 struct task_security_struct *tsec = new->security;
3465
3466 *tsec = *old_tsec;
3467 }
3468
3469 /*
3470 * set the security data for a kernel service
3471 * - all the creation contexts are set to unlabelled
3472 */
3473 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3474 {
3475 struct task_security_struct *tsec = new->security;
3476 u32 sid = current_sid();
3477 int ret;
3478
3479 ret = avc_has_perm(sid, secid,
3480 SECCLASS_KERNEL_SERVICE,
3481 KERNEL_SERVICE__USE_AS_OVERRIDE,
3482 NULL);
3483 if (ret == 0) {
3484 tsec->sid = secid;
3485 tsec->create_sid = 0;
3486 tsec->keycreate_sid = 0;
3487 tsec->sockcreate_sid = 0;
3488 }
3489 return ret;
3490 }
3491
3492 /*
3493 * set the file creation context in a security record to the same as the
3494 * objective context of the specified inode
3495 */
3496 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3497 {
3498 struct inode_security_struct *isec = inode->i_security;
3499 struct task_security_struct *tsec = new->security;
3500 u32 sid = current_sid();
3501 int ret;
3502
3503 ret = avc_has_perm(sid, isec->sid,
3504 SECCLASS_KERNEL_SERVICE,
3505 KERNEL_SERVICE__CREATE_FILES_AS,
3506 NULL);
3507
3508 if (ret == 0)
3509 tsec->create_sid = isec->sid;
3510 return ret;
3511 }
3512
3513 static int selinux_kernel_module_request(char *kmod_name)
3514 {
3515 u32 sid;
3516 struct common_audit_data ad;
3517
3518 sid = task_sid(current);
3519
3520 ad.type = LSM_AUDIT_DATA_KMOD;
3521 ad.u.kmod_name = kmod_name;
3522
3523 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3524 SYSTEM__MODULE_REQUEST, &ad);
3525 }
3526
3527 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3528 {
3529 return current_has_perm(p, PROCESS__SETPGID);
3530 }
3531
3532 static int selinux_task_getpgid(struct task_struct *p)
3533 {
3534 return current_has_perm(p, PROCESS__GETPGID);
3535 }
3536
3537 static int selinux_task_getsid(struct task_struct *p)
3538 {
3539 return current_has_perm(p, PROCESS__GETSESSION);
3540 }
3541
3542 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3543 {
3544 *secid = task_sid(p);
3545 }
3546
3547 static int selinux_task_setnice(struct task_struct *p, int nice)
3548 {
3549 int rc;
3550
3551 rc = cap_task_setnice(p, nice);
3552 if (rc)
3553 return rc;
3554
3555 return current_has_perm(p, PROCESS__SETSCHED);
3556 }
3557
3558 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3559 {
3560 int rc;
3561
3562 rc = cap_task_setioprio(p, ioprio);
3563 if (rc)
3564 return rc;
3565
3566 return current_has_perm(p, PROCESS__SETSCHED);
3567 }
3568
3569 static int selinux_task_getioprio(struct task_struct *p)
3570 {
3571 return current_has_perm(p, PROCESS__GETSCHED);
3572 }
3573
3574 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3575 struct rlimit *new_rlim)
3576 {
3577 struct rlimit *old_rlim = p->signal->rlim + resource;
3578
3579 /* Control the ability to change the hard limit (whether
3580 lowering or raising it), so that the hard limit can
3581 later be used as a safe reset point for the soft limit
3582 upon context transitions. See selinux_bprm_committing_creds. */
3583 if (old_rlim->rlim_max != new_rlim->rlim_max)
3584 return current_has_perm(p, PROCESS__SETRLIMIT);
3585
3586 return 0;
3587 }
3588
3589 static int selinux_task_setscheduler(struct task_struct *p)
3590 {
3591 int rc;
3592
3593 rc = cap_task_setscheduler(p);
3594 if (rc)
3595 return rc;
3596
3597 return current_has_perm(p, PROCESS__SETSCHED);
3598 }
3599
3600 static int selinux_task_getscheduler(struct task_struct *p)
3601 {
3602 return current_has_perm(p, PROCESS__GETSCHED);
3603 }
3604
3605 static int selinux_task_movememory(struct task_struct *p)
3606 {
3607 return current_has_perm(p, PROCESS__SETSCHED);
3608 }
3609
3610 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3611 int sig, u32 secid)
3612 {
3613 u32 perm;
3614 int rc;
3615
3616 if (!sig)
3617 perm = PROCESS__SIGNULL; /* null signal; existence test */
3618 else
3619 perm = signal_to_av(sig);
3620 if (secid)
3621 rc = avc_has_perm(secid, task_sid(p),
3622 SECCLASS_PROCESS, perm, NULL);
3623 else
3624 rc = current_has_perm(p, perm);
3625 return rc;
3626 }
3627
3628 static int selinux_task_wait(struct task_struct *p)
3629 {
3630 return task_has_perm(p, current, PROCESS__SIGCHLD);
3631 }
3632
3633 static void selinux_task_to_inode(struct task_struct *p,
3634 struct inode *inode)
3635 {
3636 struct inode_security_struct *isec = inode->i_security;
3637 u32 sid = task_sid(p);
3638
3639 isec->sid = sid;
3640 isec->initialized = 1;
3641 }
3642
3643 /* Returns error only if unable to parse addresses */
3644 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3645 struct common_audit_data *ad, u8 *proto)
3646 {
3647 int offset, ihlen, ret = -EINVAL;
3648 struct iphdr _iph, *ih;
3649
3650 offset = skb_network_offset(skb);
3651 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3652 if (ih == NULL)
3653 goto out;
3654
3655 ihlen = ih->ihl * 4;
3656 if (ihlen < sizeof(_iph))
3657 goto out;
3658
3659 ad->u.net->v4info.saddr = ih->saddr;
3660 ad->u.net->v4info.daddr = ih->daddr;
3661 ret = 0;
3662
3663 if (proto)
3664 *proto = ih->protocol;
3665
3666 switch (ih->protocol) {
3667 case IPPROTO_TCP: {
3668 struct tcphdr _tcph, *th;
3669
3670 if (ntohs(ih->frag_off) & IP_OFFSET)
3671 break;
3672
3673 offset += ihlen;
3674 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3675 if (th == NULL)
3676 break;
3677
3678 ad->u.net->sport = th->source;
3679 ad->u.net->dport = th->dest;
3680 break;
3681 }
3682
3683 case IPPROTO_UDP: {
3684 struct udphdr _udph, *uh;
3685
3686 if (ntohs(ih->frag_off) & IP_OFFSET)
3687 break;
3688
3689 offset += ihlen;
3690 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3691 if (uh == NULL)
3692 break;
3693
3694 ad->u.net->sport = uh->source;
3695 ad->u.net->dport = uh->dest;
3696 break;
3697 }
3698
3699 case IPPROTO_DCCP: {
3700 struct dccp_hdr _dccph, *dh;
3701
3702 if (ntohs(ih->frag_off) & IP_OFFSET)
3703 break;
3704
3705 offset += ihlen;
3706 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3707 if (dh == NULL)
3708 break;
3709
3710 ad->u.net->sport = dh->dccph_sport;
3711 ad->u.net->dport = dh->dccph_dport;
3712 break;
3713 }
3714
3715 default:
3716 break;
3717 }
3718 out:
3719 return ret;
3720 }
3721
3722 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3723
3724 /* Returns error only if unable to parse addresses */
3725 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3726 struct common_audit_data *ad, u8 *proto)
3727 {
3728 u8 nexthdr;
3729 int ret = -EINVAL, offset;
3730 struct ipv6hdr _ipv6h, *ip6;
3731 __be16 frag_off;
3732
3733 offset = skb_network_offset(skb);
3734 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3735 if (ip6 == NULL)
3736 goto out;
3737
3738 ad->u.net->v6info.saddr = ip6->saddr;
3739 ad->u.net->v6info.daddr = ip6->daddr;
3740 ret = 0;
3741
3742 nexthdr = ip6->nexthdr;
3743 offset += sizeof(_ipv6h);
3744 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3745 if (offset < 0)
3746 goto out;
3747
3748 if (proto)
3749 *proto = nexthdr;
3750
3751 switch (nexthdr) {
3752 case IPPROTO_TCP: {
3753 struct tcphdr _tcph, *th;
3754
3755 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3756 if (th == NULL)
3757 break;
3758
3759 ad->u.net->sport = th->source;
3760 ad->u.net->dport = th->dest;
3761 break;
3762 }
3763
3764 case IPPROTO_UDP: {
3765 struct udphdr _udph, *uh;
3766
3767 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3768 if (uh == NULL)
3769 break;
3770
3771 ad->u.net->sport = uh->source;
3772 ad->u.net->dport = uh->dest;
3773 break;
3774 }
3775
3776 case IPPROTO_DCCP: {
3777 struct dccp_hdr _dccph, *dh;
3778
3779 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3780 if (dh == NULL)
3781 break;
3782
3783 ad->u.net->sport = dh->dccph_sport;
3784 ad->u.net->dport = dh->dccph_dport;
3785 break;
3786 }
3787
3788 /* includes fragments */
3789 default:
3790 break;
3791 }
3792 out:
3793 return ret;
3794 }
3795
3796 #endif /* IPV6 */
3797
3798 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3799 char **_addrp, int src, u8 *proto)
3800 {
3801 char *addrp;
3802 int ret;
3803
3804 switch (ad->u.net->family) {
3805 case PF_INET:
3806 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3807 if (ret)
3808 goto parse_error;
3809 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3810 &ad->u.net->v4info.daddr);
3811 goto okay;
3812
3813 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3814 case PF_INET6:
3815 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3816 if (ret)
3817 goto parse_error;
3818 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3819 &ad->u.net->v6info.daddr);
3820 goto okay;
3821 #endif /* IPV6 */
3822 default:
3823 addrp = NULL;
3824 goto okay;
3825 }
3826
3827 parse_error:
3828 printk(KERN_WARNING
3829 "SELinux: failure in selinux_parse_skb(),"
3830 " unable to parse packet\n");
3831 return ret;
3832
3833 okay:
3834 if (_addrp)
3835 *_addrp = addrp;
3836 return 0;
3837 }
3838
3839 /**
3840 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3841 * @skb: the packet
3842 * @family: protocol family
3843 * @sid: the packet's peer label SID
3844 *
3845 * Description:
3846 * Check the various different forms of network peer labeling and determine
3847 * the peer label/SID for the packet; most of the magic actually occurs in
3848 * the security server function security_net_peersid_cmp(). The function
3849 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3850 * or -EACCES if @sid is invalid due to inconsistencies with the different
3851 * peer labels.
3852 *
3853 */
3854 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3855 {
3856 int err;
3857 u32 xfrm_sid;
3858 u32 nlbl_sid;
3859 u32 nlbl_type;
3860
3861 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3862 if (unlikely(err))
3863 return -EACCES;
3864 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3865 if (unlikely(err))
3866 return -EACCES;
3867
3868 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3869 if (unlikely(err)) {
3870 printk(KERN_WARNING
3871 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3872 " unable to determine packet's peer label\n");
3873 return -EACCES;
3874 }
3875
3876 return 0;
3877 }
3878
3879 /**
3880 * selinux_conn_sid - Determine the child socket label for a connection
3881 * @sk_sid: the parent socket's SID
3882 * @skb_sid: the packet's SID
3883 * @conn_sid: the resulting connection SID
3884 *
3885 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3886 * combined with the MLS information from @skb_sid in order to create
3887 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
3888 * of @sk_sid. Returns zero on success, negative values on failure.
3889 *
3890 */
3891 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3892 {
3893 int err = 0;
3894
3895 if (skb_sid != SECSID_NULL)
3896 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3897 else
3898 *conn_sid = sk_sid;
3899
3900 return err;
3901 }
3902
3903 /* socket security operations */
3904
3905 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3906 u16 secclass, u32 *socksid)
3907 {
3908 if (tsec->sockcreate_sid > SECSID_NULL) {
3909 *socksid = tsec->sockcreate_sid;
3910 return 0;
3911 }
3912
3913 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3914 socksid);
3915 }
3916
3917 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3918 {
3919 struct sk_security_struct *sksec = sk->sk_security;
3920 struct common_audit_data ad;
3921 struct lsm_network_audit net = {0,};
3922 u32 tsid = task_sid(task);
3923
3924 if (sksec->sid == SECINITSID_KERNEL)
3925 return 0;
3926
3927 ad.type = LSM_AUDIT_DATA_NET;
3928 ad.u.net = &net;
3929 ad.u.net->sk = sk;
3930
3931 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3932 }
3933
3934 static int selinux_socket_create(int family, int type,
3935 int protocol, int kern)
3936 {
3937 const struct task_security_struct *tsec = current_security();
3938 u32 newsid;
3939 u16 secclass;
3940 int rc;
3941
3942 if (kern)
3943 return 0;
3944
3945 secclass = socket_type_to_security_class(family, type, protocol);
3946 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3947 if (rc)
3948 return rc;
3949
3950 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3951 }
3952
3953 static int selinux_socket_post_create(struct socket *sock, int family,
3954 int type, int protocol, int kern)
3955 {
3956 const struct task_security_struct *tsec = current_security();
3957 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3958 struct sk_security_struct *sksec;
3959 int err = 0;
3960
3961 isec->sclass = socket_type_to_security_class(family, type, protocol);
3962
3963 if (kern)
3964 isec->sid = SECINITSID_KERNEL;
3965 else {
3966 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3967 if (err)
3968 return err;
3969 }
3970
3971 isec->initialized = 1;
3972
3973 if (sock->sk) {
3974 sksec = sock->sk->sk_security;
3975 sksec->sid = isec->sid;
3976 sksec->sclass = isec->sclass;
3977 err = selinux_netlbl_socket_post_create(sock->sk, family);
3978 }
3979
3980 return err;
3981 }
3982
3983 /* Range of port numbers used to automatically bind.
3984 Need to determine whether we should perform a name_bind
3985 permission check between the socket and the port number. */
3986
3987 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3988 {
3989 struct sock *sk = sock->sk;
3990 u16 family;
3991 int err;
3992
3993 err = sock_has_perm(current, sk, SOCKET__BIND);
3994 if (err)
3995 goto out;
3996
3997 /*
3998 * If PF_INET or PF_INET6, check name_bind permission for the port.
3999 * Multiple address binding for SCTP is not supported yet: we just
4000 * check the first address now.
4001 */
4002 family = sk->sk_family;
4003 if (family == PF_INET || family == PF_INET6) {
4004 char *addrp;
4005 struct sk_security_struct *sksec = sk->sk_security;
4006 struct common_audit_data ad;
4007 struct lsm_network_audit net = {0,};
4008 struct sockaddr_in *addr4 = NULL;
4009 struct sockaddr_in6 *addr6 = NULL;
4010 unsigned short snum;
4011 u32 sid, node_perm;
4012
4013 if (family == PF_INET) {
4014 addr4 = (struct sockaddr_in *)address;
4015 snum = ntohs(addr4->sin_port);
4016 addrp = (char *)&addr4->sin_addr.s_addr;
4017 } else {
4018 addr6 = (struct sockaddr_in6 *)address;
4019 snum = ntohs(addr6->sin6_port);
4020 addrp = (char *)&addr6->sin6_addr.s6_addr;
4021 }
4022
4023 if (snum) {
4024 int low, high;
4025
4026 inet_get_local_port_range(sock_net(sk), &low, &high);
4027
4028 if (snum < max(PROT_SOCK, low) || snum > high) {
4029 err = sel_netport_sid(sk->sk_protocol,
4030 snum, &sid);
4031 if (err)
4032 goto out;
4033 ad.type = LSM_AUDIT_DATA_NET;
4034 ad.u.net = &net;
4035 ad.u.net->sport = htons(snum);
4036 ad.u.net->family = family;
4037 err = avc_has_perm(sksec->sid, sid,
4038 sksec->sclass,
4039 SOCKET__NAME_BIND, &ad);
4040 if (err)
4041 goto out;
4042 }
4043 }
4044
4045 switch (sksec->sclass) {
4046 case SECCLASS_TCP_SOCKET:
4047 node_perm = TCP_SOCKET__NODE_BIND;
4048 break;
4049
4050 case SECCLASS_UDP_SOCKET:
4051 node_perm = UDP_SOCKET__NODE_BIND;
4052 break;
4053
4054 case SECCLASS_DCCP_SOCKET:
4055 node_perm = DCCP_SOCKET__NODE_BIND;
4056 break;
4057
4058 default:
4059 node_perm = RAWIP_SOCKET__NODE_BIND;
4060 break;
4061 }
4062
4063 err = sel_netnode_sid(addrp, family, &sid);
4064 if (err)
4065 goto out;
4066
4067 ad.type = LSM_AUDIT_DATA_NET;
4068 ad.u.net = &net;
4069 ad.u.net->sport = htons(snum);
4070 ad.u.net->family = family;
4071
4072 if (family == PF_INET)
4073 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4074 else
4075 ad.u.net->v6info.saddr = addr6->sin6_addr;
4076
4077 err = avc_has_perm(sksec->sid, sid,
4078 sksec->sclass, node_perm, &ad);
4079 if (err)
4080 goto out;
4081 }
4082 out:
4083 return err;
4084 }
4085
4086 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4087 {
4088 struct sock *sk = sock->sk;
4089 struct sk_security_struct *sksec = sk->sk_security;
4090 int err;
4091
4092 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4093 if (err)
4094 return err;
4095
4096 /*
4097 * If a TCP or DCCP socket, check name_connect permission for the port.
4098 */
4099 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4100 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4101 struct common_audit_data ad;
4102 struct lsm_network_audit net = {0,};
4103 struct sockaddr_in *addr4 = NULL;
4104 struct sockaddr_in6 *addr6 = NULL;
4105 unsigned short snum;
4106 u32 sid, perm;
4107
4108 if (sk->sk_family == PF_INET) {
4109 addr4 = (struct sockaddr_in *)address;
4110 if (addrlen < sizeof(struct sockaddr_in))
4111 return -EINVAL;
4112 snum = ntohs(addr4->sin_port);
4113 } else {
4114 addr6 = (struct sockaddr_in6 *)address;
4115 if (addrlen < SIN6_LEN_RFC2133)
4116 return -EINVAL;
4117 snum = ntohs(addr6->sin6_port);
4118 }
4119
4120 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4121 if (err)
4122 goto out;
4123
4124 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4125 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4126
4127 ad.type = LSM_AUDIT_DATA_NET;
4128 ad.u.net = &net;
4129 ad.u.net->dport = htons(snum);
4130 ad.u.net->family = sk->sk_family;
4131 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4132 if (err)
4133 goto out;
4134 }
4135
4136 err = selinux_netlbl_socket_connect(sk, address);
4137
4138 out:
4139 return err;
4140 }
4141
4142 static int selinux_socket_listen(struct socket *sock, int backlog)
4143 {
4144 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4145 }
4146
4147 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4148 {
4149 int err;
4150 struct inode_security_struct *isec;
4151 struct inode_security_struct *newisec;
4152
4153 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4154 if (err)
4155 return err;
4156
4157 newisec = SOCK_INODE(newsock)->i_security;
4158
4159 isec = SOCK_INODE(sock)->i_security;
4160 newisec->sclass = isec->sclass;
4161 newisec->sid = isec->sid;
4162 newisec->initialized = 1;
4163
4164 return 0;
4165 }
4166
4167 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4168 int size)
4169 {
4170 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4171 }
4172
4173 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4174 int size, int flags)
4175 {
4176 return sock_has_perm(current, sock->sk, SOCKET__READ);
4177 }
4178
4179 static int selinux_socket_getsockname(struct socket *sock)
4180 {
4181 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4182 }
4183
4184 static int selinux_socket_getpeername(struct socket *sock)
4185 {
4186 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4187 }
4188
4189 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4190 {
4191 int err;
4192
4193 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4194 if (err)
4195 return err;
4196
4197 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4198 }
4199
4200 static int selinux_socket_getsockopt(struct socket *sock, int level,
4201 int optname)
4202 {
4203 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4204 }
4205
4206 static int selinux_socket_shutdown(struct socket *sock, int how)
4207 {
4208 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4209 }
4210
4211 static int selinux_socket_unix_stream_connect(struct sock *sock,
4212 struct sock *other,
4213 struct sock *newsk)
4214 {
4215 struct sk_security_struct *sksec_sock = sock->sk_security;
4216 struct sk_security_struct *sksec_other = other->sk_security;
4217 struct sk_security_struct *sksec_new = newsk->sk_security;
4218 struct common_audit_data ad;
4219 struct lsm_network_audit net = {0,};
4220 int err;
4221
4222 ad.type = LSM_AUDIT_DATA_NET;
4223 ad.u.net = &net;
4224 ad.u.net->sk = other;
4225
4226 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4227 sksec_other->sclass,
4228 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4229 if (err)
4230 return err;
4231
4232 /* server child socket */
4233 sksec_new->peer_sid = sksec_sock->sid;
4234 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4235 &sksec_new->sid);
4236 if (err)
4237 return err;
4238
4239 /* connecting socket */
4240 sksec_sock->peer_sid = sksec_new->sid;
4241
4242 return 0;
4243 }
4244
4245 static int selinux_socket_unix_may_send(struct socket *sock,
4246 struct socket *other)
4247 {
4248 struct sk_security_struct *ssec = sock->sk->sk_security;
4249 struct sk_security_struct *osec = other->sk->sk_security;
4250 struct common_audit_data ad;
4251 struct lsm_network_audit net = {0,};
4252
4253 ad.type = LSM_AUDIT_DATA_NET;
4254 ad.u.net = &net;
4255 ad.u.net->sk = other->sk;
4256
4257 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4258 &ad);
4259 }
4260
4261 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4262 u32 peer_sid,
4263 struct common_audit_data *ad)
4264 {
4265 int err;
4266 u32 if_sid;
4267 u32 node_sid;
4268
4269 err = sel_netif_sid(ifindex, &if_sid);
4270 if (err)
4271 return err;
4272 err = avc_has_perm(peer_sid, if_sid,
4273 SECCLASS_NETIF, NETIF__INGRESS, ad);
4274 if (err)
4275 return err;
4276
4277 err = sel_netnode_sid(addrp, family, &node_sid);
4278 if (err)
4279 return err;
4280 return avc_has_perm(peer_sid, node_sid,
4281 SECCLASS_NODE, NODE__RECVFROM, ad);
4282 }
4283
4284 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4285 u16 family)
4286 {
4287 int err = 0;
4288 struct sk_security_struct *sksec = sk->sk_security;
4289 u32 sk_sid = sksec->sid;
4290 struct common_audit_data ad;
4291 struct lsm_network_audit net = {0,};
4292 char *addrp;
4293
4294 ad.type = LSM_AUDIT_DATA_NET;
4295 ad.u.net = &net;
4296 ad.u.net->netif = skb->skb_iif;
4297 ad.u.net->family = family;
4298 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4299 if (err)
4300 return err;
4301
4302 if (selinux_secmark_enabled()) {
4303 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4304 PACKET__RECV, &ad);
4305 if (err)
4306 return err;
4307 }
4308
4309 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4310 if (err)
4311 return err;
4312 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4313
4314 return err;
4315 }
4316
4317 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4318 {
4319 int err;
4320 struct sk_security_struct *sksec = sk->sk_security;
4321 u16 family = sk->sk_family;
4322 u32 sk_sid = sksec->sid;
4323 struct common_audit_data ad;
4324 struct lsm_network_audit net = {0,};
4325 char *addrp;
4326 u8 secmark_active;
4327 u8 peerlbl_active;
4328
4329 if (family != PF_INET && family != PF_INET6)
4330 return 0;
4331
4332 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4333 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4334 family = PF_INET;
4335
4336 /* If any sort of compatibility mode is enabled then handoff processing
4337 * to the selinux_sock_rcv_skb_compat() function to deal with the
4338 * special handling. We do this in an attempt to keep this function
4339 * as fast and as clean as possible. */
4340 if (!selinux_policycap_netpeer)
4341 return selinux_sock_rcv_skb_compat(sk, skb, family);
4342
4343 secmark_active = selinux_secmark_enabled();
4344 peerlbl_active = selinux_peerlbl_enabled();
4345 if (!secmark_active && !peerlbl_active)
4346 return 0;
4347
4348 ad.type = LSM_AUDIT_DATA_NET;
4349 ad.u.net = &net;
4350 ad.u.net->netif = skb->skb_iif;
4351 ad.u.net->family = family;
4352 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4353 if (err)
4354 return err;
4355
4356 if (peerlbl_active) {
4357 u32 peer_sid;
4358
4359 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4360 if (err)
4361 return err;
4362 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4363 peer_sid, &ad);
4364 if (err) {
4365 selinux_netlbl_err(skb, err, 0);
4366 return err;
4367 }
4368 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4369 PEER__RECV, &ad);
4370 if (err) {
4371 selinux_netlbl_err(skb, err, 0);
4372 return err;
4373 }
4374 }
4375
4376 if (secmark_active) {
4377 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4378 PACKET__RECV, &ad);
4379 if (err)
4380 return err;
4381 }
4382
4383 return err;
4384 }
4385
4386 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4387 int __user *optlen, unsigned len)
4388 {
4389 int err = 0;
4390 char *scontext;
4391 u32 scontext_len;
4392 struct sk_security_struct *sksec = sock->sk->sk_security;
4393 u32 peer_sid = SECSID_NULL;
4394
4395 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4396 sksec->sclass == SECCLASS_TCP_SOCKET)
4397 peer_sid = sksec->peer_sid;
4398 if (peer_sid == SECSID_NULL)
4399 return -ENOPROTOOPT;
4400
4401 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4402 if (err)
4403 return err;
4404
4405 if (scontext_len > len) {
4406 err = -ERANGE;
4407 goto out_len;
4408 }
4409
4410 if (copy_to_user(optval, scontext, scontext_len))
4411 err = -EFAULT;
4412
4413 out_len:
4414 if (put_user(scontext_len, optlen))
4415 err = -EFAULT;
4416 kfree(scontext);
4417 return err;
4418 }
4419
4420 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4421 {
4422 u32 peer_secid = SECSID_NULL;
4423 u16 family;
4424
4425 if (skb && skb->protocol == htons(ETH_P_IP))
4426 family = PF_INET;
4427 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4428 family = PF_INET6;
4429 else if (sock)
4430 family = sock->sk->sk_family;
4431 else
4432 goto out;
4433
4434 if (sock && family == PF_UNIX)
4435 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4436 else if (skb)
4437 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4438
4439 out:
4440 *secid = peer_secid;
4441 if (peer_secid == SECSID_NULL)
4442 return -EINVAL;
4443 return 0;
4444 }
4445
4446 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4447 {
4448 struct sk_security_struct *sksec;
4449
4450 sksec = kzalloc(sizeof(*sksec), priority);
4451 if (!sksec)
4452 return -ENOMEM;
4453
4454 sksec->peer_sid = SECINITSID_UNLABELED;
4455 sksec->sid = SECINITSID_UNLABELED;
4456 selinux_netlbl_sk_security_reset(sksec);
4457 sk->sk_security = sksec;
4458
4459 return 0;
4460 }
4461
4462 static void selinux_sk_free_security(struct sock *sk)
4463 {
4464 struct sk_security_struct *sksec = sk->sk_security;
4465
4466 sk->sk_security = NULL;
4467 selinux_netlbl_sk_security_free(sksec);
4468 kfree(sksec);
4469 }
4470
4471 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4472 {
4473 struct sk_security_struct *sksec = sk->sk_security;
4474 struct sk_security_struct *newsksec = newsk->sk_security;
4475
4476 newsksec->sid = sksec->sid;
4477 newsksec->peer_sid = sksec->peer_sid;
4478 newsksec->sclass = sksec->sclass;
4479
4480 selinux_netlbl_sk_security_reset(newsksec);
4481 }
4482
4483 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4484 {
4485 if (!sk)
4486 *secid = SECINITSID_ANY_SOCKET;
4487 else {
4488 struct sk_security_struct *sksec = sk->sk_security;
4489
4490 *secid = sksec->sid;
4491 }
4492 }
4493
4494 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4495 {
4496 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4497 struct sk_security_struct *sksec = sk->sk_security;
4498
4499 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4500 sk->sk_family == PF_UNIX)
4501 isec->sid = sksec->sid;
4502 sksec->sclass = isec->sclass;
4503 }
4504
4505 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4506 struct request_sock *req)
4507 {
4508 struct sk_security_struct *sksec = sk->sk_security;
4509 int err;
4510 u16 family = req->rsk_ops->family;
4511 u32 connsid;
4512 u32 peersid;
4513
4514 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4515 if (err)
4516 return err;
4517 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4518 if (err)
4519 return err;
4520 req->secid = connsid;
4521 req->peer_secid = peersid;
4522
4523 return selinux_netlbl_inet_conn_request(req, family);
4524 }
4525
4526 static void selinux_inet_csk_clone(struct sock *newsk,
4527 const struct request_sock *req)
4528 {
4529 struct sk_security_struct *newsksec = newsk->sk_security;
4530
4531 newsksec->sid = req->secid;
4532 newsksec->peer_sid = req->peer_secid;
4533 /* NOTE: Ideally, we should also get the isec->sid for the
4534 new socket in sync, but we don't have the isec available yet.
4535 So we will wait until sock_graft to do it, by which
4536 time it will have been created and available. */
4537
4538 /* We don't need to take any sort of lock here as we are the only
4539 * thread with access to newsksec */
4540 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4541 }
4542
4543 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4544 {
4545 u16 family = sk->sk_family;
4546 struct sk_security_struct *sksec = sk->sk_security;
4547
4548 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4549 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4550 family = PF_INET;
4551
4552 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4553 }
4554
4555 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4556 {
4557 skb_set_owner_w(skb, sk);
4558 }
4559
4560 static int selinux_secmark_relabel_packet(u32 sid)
4561 {
4562 const struct task_security_struct *__tsec;
4563 u32 tsid;
4564
4565 __tsec = current_security();
4566 tsid = __tsec->sid;
4567
4568 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4569 }
4570
4571 static void selinux_secmark_refcount_inc(void)
4572 {
4573 atomic_inc(&selinux_secmark_refcount);
4574 }
4575
4576 static void selinux_secmark_refcount_dec(void)
4577 {
4578 atomic_dec(&selinux_secmark_refcount);
4579 }
4580
4581 static void selinux_req_classify_flow(const struct request_sock *req,
4582 struct flowi *fl)
4583 {
4584 fl->flowi_secid = req->secid;
4585 }
4586
4587 static int selinux_tun_dev_alloc_security(void **security)
4588 {
4589 struct tun_security_struct *tunsec;
4590
4591 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4592 if (!tunsec)
4593 return -ENOMEM;
4594 tunsec->sid = current_sid();
4595
4596 *security = tunsec;
4597 return 0;
4598 }
4599
4600 static void selinux_tun_dev_free_security(void *security)
4601 {
4602 kfree(security);
4603 }
4604
4605 static int selinux_tun_dev_create(void)
4606 {
4607 u32 sid = current_sid();
4608
4609 /* we aren't taking into account the "sockcreate" SID since the socket
4610 * that is being created here is not a socket in the traditional sense,
4611 * instead it is a private sock, accessible only to the kernel, and
4612 * representing a wide range of network traffic spanning multiple
4613 * connections unlike traditional sockets - check the TUN driver to
4614 * get a better understanding of why this socket is special */
4615
4616 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4617 NULL);
4618 }
4619
4620 static int selinux_tun_dev_attach_queue(void *security)
4621 {
4622 struct tun_security_struct *tunsec = security;
4623
4624 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4625 TUN_SOCKET__ATTACH_QUEUE, NULL);
4626 }
4627
4628 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4629 {
4630 struct tun_security_struct *tunsec = security;
4631 struct sk_security_struct *sksec = sk->sk_security;
4632
4633 /* we don't currently perform any NetLabel based labeling here and it
4634 * isn't clear that we would want to do so anyway; while we could apply
4635 * labeling without the support of the TUN user the resulting labeled
4636 * traffic from the other end of the connection would almost certainly
4637 * cause confusion to the TUN user that had no idea network labeling
4638 * protocols were being used */
4639
4640 sksec->sid = tunsec->sid;
4641 sksec->sclass = SECCLASS_TUN_SOCKET;
4642
4643 return 0;
4644 }
4645
4646 static int selinux_tun_dev_open(void *security)
4647 {
4648 struct tun_security_struct *tunsec = security;
4649 u32 sid = current_sid();
4650 int err;
4651
4652 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4653 TUN_SOCKET__RELABELFROM, NULL);
4654 if (err)
4655 return err;
4656 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4657 TUN_SOCKET__RELABELTO, NULL);
4658 if (err)
4659 return err;
4660 tunsec->sid = sid;
4661
4662 return 0;
4663 }
4664
4665 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4666 {
4667 int err = 0;
4668 u32 perm;
4669 struct nlmsghdr *nlh;
4670 struct sk_security_struct *sksec = sk->sk_security;
4671
4672 if (skb->len < NLMSG_HDRLEN) {
4673 err = -EINVAL;
4674 goto out;
4675 }
4676 nlh = nlmsg_hdr(skb);
4677
4678 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4679 if (err) {
4680 if (err == -EINVAL) {
4681 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4682 "SELinux: unrecognized netlink message"
4683 " type=%hu for sclass=%hu\n",
4684 nlh->nlmsg_type, sksec->sclass);
4685 if (!selinux_enforcing || security_get_allow_unknown())
4686 err = 0;
4687 }
4688
4689 /* Ignore */
4690 if (err == -ENOENT)
4691 err = 0;
4692 goto out;
4693 }
4694
4695 err = sock_has_perm(current, sk, perm);
4696 out:
4697 return err;
4698 }
4699
4700 #ifdef CONFIG_NETFILTER
4701
4702 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4703 u16 family)
4704 {
4705 int err;
4706 char *addrp;
4707 u32 peer_sid;
4708 struct common_audit_data ad;
4709 struct lsm_network_audit net = {0,};
4710 u8 secmark_active;
4711 u8 netlbl_active;
4712 u8 peerlbl_active;
4713
4714 if (!selinux_policycap_netpeer)
4715 return NF_ACCEPT;
4716
4717 secmark_active = selinux_secmark_enabled();
4718 netlbl_active = netlbl_enabled();
4719 peerlbl_active = selinux_peerlbl_enabled();
4720 if (!secmark_active && !peerlbl_active)
4721 return NF_ACCEPT;
4722
4723 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4724 return NF_DROP;
4725
4726 ad.type = LSM_AUDIT_DATA_NET;
4727 ad.u.net = &net;
4728 ad.u.net->netif = ifindex;
4729 ad.u.net->family = family;
4730 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4731 return NF_DROP;
4732
4733 if (peerlbl_active) {
4734 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4735 peer_sid, &ad);
4736 if (err) {
4737 selinux_netlbl_err(skb, err, 1);
4738 return NF_DROP;
4739 }
4740 }
4741
4742 if (secmark_active)
4743 if (avc_has_perm(peer_sid, skb->secmark,
4744 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4745 return NF_DROP;
4746
4747 if (netlbl_active)
4748 /* we do this in the FORWARD path and not the POST_ROUTING
4749 * path because we want to make sure we apply the necessary
4750 * labeling before IPsec is applied so we can leverage AH
4751 * protection */
4752 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4753 return NF_DROP;
4754
4755 return NF_ACCEPT;
4756 }
4757
4758 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4759 struct sk_buff *skb,
4760 const struct net_device *in,
4761 const struct net_device *out,
4762 int (*okfn)(struct sk_buff *))
4763 {
4764 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4765 }
4766
4767 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4768 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4769 struct sk_buff *skb,
4770 const struct net_device *in,
4771 const struct net_device *out,
4772 int (*okfn)(struct sk_buff *))
4773 {
4774 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4775 }
4776 #endif /* IPV6 */
4777
4778 static unsigned int selinux_ip_output(struct sk_buff *skb,
4779 u16 family)
4780 {
4781 struct sock *sk;
4782 u32 sid;
4783
4784 if (!netlbl_enabled())
4785 return NF_ACCEPT;
4786
4787 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4788 * because we want to make sure we apply the necessary labeling
4789 * before IPsec is applied so we can leverage AH protection */
4790 sk = skb->sk;
4791 if (sk) {
4792 struct sk_security_struct *sksec;
4793
4794 if (sk->sk_state == TCP_LISTEN)
4795 /* if the socket is the listening state then this
4796 * packet is a SYN-ACK packet which means it needs to
4797 * be labeled based on the connection/request_sock and
4798 * not the parent socket. unfortunately, we can't
4799 * lookup the request_sock yet as it isn't queued on
4800 * the parent socket until after the SYN-ACK is sent.
4801 * the "solution" is to simply pass the packet as-is
4802 * as any IP option based labeling should be copied
4803 * from the initial connection request (in the IP
4804 * layer). it is far from ideal, but until we get a
4805 * security label in the packet itself this is the
4806 * best we can do. */
4807 return NF_ACCEPT;
4808
4809 /* standard practice, label using the parent socket */
4810 sksec = sk->sk_security;
4811 sid = sksec->sid;
4812 } else
4813 sid = SECINITSID_KERNEL;
4814 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4815 return NF_DROP;
4816
4817 return NF_ACCEPT;
4818 }
4819
4820 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4821 struct sk_buff *skb,
4822 const struct net_device *in,
4823 const struct net_device *out,
4824 int (*okfn)(struct sk_buff *))
4825 {
4826 return selinux_ip_output(skb, PF_INET);
4827 }
4828
4829 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4830 int ifindex,
4831 u16 family)
4832 {
4833 struct sock *sk = skb->sk;
4834 struct sk_security_struct *sksec;
4835 struct common_audit_data ad;
4836 struct lsm_network_audit net = {0,};
4837 char *addrp;
4838 u8 proto;
4839
4840 if (sk == NULL)
4841 return NF_ACCEPT;
4842 sksec = sk->sk_security;
4843
4844 ad.type = LSM_AUDIT_DATA_NET;
4845 ad.u.net = &net;
4846 ad.u.net->netif = ifindex;
4847 ad.u.net->family = family;
4848 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4849 return NF_DROP;
4850
4851 if (selinux_secmark_enabled())
4852 if (avc_has_perm(sksec->sid, skb->secmark,
4853 SECCLASS_PACKET, PACKET__SEND, &ad))
4854 return NF_DROP_ERR(-ECONNREFUSED);
4855
4856 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4857 return NF_DROP_ERR(-ECONNREFUSED);
4858
4859 return NF_ACCEPT;
4860 }
4861
4862 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4863 u16 family)
4864 {
4865 u32 secmark_perm;
4866 u32 peer_sid;
4867 struct sock *sk;
4868 struct common_audit_data ad;
4869 struct lsm_network_audit net = {0,};
4870 char *addrp;
4871 u8 secmark_active;
4872 u8 peerlbl_active;
4873
4874 /* If any sort of compatibility mode is enabled then handoff processing
4875 * to the selinux_ip_postroute_compat() function to deal with the
4876 * special handling. We do this in an attempt to keep this function
4877 * as fast and as clean as possible. */
4878 if (!selinux_policycap_netpeer)
4879 return selinux_ip_postroute_compat(skb, ifindex, family);
4880
4881 secmark_active = selinux_secmark_enabled();
4882 peerlbl_active = selinux_peerlbl_enabled();
4883 if (!secmark_active && !peerlbl_active)
4884 return NF_ACCEPT;
4885
4886 sk = skb->sk;
4887
4888 #ifdef CONFIG_XFRM
4889 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4890 * packet transformation so allow the packet to pass without any checks
4891 * since we'll have another chance to perform access control checks
4892 * when the packet is on it's final way out.
4893 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4894 * is NULL, in this case go ahead and apply access control.
4895 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4896 * TCP listening state we cannot wait until the XFRM processing
4897 * is done as we will miss out on the SA label if we do;
4898 * unfortunately, this means more work, but it is only once per
4899 * connection. */
4900 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4901 !(sk != NULL && sk->sk_state == TCP_LISTEN))
4902 return NF_ACCEPT;
4903 #endif
4904
4905 if (sk == NULL) {
4906 /* Without an associated socket the packet is either coming
4907 * from the kernel or it is being forwarded; check the packet
4908 * to determine which and if the packet is being forwarded
4909 * query the packet directly to determine the security label. */
4910 if (skb->skb_iif) {
4911 secmark_perm = PACKET__FORWARD_OUT;
4912 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4913 return NF_DROP;
4914 } else {
4915 secmark_perm = PACKET__SEND;
4916 peer_sid = SECINITSID_KERNEL;
4917 }
4918 } else if (sk->sk_state == TCP_LISTEN) {
4919 /* Locally generated packet but the associated socket is in the
4920 * listening state which means this is a SYN-ACK packet. In
4921 * this particular case the correct security label is assigned
4922 * to the connection/request_sock but unfortunately we can't
4923 * query the request_sock as it isn't queued on the parent
4924 * socket until after the SYN-ACK packet is sent; the only
4925 * viable choice is to regenerate the label like we do in
4926 * selinux_inet_conn_request(). See also selinux_ip_output()
4927 * for similar problems. */
4928 u32 skb_sid;
4929 struct sk_security_struct *sksec = sk->sk_security;
4930 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4931 return NF_DROP;
4932 /* At this point, if the returned skb peerlbl is SECSID_NULL
4933 * and the packet has been through at least one XFRM
4934 * transformation then we must be dealing with the "final"
4935 * form of labeled IPsec packet; since we've already applied
4936 * all of our access controls on this packet we can safely
4937 * pass the packet. */
4938 if (skb_sid == SECSID_NULL) {
4939 switch (family) {
4940 case PF_INET:
4941 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4942 return NF_ACCEPT;
4943 break;
4944 case PF_INET6:
4945 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4946 return NF_ACCEPT;
4947 default:
4948 return NF_DROP_ERR(-ECONNREFUSED);
4949 }
4950 }
4951 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4952 return NF_DROP;
4953 secmark_perm = PACKET__SEND;
4954 } else {
4955 /* Locally generated packet, fetch the security label from the
4956 * associated socket. */
4957 struct sk_security_struct *sksec = sk->sk_security;
4958 peer_sid = sksec->sid;
4959 secmark_perm = PACKET__SEND;
4960 }
4961
4962 ad.type = LSM_AUDIT_DATA_NET;
4963 ad.u.net = &net;
4964 ad.u.net->netif = ifindex;
4965 ad.u.net->family = family;
4966 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4967 return NF_DROP;
4968
4969 if (secmark_active)
4970 if (avc_has_perm(peer_sid, skb->secmark,
4971 SECCLASS_PACKET, secmark_perm, &ad))
4972 return NF_DROP_ERR(-ECONNREFUSED);
4973
4974 if (peerlbl_active) {
4975 u32 if_sid;
4976 u32 node_sid;
4977
4978 if (sel_netif_sid(ifindex, &if_sid))
4979 return NF_DROP;
4980 if (avc_has_perm(peer_sid, if_sid,
4981 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4982 return NF_DROP_ERR(-ECONNREFUSED);
4983
4984 if (sel_netnode_sid(addrp, family, &node_sid))
4985 return NF_DROP;
4986 if (avc_has_perm(peer_sid, node_sid,
4987 SECCLASS_NODE, NODE__SENDTO, &ad))
4988 return NF_DROP_ERR(-ECONNREFUSED);
4989 }
4990
4991 return NF_ACCEPT;
4992 }
4993
4994 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
4995 struct sk_buff *skb,
4996 const struct net_device *in,
4997 const struct net_device *out,
4998 int (*okfn)(struct sk_buff *))
4999 {
5000 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
5001 }
5002
5003 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5004 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5005 struct sk_buff *skb,
5006 const struct net_device *in,
5007 const struct net_device *out,
5008 int (*okfn)(struct sk_buff *))
5009 {
5010 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5011 }
5012 #endif /* IPV6 */
5013
5014 #endif /* CONFIG_NETFILTER */
5015
5016 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5017 {
5018 int err;
5019
5020 err = cap_netlink_send(sk, skb);
5021 if (err)
5022 return err;
5023
5024 return selinux_nlmsg_perm(sk, skb);
5025 }
5026
5027 static int ipc_alloc_security(struct task_struct *task,
5028 struct kern_ipc_perm *perm,
5029 u16 sclass)
5030 {
5031 struct ipc_security_struct *isec;
5032 u32 sid;
5033
5034 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5035 if (!isec)
5036 return -ENOMEM;
5037
5038 sid = task_sid(task);
5039 isec->sclass = sclass;
5040 isec->sid = sid;
5041 perm->security = isec;
5042
5043 return 0;
5044 }
5045
5046 static void ipc_free_security(struct kern_ipc_perm *perm)
5047 {
5048 struct ipc_security_struct *isec = perm->security;
5049 perm->security = NULL;
5050 kfree(isec);
5051 }
5052
5053 static int msg_msg_alloc_security(struct msg_msg *msg)
5054 {
5055 struct msg_security_struct *msec;
5056
5057 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5058 if (!msec)
5059 return -ENOMEM;
5060
5061 msec->sid = SECINITSID_UNLABELED;
5062 msg->security = msec;
5063
5064 return 0;
5065 }
5066
5067 static void msg_msg_free_security(struct msg_msg *msg)
5068 {
5069 struct msg_security_struct *msec = msg->security;
5070
5071 msg->security = NULL;
5072 kfree(msec);
5073 }
5074
5075 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5076 u32 perms)
5077 {
5078 struct ipc_security_struct *isec;
5079 struct common_audit_data ad;
5080 u32 sid = current_sid();
5081
5082 isec = ipc_perms->security;
5083
5084 ad.type = LSM_AUDIT_DATA_IPC;
5085 ad.u.ipc_id = ipc_perms->key;
5086
5087 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5088 }
5089
5090 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5091 {
5092 return msg_msg_alloc_security(msg);
5093 }
5094
5095 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5096 {
5097 msg_msg_free_security(msg);
5098 }
5099
5100 /* message queue security operations */
5101 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5102 {
5103 struct ipc_security_struct *isec;
5104 struct common_audit_data ad;
5105 u32 sid = current_sid();
5106 int rc;
5107
5108 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5109 if (rc)
5110 return rc;
5111
5112 isec = msq->q_perm.security;
5113
5114 ad.type = LSM_AUDIT_DATA_IPC;
5115 ad.u.ipc_id = msq->q_perm.key;
5116
5117 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5118 MSGQ__CREATE, &ad);
5119 if (rc) {
5120 ipc_free_security(&msq->q_perm);
5121 return rc;
5122 }
5123 return 0;
5124 }
5125
5126 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5127 {
5128 ipc_free_security(&msq->q_perm);
5129 }
5130
5131 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5132 {
5133 struct ipc_security_struct *isec;
5134 struct common_audit_data ad;
5135 u32 sid = current_sid();
5136
5137 isec = msq->q_perm.security;
5138
5139 ad.type = LSM_AUDIT_DATA_IPC;
5140 ad.u.ipc_id = msq->q_perm.key;
5141
5142 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5143 MSGQ__ASSOCIATE, &ad);
5144 }
5145
5146 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5147 {
5148 int err;
5149 int perms;
5150
5151 switch (cmd) {
5152 case IPC_INFO:
5153 case MSG_INFO:
5154 /* No specific object, just general system-wide information. */
5155 return task_has_system(current, SYSTEM__IPC_INFO);
5156 case IPC_STAT:
5157 case MSG_STAT:
5158 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5159 break;
5160 case IPC_SET:
5161 perms = MSGQ__SETATTR;
5162 break;
5163 case IPC_RMID:
5164 perms = MSGQ__DESTROY;
5165 break;
5166 default:
5167 return 0;
5168 }
5169
5170 err = ipc_has_perm(&msq->q_perm, perms);
5171 return err;
5172 }
5173
5174 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5175 {
5176 struct ipc_security_struct *isec;
5177 struct msg_security_struct *msec;
5178 struct common_audit_data ad;
5179 u32 sid = current_sid();
5180 int rc;
5181
5182 isec = msq->q_perm.security;
5183 msec = msg->security;
5184
5185 /*
5186 * First time through, need to assign label to the message
5187 */
5188 if (msec->sid == SECINITSID_UNLABELED) {
5189 /*
5190 * Compute new sid based on current process and
5191 * message queue this message will be stored in
5192 */
5193 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5194 NULL, &msec->sid);
5195 if (rc)
5196 return rc;
5197 }
5198
5199 ad.type = LSM_AUDIT_DATA_IPC;
5200 ad.u.ipc_id = msq->q_perm.key;
5201
5202 /* Can this process write to the queue? */
5203 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5204 MSGQ__WRITE, &ad);
5205 if (!rc)
5206 /* Can this process send the message */
5207 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5208 MSG__SEND, &ad);
5209 if (!rc)
5210 /* Can the message be put in the queue? */
5211 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5212 MSGQ__ENQUEUE, &ad);
5213
5214 return rc;
5215 }
5216
5217 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5218 struct task_struct *target,
5219 long type, int mode)
5220 {
5221 struct ipc_security_struct *isec;
5222 struct msg_security_struct *msec;
5223 struct common_audit_data ad;
5224 u32 sid = task_sid(target);
5225 int rc;
5226
5227 isec = msq->q_perm.security;
5228 msec = msg->security;
5229
5230 ad.type = LSM_AUDIT_DATA_IPC;
5231 ad.u.ipc_id = msq->q_perm.key;
5232
5233 rc = avc_has_perm(sid, isec->sid,
5234 SECCLASS_MSGQ, MSGQ__READ, &ad);
5235 if (!rc)
5236 rc = avc_has_perm(sid, msec->sid,
5237 SECCLASS_MSG, MSG__RECEIVE, &ad);
5238 return rc;
5239 }
5240
5241 /* Shared Memory security operations */
5242 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5243 {
5244 struct ipc_security_struct *isec;
5245 struct common_audit_data ad;
5246 u32 sid = current_sid();
5247 int rc;
5248
5249 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5250 if (rc)
5251 return rc;
5252
5253 isec = shp->shm_perm.security;
5254
5255 ad.type = LSM_AUDIT_DATA_IPC;
5256 ad.u.ipc_id = shp->shm_perm.key;
5257
5258 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5259 SHM__CREATE, &ad);
5260 if (rc) {
5261 ipc_free_security(&shp->shm_perm);
5262 return rc;
5263 }
5264 return 0;
5265 }
5266
5267 static void selinux_shm_free_security(struct shmid_kernel *shp)
5268 {
5269 ipc_free_security(&shp->shm_perm);
5270 }
5271
5272 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5273 {
5274 struct ipc_security_struct *isec;
5275 struct common_audit_data ad;
5276 u32 sid = current_sid();
5277
5278 isec = shp->shm_perm.security;
5279
5280 ad.type = LSM_AUDIT_DATA_IPC;
5281 ad.u.ipc_id = shp->shm_perm.key;
5282
5283 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5284 SHM__ASSOCIATE, &ad);
5285 }
5286
5287 /* Note, at this point, shp is locked down */
5288 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5289 {
5290 int perms;
5291 int err;
5292
5293 switch (cmd) {
5294 case IPC_INFO:
5295 case SHM_INFO:
5296 /* No specific object, just general system-wide information. */
5297 return task_has_system(current, SYSTEM__IPC_INFO);
5298 case IPC_STAT:
5299 case SHM_STAT:
5300 perms = SHM__GETATTR | SHM__ASSOCIATE;
5301 break;
5302 case IPC_SET:
5303 perms = SHM__SETATTR;
5304 break;
5305 case SHM_LOCK:
5306 case SHM_UNLOCK:
5307 perms = SHM__LOCK;
5308 break;
5309 case IPC_RMID:
5310 perms = SHM__DESTROY;
5311 break;
5312 default:
5313 return 0;
5314 }
5315
5316 err = ipc_has_perm(&shp->shm_perm, perms);
5317 return err;
5318 }
5319
5320 static int selinux_shm_shmat(struct shmid_kernel *shp,
5321 char __user *shmaddr, int shmflg)
5322 {
5323 u32 perms;
5324
5325 if (shmflg & SHM_RDONLY)
5326 perms = SHM__READ;
5327 else
5328 perms = SHM__READ | SHM__WRITE;
5329
5330 return ipc_has_perm(&shp->shm_perm, perms);
5331 }
5332
5333 /* Semaphore security operations */
5334 static int selinux_sem_alloc_security(struct sem_array *sma)
5335 {
5336 struct ipc_security_struct *isec;
5337 struct common_audit_data ad;
5338 u32 sid = current_sid();
5339 int rc;
5340
5341 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5342 if (rc)
5343 return rc;
5344
5345 isec = sma->sem_perm.security;
5346
5347 ad.type = LSM_AUDIT_DATA_IPC;
5348 ad.u.ipc_id = sma->sem_perm.key;
5349
5350 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5351 SEM__CREATE, &ad);
5352 if (rc) {
5353 ipc_free_security(&sma->sem_perm);
5354 return rc;
5355 }
5356 return 0;
5357 }
5358
5359 static void selinux_sem_free_security(struct sem_array *sma)
5360 {
5361 ipc_free_security(&sma->sem_perm);
5362 }
5363
5364 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5365 {
5366 struct ipc_security_struct *isec;
5367 struct common_audit_data ad;
5368 u32 sid = current_sid();
5369
5370 isec = sma->sem_perm.security;
5371
5372 ad.type = LSM_AUDIT_DATA_IPC;
5373 ad.u.ipc_id = sma->sem_perm.key;
5374
5375 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5376 SEM__ASSOCIATE, &ad);
5377 }
5378
5379 /* Note, at this point, sma is locked down */
5380 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5381 {
5382 int err;
5383 u32 perms;
5384
5385 switch (cmd) {
5386 case IPC_INFO:
5387 case SEM_INFO:
5388 /* No specific object, just general system-wide information. */
5389 return task_has_system(current, SYSTEM__IPC_INFO);
5390 case GETPID:
5391 case GETNCNT:
5392 case GETZCNT:
5393 perms = SEM__GETATTR;
5394 break;
5395 case GETVAL:
5396 case GETALL:
5397 perms = SEM__READ;
5398 break;
5399 case SETVAL:
5400 case SETALL:
5401 perms = SEM__WRITE;
5402 break;
5403 case IPC_RMID:
5404 perms = SEM__DESTROY;
5405 break;
5406 case IPC_SET:
5407 perms = SEM__SETATTR;
5408 break;
5409 case IPC_STAT:
5410 case SEM_STAT:
5411 perms = SEM__GETATTR | SEM__ASSOCIATE;
5412 break;
5413 default:
5414 return 0;
5415 }
5416
5417 err = ipc_has_perm(&sma->sem_perm, perms);
5418 return err;
5419 }
5420
5421 static int selinux_sem_semop(struct sem_array *sma,
5422 struct sembuf *sops, unsigned nsops, int alter)
5423 {
5424 u32 perms;
5425
5426 if (alter)
5427 perms = SEM__READ | SEM__WRITE;
5428 else
5429 perms = SEM__READ;
5430
5431 return ipc_has_perm(&sma->sem_perm, perms);
5432 }
5433
5434 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5435 {
5436 u32 av = 0;
5437
5438 av = 0;
5439 if (flag & S_IRUGO)
5440 av |= IPC__UNIX_READ;
5441 if (flag & S_IWUGO)
5442 av |= IPC__UNIX_WRITE;
5443
5444 if (av == 0)
5445 return 0;
5446
5447 return ipc_has_perm(ipcp, av);
5448 }
5449
5450 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5451 {
5452 struct ipc_security_struct *isec = ipcp->security;
5453 *secid = isec->sid;
5454 }
5455
5456 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5457 {
5458 if (inode)
5459 inode_doinit_with_dentry(inode, dentry);
5460 }
5461
5462 static int selinux_getprocattr(struct task_struct *p,
5463 char *name, char **value)
5464 {
5465 const struct task_security_struct *__tsec;
5466 u32 sid;
5467 int error;
5468 unsigned len;
5469
5470 if (current != p) {
5471 error = current_has_perm(p, PROCESS__GETATTR);
5472 if (error)
5473 return error;
5474 }
5475
5476 rcu_read_lock();
5477 __tsec = __task_cred(p)->security;
5478
5479 if (!strcmp(name, "current"))
5480 sid = __tsec->sid;
5481 else if (!strcmp(name, "prev"))
5482 sid = __tsec->osid;
5483 else if (!strcmp(name, "exec"))
5484 sid = __tsec->exec_sid;
5485 else if (!strcmp(name, "fscreate"))
5486 sid = __tsec->create_sid;
5487 else if (!strcmp(name, "keycreate"))
5488 sid = __tsec->keycreate_sid;
5489 else if (!strcmp(name, "sockcreate"))
5490 sid = __tsec->sockcreate_sid;
5491 else
5492 goto invalid;
5493 rcu_read_unlock();
5494
5495 if (!sid)
5496 return 0;
5497
5498 error = security_sid_to_context(sid, value, &len);
5499 if (error)
5500 return error;
5501 return len;
5502
5503 invalid:
5504 rcu_read_unlock();
5505 return -EINVAL;
5506 }
5507
5508 static int selinux_setprocattr(struct task_struct *p,
5509 char *name, void *value, size_t size)
5510 {
5511 struct task_security_struct *tsec;
5512 struct task_struct *tracer;
5513 struct cred *new;
5514 u32 sid = 0, ptsid;
5515 int error;
5516 char *str = value;
5517
5518 if (current != p) {
5519 /* SELinux only allows a process to change its own
5520 security attributes. */
5521 return -EACCES;
5522 }
5523
5524 /*
5525 * Basic control over ability to set these attributes at all.
5526 * current == p, but we'll pass them separately in case the
5527 * above restriction is ever removed.
5528 */
5529 if (!strcmp(name, "exec"))
5530 error = current_has_perm(p, PROCESS__SETEXEC);
5531 else if (!strcmp(name, "fscreate"))
5532 error = current_has_perm(p, PROCESS__SETFSCREATE);
5533 else if (!strcmp(name, "keycreate"))
5534 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5535 else if (!strcmp(name, "sockcreate"))
5536 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5537 else if (!strcmp(name, "current"))
5538 error = current_has_perm(p, PROCESS__SETCURRENT);
5539 else
5540 error = -EINVAL;
5541 if (error)
5542 return error;
5543
5544 /* Obtain a SID for the context, if one was specified. */
5545 if (size && str[1] && str[1] != '\n') {
5546 if (str[size-1] == '\n') {
5547 str[size-1] = 0;
5548 size--;
5549 }
5550 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5551 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5552 if (!capable(CAP_MAC_ADMIN)) {
5553 struct audit_buffer *ab;
5554 size_t audit_size;
5555
5556 /* We strip a nul only if it is at the end, otherwise the
5557 * context contains a nul and we should audit that */
5558 if (str[size - 1] == '\0')
5559 audit_size = size - 1;
5560 else
5561 audit_size = size;
5562 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5563 audit_log_format(ab, "op=fscreate invalid_context=");
5564 audit_log_n_untrustedstring(ab, value, audit_size);
5565 audit_log_end(ab);
5566
5567 return error;
5568 }
5569 error = security_context_to_sid_force(value, size,
5570 &sid);
5571 }
5572 if (error)
5573 return error;
5574 }
5575
5576 new = prepare_creds();
5577 if (!new)
5578 return -ENOMEM;
5579
5580 /* Permission checking based on the specified context is
5581 performed during the actual operation (execve,
5582 open/mkdir/...), when we know the full context of the
5583 operation. See selinux_bprm_set_creds for the execve
5584 checks and may_create for the file creation checks. The
5585 operation will then fail if the context is not permitted. */
5586 tsec = new->security;
5587 if (!strcmp(name, "exec")) {
5588 tsec->exec_sid = sid;
5589 } else if (!strcmp(name, "fscreate")) {
5590 tsec->create_sid = sid;
5591 } else if (!strcmp(name, "keycreate")) {
5592 error = may_create_key(sid, p);
5593 if (error)
5594 goto abort_change;
5595 tsec->keycreate_sid = sid;
5596 } else if (!strcmp(name, "sockcreate")) {
5597 tsec->sockcreate_sid = sid;
5598 } else if (!strcmp(name, "current")) {
5599 error = -EINVAL;
5600 if (sid == 0)
5601 goto abort_change;
5602
5603 /* Only allow single threaded processes to change context */
5604 error = -EPERM;
5605 if (!current_is_single_threaded()) {
5606 error = security_bounded_transition(tsec->sid, sid);
5607 if (error)
5608 goto abort_change;
5609 }
5610
5611 /* Check permissions for the transition. */
5612 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5613 PROCESS__DYNTRANSITION, NULL);
5614 if (error)
5615 goto abort_change;
5616
5617 /* Check for ptracing, and update the task SID if ok.
5618 Otherwise, leave SID unchanged and fail. */
5619 ptsid = 0;
5620 rcu_read_lock();
5621 tracer = ptrace_parent(p);
5622 if (tracer)
5623 ptsid = task_sid(tracer);
5624 rcu_read_unlock();
5625
5626 if (tracer) {
5627 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5628 PROCESS__PTRACE, NULL);
5629 if (error)
5630 goto abort_change;
5631 }
5632
5633 tsec->sid = sid;
5634 } else {
5635 error = -EINVAL;
5636 goto abort_change;
5637 }
5638
5639 commit_creds(new);
5640 return size;
5641
5642 abort_change:
5643 abort_creds(new);
5644 return error;
5645 }
5646
5647 static int selinux_ismaclabel(const char *name)
5648 {
5649 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5650 }
5651
5652 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5653 {
5654 return security_sid_to_context(secid, secdata, seclen);
5655 }
5656
5657 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5658 {
5659 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5660 }
5661
5662 static void selinux_release_secctx(char *secdata, u32 seclen)
5663 {
5664 kfree(secdata);
5665 }
5666
5667 /*
5668 * called with inode->i_mutex locked
5669 */
5670 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5671 {
5672 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5673 }
5674
5675 /*
5676 * called with inode->i_mutex locked
5677 */
5678 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5679 {
5680 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5681 }
5682
5683 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5684 {
5685 int len = 0;
5686 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5687 ctx, true);
5688 if (len < 0)
5689 return len;
5690 *ctxlen = len;
5691 return 0;
5692 }
5693 #ifdef CONFIG_KEYS
5694
5695 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5696 unsigned long flags)
5697 {
5698 const struct task_security_struct *tsec;
5699 struct key_security_struct *ksec;
5700
5701 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5702 if (!ksec)
5703 return -ENOMEM;
5704
5705 tsec = cred->security;
5706 if (tsec->keycreate_sid)
5707 ksec->sid = tsec->keycreate_sid;
5708 else
5709 ksec->sid = tsec->sid;
5710
5711 k->security = ksec;
5712 return 0;
5713 }
5714
5715 static void selinux_key_free(struct key *k)
5716 {
5717 struct key_security_struct *ksec = k->security;
5718
5719 k->security = NULL;
5720 kfree(ksec);
5721 }
5722
5723 static int selinux_key_permission(key_ref_t key_ref,
5724 const struct cred *cred,
5725 key_perm_t perm)
5726 {
5727 struct key *key;
5728 struct key_security_struct *ksec;
5729 u32 sid;
5730
5731 /* if no specific permissions are requested, we skip the
5732 permission check. No serious, additional covert channels
5733 appear to be created. */
5734 if (perm == 0)
5735 return 0;
5736
5737 sid = cred_sid(cred);
5738
5739 key = key_ref_to_ptr(key_ref);
5740 ksec = key->security;
5741
5742 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5743 }
5744
5745 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5746 {
5747 struct key_security_struct *ksec = key->security;
5748 char *context = NULL;
5749 unsigned len;
5750 int rc;
5751
5752 rc = security_sid_to_context(ksec->sid, &context, &len);
5753 if (!rc)
5754 rc = len;
5755 *_buffer = context;
5756 return rc;
5757 }
5758
5759 #endif
5760
5761 static struct security_operations selinux_ops = {
5762 .name = "selinux",
5763
5764 .ptrace_access_check = selinux_ptrace_access_check,
5765 .ptrace_traceme = selinux_ptrace_traceme,
5766 .capget = selinux_capget,
5767 .capset = selinux_capset,
5768 .capable = selinux_capable,
5769 .quotactl = selinux_quotactl,
5770 .quota_on = selinux_quota_on,
5771 .syslog = selinux_syslog,
5772 .vm_enough_memory = selinux_vm_enough_memory,
5773
5774 .netlink_send = selinux_netlink_send,
5775
5776 .bprm_set_creds = selinux_bprm_set_creds,
5777 .bprm_committing_creds = selinux_bprm_committing_creds,
5778 .bprm_committed_creds = selinux_bprm_committed_creds,
5779 .bprm_secureexec = selinux_bprm_secureexec,
5780
5781 .sb_alloc_security = selinux_sb_alloc_security,
5782 .sb_free_security = selinux_sb_free_security,
5783 .sb_copy_data = selinux_sb_copy_data,
5784 .sb_remount = selinux_sb_remount,
5785 .sb_kern_mount = selinux_sb_kern_mount,
5786 .sb_show_options = selinux_sb_show_options,
5787 .sb_statfs = selinux_sb_statfs,
5788 .sb_mount = selinux_mount,
5789 .sb_umount = selinux_umount,
5790 .sb_set_mnt_opts = selinux_set_mnt_opts,
5791 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5792 .sb_parse_opts_str = selinux_parse_opts_str,
5793
5794 .dentry_init_security = selinux_dentry_init_security,
5795
5796 .inode_alloc_security = selinux_inode_alloc_security,
5797 .inode_free_security = selinux_inode_free_security,
5798 .inode_init_security = selinux_inode_init_security,
5799 .inode_create = selinux_inode_create,
5800 .inode_link = selinux_inode_link,
5801 .inode_unlink = selinux_inode_unlink,
5802 .inode_symlink = selinux_inode_symlink,
5803 .inode_mkdir = selinux_inode_mkdir,
5804 .inode_rmdir = selinux_inode_rmdir,
5805 .inode_mknod = selinux_inode_mknod,
5806 .inode_rename = selinux_inode_rename,
5807 .inode_readlink = selinux_inode_readlink,
5808 .inode_follow_link = selinux_inode_follow_link,
5809 .inode_permission = selinux_inode_permission,
5810 .inode_setattr = selinux_inode_setattr,
5811 .inode_getattr = selinux_inode_getattr,
5812 .inode_setxattr = selinux_inode_setxattr,
5813 .inode_post_setxattr = selinux_inode_post_setxattr,
5814 .inode_getxattr = selinux_inode_getxattr,
5815 .inode_listxattr = selinux_inode_listxattr,
5816 .inode_removexattr = selinux_inode_removexattr,
5817 .inode_getsecurity = selinux_inode_getsecurity,
5818 .inode_setsecurity = selinux_inode_setsecurity,
5819 .inode_listsecurity = selinux_inode_listsecurity,
5820 .inode_getsecid = selinux_inode_getsecid,
5821
5822 .file_permission = selinux_file_permission,
5823 .file_alloc_security = selinux_file_alloc_security,
5824 .file_free_security = selinux_file_free_security,
5825 .file_ioctl = selinux_file_ioctl,
5826 .mmap_file = selinux_mmap_file,
5827 .mmap_addr = selinux_mmap_addr,
5828 .file_mprotect = selinux_file_mprotect,
5829 .file_lock = selinux_file_lock,
5830 .file_fcntl = selinux_file_fcntl,
5831 .file_set_fowner = selinux_file_set_fowner,
5832 .file_send_sigiotask = selinux_file_send_sigiotask,
5833 .file_receive = selinux_file_receive,
5834
5835 .file_open = selinux_file_open,
5836
5837 .task_create = selinux_task_create,
5838 .cred_alloc_blank = selinux_cred_alloc_blank,
5839 .cred_free = selinux_cred_free,
5840 .cred_prepare = selinux_cred_prepare,
5841 .cred_transfer = selinux_cred_transfer,
5842 .kernel_act_as = selinux_kernel_act_as,
5843 .kernel_create_files_as = selinux_kernel_create_files_as,
5844 .kernel_module_request = selinux_kernel_module_request,
5845 .task_setpgid = selinux_task_setpgid,
5846 .task_getpgid = selinux_task_getpgid,
5847 .task_getsid = selinux_task_getsid,
5848 .task_getsecid = selinux_task_getsecid,
5849 .task_setnice = selinux_task_setnice,
5850 .task_setioprio = selinux_task_setioprio,
5851 .task_getioprio = selinux_task_getioprio,
5852 .task_setrlimit = selinux_task_setrlimit,
5853 .task_setscheduler = selinux_task_setscheduler,
5854 .task_getscheduler = selinux_task_getscheduler,
5855 .task_movememory = selinux_task_movememory,
5856 .task_kill = selinux_task_kill,
5857 .task_wait = selinux_task_wait,
5858 .task_to_inode = selinux_task_to_inode,
5859
5860 .ipc_permission = selinux_ipc_permission,
5861 .ipc_getsecid = selinux_ipc_getsecid,
5862
5863 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5864 .msg_msg_free_security = selinux_msg_msg_free_security,
5865
5866 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5867 .msg_queue_free_security = selinux_msg_queue_free_security,
5868 .msg_queue_associate = selinux_msg_queue_associate,
5869 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5870 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5871 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5872
5873 .shm_alloc_security = selinux_shm_alloc_security,
5874 .shm_free_security = selinux_shm_free_security,
5875 .shm_associate = selinux_shm_associate,
5876 .shm_shmctl = selinux_shm_shmctl,
5877 .shm_shmat = selinux_shm_shmat,
5878
5879 .sem_alloc_security = selinux_sem_alloc_security,
5880 .sem_free_security = selinux_sem_free_security,
5881 .sem_associate = selinux_sem_associate,
5882 .sem_semctl = selinux_sem_semctl,
5883 .sem_semop = selinux_sem_semop,
5884
5885 .d_instantiate = selinux_d_instantiate,
5886
5887 .getprocattr = selinux_getprocattr,
5888 .setprocattr = selinux_setprocattr,
5889
5890 .ismaclabel = selinux_ismaclabel,
5891 .secid_to_secctx = selinux_secid_to_secctx,
5892 .secctx_to_secid = selinux_secctx_to_secid,
5893 .release_secctx = selinux_release_secctx,
5894 .inode_notifysecctx = selinux_inode_notifysecctx,
5895 .inode_setsecctx = selinux_inode_setsecctx,
5896 .inode_getsecctx = selinux_inode_getsecctx,
5897
5898 .unix_stream_connect = selinux_socket_unix_stream_connect,
5899 .unix_may_send = selinux_socket_unix_may_send,
5900
5901 .socket_create = selinux_socket_create,
5902 .socket_post_create = selinux_socket_post_create,
5903 .socket_bind = selinux_socket_bind,
5904 .socket_connect = selinux_socket_connect,
5905 .socket_listen = selinux_socket_listen,
5906 .socket_accept = selinux_socket_accept,
5907 .socket_sendmsg = selinux_socket_sendmsg,
5908 .socket_recvmsg = selinux_socket_recvmsg,
5909 .socket_getsockname = selinux_socket_getsockname,
5910 .socket_getpeername = selinux_socket_getpeername,
5911 .socket_getsockopt = selinux_socket_getsockopt,
5912 .socket_setsockopt = selinux_socket_setsockopt,
5913 .socket_shutdown = selinux_socket_shutdown,
5914 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5915 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5916 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5917 .sk_alloc_security = selinux_sk_alloc_security,
5918 .sk_free_security = selinux_sk_free_security,
5919 .sk_clone_security = selinux_sk_clone_security,
5920 .sk_getsecid = selinux_sk_getsecid,
5921 .sock_graft = selinux_sock_graft,
5922 .inet_conn_request = selinux_inet_conn_request,
5923 .inet_csk_clone = selinux_inet_csk_clone,
5924 .inet_conn_established = selinux_inet_conn_established,
5925 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5926 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5927 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5928 .req_classify_flow = selinux_req_classify_flow,
5929 .tun_dev_alloc_security = selinux_tun_dev_alloc_security,
5930 .tun_dev_free_security = selinux_tun_dev_free_security,
5931 .tun_dev_create = selinux_tun_dev_create,
5932 .tun_dev_attach_queue = selinux_tun_dev_attach_queue,
5933 .tun_dev_attach = selinux_tun_dev_attach,
5934 .tun_dev_open = selinux_tun_dev_open,
5935 .skb_owned_by = selinux_skb_owned_by,
5936
5937 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5938 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5939 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5940 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5941 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5942 .xfrm_state_alloc = selinux_xfrm_state_alloc,
5943 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire,
5944 .xfrm_state_free_security = selinux_xfrm_state_free,
5945 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5946 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5947 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5948 .xfrm_decode_session = selinux_xfrm_decode_session,
5949 #endif
5950
5951 #ifdef CONFIG_KEYS
5952 .key_alloc = selinux_key_alloc,
5953 .key_free = selinux_key_free,
5954 .key_permission = selinux_key_permission,
5955 .key_getsecurity = selinux_key_getsecurity,
5956 #endif
5957
5958 #ifdef CONFIG_AUDIT
5959 .audit_rule_init = selinux_audit_rule_init,
5960 .audit_rule_known = selinux_audit_rule_known,
5961 .audit_rule_match = selinux_audit_rule_match,
5962 .audit_rule_free = selinux_audit_rule_free,
5963 #endif
5964 };
5965
5966 static __init int selinux_init(void)
5967 {
5968 if (!security_module_enable(&selinux_ops)) {
5969 selinux_enabled = 0;
5970 return 0;
5971 }
5972
5973 if (!selinux_enabled) {
5974 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5975 return 0;
5976 }
5977
5978 printk(KERN_INFO "SELinux: Initializing.\n");
5979
5980 /* Set the security state for the initial task. */
5981 cred_init_security();
5982
5983 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5984
5985 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5986 sizeof(struct inode_security_struct),
5987 0, SLAB_PANIC, NULL);
5988 avc_init();
5989
5990 if (register_security(&selinux_ops))
5991 panic("SELinux: Unable to register with kernel.\n");
5992
5993 if (selinux_enforcing)
5994 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5995 else
5996 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5997
5998 return 0;
5999 }
6000
6001 static void delayed_superblock_init(struct super_block *sb, void *unused)
6002 {
6003 superblock_doinit(sb, NULL);
6004 }
6005
6006 void selinux_complete_init(void)
6007 {
6008 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6009
6010 /* Set up any superblocks initialized prior to the policy load. */
6011 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6012 iterate_supers(delayed_superblock_init, NULL);
6013 }
6014
6015 /* SELinux requires early initialization in order to label
6016 all processes and objects when they are created. */
6017 security_initcall(selinux_init);
6018
6019 #if defined(CONFIG_NETFILTER)
6020
6021 static struct nf_hook_ops selinux_ipv4_ops[] = {
6022 {
6023 .hook = selinux_ipv4_postroute,
6024 .owner = THIS_MODULE,
6025 .pf = NFPROTO_IPV4,
6026 .hooknum = NF_INET_POST_ROUTING,
6027 .priority = NF_IP_PRI_SELINUX_LAST,
6028 },
6029 {
6030 .hook = selinux_ipv4_forward,
6031 .owner = THIS_MODULE,
6032 .pf = NFPROTO_IPV4,
6033 .hooknum = NF_INET_FORWARD,
6034 .priority = NF_IP_PRI_SELINUX_FIRST,
6035 },
6036 {
6037 .hook = selinux_ipv4_output,
6038 .owner = THIS_MODULE,
6039 .pf = NFPROTO_IPV4,
6040 .hooknum = NF_INET_LOCAL_OUT,
6041 .priority = NF_IP_PRI_SELINUX_FIRST,
6042 }
6043 };
6044
6045 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6046
6047 static struct nf_hook_ops selinux_ipv6_ops[] = {
6048 {
6049 .hook = selinux_ipv6_postroute,
6050 .owner = THIS_MODULE,
6051 .pf = NFPROTO_IPV6,
6052 .hooknum = NF_INET_POST_ROUTING,
6053 .priority = NF_IP6_PRI_SELINUX_LAST,
6054 },
6055 {
6056 .hook = selinux_ipv6_forward,
6057 .owner = THIS_MODULE,
6058 .pf = NFPROTO_IPV6,
6059 .hooknum = NF_INET_FORWARD,
6060 .priority = NF_IP6_PRI_SELINUX_FIRST,
6061 }
6062 };
6063
6064 #endif /* IPV6 */
6065
6066 static int __init selinux_nf_ip_init(void)
6067 {
6068 int err = 0;
6069
6070 if (!selinux_enabled)
6071 goto out;
6072
6073 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6074
6075 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6076 if (err)
6077 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6078
6079 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6080 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6081 if (err)
6082 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6083 #endif /* IPV6 */
6084
6085 out:
6086 return err;
6087 }
6088
6089 __initcall(selinux_nf_ip_init);
6090
6091 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6092 static void selinux_nf_ip_exit(void)
6093 {
6094 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6095
6096 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6097 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6098 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6099 #endif /* IPV6 */
6100 }
6101 #endif
6102
6103 #else /* CONFIG_NETFILTER */
6104
6105 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6106 #define selinux_nf_ip_exit()
6107 #endif
6108
6109 #endif /* CONFIG_NETFILTER */
6110
6111 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6112 static int selinux_disabled;
6113
6114 int selinux_disable(void)
6115 {
6116 if (ss_initialized) {
6117 /* Not permitted after initial policy load. */
6118 return -EINVAL;
6119 }
6120
6121 if (selinux_disabled) {
6122 /* Only do this once. */
6123 return -EINVAL;
6124 }
6125
6126 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6127
6128 selinux_disabled = 1;
6129 selinux_enabled = 0;
6130
6131 reset_security_ops();
6132
6133 /* Try to destroy the avc node cache */
6134 avc_disable();
6135
6136 /* Unregister netfilter hooks. */
6137 selinux_nf_ip_exit();
6138
6139 /* Unregister selinuxfs. */
6140 exit_sel_fs();
6141
6142 return 0;
6143 }
6144 #endif