]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/selinux/hooks.c
Merge branch 'parisc' from /home/kyle/repos/parisc-2.6.git
[mirror_ubuntu-bionic-kernel.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16 * Paul Moore, <paul.moore@hp.com>
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2,
20 * as published by the Free Software Foundation.
21 */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for sysctl_local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h> /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h> /* for Unix socket types */
64 #include <net/af_unix.h> /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "selinux_netlabel.h"
81
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88
89 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
90 int selinux_enforcing = 0;
91
92 static int __init enforcing_setup(char *str)
93 {
94 selinux_enforcing = simple_strtol(str,NULL,0);
95 return 1;
96 }
97 __setup("enforcing=", enforcing_setup);
98 #endif
99
100 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
101 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102
103 static int __init selinux_enabled_setup(char *str)
104 {
105 selinux_enabled = simple_strtol(str, NULL, 0);
106 return 1;
107 }
108 __setup("selinux=", selinux_enabled_setup);
109 #else
110 int selinux_enabled = 1;
111 #endif
112
113 /* Original (dummy) security module. */
114 static struct security_operations *original_ops = NULL;
115
116 /* Minimal support for a secondary security module,
117 just to allow the use of the dummy or capability modules.
118 The owlsm module can alternatively be used as a secondary
119 module as long as CONFIG_OWLSM_FD is not enabled. */
120 static struct security_operations *secondary_ops = NULL;
121
122 /* Lists of inode and superblock security structures initialized
123 before the policy was loaded. */
124 static LIST_HEAD(superblock_security_head);
125 static DEFINE_SPINLOCK(sb_security_lock);
126
127 static struct kmem_cache *sel_inode_cache;
128
129 /* Return security context for a given sid or just the context
130 length if the buffer is null or length is 0 */
131 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
132 {
133 char *context;
134 unsigned len;
135 int rc;
136
137 rc = security_sid_to_context(sid, &context, &len);
138 if (rc)
139 return rc;
140
141 if (!buffer || !size)
142 goto getsecurity_exit;
143
144 if (size < len) {
145 len = -ERANGE;
146 goto getsecurity_exit;
147 }
148 memcpy(buffer, context, len);
149
150 getsecurity_exit:
151 kfree(context);
152 return len;
153 }
154
155 /* Allocate and free functions for each kind of security blob. */
156
157 static int task_alloc_security(struct task_struct *task)
158 {
159 struct task_security_struct *tsec;
160
161 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
162 if (!tsec)
163 return -ENOMEM;
164
165 tsec->task = task;
166 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
167 task->security = tsec;
168
169 return 0;
170 }
171
172 static void task_free_security(struct task_struct *task)
173 {
174 struct task_security_struct *tsec = task->security;
175 task->security = NULL;
176 kfree(tsec);
177 }
178
179 static int inode_alloc_security(struct inode *inode)
180 {
181 struct task_security_struct *tsec = current->security;
182 struct inode_security_struct *isec;
183
184 isec = kmem_cache_alloc(sel_inode_cache, GFP_KERNEL);
185 if (!isec)
186 return -ENOMEM;
187
188 memset(isec, 0, sizeof(*isec));
189 mutex_init(&isec->lock);
190 INIT_LIST_HEAD(&isec->list);
191 isec->inode = inode;
192 isec->sid = SECINITSID_UNLABELED;
193 isec->sclass = SECCLASS_FILE;
194 isec->task_sid = tsec->sid;
195 inode->i_security = isec;
196
197 return 0;
198 }
199
200 static void inode_free_security(struct inode *inode)
201 {
202 struct inode_security_struct *isec = inode->i_security;
203 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204
205 spin_lock(&sbsec->isec_lock);
206 if (!list_empty(&isec->list))
207 list_del_init(&isec->list);
208 spin_unlock(&sbsec->isec_lock);
209
210 inode->i_security = NULL;
211 kmem_cache_free(sel_inode_cache, isec);
212 }
213
214 static int file_alloc_security(struct file *file)
215 {
216 struct task_security_struct *tsec = current->security;
217 struct file_security_struct *fsec;
218
219 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
220 if (!fsec)
221 return -ENOMEM;
222
223 fsec->file = file;
224 fsec->sid = tsec->sid;
225 fsec->fown_sid = tsec->sid;
226 file->f_security = fsec;
227
228 return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233 struct file_security_struct *fsec = file->f_security;
234 file->f_security = NULL;
235 kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240 struct superblock_security_struct *sbsec;
241
242 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243 if (!sbsec)
244 return -ENOMEM;
245
246 mutex_init(&sbsec->lock);
247 INIT_LIST_HEAD(&sbsec->list);
248 INIT_LIST_HEAD(&sbsec->isec_head);
249 spin_lock_init(&sbsec->isec_lock);
250 sbsec->sb = sb;
251 sbsec->sid = SECINITSID_UNLABELED;
252 sbsec->def_sid = SECINITSID_FILE;
253 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254 sb->s_security = sbsec;
255
256 return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261 struct superblock_security_struct *sbsec = sb->s_security;
262
263 spin_lock(&sb_security_lock);
264 if (!list_empty(&sbsec->list))
265 list_del_init(&sbsec->list);
266 spin_unlock(&sb_security_lock);
267
268 sb->s_security = NULL;
269 kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274 struct sk_security_struct *ssec;
275
276 ssec = kzalloc(sizeof(*ssec), priority);
277 if (!ssec)
278 return -ENOMEM;
279
280 ssec->sk = sk;
281 ssec->peer_sid = SECINITSID_UNLABELED;
282 ssec->sid = SECINITSID_UNLABELED;
283 sk->sk_security = ssec;
284
285 selinux_netlbl_sk_security_init(ssec, family);
286
287 return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292 struct sk_security_struct *ssec = sk->sk_security;
293
294 sk->sk_security = NULL;
295 kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299 any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305 "uses xattr",
306 "uses transition SIDs",
307 "uses task SIDs",
308 "uses genfs_contexts",
309 "not configured for labeling",
310 "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317 return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321 Opt_context = 1,
322 Opt_fscontext = 2,
323 Opt_defcontext = 4,
324 Opt_rootcontext = 8,
325 };
326
327 static match_table_t tokens = {
328 {Opt_context, "context=%s"},
329 {Opt_fscontext, "fscontext=%s"},
330 {Opt_defcontext, "defcontext=%s"},
331 {Opt_rootcontext, "rootcontext=%s"},
332 };
333
334 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
335
336 static int may_context_mount_sb_relabel(u32 sid,
337 struct superblock_security_struct *sbsec,
338 struct task_security_struct *tsec)
339 {
340 int rc;
341
342 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
343 FILESYSTEM__RELABELFROM, NULL);
344 if (rc)
345 return rc;
346
347 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
348 FILESYSTEM__RELABELTO, NULL);
349 return rc;
350 }
351
352 static int may_context_mount_inode_relabel(u32 sid,
353 struct superblock_security_struct *sbsec,
354 struct task_security_struct *tsec)
355 {
356 int rc;
357 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358 FILESYSTEM__RELABELFROM, NULL);
359 if (rc)
360 return rc;
361
362 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
363 FILESYSTEM__ASSOCIATE, NULL);
364 return rc;
365 }
366
367 static int try_context_mount(struct super_block *sb, void *data)
368 {
369 char *context = NULL, *defcontext = NULL;
370 char *fscontext = NULL, *rootcontext = NULL;
371 const char *name;
372 u32 sid;
373 int alloc = 0, rc = 0, seen = 0;
374 struct task_security_struct *tsec = current->security;
375 struct superblock_security_struct *sbsec = sb->s_security;
376
377 if (!data)
378 goto out;
379
380 name = sb->s_type->name;
381
382 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
383
384 /* NFS we understand. */
385 if (!strcmp(name, "nfs")) {
386 struct nfs_mount_data *d = data;
387
388 if (d->version < NFS_MOUNT_VERSION)
389 goto out;
390
391 if (d->context[0]) {
392 context = d->context;
393 seen |= Opt_context;
394 }
395 } else
396 goto out;
397
398 } else {
399 /* Standard string-based options. */
400 char *p, *options = data;
401
402 while ((p = strsep(&options, "|")) != NULL) {
403 int token;
404 substring_t args[MAX_OPT_ARGS];
405
406 if (!*p)
407 continue;
408
409 token = match_token(p, tokens, args);
410
411 switch (token) {
412 case Opt_context:
413 if (seen & (Opt_context|Opt_defcontext)) {
414 rc = -EINVAL;
415 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
416 goto out_free;
417 }
418 context = match_strdup(&args[0]);
419 if (!context) {
420 rc = -ENOMEM;
421 goto out_free;
422 }
423 if (!alloc)
424 alloc = 1;
425 seen |= Opt_context;
426 break;
427
428 case Opt_fscontext:
429 if (seen & Opt_fscontext) {
430 rc = -EINVAL;
431 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
432 goto out_free;
433 }
434 fscontext = match_strdup(&args[0]);
435 if (!fscontext) {
436 rc = -ENOMEM;
437 goto out_free;
438 }
439 if (!alloc)
440 alloc = 1;
441 seen |= Opt_fscontext;
442 break;
443
444 case Opt_rootcontext:
445 if (seen & Opt_rootcontext) {
446 rc = -EINVAL;
447 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
448 goto out_free;
449 }
450 rootcontext = match_strdup(&args[0]);
451 if (!rootcontext) {
452 rc = -ENOMEM;
453 goto out_free;
454 }
455 if (!alloc)
456 alloc = 1;
457 seen |= Opt_rootcontext;
458 break;
459
460 case Opt_defcontext:
461 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
462 rc = -EINVAL;
463 printk(KERN_WARNING "SELinux: "
464 "defcontext option is invalid "
465 "for this filesystem type\n");
466 goto out_free;
467 }
468 if (seen & (Opt_context|Opt_defcontext)) {
469 rc = -EINVAL;
470 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
471 goto out_free;
472 }
473 defcontext = match_strdup(&args[0]);
474 if (!defcontext) {
475 rc = -ENOMEM;
476 goto out_free;
477 }
478 if (!alloc)
479 alloc = 1;
480 seen |= Opt_defcontext;
481 break;
482
483 default:
484 rc = -EINVAL;
485 printk(KERN_WARNING "SELinux: unknown mount "
486 "option\n");
487 goto out_free;
488
489 }
490 }
491 }
492
493 if (!seen)
494 goto out;
495
496 /* sets the context of the superblock for the fs being mounted. */
497 if (fscontext) {
498 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
499 if (rc) {
500 printk(KERN_WARNING "SELinux: security_context_to_sid"
501 "(%s) failed for (dev %s, type %s) errno=%d\n",
502 fscontext, sb->s_id, name, rc);
503 goto out_free;
504 }
505
506 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
507 if (rc)
508 goto out_free;
509
510 sbsec->sid = sid;
511 }
512
513 /*
514 * Switch to using mount point labeling behavior.
515 * sets the label used on all file below the mountpoint, and will set
516 * the superblock context if not already set.
517 */
518 if (context) {
519 rc = security_context_to_sid(context, strlen(context), &sid);
520 if (rc) {
521 printk(KERN_WARNING "SELinux: security_context_to_sid"
522 "(%s) failed for (dev %s, type %s) errno=%d\n",
523 context, sb->s_id, name, rc);
524 goto out_free;
525 }
526
527 if (!fscontext) {
528 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
529 if (rc)
530 goto out_free;
531 sbsec->sid = sid;
532 } else {
533 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
534 if (rc)
535 goto out_free;
536 }
537 sbsec->mntpoint_sid = sid;
538
539 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
540 }
541
542 if (rootcontext) {
543 struct inode *inode = sb->s_root->d_inode;
544 struct inode_security_struct *isec = inode->i_security;
545 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
546 if (rc) {
547 printk(KERN_WARNING "SELinux: security_context_to_sid"
548 "(%s) failed for (dev %s, type %s) errno=%d\n",
549 rootcontext, sb->s_id, name, rc);
550 goto out_free;
551 }
552
553 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
554 if (rc)
555 goto out_free;
556
557 isec->sid = sid;
558 isec->initialized = 1;
559 }
560
561 if (defcontext) {
562 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
563 if (rc) {
564 printk(KERN_WARNING "SELinux: security_context_to_sid"
565 "(%s) failed for (dev %s, type %s) errno=%d\n",
566 defcontext, sb->s_id, name, rc);
567 goto out_free;
568 }
569
570 if (sid == sbsec->def_sid)
571 goto out_free;
572
573 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
574 if (rc)
575 goto out_free;
576
577 sbsec->def_sid = sid;
578 }
579
580 out_free:
581 if (alloc) {
582 kfree(context);
583 kfree(defcontext);
584 kfree(fscontext);
585 kfree(rootcontext);
586 }
587 out:
588 return rc;
589 }
590
591 static int superblock_doinit(struct super_block *sb, void *data)
592 {
593 struct superblock_security_struct *sbsec = sb->s_security;
594 struct dentry *root = sb->s_root;
595 struct inode *inode = root->d_inode;
596 int rc = 0;
597
598 mutex_lock(&sbsec->lock);
599 if (sbsec->initialized)
600 goto out;
601
602 if (!ss_initialized) {
603 /* Defer initialization until selinux_complete_init,
604 after the initial policy is loaded and the security
605 server is ready to handle calls. */
606 spin_lock(&sb_security_lock);
607 if (list_empty(&sbsec->list))
608 list_add(&sbsec->list, &superblock_security_head);
609 spin_unlock(&sb_security_lock);
610 goto out;
611 }
612
613 /* Determine the labeling behavior to use for this filesystem type. */
614 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
615 if (rc) {
616 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
617 __FUNCTION__, sb->s_type->name, rc);
618 goto out;
619 }
620
621 rc = try_context_mount(sb, data);
622 if (rc)
623 goto out;
624
625 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
626 /* Make sure that the xattr handler exists and that no
627 error other than -ENODATA is returned by getxattr on
628 the root directory. -ENODATA is ok, as this may be
629 the first boot of the SELinux kernel before we have
630 assigned xattr values to the filesystem. */
631 if (!inode->i_op->getxattr) {
632 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
633 "xattr support\n", sb->s_id, sb->s_type->name);
634 rc = -EOPNOTSUPP;
635 goto out;
636 }
637 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
638 if (rc < 0 && rc != -ENODATA) {
639 if (rc == -EOPNOTSUPP)
640 printk(KERN_WARNING "SELinux: (dev %s, type "
641 "%s) has no security xattr handler\n",
642 sb->s_id, sb->s_type->name);
643 else
644 printk(KERN_WARNING "SELinux: (dev %s, type "
645 "%s) getxattr errno %d\n", sb->s_id,
646 sb->s_type->name, -rc);
647 goto out;
648 }
649 }
650
651 if (strcmp(sb->s_type->name, "proc") == 0)
652 sbsec->proc = 1;
653
654 sbsec->initialized = 1;
655
656 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
657 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
658 sb->s_id, sb->s_type->name);
659 }
660 else {
661 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
662 sb->s_id, sb->s_type->name,
663 labeling_behaviors[sbsec->behavior-1]);
664 }
665
666 /* Initialize the root inode. */
667 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
668
669 /* Initialize any other inodes associated with the superblock, e.g.
670 inodes created prior to initial policy load or inodes created
671 during get_sb by a pseudo filesystem that directly
672 populates itself. */
673 spin_lock(&sbsec->isec_lock);
674 next_inode:
675 if (!list_empty(&sbsec->isec_head)) {
676 struct inode_security_struct *isec =
677 list_entry(sbsec->isec_head.next,
678 struct inode_security_struct, list);
679 struct inode *inode = isec->inode;
680 spin_unlock(&sbsec->isec_lock);
681 inode = igrab(inode);
682 if (inode) {
683 if (!IS_PRIVATE (inode))
684 inode_doinit(inode);
685 iput(inode);
686 }
687 spin_lock(&sbsec->isec_lock);
688 list_del_init(&isec->list);
689 goto next_inode;
690 }
691 spin_unlock(&sbsec->isec_lock);
692 out:
693 mutex_unlock(&sbsec->lock);
694 return rc;
695 }
696
697 static inline u16 inode_mode_to_security_class(umode_t mode)
698 {
699 switch (mode & S_IFMT) {
700 case S_IFSOCK:
701 return SECCLASS_SOCK_FILE;
702 case S_IFLNK:
703 return SECCLASS_LNK_FILE;
704 case S_IFREG:
705 return SECCLASS_FILE;
706 case S_IFBLK:
707 return SECCLASS_BLK_FILE;
708 case S_IFDIR:
709 return SECCLASS_DIR;
710 case S_IFCHR:
711 return SECCLASS_CHR_FILE;
712 case S_IFIFO:
713 return SECCLASS_FIFO_FILE;
714
715 }
716
717 return SECCLASS_FILE;
718 }
719
720 static inline int default_protocol_stream(int protocol)
721 {
722 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
723 }
724
725 static inline int default_protocol_dgram(int protocol)
726 {
727 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
728 }
729
730 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
731 {
732 switch (family) {
733 case PF_UNIX:
734 switch (type) {
735 case SOCK_STREAM:
736 case SOCK_SEQPACKET:
737 return SECCLASS_UNIX_STREAM_SOCKET;
738 case SOCK_DGRAM:
739 return SECCLASS_UNIX_DGRAM_SOCKET;
740 }
741 break;
742 case PF_INET:
743 case PF_INET6:
744 switch (type) {
745 case SOCK_STREAM:
746 if (default_protocol_stream(protocol))
747 return SECCLASS_TCP_SOCKET;
748 else
749 return SECCLASS_RAWIP_SOCKET;
750 case SOCK_DGRAM:
751 if (default_protocol_dgram(protocol))
752 return SECCLASS_UDP_SOCKET;
753 else
754 return SECCLASS_RAWIP_SOCKET;
755 case SOCK_DCCP:
756 return SECCLASS_DCCP_SOCKET;
757 default:
758 return SECCLASS_RAWIP_SOCKET;
759 }
760 break;
761 case PF_NETLINK:
762 switch (protocol) {
763 case NETLINK_ROUTE:
764 return SECCLASS_NETLINK_ROUTE_SOCKET;
765 case NETLINK_FIREWALL:
766 return SECCLASS_NETLINK_FIREWALL_SOCKET;
767 case NETLINK_INET_DIAG:
768 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
769 case NETLINK_NFLOG:
770 return SECCLASS_NETLINK_NFLOG_SOCKET;
771 case NETLINK_XFRM:
772 return SECCLASS_NETLINK_XFRM_SOCKET;
773 case NETLINK_SELINUX:
774 return SECCLASS_NETLINK_SELINUX_SOCKET;
775 case NETLINK_AUDIT:
776 return SECCLASS_NETLINK_AUDIT_SOCKET;
777 case NETLINK_IP6_FW:
778 return SECCLASS_NETLINK_IP6FW_SOCKET;
779 case NETLINK_DNRTMSG:
780 return SECCLASS_NETLINK_DNRT_SOCKET;
781 case NETLINK_KOBJECT_UEVENT:
782 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
783 default:
784 return SECCLASS_NETLINK_SOCKET;
785 }
786 case PF_PACKET:
787 return SECCLASS_PACKET_SOCKET;
788 case PF_KEY:
789 return SECCLASS_KEY_SOCKET;
790 case PF_APPLETALK:
791 return SECCLASS_APPLETALK_SOCKET;
792 }
793
794 return SECCLASS_SOCKET;
795 }
796
797 #ifdef CONFIG_PROC_FS
798 static int selinux_proc_get_sid(struct proc_dir_entry *de,
799 u16 tclass,
800 u32 *sid)
801 {
802 int buflen, rc;
803 char *buffer, *path, *end;
804
805 buffer = (char*)__get_free_page(GFP_KERNEL);
806 if (!buffer)
807 return -ENOMEM;
808
809 buflen = PAGE_SIZE;
810 end = buffer+buflen;
811 *--end = '\0';
812 buflen--;
813 path = end-1;
814 *path = '/';
815 while (de && de != de->parent) {
816 buflen -= de->namelen + 1;
817 if (buflen < 0)
818 break;
819 end -= de->namelen;
820 memcpy(end, de->name, de->namelen);
821 *--end = '/';
822 path = end;
823 de = de->parent;
824 }
825 rc = security_genfs_sid("proc", path, tclass, sid);
826 free_page((unsigned long)buffer);
827 return rc;
828 }
829 #else
830 static int selinux_proc_get_sid(struct proc_dir_entry *de,
831 u16 tclass,
832 u32 *sid)
833 {
834 return -EINVAL;
835 }
836 #endif
837
838 /* The inode's security attributes must be initialized before first use. */
839 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
840 {
841 struct superblock_security_struct *sbsec = NULL;
842 struct inode_security_struct *isec = inode->i_security;
843 u32 sid;
844 struct dentry *dentry;
845 #define INITCONTEXTLEN 255
846 char *context = NULL;
847 unsigned len = 0;
848 int rc = 0;
849
850 if (isec->initialized)
851 goto out;
852
853 mutex_lock(&isec->lock);
854 if (isec->initialized)
855 goto out_unlock;
856
857 sbsec = inode->i_sb->s_security;
858 if (!sbsec->initialized) {
859 /* Defer initialization until selinux_complete_init,
860 after the initial policy is loaded and the security
861 server is ready to handle calls. */
862 spin_lock(&sbsec->isec_lock);
863 if (list_empty(&isec->list))
864 list_add(&isec->list, &sbsec->isec_head);
865 spin_unlock(&sbsec->isec_lock);
866 goto out_unlock;
867 }
868
869 switch (sbsec->behavior) {
870 case SECURITY_FS_USE_XATTR:
871 if (!inode->i_op->getxattr) {
872 isec->sid = sbsec->def_sid;
873 break;
874 }
875
876 /* Need a dentry, since the xattr API requires one.
877 Life would be simpler if we could just pass the inode. */
878 if (opt_dentry) {
879 /* Called from d_instantiate or d_splice_alias. */
880 dentry = dget(opt_dentry);
881 } else {
882 /* Called from selinux_complete_init, try to find a dentry. */
883 dentry = d_find_alias(inode);
884 }
885 if (!dentry) {
886 printk(KERN_WARNING "%s: no dentry for dev=%s "
887 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
888 inode->i_ino);
889 goto out_unlock;
890 }
891
892 len = INITCONTEXTLEN;
893 context = kmalloc(len, GFP_KERNEL);
894 if (!context) {
895 rc = -ENOMEM;
896 dput(dentry);
897 goto out_unlock;
898 }
899 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
900 context, len);
901 if (rc == -ERANGE) {
902 /* Need a larger buffer. Query for the right size. */
903 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
904 NULL, 0);
905 if (rc < 0) {
906 dput(dentry);
907 goto out_unlock;
908 }
909 kfree(context);
910 len = rc;
911 context = kmalloc(len, GFP_KERNEL);
912 if (!context) {
913 rc = -ENOMEM;
914 dput(dentry);
915 goto out_unlock;
916 }
917 rc = inode->i_op->getxattr(dentry,
918 XATTR_NAME_SELINUX,
919 context, len);
920 }
921 dput(dentry);
922 if (rc < 0) {
923 if (rc != -ENODATA) {
924 printk(KERN_WARNING "%s: getxattr returned "
925 "%d for dev=%s ino=%ld\n", __FUNCTION__,
926 -rc, inode->i_sb->s_id, inode->i_ino);
927 kfree(context);
928 goto out_unlock;
929 }
930 /* Map ENODATA to the default file SID */
931 sid = sbsec->def_sid;
932 rc = 0;
933 } else {
934 rc = security_context_to_sid_default(context, rc, &sid,
935 sbsec->def_sid);
936 if (rc) {
937 printk(KERN_WARNING "%s: context_to_sid(%s) "
938 "returned %d for dev=%s ino=%ld\n",
939 __FUNCTION__, context, -rc,
940 inode->i_sb->s_id, inode->i_ino);
941 kfree(context);
942 /* Leave with the unlabeled SID */
943 rc = 0;
944 break;
945 }
946 }
947 kfree(context);
948 isec->sid = sid;
949 break;
950 case SECURITY_FS_USE_TASK:
951 isec->sid = isec->task_sid;
952 break;
953 case SECURITY_FS_USE_TRANS:
954 /* Default to the fs SID. */
955 isec->sid = sbsec->sid;
956
957 /* Try to obtain a transition SID. */
958 isec->sclass = inode_mode_to_security_class(inode->i_mode);
959 rc = security_transition_sid(isec->task_sid,
960 sbsec->sid,
961 isec->sclass,
962 &sid);
963 if (rc)
964 goto out_unlock;
965 isec->sid = sid;
966 break;
967 case SECURITY_FS_USE_MNTPOINT:
968 isec->sid = sbsec->mntpoint_sid;
969 break;
970 default:
971 /* Default to the fs superblock SID. */
972 isec->sid = sbsec->sid;
973
974 if (sbsec->proc) {
975 struct proc_inode *proci = PROC_I(inode);
976 if (proci->pde) {
977 isec->sclass = inode_mode_to_security_class(inode->i_mode);
978 rc = selinux_proc_get_sid(proci->pde,
979 isec->sclass,
980 &sid);
981 if (rc)
982 goto out_unlock;
983 isec->sid = sid;
984 }
985 }
986 break;
987 }
988
989 isec->initialized = 1;
990
991 out_unlock:
992 mutex_unlock(&isec->lock);
993 out:
994 if (isec->sclass == SECCLASS_FILE)
995 isec->sclass = inode_mode_to_security_class(inode->i_mode);
996 return rc;
997 }
998
999 /* Convert a Linux signal to an access vector. */
1000 static inline u32 signal_to_av(int sig)
1001 {
1002 u32 perm = 0;
1003
1004 switch (sig) {
1005 case SIGCHLD:
1006 /* Commonly granted from child to parent. */
1007 perm = PROCESS__SIGCHLD;
1008 break;
1009 case SIGKILL:
1010 /* Cannot be caught or ignored */
1011 perm = PROCESS__SIGKILL;
1012 break;
1013 case SIGSTOP:
1014 /* Cannot be caught or ignored */
1015 perm = PROCESS__SIGSTOP;
1016 break;
1017 default:
1018 /* All other signals. */
1019 perm = PROCESS__SIGNAL;
1020 break;
1021 }
1022
1023 return perm;
1024 }
1025
1026 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1027 fork check, ptrace check, etc. */
1028 static int task_has_perm(struct task_struct *tsk1,
1029 struct task_struct *tsk2,
1030 u32 perms)
1031 {
1032 struct task_security_struct *tsec1, *tsec2;
1033
1034 tsec1 = tsk1->security;
1035 tsec2 = tsk2->security;
1036 return avc_has_perm(tsec1->sid, tsec2->sid,
1037 SECCLASS_PROCESS, perms, NULL);
1038 }
1039
1040 /* Check whether a task is allowed to use a capability. */
1041 static int task_has_capability(struct task_struct *tsk,
1042 int cap)
1043 {
1044 struct task_security_struct *tsec;
1045 struct avc_audit_data ad;
1046
1047 tsec = tsk->security;
1048
1049 AVC_AUDIT_DATA_INIT(&ad,CAP);
1050 ad.tsk = tsk;
1051 ad.u.cap = cap;
1052
1053 return avc_has_perm(tsec->sid, tsec->sid,
1054 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1055 }
1056
1057 /* Check whether a task is allowed to use a system operation. */
1058 static int task_has_system(struct task_struct *tsk,
1059 u32 perms)
1060 {
1061 struct task_security_struct *tsec;
1062
1063 tsec = tsk->security;
1064
1065 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1066 SECCLASS_SYSTEM, perms, NULL);
1067 }
1068
1069 /* Check whether a task has a particular permission to an inode.
1070 The 'adp' parameter is optional and allows other audit
1071 data to be passed (e.g. the dentry). */
1072 static int inode_has_perm(struct task_struct *tsk,
1073 struct inode *inode,
1074 u32 perms,
1075 struct avc_audit_data *adp)
1076 {
1077 struct task_security_struct *tsec;
1078 struct inode_security_struct *isec;
1079 struct avc_audit_data ad;
1080
1081 tsec = tsk->security;
1082 isec = inode->i_security;
1083
1084 if (!adp) {
1085 adp = &ad;
1086 AVC_AUDIT_DATA_INIT(&ad, FS);
1087 ad.u.fs.inode = inode;
1088 }
1089
1090 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1091 }
1092
1093 /* Same as inode_has_perm, but pass explicit audit data containing
1094 the dentry to help the auditing code to more easily generate the
1095 pathname if needed. */
1096 static inline int dentry_has_perm(struct task_struct *tsk,
1097 struct vfsmount *mnt,
1098 struct dentry *dentry,
1099 u32 av)
1100 {
1101 struct inode *inode = dentry->d_inode;
1102 struct avc_audit_data ad;
1103 AVC_AUDIT_DATA_INIT(&ad,FS);
1104 ad.u.fs.mnt = mnt;
1105 ad.u.fs.dentry = dentry;
1106 return inode_has_perm(tsk, inode, av, &ad);
1107 }
1108
1109 /* Check whether a task can use an open file descriptor to
1110 access an inode in a given way. Check access to the
1111 descriptor itself, and then use dentry_has_perm to
1112 check a particular permission to the file.
1113 Access to the descriptor is implicitly granted if it
1114 has the same SID as the process. If av is zero, then
1115 access to the file is not checked, e.g. for cases
1116 where only the descriptor is affected like seek. */
1117 static int file_has_perm(struct task_struct *tsk,
1118 struct file *file,
1119 u32 av)
1120 {
1121 struct task_security_struct *tsec = tsk->security;
1122 struct file_security_struct *fsec = file->f_security;
1123 struct vfsmount *mnt = file->f_path.mnt;
1124 struct dentry *dentry = file->f_path.dentry;
1125 struct inode *inode = dentry->d_inode;
1126 struct avc_audit_data ad;
1127 int rc;
1128
1129 AVC_AUDIT_DATA_INIT(&ad, FS);
1130 ad.u.fs.mnt = mnt;
1131 ad.u.fs.dentry = dentry;
1132
1133 if (tsec->sid != fsec->sid) {
1134 rc = avc_has_perm(tsec->sid, fsec->sid,
1135 SECCLASS_FD,
1136 FD__USE,
1137 &ad);
1138 if (rc)
1139 return rc;
1140 }
1141
1142 /* av is zero if only checking access to the descriptor. */
1143 if (av)
1144 return inode_has_perm(tsk, inode, av, &ad);
1145
1146 return 0;
1147 }
1148
1149 /* Check whether a task can create a file. */
1150 static int may_create(struct inode *dir,
1151 struct dentry *dentry,
1152 u16 tclass)
1153 {
1154 struct task_security_struct *tsec;
1155 struct inode_security_struct *dsec;
1156 struct superblock_security_struct *sbsec;
1157 u32 newsid;
1158 struct avc_audit_data ad;
1159 int rc;
1160
1161 tsec = current->security;
1162 dsec = dir->i_security;
1163 sbsec = dir->i_sb->s_security;
1164
1165 AVC_AUDIT_DATA_INIT(&ad, FS);
1166 ad.u.fs.dentry = dentry;
1167
1168 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1169 DIR__ADD_NAME | DIR__SEARCH,
1170 &ad);
1171 if (rc)
1172 return rc;
1173
1174 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1175 newsid = tsec->create_sid;
1176 } else {
1177 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1178 &newsid);
1179 if (rc)
1180 return rc;
1181 }
1182
1183 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1184 if (rc)
1185 return rc;
1186
1187 return avc_has_perm(newsid, sbsec->sid,
1188 SECCLASS_FILESYSTEM,
1189 FILESYSTEM__ASSOCIATE, &ad);
1190 }
1191
1192 /* Check whether a task can create a key. */
1193 static int may_create_key(u32 ksid,
1194 struct task_struct *ctx)
1195 {
1196 struct task_security_struct *tsec;
1197
1198 tsec = ctx->security;
1199
1200 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1201 }
1202
1203 #define MAY_LINK 0
1204 #define MAY_UNLINK 1
1205 #define MAY_RMDIR 2
1206
1207 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1208 static int may_link(struct inode *dir,
1209 struct dentry *dentry,
1210 int kind)
1211
1212 {
1213 struct task_security_struct *tsec;
1214 struct inode_security_struct *dsec, *isec;
1215 struct avc_audit_data ad;
1216 u32 av;
1217 int rc;
1218
1219 tsec = current->security;
1220 dsec = dir->i_security;
1221 isec = dentry->d_inode->i_security;
1222
1223 AVC_AUDIT_DATA_INIT(&ad, FS);
1224 ad.u.fs.dentry = dentry;
1225
1226 av = DIR__SEARCH;
1227 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1228 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1229 if (rc)
1230 return rc;
1231
1232 switch (kind) {
1233 case MAY_LINK:
1234 av = FILE__LINK;
1235 break;
1236 case MAY_UNLINK:
1237 av = FILE__UNLINK;
1238 break;
1239 case MAY_RMDIR:
1240 av = DIR__RMDIR;
1241 break;
1242 default:
1243 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1244 return 0;
1245 }
1246
1247 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1248 return rc;
1249 }
1250
1251 static inline int may_rename(struct inode *old_dir,
1252 struct dentry *old_dentry,
1253 struct inode *new_dir,
1254 struct dentry *new_dentry)
1255 {
1256 struct task_security_struct *tsec;
1257 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1258 struct avc_audit_data ad;
1259 u32 av;
1260 int old_is_dir, new_is_dir;
1261 int rc;
1262
1263 tsec = current->security;
1264 old_dsec = old_dir->i_security;
1265 old_isec = old_dentry->d_inode->i_security;
1266 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1267 new_dsec = new_dir->i_security;
1268
1269 AVC_AUDIT_DATA_INIT(&ad, FS);
1270
1271 ad.u.fs.dentry = old_dentry;
1272 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1273 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1274 if (rc)
1275 return rc;
1276 rc = avc_has_perm(tsec->sid, old_isec->sid,
1277 old_isec->sclass, FILE__RENAME, &ad);
1278 if (rc)
1279 return rc;
1280 if (old_is_dir && new_dir != old_dir) {
1281 rc = avc_has_perm(tsec->sid, old_isec->sid,
1282 old_isec->sclass, DIR__REPARENT, &ad);
1283 if (rc)
1284 return rc;
1285 }
1286
1287 ad.u.fs.dentry = new_dentry;
1288 av = DIR__ADD_NAME | DIR__SEARCH;
1289 if (new_dentry->d_inode)
1290 av |= DIR__REMOVE_NAME;
1291 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1292 if (rc)
1293 return rc;
1294 if (new_dentry->d_inode) {
1295 new_isec = new_dentry->d_inode->i_security;
1296 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1297 rc = avc_has_perm(tsec->sid, new_isec->sid,
1298 new_isec->sclass,
1299 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1300 if (rc)
1301 return rc;
1302 }
1303
1304 return 0;
1305 }
1306
1307 /* Check whether a task can perform a filesystem operation. */
1308 static int superblock_has_perm(struct task_struct *tsk,
1309 struct super_block *sb,
1310 u32 perms,
1311 struct avc_audit_data *ad)
1312 {
1313 struct task_security_struct *tsec;
1314 struct superblock_security_struct *sbsec;
1315
1316 tsec = tsk->security;
1317 sbsec = sb->s_security;
1318 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1319 perms, ad);
1320 }
1321
1322 /* Convert a Linux mode and permission mask to an access vector. */
1323 static inline u32 file_mask_to_av(int mode, int mask)
1324 {
1325 u32 av = 0;
1326
1327 if ((mode & S_IFMT) != S_IFDIR) {
1328 if (mask & MAY_EXEC)
1329 av |= FILE__EXECUTE;
1330 if (mask & MAY_READ)
1331 av |= FILE__READ;
1332
1333 if (mask & MAY_APPEND)
1334 av |= FILE__APPEND;
1335 else if (mask & MAY_WRITE)
1336 av |= FILE__WRITE;
1337
1338 } else {
1339 if (mask & MAY_EXEC)
1340 av |= DIR__SEARCH;
1341 if (mask & MAY_WRITE)
1342 av |= DIR__WRITE;
1343 if (mask & MAY_READ)
1344 av |= DIR__READ;
1345 }
1346
1347 return av;
1348 }
1349
1350 /* Convert a Linux file to an access vector. */
1351 static inline u32 file_to_av(struct file *file)
1352 {
1353 u32 av = 0;
1354
1355 if (file->f_mode & FMODE_READ)
1356 av |= FILE__READ;
1357 if (file->f_mode & FMODE_WRITE) {
1358 if (file->f_flags & O_APPEND)
1359 av |= FILE__APPEND;
1360 else
1361 av |= FILE__WRITE;
1362 }
1363
1364 return av;
1365 }
1366
1367 /* Hook functions begin here. */
1368
1369 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1370 {
1371 struct task_security_struct *psec = parent->security;
1372 struct task_security_struct *csec = child->security;
1373 int rc;
1374
1375 rc = secondary_ops->ptrace(parent,child);
1376 if (rc)
1377 return rc;
1378
1379 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1380 /* Save the SID of the tracing process for later use in apply_creds. */
1381 if (!(child->ptrace & PT_PTRACED) && !rc)
1382 csec->ptrace_sid = psec->sid;
1383 return rc;
1384 }
1385
1386 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1387 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1388 {
1389 int error;
1390
1391 error = task_has_perm(current, target, PROCESS__GETCAP);
1392 if (error)
1393 return error;
1394
1395 return secondary_ops->capget(target, effective, inheritable, permitted);
1396 }
1397
1398 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1399 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1400 {
1401 int error;
1402
1403 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1404 if (error)
1405 return error;
1406
1407 return task_has_perm(current, target, PROCESS__SETCAP);
1408 }
1409
1410 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1411 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1412 {
1413 secondary_ops->capset_set(target, effective, inheritable, permitted);
1414 }
1415
1416 static int selinux_capable(struct task_struct *tsk, int cap)
1417 {
1418 int rc;
1419
1420 rc = secondary_ops->capable(tsk, cap);
1421 if (rc)
1422 return rc;
1423
1424 return task_has_capability(tsk,cap);
1425 }
1426
1427 static int selinux_sysctl(ctl_table *table, int op)
1428 {
1429 int error = 0;
1430 u32 av;
1431 struct task_security_struct *tsec;
1432 u32 tsid;
1433 int rc;
1434
1435 rc = secondary_ops->sysctl(table, op);
1436 if (rc)
1437 return rc;
1438
1439 tsec = current->security;
1440
1441 rc = selinux_proc_get_sid(table->de, (op == 001) ?
1442 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1443 if (rc) {
1444 /* Default to the well-defined sysctl SID. */
1445 tsid = SECINITSID_SYSCTL;
1446 }
1447
1448 /* The op values are "defined" in sysctl.c, thereby creating
1449 * a bad coupling between this module and sysctl.c */
1450 if(op == 001) {
1451 error = avc_has_perm(tsec->sid, tsid,
1452 SECCLASS_DIR, DIR__SEARCH, NULL);
1453 } else {
1454 av = 0;
1455 if (op & 004)
1456 av |= FILE__READ;
1457 if (op & 002)
1458 av |= FILE__WRITE;
1459 if (av)
1460 error = avc_has_perm(tsec->sid, tsid,
1461 SECCLASS_FILE, av, NULL);
1462 }
1463
1464 return error;
1465 }
1466
1467 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1468 {
1469 int rc = 0;
1470
1471 if (!sb)
1472 return 0;
1473
1474 switch (cmds) {
1475 case Q_SYNC:
1476 case Q_QUOTAON:
1477 case Q_QUOTAOFF:
1478 case Q_SETINFO:
1479 case Q_SETQUOTA:
1480 rc = superblock_has_perm(current,
1481 sb,
1482 FILESYSTEM__QUOTAMOD, NULL);
1483 break;
1484 case Q_GETFMT:
1485 case Q_GETINFO:
1486 case Q_GETQUOTA:
1487 rc = superblock_has_perm(current,
1488 sb,
1489 FILESYSTEM__QUOTAGET, NULL);
1490 break;
1491 default:
1492 rc = 0; /* let the kernel handle invalid cmds */
1493 break;
1494 }
1495 return rc;
1496 }
1497
1498 static int selinux_quota_on(struct dentry *dentry)
1499 {
1500 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1501 }
1502
1503 static int selinux_syslog(int type)
1504 {
1505 int rc;
1506
1507 rc = secondary_ops->syslog(type);
1508 if (rc)
1509 return rc;
1510
1511 switch (type) {
1512 case 3: /* Read last kernel messages */
1513 case 10: /* Return size of the log buffer */
1514 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1515 break;
1516 case 6: /* Disable logging to console */
1517 case 7: /* Enable logging to console */
1518 case 8: /* Set level of messages printed to console */
1519 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1520 break;
1521 case 0: /* Close log */
1522 case 1: /* Open log */
1523 case 2: /* Read from log */
1524 case 4: /* Read/clear last kernel messages */
1525 case 5: /* Clear ring buffer */
1526 default:
1527 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1528 break;
1529 }
1530 return rc;
1531 }
1532
1533 /*
1534 * Check that a process has enough memory to allocate a new virtual
1535 * mapping. 0 means there is enough memory for the allocation to
1536 * succeed and -ENOMEM implies there is not.
1537 *
1538 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1539 * if the capability is granted, but __vm_enough_memory requires 1 if
1540 * the capability is granted.
1541 *
1542 * Do not audit the selinux permission check, as this is applied to all
1543 * processes that allocate mappings.
1544 */
1545 static int selinux_vm_enough_memory(long pages)
1546 {
1547 int rc, cap_sys_admin = 0;
1548 struct task_security_struct *tsec = current->security;
1549
1550 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1551 if (rc == 0)
1552 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1553 SECCLASS_CAPABILITY,
1554 CAP_TO_MASK(CAP_SYS_ADMIN),
1555 NULL);
1556
1557 if (rc == 0)
1558 cap_sys_admin = 1;
1559
1560 return __vm_enough_memory(pages, cap_sys_admin);
1561 }
1562
1563 /* binprm security operations */
1564
1565 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1566 {
1567 struct bprm_security_struct *bsec;
1568
1569 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1570 if (!bsec)
1571 return -ENOMEM;
1572
1573 bsec->bprm = bprm;
1574 bsec->sid = SECINITSID_UNLABELED;
1575 bsec->set = 0;
1576
1577 bprm->security = bsec;
1578 return 0;
1579 }
1580
1581 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1582 {
1583 struct task_security_struct *tsec;
1584 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1585 struct inode_security_struct *isec;
1586 struct bprm_security_struct *bsec;
1587 u32 newsid;
1588 struct avc_audit_data ad;
1589 int rc;
1590
1591 rc = secondary_ops->bprm_set_security(bprm);
1592 if (rc)
1593 return rc;
1594
1595 bsec = bprm->security;
1596
1597 if (bsec->set)
1598 return 0;
1599
1600 tsec = current->security;
1601 isec = inode->i_security;
1602
1603 /* Default to the current task SID. */
1604 bsec->sid = tsec->sid;
1605
1606 /* Reset fs, key, and sock SIDs on execve. */
1607 tsec->create_sid = 0;
1608 tsec->keycreate_sid = 0;
1609 tsec->sockcreate_sid = 0;
1610
1611 if (tsec->exec_sid) {
1612 newsid = tsec->exec_sid;
1613 /* Reset exec SID on execve. */
1614 tsec->exec_sid = 0;
1615 } else {
1616 /* Check for a default transition on this program. */
1617 rc = security_transition_sid(tsec->sid, isec->sid,
1618 SECCLASS_PROCESS, &newsid);
1619 if (rc)
1620 return rc;
1621 }
1622
1623 AVC_AUDIT_DATA_INIT(&ad, FS);
1624 ad.u.fs.mnt = bprm->file->f_path.mnt;
1625 ad.u.fs.dentry = bprm->file->f_path.dentry;
1626
1627 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1628 newsid = tsec->sid;
1629
1630 if (tsec->sid == newsid) {
1631 rc = avc_has_perm(tsec->sid, isec->sid,
1632 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1633 if (rc)
1634 return rc;
1635 } else {
1636 /* Check permissions for the transition. */
1637 rc = avc_has_perm(tsec->sid, newsid,
1638 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1639 if (rc)
1640 return rc;
1641
1642 rc = avc_has_perm(newsid, isec->sid,
1643 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1644 if (rc)
1645 return rc;
1646
1647 /* Clear any possibly unsafe personality bits on exec: */
1648 current->personality &= ~PER_CLEAR_ON_SETID;
1649
1650 /* Set the security field to the new SID. */
1651 bsec->sid = newsid;
1652 }
1653
1654 bsec->set = 1;
1655 return 0;
1656 }
1657
1658 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1659 {
1660 return secondary_ops->bprm_check_security(bprm);
1661 }
1662
1663
1664 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1665 {
1666 struct task_security_struct *tsec = current->security;
1667 int atsecure = 0;
1668
1669 if (tsec->osid != tsec->sid) {
1670 /* Enable secure mode for SIDs transitions unless
1671 the noatsecure permission is granted between
1672 the two SIDs, i.e. ahp returns 0. */
1673 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1674 SECCLASS_PROCESS,
1675 PROCESS__NOATSECURE, NULL);
1676 }
1677
1678 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1679 }
1680
1681 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1682 {
1683 kfree(bprm->security);
1684 bprm->security = NULL;
1685 }
1686
1687 extern struct vfsmount *selinuxfs_mount;
1688 extern struct dentry *selinux_null;
1689
1690 /* Derived from fs/exec.c:flush_old_files. */
1691 static inline void flush_unauthorized_files(struct files_struct * files)
1692 {
1693 struct avc_audit_data ad;
1694 struct file *file, *devnull = NULL;
1695 struct tty_struct *tty;
1696 struct fdtable *fdt;
1697 long j = -1;
1698 int drop_tty = 0;
1699
1700 mutex_lock(&tty_mutex);
1701 tty = get_current_tty();
1702 if (tty) {
1703 file_list_lock();
1704 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1705 if (file) {
1706 /* Revalidate access to controlling tty.
1707 Use inode_has_perm on the tty inode directly rather
1708 than using file_has_perm, as this particular open
1709 file may belong to another process and we are only
1710 interested in the inode-based check here. */
1711 struct inode *inode = file->f_path.dentry->d_inode;
1712 if (inode_has_perm(current, inode,
1713 FILE__READ | FILE__WRITE, NULL)) {
1714 drop_tty = 1;
1715 }
1716 }
1717 file_list_unlock();
1718
1719 /* Reset controlling tty. */
1720 if (drop_tty)
1721 proc_set_tty(current, NULL);
1722 }
1723 mutex_unlock(&tty_mutex);
1724
1725 /* Revalidate access to inherited open files. */
1726
1727 AVC_AUDIT_DATA_INIT(&ad,FS);
1728
1729 spin_lock(&files->file_lock);
1730 for (;;) {
1731 unsigned long set, i;
1732 int fd;
1733
1734 j++;
1735 i = j * __NFDBITS;
1736 fdt = files_fdtable(files);
1737 if (i >= fdt->max_fds)
1738 break;
1739 set = fdt->open_fds->fds_bits[j];
1740 if (!set)
1741 continue;
1742 spin_unlock(&files->file_lock);
1743 for ( ; set ; i++,set >>= 1) {
1744 if (set & 1) {
1745 file = fget(i);
1746 if (!file)
1747 continue;
1748 if (file_has_perm(current,
1749 file,
1750 file_to_av(file))) {
1751 sys_close(i);
1752 fd = get_unused_fd();
1753 if (fd != i) {
1754 if (fd >= 0)
1755 put_unused_fd(fd);
1756 fput(file);
1757 continue;
1758 }
1759 if (devnull) {
1760 get_file(devnull);
1761 } else {
1762 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1763 if (IS_ERR(devnull)) {
1764 devnull = NULL;
1765 put_unused_fd(fd);
1766 fput(file);
1767 continue;
1768 }
1769 }
1770 fd_install(fd, devnull);
1771 }
1772 fput(file);
1773 }
1774 }
1775 spin_lock(&files->file_lock);
1776
1777 }
1778 spin_unlock(&files->file_lock);
1779 }
1780
1781 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1782 {
1783 struct task_security_struct *tsec;
1784 struct bprm_security_struct *bsec;
1785 u32 sid;
1786 int rc;
1787
1788 secondary_ops->bprm_apply_creds(bprm, unsafe);
1789
1790 tsec = current->security;
1791
1792 bsec = bprm->security;
1793 sid = bsec->sid;
1794
1795 tsec->osid = tsec->sid;
1796 bsec->unsafe = 0;
1797 if (tsec->sid != sid) {
1798 /* Check for shared state. If not ok, leave SID
1799 unchanged and kill. */
1800 if (unsafe & LSM_UNSAFE_SHARE) {
1801 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1802 PROCESS__SHARE, NULL);
1803 if (rc) {
1804 bsec->unsafe = 1;
1805 return;
1806 }
1807 }
1808
1809 /* Check for ptracing, and update the task SID if ok.
1810 Otherwise, leave SID unchanged and kill. */
1811 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1812 rc = avc_has_perm(tsec->ptrace_sid, sid,
1813 SECCLASS_PROCESS, PROCESS__PTRACE,
1814 NULL);
1815 if (rc) {
1816 bsec->unsafe = 1;
1817 return;
1818 }
1819 }
1820 tsec->sid = sid;
1821 }
1822 }
1823
1824 /*
1825 * called after apply_creds without the task lock held
1826 */
1827 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1828 {
1829 struct task_security_struct *tsec;
1830 struct rlimit *rlim, *initrlim;
1831 struct itimerval itimer;
1832 struct bprm_security_struct *bsec;
1833 int rc, i;
1834
1835 tsec = current->security;
1836 bsec = bprm->security;
1837
1838 if (bsec->unsafe) {
1839 force_sig_specific(SIGKILL, current);
1840 return;
1841 }
1842 if (tsec->osid == tsec->sid)
1843 return;
1844
1845 /* Close files for which the new task SID is not authorized. */
1846 flush_unauthorized_files(current->files);
1847
1848 /* Check whether the new SID can inherit signal state
1849 from the old SID. If not, clear itimers to avoid
1850 subsequent signal generation and flush and unblock
1851 signals. This must occur _after_ the task SID has
1852 been updated so that any kill done after the flush
1853 will be checked against the new SID. */
1854 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1855 PROCESS__SIGINH, NULL);
1856 if (rc) {
1857 memset(&itimer, 0, sizeof itimer);
1858 for (i = 0; i < 3; i++)
1859 do_setitimer(i, &itimer, NULL);
1860 flush_signals(current);
1861 spin_lock_irq(&current->sighand->siglock);
1862 flush_signal_handlers(current, 1);
1863 sigemptyset(&current->blocked);
1864 recalc_sigpending();
1865 spin_unlock_irq(&current->sighand->siglock);
1866 }
1867
1868 /* Check whether the new SID can inherit resource limits
1869 from the old SID. If not, reset all soft limits to
1870 the lower of the current task's hard limit and the init
1871 task's soft limit. Note that the setting of hard limits
1872 (even to lower them) can be controlled by the setrlimit
1873 check. The inclusion of the init task's soft limit into
1874 the computation is to avoid resetting soft limits higher
1875 than the default soft limit for cases where the default
1876 is lower than the hard limit, e.g. RLIMIT_CORE or
1877 RLIMIT_STACK.*/
1878 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1879 PROCESS__RLIMITINH, NULL);
1880 if (rc) {
1881 for (i = 0; i < RLIM_NLIMITS; i++) {
1882 rlim = current->signal->rlim + i;
1883 initrlim = init_task.signal->rlim+i;
1884 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1885 }
1886 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1887 /*
1888 * This will cause RLIMIT_CPU calculations
1889 * to be refigured.
1890 */
1891 current->it_prof_expires = jiffies_to_cputime(1);
1892 }
1893 }
1894
1895 /* Wake up the parent if it is waiting so that it can
1896 recheck wait permission to the new task SID. */
1897 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1898 }
1899
1900 /* superblock security operations */
1901
1902 static int selinux_sb_alloc_security(struct super_block *sb)
1903 {
1904 return superblock_alloc_security(sb);
1905 }
1906
1907 static void selinux_sb_free_security(struct super_block *sb)
1908 {
1909 superblock_free_security(sb);
1910 }
1911
1912 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1913 {
1914 if (plen > olen)
1915 return 0;
1916
1917 return !memcmp(prefix, option, plen);
1918 }
1919
1920 static inline int selinux_option(char *option, int len)
1921 {
1922 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1923 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1924 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1925 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1926 }
1927
1928 static inline void take_option(char **to, char *from, int *first, int len)
1929 {
1930 if (!*first) {
1931 **to = ',';
1932 *to += 1;
1933 } else
1934 *first = 0;
1935 memcpy(*to, from, len);
1936 *to += len;
1937 }
1938
1939 static inline void take_selinux_option(char **to, char *from, int *first,
1940 int len)
1941 {
1942 int current_size = 0;
1943
1944 if (!*first) {
1945 **to = '|';
1946 *to += 1;
1947 }
1948 else
1949 *first = 0;
1950
1951 while (current_size < len) {
1952 if (*from != '"') {
1953 **to = *from;
1954 *to += 1;
1955 }
1956 from += 1;
1957 current_size += 1;
1958 }
1959 }
1960
1961 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1962 {
1963 int fnosec, fsec, rc = 0;
1964 char *in_save, *in_curr, *in_end;
1965 char *sec_curr, *nosec_save, *nosec;
1966 int open_quote = 0;
1967
1968 in_curr = orig;
1969 sec_curr = copy;
1970
1971 /* Binary mount data: just copy */
1972 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1973 copy_page(sec_curr, in_curr);
1974 goto out;
1975 }
1976
1977 nosec = (char *)get_zeroed_page(GFP_KERNEL);
1978 if (!nosec) {
1979 rc = -ENOMEM;
1980 goto out;
1981 }
1982
1983 nosec_save = nosec;
1984 fnosec = fsec = 1;
1985 in_save = in_end = orig;
1986
1987 do {
1988 if (*in_end == '"')
1989 open_quote = !open_quote;
1990 if ((*in_end == ',' && open_quote == 0) ||
1991 *in_end == '\0') {
1992 int len = in_end - in_curr;
1993
1994 if (selinux_option(in_curr, len))
1995 take_selinux_option(&sec_curr, in_curr, &fsec, len);
1996 else
1997 take_option(&nosec, in_curr, &fnosec, len);
1998
1999 in_curr = in_end + 1;
2000 }
2001 } while (*in_end++);
2002
2003 strcpy(in_save, nosec_save);
2004 free_page((unsigned long)nosec_save);
2005 out:
2006 return rc;
2007 }
2008
2009 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2010 {
2011 struct avc_audit_data ad;
2012 int rc;
2013
2014 rc = superblock_doinit(sb, data);
2015 if (rc)
2016 return rc;
2017
2018 AVC_AUDIT_DATA_INIT(&ad,FS);
2019 ad.u.fs.dentry = sb->s_root;
2020 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2021 }
2022
2023 static int selinux_sb_statfs(struct dentry *dentry)
2024 {
2025 struct avc_audit_data ad;
2026
2027 AVC_AUDIT_DATA_INIT(&ad,FS);
2028 ad.u.fs.dentry = dentry->d_sb->s_root;
2029 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2030 }
2031
2032 static int selinux_mount(char * dev_name,
2033 struct nameidata *nd,
2034 char * type,
2035 unsigned long flags,
2036 void * data)
2037 {
2038 int rc;
2039
2040 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2041 if (rc)
2042 return rc;
2043
2044 if (flags & MS_REMOUNT)
2045 return superblock_has_perm(current, nd->mnt->mnt_sb,
2046 FILESYSTEM__REMOUNT, NULL);
2047 else
2048 return dentry_has_perm(current, nd->mnt, nd->dentry,
2049 FILE__MOUNTON);
2050 }
2051
2052 static int selinux_umount(struct vfsmount *mnt, int flags)
2053 {
2054 int rc;
2055
2056 rc = secondary_ops->sb_umount(mnt, flags);
2057 if (rc)
2058 return rc;
2059
2060 return superblock_has_perm(current,mnt->mnt_sb,
2061 FILESYSTEM__UNMOUNT,NULL);
2062 }
2063
2064 /* inode security operations */
2065
2066 static int selinux_inode_alloc_security(struct inode *inode)
2067 {
2068 return inode_alloc_security(inode);
2069 }
2070
2071 static void selinux_inode_free_security(struct inode *inode)
2072 {
2073 inode_free_security(inode);
2074 }
2075
2076 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2077 char **name, void **value,
2078 size_t *len)
2079 {
2080 struct task_security_struct *tsec;
2081 struct inode_security_struct *dsec;
2082 struct superblock_security_struct *sbsec;
2083 u32 newsid, clen;
2084 int rc;
2085 char *namep = NULL, *context;
2086
2087 tsec = current->security;
2088 dsec = dir->i_security;
2089 sbsec = dir->i_sb->s_security;
2090
2091 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2092 newsid = tsec->create_sid;
2093 } else {
2094 rc = security_transition_sid(tsec->sid, dsec->sid,
2095 inode_mode_to_security_class(inode->i_mode),
2096 &newsid);
2097 if (rc) {
2098 printk(KERN_WARNING "%s: "
2099 "security_transition_sid failed, rc=%d (dev=%s "
2100 "ino=%ld)\n",
2101 __FUNCTION__,
2102 -rc, inode->i_sb->s_id, inode->i_ino);
2103 return rc;
2104 }
2105 }
2106
2107 /* Possibly defer initialization to selinux_complete_init. */
2108 if (sbsec->initialized) {
2109 struct inode_security_struct *isec = inode->i_security;
2110 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2111 isec->sid = newsid;
2112 isec->initialized = 1;
2113 }
2114
2115 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2116 return -EOPNOTSUPP;
2117
2118 if (name) {
2119 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2120 if (!namep)
2121 return -ENOMEM;
2122 *name = namep;
2123 }
2124
2125 if (value && len) {
2126 rc = security_sid_to_context(newsid, &context, &clen);
2127 if (rc) {
2128 kfree(namep);
2129 return rc;
2130 }
2131 *value = context;
2132 *len = clen;
2133 }
2134
2135 return 0;
2136 }
2137
2138 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2139 {
2140 return may_create(dir, dentry, SECCLASS_FILE);
2141 }
2142
2143 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2144 {
2145 int rc;
2146
2147 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2148 if (rc)
2149 return rc;
2150 return may_link(dir, old_dentry, MAY_LINK);
2151 }
2152
2153 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2154 {
2155 int rc;
2156
2157 rc = secondary_ops->inode_unlink(dir, dentry);
2158 if (rc)
2159 return rc;
2160 return may_link(dir, dentry, MAY_UNLINK);
2161 }
2162
2163 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2164 {
2165 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2166 }
2167
2168 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2169 {
2170 return may_create(dir, dentry, SECCLASS_DIR);
2171 }
2172
2173 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2174 {
2175 return may_link(dir, dentry, MAY_RMDIR);
2176 }
2177
2178 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2179 {
2180 int rc;
2181
2182 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2183 if (rc)
2184 return rc;
2185
2186 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2187 }
2188
2189 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2190 struct inode *new_inode, struct dentry *new_dentry)
2191 {
2192 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2193 }
2194
2195 static int selinux_inode_readlink(struct dentry *dentry)
2196 {
2197 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2198 }
2199
2200 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2201 {
2202 int rc;
2203
2204 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2205 if (rc)
2206 return rc;
2207 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2208 }
2209
2210 static int selinux_inode_permission(struct inode *inode, int mask,
2211 struct nameidata *nd)
2212 {
2213 int rc;
2214
2215 rc = secondary_ops->inode_permission(inode, mask, nd);
2216 if (rc)
2217 return rc;
2218
2219 if (!mask) {
2220 /* No permission to check. Existence test. */
2221 return 0;
2222 }
2223
2224 return inode_has_perm(current, inode,
2225 file_mask_to_av(inode->i_mode, mask), NULL);
2226 }
2227
2228 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2229 {
2230 int rc;
2231
2232 rc = secondary_ops->inode_setattr(dentry, iattr);
2233 if (rc)
2234 return rc;
2235
2236 if (iattr->ia_valid & ATTR_FORCE)
2237 return 0;
2238
2239 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2240 ATTR_ATIME_SET | ATTR_MTIME_SET))
2241 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2242
2243 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2244 }
2245
2246 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2247 {
2248 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2249 }
2250
2251 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2252 {
2253 struct task_security_struct *tsec = current->security;
2254 struct inode *inode = dentry->d_inode;
2255 struct inode_security_struct *isec = inode->i_security;
2256 struct superblock_security_struct *sbsec;
2257 struct avc_audit_data ad;
2258 u32 newsid;
2259 int rc = 0;
2260
2261 if (strcmp(name, XATTR_NAME_SELINUX)) {
2262 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2263 sizeof XATTR_SECURITY_PREFIX - 1) &&
2264 !capable(CAP_SYS_ADMIN)) {
2265 /* A different attribute in the security namespace.
2266 Restrict to administrator. */
2267 return -EPERM;
2268 }
2269
2270 /* Not an attribute we recognize, so just check the
2271 ordinary setattr permission. */
2272 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2273 }
2274
2275 sbsec = inode->i_sb->s_security;
2276 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2277 return -EOPNOTSUPP;
2278
2279 if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2280 return -EPERM;
2281
2282 AVC_AUDIT_DATA_INIT(&ad,FS);
2283 ad.u.fs.dentry = dentry;
2284
2285 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2286 FILE__RELABELFROM, &ad);
2287 if (rc)
2288 return rc;
2289
2290 rc = security_context_to_sid(value, size, &newsid);
2291 if (rc)
2292 return rc;
2293
2294 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2295 FILE__RELABELTO, &ad);
2296 if (rc)
2297 return rc;
2298
2299 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2300 isec->sclass);
2301 if (rc)
2302 return rc;
2303
2304 return avc_has_perm(newsid,
2305 sbsec->sid,
2306 SECCLASS_FILESYSTEM,
2307 FILESYSTEM__ASSOCIATE,
2308 &ad);
2309 }
2310
2311 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2312 void *value, size_t size, int flags)
2313 {
2314 struct inode *inode = dentry->d_inode;
2315 struct inode_security_struct *isec = inode->i_security;
2316 u32 newsid;
2317 int rc;
2318
2319 if (strcmp(name, XATTR_NAME_SELINUX)) {
2320 /* Not an attribute we recognize, so nothing to do. */
2321 return;
2322 }
2323
2324 rc = security_context_to_sid(value, size, &newsid);
2325 if (rc) {
2326 printk(KERN_WARNING "%s: unable to obtain SID for context "
2327 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2328 return;
2329 }
2330
2331 isec->sid = newsid;
2332 return;
2333 }
2334
2335 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2336 {
2337 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2338 }
2339
2340 static int selinux_inode_listxattr (struct dentry *dentry)
2341 {
2342 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2343 }
2344
2345 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2346 {
2347 if (strcmp(name, XATTR_NAME_SELINUX)) {
2348 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2349 sizeof XATTR_SECURITY_PREFIX - 1) &&
2350 !capable(CAP_SYS_ADMIN)) {
2351 /* A different attribute in the security namespace.
2352 Restrict to administrator. */
2353 return -EPERM;
2354 }
2355
2356 /* Not an attribute we recognize, so just check the
2357 ordinary setattr permission. Might want a separate
2358 permission for removexattr. */
2359 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2360 }
2361
2362 /* No one is allowed to remove a SELinux security label.
2363 You can change the label, but all data must be labeled. */
2364 return -EACCES;
2365 }
2366
2367 static const char *selinux_inode_xattr_getsuffix(void)
2368 {
2369 return XATTR_SELINUX_SUFFIX;
2370 }
2371
2372 /*
2373 * Copy the in-core inode security context value to the user. If the
2374 * getxattr() prior to this succeeded, check to see if we need to
2375 * canonicalize the value to be finally returned to the user.
2376 *
2377 * Permission check is handled by selinux_inode_getxattr hook.
2378 */
2379 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2380 {
2381 struct inode_security_struct *isec = inode->i_security;
2382
2383 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2384 return -EOPNOTSUPP;
2385
2386 return selinux_getsecurity(isec->sid, buffer, size);
2387 }
2388
2389 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2390 const void *value, size_t size, int flags)
2391 {
2392 struct inode_security_struct *isec = inode->i_security;
2393 u32 newsid;
2394 int rc;
2395
2396 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2397 return -EOPNOTSUPP;
2398
2399 if (!value || !size)
2400 return -EACCES;
2401
2402 rc = security_context_to_sid((void*)value, size, &newsid);
2403 if (rc)
2404 return rc;
2405
2406 isec->sid = newsid;
2407 return 0;
2408 }
2409
2410 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2411 {
2412 const int len = sizeof(XATTR_NAME_SELINUX);
2413 if (buffer && len <= buffer_size)
2414 memcpy(buffer, XATTR_NAME_SELINUX, len);
2415 return len;
2416 }
2417
2418 /* file security operations */
2419
2420 static int selinux_file_permission(struct file *file, int mask)
2421 {
2422 int rc;
2423 struct inode *inode = file->f_path.dentry->d_inode;
2424
2425 if (!mask) {
2426 /* No permission to check. Existence test. */
2427 return 0;
2428 }
2429
2430 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2431 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2432 mask |= MAY_APPEND;
2433
2434 rc = file_has_perm(current, file,
2435 file_mask_to_av(inode->i_mode, mask));
2436 if (rc)
2437 return rc;
2438
2439 return selinux_netlbl_inode_permission(inode, mask);
2440 }
2441
2442 static int selinux_file_alloc_security(struct file *file)
2443 {
2444 return file_alloc_security(file);
2445 }
2446
2447 static void selinux_file_free_security(struct file *file)
2448 {
2449 file_free_security(file);
2450 }
2451
2452 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2453 unsigned long arg)
2454 {
2455 int error = 0;
2456
2457 switch (cmd) {
2458 case FIONREAD:
2459 /* fall through */
2460 case FIBMAP:
2461 /* fall through */
2462 case FIGETBSZ:
2463 /* fall through */
2464 case EXT2_IOC_GETFLAGS:
2465 /* fall through */
2466 case EXT2_IOC_GETVERSION:
2467 error = file_has_perm(current, file, FILE__GETATTR);
2468 break;
2469
2470 case EXT2_IOC_SETFLAGS:
2471 /* fall through */
2472 case EXT2_IOC_SETVERSION:
2473 error = file_has_perm(current, file, FILE__SETATTR);
2474 break;
2475
2476 /* sys_ioctl() checks */
2477 case FIONBIO:
2478 /* fall through */
2479 case FIOASYNC:
2480 error = file_has_perm(current, file, 0);
2481 break;
2482
2483 case KDSKBENT:
2484 case KDSKBSENT:
2485 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2486 break;
2487
2488 /* default case assumes that the command will go
2489 * to the file's ioctl() function.
2490 */
2491 default:
2492 error = file_has_perm(current, file, FILE__IOCTL);
2493
2494 }
2495 return error;
2496 }
2497
2498 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2499 {
2500 #ifndef CONFIG_PPC32
2501 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2502 /*
2503 * We are making executable an anonymous mapping or a
2504 * private file mapping that will also be writable.
2505 * This has an additional check.
2506 */
2507 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2508 if (rc)
2509 return rc;
2510 }
2511 #endif
2512
2513 if (file) {
2514 /* read access is always possible with a mapping */
2515 u32 av = FILE__READ;
2516
2517 /* write access only matters if the mapping is shared */
2518 if (shared && (prot & PROT_WRITE))
2519 av |= FILE__WRITE;
2520
2521 if (prot & PROT_EXEC)
2522 av |= FILE__EXECUTE;
2523
2524 return file_has_perm(current, file, av);
2525 }
2526 return 0;
2527 }
2528
2529 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2530 unsigned long prot, unsigned long flags)
2531 {
2532 int rc;
2533
2534 rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2535 if (rc)
2536 return rc;
2537
2538 if (selinux_checkreqprot)
2539 prot = reqprot;
2540
2541 return file_map_prot_check(file, prot,
2542 (flags & MAP_TYPE) == MAP_SHARED);
2543 }
2544
2545 static int selinux_file_mprotect(struct vm_area_struct *vma,
2546 unsigned long reqprot,
2547 unsigned long prot)
2548 {
2549 int rc;
2550
2551 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2552 if (rc)
2553 return rc;
2554
2555 if (selinux_checkreqprot)
2556 prot = reqprot;
2557
2558 #ifndef CONFIG_PPC32
2559 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2560 rc = 0;
2561 if (vma->vm_start >= vma->vm_mm->start_brk &&
2562 vma->vm_end <= vma->vm_mm->brk) {
2563 rc = task_has_perm(current, current,
2564 PROCESS__EXECHEAP);
2565 } else if (!vma->vm_file &&
2566 vma->vm_start <= vma->vm_mm->start_stack &&
2567 vma->vm_end >= vma->vm_mm->start_stack) {
2568 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2569 } else if (vma->vm_file && vma->anon_vma) {
2570 /*
2571 * We are making executable a file mapping that has
2572 * had some COW done. Since pages might have been
2573 * written, check ability to execute the possibly
2574 * modified content. This typically should only
2575 * occur for text relocations.
2576 */
2577 rc = file_has_perm(current, vma->vm_file,
2578 FILE__EXECMOD);
2579 }
2580 if (rc)
2581 return rc;
2582 }
2583 #endif
2584
2585 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2586 }
2587
2588 static int selinux_file_lock(struct file *file, unsigned int cmd)
2589 {
2590 return file_has_perm(current, file, FILE__LOCK);
2591 }
2592
2593 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2594 unsigned long arg)
2595 {
2596 int err = 0;
2597
2598 switch (cmd) {
2599 case F_SETFL:
2600 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2601 err = -EINVAL;
2602 break;
2603 }
2604
2605 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2606 err = file_has_perm(current, file,FILE__WRITE);
2607 break;
2608 }
2609 /* fall through */
2610 case F_SETOWN:
2611 case F_SETSIG:
2612 case F_GETFL:
2613 case F_GETOWN:
2614 case F_GETSIG:
2615 /* Just check FD__USE permission */
2616 err = file_has_perm(current, file, 0);
2617 break;
2618 case F_GETLK:
2619 case F_SETLK:
2620 case F_SETLKW:
2621 #if BITS_PER_LONG == 32
2622 case F_GETLK64:
2623 case F_SETLK64:
2624 case F_SETLKW64:
2625 #endif
2626 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2627 err = -EINVAL;
2628 break;
2629 }
2630 err = file_has_perm(current, file, FILE__LOCK);
2631 break;
2632 }
2633
2634 return err;
2635 }
2636
2637 static int selinux_file_set_fowner(struct file *file)
2638 {
2639 struct task_security_struct *tsec;
2640 struct file_security_struct *fsec;
2641
2642 tsec = current->security;
2643 fsec = file->f_security;
2644 fsec->fown_sid = tsec->sid;
2645
2646 return 0;
2647 }
2648
2649 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2650 struct fown_struct *fown, int signum)
2651 {
2652 struct file *file;
2653 u32 perm;
2654 struct task_security_struct *tsec;
2655 struct file_security_struct *fsec;
2656
2657 /* struct fown_struct is never outside the context of a struct file */
2658 file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2659
2660 tsec = tsk->security;
2661 fsec = file->f_security;
2662
2663 if (!signum)
2664 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2665 else
2666 perm = signal_to_av(signum);
2667
2668 return avc_has_perm(fsec->fown_sid, tsec->sid,
2669 SECCLASS_PROCESS, perm, NULL);
2670 }
2671
2672 static int selinux_file_receive(struct file *file)
2673 {
2674 return file_has_perm(current, file, file_to_av(file));
2675 }
2676
2677 /* task security operations */
2678
2679 static int selinux_task_create(unsigned long clone_flags)
2680 {
2681 int rc;
2682
2683 rc = secondary_ops->task_create(clone_flags);
2684 if (rc)
2685 return rc;
2686
2687 return task_has_perm(current, current, PROCESS__FORK);
2688 }
2689
2690 static int selinux_task_alloc_security(struct task_struct *tsk)
2691 {
2692 struct task_security_struct *tsec1, *tsec2;
2693 int rc;
2694
2695 tsec1 = current->security;
2696
2697 rc = task_alloc_security(tsk);
2698 if (rc)
2699 return rc;
2700 tsec2 = tsk->security;
2701
2702 tsec2->osid = tsec1->osid;
2703 tsec2->sid = tsec1->sid;
2704
2705 /* Retain the exec, fs, key, and sock SIDs across fork */
2706 tsec2->exec_sid = tsec1->exec_sid;
2707 tsec2->create_sid = tsec1->create_sid;
2708 tsec2->keycreate_sid = tsec1->keycreate_sid;
2709 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2710
2711 /* Retain ptracer SID across fork, if any.
2712 This will be reset by the ptrace hook upon any
2713 subsequent ptrace_attach operations. */
2714 tsec2->ptrace_sid = tsec1->ptrace_sid;
2715
2716 return 0;
2717 }
2718
2719 static void selinux_task_free_security(struct task_struct *tsk)
2720 {
2721 task_free_security(tsk);
2722 }
2723
2724 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2725 {
2726 /* Since setuid only affects the current process, and
2727 since the SELinux controls are not based on the Linux
2728 identity attributes, SELinux does not need to control
2729 this operation. However, SELinux does control the use
2730 of the CAP_SETUID and CAP_SETGID capabilities using the
2731 capable hook. */
2732 return 0;
2733 }
2734
2735 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2736 {
2737 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2738 }
2739
2740 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2741 {
2742 /* See the comment for setuid above. */
2743 return 0;
2744 }
2745
2746 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2747 {
2748 return task_has_perm(current, p, PROCESS__SETPGID);
2749 }
2750
2751 static int selinux_task_getpgid(struct task_struct *p)
2752 {
2753 return task_has_perm(current, p, PROCESS__GETPGID);
2754 }
2755
2756 static int selinux_task_getsid(struct task_struct *p)
2757 {
2758 return task_has_perm(current, p, PROCESS__GETSESSION);
2759 }
2760
2761 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2762 {
2763 selinux_get_task_sid(p, secid);
2764 }
2765
2766 static int selinux_task_setgroups(struct group_info *group_info)
2767 {
2768 /* See the comment for setuid above. */
2769 return 0;
2770 }
2771
2772 static int selinux_task_setnice(struct task_struct *p, int nice)
2773 {
2774 int rc;
2775
2776 rc = secondary_ops->task_setnice(p, nice);
2777 if (rc)
2778 return rc;
2779
2780 return task_has_perm(current,p, PROCESS__SETSCHED);
2781 }
2782
2783 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2784 {
2785 return task_has_perm(current, p, PROCESS__SETSCHED);
2786 }
2787
2788 static int selinux_task_getioprio(struct task_struct *p)
2789 {
2790 return task_has_perm(current, p, PROCESS__GETSCHED);
2791 }
2792
2793 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2794 {
2795 struct rlimit *old_rlim = current->signal->rlim + resource;
2796 int rc;
2797
2798 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2799 if (rc)
2800 return rc;
2801
2802 /* Control the ability to change the hard limit (whether
2803 lowering or raising it), so that the hard limit can
2804 later be used as a safe reset point for the soft limit
2805 upon context transitions. See selinux_bprm_apply_creds. */
2806 if (old_rlim->rlim_max != new_rlim->rlim_max)
2807 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2808
2809 return 0;
2810 }
2811
2812 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2813 {
2814 return task_has_perm(current, p, PROCESS__SETSCHED);
2815 }
2816
2817 static int selinux_task_getscheduler(struct task_struct *p)
2818 {
2819 return task_has_perm(current, p, PROCESS__GETSCHED);
2820 }
2821
2822 static int selinux_task_movememory(struct task_struct *p)
2823 {
2824 return task_has_perm(current, p, PROCESS__SETSCHED);
2825 }
2826
2827 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2828 int sig, u32 secid)
2829 {
2830 u32 perm;
2831 int rc;
2832 struct task_security_struct *tsec;
2833
2834 rc = secondary_ops->task_kill(p, info, sig, secid);
2835 if (rc)
2836 return rc;
2837
2838 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2839 return 0;
2840
2841 if (!sig)
2842 perm = PROCESS__SIGNULL; /* null signal; existence test */
2843 else
2844 perm = signal_to_av(sig);
2845 tsec = p->security;
2846 if (secid)
2847 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2848 else
2849 rc = task_has_perm(current, p, perm);
2850 return rc;
2851 }
2852
2853 static int selinux_task_prctl(int option,
2854 unsigned long arg2,
2855 unsigned long arg3,
2856 unsigned long arg4,
2857 unsigned long arg5)
2858 {
2859 /* The current prctl operations do not appear to require
2860 any SELinux controls since they merely observe or modify
2861 the state of the current process. */
2862 return 0;
2863 }
2864
2865 static int selinux_task_wait(struct task_struct *p)
2866 {
2867 u32 perm;
2868
2869 perm = signal_to_av(p->exit_signal);
2870
2871 return task_has_perm(p, current, perm);
2872 }
2873
2874 static void selinux_task_reparent_to_init(struct task_struct *p)
2875 {
2876 struct task_security_struct *tsec;
2877
2878 secondary_ops->task_reparent_to_init(p);
2879
2880 tsec = p->security;
2881 tsec->osid = tsec->sid;
2882 tsec->sid = SECINITSID_KERNEL;
2883 return;
2884 }
2885
2886 static void selinux_task_to_inode(struct task_struct *p,
2887 struct inode *inode)
2888 {
2889 struct task_security_struct *tsec = p->security;
2890 struct inode_security_struct *isec = inode->i_security;
2891
2892 isec->sid = tsec->sid;
2893 isec->initialized = 1;
2894 return;
2895 }
2896
2897 /* Returns error only if unable to parse addresses */
2898 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2899 struct avc_audit_data *ad, u8 *proto)
2900 {
2901 int offset, ihlen, ret = -EINVAL;
2902 struct iphdr _iph, *ih;
2903
2904 offset = skb->nh.raw - skb->data;
2905 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2906 if (ih == NULL)
2907 goto out;
2908
2909 ihlen = ih->ihl * 4;
2910 if (ihlen < sizeof(_iph))
2911 goto out;
2912
2913 ad->u.net.v4info.saddr = ih->saddr;
2914 ad->u.net.v4info.daddr = ih->daddr;
2915 ret = 0;
2916
2917 if (proto)
2918 *proto = ih->protocol;
2919
2920 switch (ih->protocol) {
2921 case IPPROTO_TCP: {
2922 struct tcphdr _tcph, *th;
2923
2924 if (ntohs(ih->frag_off) & IP_OFFSET)
2925 break;
2926
2927 offset += ihlen;
2928 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2929 if (th == NULL)
2930 break;
2931
2932 ad->u.net.sport = th->source;
2933 ad->u.net.dport = th->dest;
2934 break;
2935 }
2936
2937 case IPPROTO_UDP: {
2938 struct udphdr _udph, *uh;
2939
2940 if (ntohs(ih->frag_off) & IP_OFFSET)
2941 break;
2942
2943 offset += ihlen;
2944 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2945 if (uh == NULL)
2946 break;
2947
2948 ad->u.net.sport = uh->source;
2949 ad->u.net.dport = uh->dest;
2950 break;
2951 }
2952
2953 case IPPROTO_DCCP: {
2954 struct dccp_hdr _dccph, *dh;
2955
2956 if (ntohs(ih->frag_off) & IP_OFFSET)
2957 break;
2958
2959 offset += ihlen;
2960 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
2961 if (dh == NULL)
2962 break;
2963
2964 ad->u.net.sport = dh->dccph_sport;
2965 ad->u.net.dport = dh->dccph_dport;
2966 break;
2967 }
2968
2969 default:
2970 break;
2971 }
2972 out:
2973 return ret;
2974 }
2975
2976 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2977
2978 /* Returns error only if unable to parse addresses */
2979 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
2980 struct avc_audit_data *ad, u8 *proto)
2981 {
2982 u8 nexthdr;
2983 int ret = -EINVAL, offset;
2984 struct ipv6hdr _ipv6h, *ip6;
2985
2986 offset = skb->nh.raw - skb->data;
2987 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2988 if (ip6 == NULL)
2989 goto out;
2990
2991 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2992 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2993 ret = 0;
2994
2995 nexthdr = ip6->nexthdr;
2996 offset += sizeof(_ipv6h);
2997 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2998 if (offset < 0)
2999 goto out;
3000
3001 if (proto)
3002 *proto = nexthdr;
3003
3004 switch (nexthdr) {
3005 case IPPROTO_TCP: {
3006 struct tcphdr _tcph, *th;
3007
3008 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3009 if (th == NULL)
3010 break;
3011
3012 ad->u.net.sport = th->source;
3013 ad->u.net.dport = th->dest;
3014 break;
3015 }
3016
3017 case IPPROTO_UDP: {
3018 struct udphdr _udph, *uh;
3019
3020 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3021 if (uh == NULL)
3022 break;
3023
3024 ad->u.net.sport = uh->source;
3025 ad->u.net.dport = uh->dest;
3026 break;
3027 }
3028
3029 case IPPROTO_DCCP: {
3030 struct dccp_hdr _dccph, *dh;
3031
3032 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3033 if (dh == NULL)
3034 break;
3035
3036 ad->u.net.sport = dh->dccph_sport;
3037 ad->u.net.dport = dh->dccph_dport;
3038 break;
3039 }
3040
3041 /* includes fragments */
3042 default:
3043 break;
3044 }
3045 out:
3046 return ret;
3047 }
3048
3049 #endif /* IPV6 */
3050
3051 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3052 char **addrp, int *len, int src, u8 *proto)
3053 {
3054 int ret = 0;
3055
3056 switch (ad->u.net.family) {
3057 case PF_INET:
3058 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3059 if (ret || !addrp)
3060 break;
3061 *len = 4;
3062 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3063 &ad->u.net.v4info.daddr);
3064 break;
3065
3066 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3067 case PF_INET6:
3068 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3069 if (ret || !addrp)
3070 break;
3071 *len = 16;
3072 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3073 &ad->u.net.v6info.daddr);
3074 break;
3075 #endif /* IPV6 */
3076 default:
3077 break;
3078 }
3079
3080 return ret;
3081 }
3082
3083 /* socket security operations */
3084 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3085 u32 perms)
3086 {
3087 struct inode_security_struct *isec;
3088 struct task_security_struct *tsec;
3089 struct avc_audit_data ad;
3090 int err = 0;
3091
3092 tsec = task->security;
3093 isec = SOCK_INODE(sock)->i_security;
3094
3095 if (isec->sid == SECINITSID_KERNEL)
3096 goto out;
3097
3098 AVC_AUDIT_DATA_INIT(&ad,NET);
3099 ad.u.net.sk = sock->sk;
3100 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3101
3102 out:
3103 return err;
3104 }
3105
3106 static int selinux_socket_create(int family, int type,
3107 int protocol, int kern)
3108 {
3109 int err = 0;
3110 struct task_security_struct *tsec;
3111 u32 newsid;
3112
3113 if (kern)
3114 goto out;
3115
3116 tsec = current->security;
3117 newsid = tsec->sockcreate_sid ? : tsec->sid;
3118 err = avc_has_perm(tsec->sid, newsid,
3119 socket_type_to_security_class(family, type,
3120 protocol), SOCKET__CREATE, NULL);
3121
3122 out:
3123 return err;
3124 }
3125
3126 static int selinux_socket_post_create(struct socket *sock, int family,
3127 int type, int protocol, int kern)
3128 {
3129 int err = 0;
3130 struct inode_security_struct *isec;
3131 struct task_security_struct *tsec;
3132 struct sk_security_struct *sksec;
3133 u32 newsid;
3134
3135 isec = SOCK_INODE(sock)->i_security;
3136
3137 tsec = current->security;
3138 newsid = tsec->sockcreate_sid ? : tsec->sid;
3139 isec->sclass = socket_type_to_security_class(family, type, protocol);
3140 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3141 isec->initialized = 1;
3142
3143 if (sock->sk) {
3144 sksec = sock->sk->sk_security;
3145 sksec->sid = isec->sid;
3146 err = selinux_netlbl_socket_post_create(sock);
3147 }
3148
3149 return err;
3150 }
3151
3152 /* Range of port numbers used to automatically bind.
3153 Need to determine whether we should perform a name_bind
3154 permission check between the socket and the port number. */
3155 #define ip_local_port_range_0 sysctl_local_port_range[0]
3156 #define ip_local_port_range_1 sysctl_local_port_range[1]
3157
3158 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3159 {
3160 u16 family;
3161 int err;
3162
3163 err = socket_has_perm(current, sock, SOCKET__BIND);
3164 if (err)
3165 goto out;
3166
3167 /*
3168 * If PF_INET or PF_INET6, check name_bind permission for the port.
3169 * Multiple address binding for SCTP is not supported yet: we just
3170 * check the first address now.
3171 */
3172 family = sock->sk->sk_family;
3173 if (family == PF_INET || family == PF_INET6) {
3174 char *addrp;
3175 struct inode_security_struct *isec;
3176 struct task_security_struct *tsec;
3177 struct avc_audit_data ad;
3178 struct sockaddr_in *addr4 = NULL;
3179 struct sockaddr_in6 *addr6 = NULL;
3180 unsigned short snum;
3181 struct sock *sk = sock->sk;
3182 u32 sid, node_perm, addrlen;
3183
3184 tsec = current->security;
3185 isec = SOCK_INODE(sock)->i_security;
3186
3187 if (family == PF_INET) {
3188 addr4 = (struct sockaddr_in *)address;
3189 snum = ntohs(addr4->sin_port);
3190 addrlen = sizeof(addr4->sin_addr.s_addr);
3191 addrp = (char *)&addr4->sin_addr.s_addr;
3192 } else {
3193 addr6 = (struct sockaddr_in6 *)address;
3194 snum = ntohs(addr6->sin6_port);
3195 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3196 addrp = (char *)&addr6->sin6_addr.s6_addr;
3197 }
3198
3199 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3200 snum > ip_local_port_range_1)) {
3201 err = security_port_sid(sk->sk_family, sk->sk_type,
3202 sk->sk_protocol, snum, &sid);
3203 if (err)
3204 goto out;
3205 AVC_AUDIT_DATA_INIT(&ad,NET);
3206 ad.u.net.sport = htons(snum);
3207 ad.u.net.family = family;
3208 err = avc_has_perm(isec->sid, sid,
3209 isec->sclass,
3210 SOCKET__NAME_BIND, &ad);
3211 if (err)
3212 goto out;
3213 }
3214
3215 switch(isec->sclass) {
3216 case SECCLASS_TCP_SOCKET:
3217 node_perm = TCP_SOCKET__NODE_BIND;
3218 break;
3219
3220 case SECCLASS_UDP_SOCKET:
3221 node_perm = UDP_SOCKET__NODE_BIND;
3222 break;
3223
3224 case SECCLASS_DCCP_SOCKET:
3225 node_perm = DCCP_SOCKET__NODE_BIND;
3226 break;
3227
3228 default:
3229 node_perm = RAWIP_SOCKET__NODE_BIND;
3230 break;
3231 }
3232
3233 err = security_node_sid(family, addrp, addrlen, &sid);
3234 if (err)
3235 goto out;
3236
3237 AVC_AUDIT_DATA_INIT(&ad,NET);
3238 ad.u.net.sport = htons(snum);
3239 ad.u.net.family = family;
3240
3241 if (family == PF_INET)
3242 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3243 else
3244 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3245
3246 err = avc_has_perm(isec->sid, sid,
3247 isec->sclass, node_perm, &ad);
3248 if (err)
3249 goto out;
3250 }
3251 out:
3252 return err;
3253 }
3254
3255 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3256 {
3257 struct inode_security_struct *isec;
3258 int err;
3259
3260 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3261 if (err)
3262 return err;
3263
3264 /*
3265 * If a TCP or DCCP socket, check name_connect permission for the port.
3266 */
3267 isec = SOCK_INODE(sock)->i_security;
3268 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3269 isec->sclass == SECCLASS_DCCP_SOCKET) {
3270 struct sock *sk = sock->sk;
3271 struct avc_audit_data ad;
3272 struct sockaddr_in *addr4 = NULL;
3273 struct sockaddr_in6 *addr6 = NULL;
3274 unsigned short snum;
3275 u32 sid, perm;
3276
3277 if (sk->sk_family == PF_INET) {
3278 addr4 = (struct sockaddr_in *)address;
3279 if (addrlen < sizeof(struct sockaddr_in))
3280 return -EINVAL;
3281 snum = ntohs(addr4->sin_port);
3282 } else {
3283 addr6 = (struct sockaddr_in6 *)address;
3284 if (addrlen < SIN6_LEN_RFC2133)
3285 return -EINVAL;
3286 snum = ntohs(addr6->sin6_port);
3287 }
3288
3289 err = security_port_sid(sk->sk_family, sk->sk_type,
3290 sk->sk_protocol, snum, &sid);
3291 if (err)
3292 goto out;
3293
3294 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3295 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3296
3297 AVC_AUDIT_DATA_INIT(&ad,NET);
3298 ad.u.net.dport = htons(snum);
3299 ad.u.net.family = sk->sk_family;
3300 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3301 if (err)
3302 goto out;
3303 }
3304
3305 out:
3306 return err;
3307 }
3308
3309 static int selinux_socket_listen(struct socket *sock, int backlog)
3310 {
3311 return socket_has_perm(current, sock, SOCKET__LISTEN);
3312 }
3313
3314 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3315 {
3316 int err;
3317 struct inode_security_struct *isec;
3318 struct inode_security_struct *newisec;
3319
3320 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3321 if (err)
3322 return err;
3323
3324 newisec = SOCK_INODE(newsock)->i_security;
3325
3326 isec = SOCK_INODE(sock)->i_security;
3327 newisec->sclass = isec->sclass;
3328 newisec->sid = isec->sid;
3329 newisec->initialized = 1;
3330
3331 return 0;
3332 }
3333
3334 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3335 int size)
3336 {
3337 int rc;
3338
3339 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3340 if (rc)
3341 return rc;
3342
3343 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3344 }
3345
3346 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3347 int size, int flags)
3348 {
3349 return socket_has_perm(current, sock, SOCKET__READ);
3350 }
3351
3352 static int selinux_socket_getsockname(struct socket *sock)
3353 {
3354 return socket_has_perm(current, sock, SOCKET__GETATTR);
3355 }
3356
3357 static int selinux_socket_getpeername(struct socket *sock)
3358 {
3359 return socket_has_perm(current, sock, SOCKET__GETATTR);
3360 }
3361
3362 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3363 {
3364 int err;
3365
3366 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3367 if (err)
3368 return err;
3369
3370 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3371 }
3372
3373 static int selinux_socket_getsockopt(struct socket *sock, int level,
3374 int optname)
3375 {
3376 return socket_has_perm(current, sock, SOCKET__GETOPT);
3377 }
3378
3379 static int selinux_socket_shutdown(struct socket *sock, int how)
3380 {
3381 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3382 }
3383
3384 static int selinux_socket_unix_stream_connect(struct socket *sock,
3385 struct socket *other,
3386 struct sock *newsk)
3387 {
3388 struct sk_security_struct *ssec;
3389 struct inode_security_struct *isec;
3390 struct inode_security_struct *other_isec;
3391 struct avc_audit_data ad;
3392 int err;
3393
3394 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3395 if (err)
3396 return err;
3397
3398 isec = SOCK_INODE(sock)->i_security;
3399 other_isec = SOCK_INODE(other)->i_security;
3400
3401 AVC_AUDIT_DATA_INIT(&ad,NET);
3402 ad.u.net.sk = other->sk;
3403
3404 err = avc_has_perm(isec->sid, other_isec->sid,
3405 isec->sclass,
3406 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3407 if (err)
3408 return err;
3409
3410 /* connecting socket */
3411 ssec = sock->sk->sk_security;
3412 ssec->peer_sid = other_isec->sid;
3413
3414 /* server child socket */
3415 ssec = newsk->sk_security;
3416 ssec->peer_sid = isec->sid;
3417 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3418
3419 return err;
3420 }
3421
3422 static int selinux_socket_unix_may_send(struct socket *sock,
3423 struct socket *other)
3424 {
3425 struct inode_security_struct *isec;
3426 struct inode_security_struct *other_isec;
3427 struct avc_audit_data ad;
3428 int err;
3429
3430 isec = SOCK_INODE(sock)->i_security;
3431 other_isec = SOCK_INODE(other)->i_security;
3432
3433 AVC_AUDIT_DATA_INIT(&ad,NET);
3434 ad.u.net.sk = other->sk;
3435
3436 err = avc_has_perm(isec->sid, other_isec->sid,
3437 isec->sclass, SOCKET__SENDTO, &ad);
3438 if (err)
3439 return err;
3440
3441 return 0;
3442 }
3443
3444 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3445 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3446 {
3447 int err = 0;
3448 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3449 struct socket *sock;
3450 u16 sock_class = 0;
3451 u32 sock_sid = 0;
3452
3453 read_lock_bh(&sk->sk_callback_lock);
3454 sock = sk->sk_socket;
3455 if (sock) {
3456 struct inode *inode;
3457 inode = SOCK_INODE(sock);
3458 if (inode) {
3459 struct inode_security_struct *isec;
3460 isec = inode->i_security;
3461 sock_sid = isec->sid;
3462 sock_class = isec->sclass;
3463 }
3464 }
3465 read_unlock_bh(&sk->sk_callback_lock);
3466 if (!sock_sid)
3467 goto out;
3468
3469 if (!skb->dev)
3470 goto out;
3471
3472 err = sel_netif_sids(skb->dev, &if_sid, NULL);
3473 if (err)
3474 goto out;
3475
3476 switch (sock_class) {
3477 case SECCLASS_UDP_SOCKET:
3478 netif_perm = NETIF__UDP_RECV;
3479 node_perm = NODE__UDP_RECV;
3480 recv_perm = UDP_SOCKET__RECV_MSG;
3481 break;
3482
3483 case SECCLASS_TCP_SOCKET:
3484 netif_perm = NETIF__TCP_RECV;
3485 node_perm = NODE__TCP_RECV;
3486 recv_perm = TCP_SOCKET__RECV_MSG;
3487 break;
3488
3489 case SECCLASS_DCCP_SOCKET:
3490 netif_perm = NETIF__DCCP_RECV;
3491 node_perm = NODE__DCCP_RECV;
3492 recv_perm = DCCP_SOCKET__RECV_MSG;
3493 break;
3494
3495 default:
3496 netif_perm = NETIF__RAWIP_RECV;
3497 node_perm = NODE__RAWIP_RECV;
3498 break;
3499 }
3500
3501 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3502 if (err)
3503 goto out;
3504
3505 err = security_node_sid(family, addrp, len, &node_sid);
3506 if (err)
3507 goto out;
3508
3509 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3510 if (err)
3511 goto out;
3512
3513 if (recv_perm) {
3514 u32 port_sid;
3515
3516 err = security_port_sid(sk->sk_family, sk->sk_type,
3517 sk->sk_protocol, ntohs(ad->u.net.sport),
3518 &port_sid);
3519 if (err)
3520 goto out;
3521
3522 err = avc_has_perm(sock_sid, port_sid,
3523 sock_class, recv_perm, ad);
3524 }
3525
3526 out:
3527 return err;
3528 }
3529
3530 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3531 {
3532 u16 family;
3533 char *addrp;
3534 int len, err = 0;
3535 struct avc_audit_data ad;
3536 struct sk_security_struct *sksec = sk->sk_security;
3537
3538 family = sk->sk_family;
3539 if (family != PF_INET && family != PF_INET6)
3540 goto out;
3541
3542 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3543 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3544 family = PF_INET;
3545
3546 AVC_AUDIT_DATA_INIT(&ad, NET);
3547 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3548 ad.u.net.family = family;
3549
3550 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3551 if (err)
3552 goto out;
3553
3554 if (selinux_compat_net)
3555 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3556 addrp, len);
3557 else
3558 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3559 PACKET__RECV, &ad);
3560 if (err)
3561 goto out;
3562
3563 err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3564 if (err)
3565 goto out;
3566
3567 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3568 out:
3569 return err;
3570 }
3571
3572 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3573 int __user *optlen, unsigned len)
3574 {
3575 int err = 0;
3576 char *scontext;
3577 u32 scontext_len;
3578 struct sk_security_struct *ssec;
3579 struct inode_security_struct *isec;
3580 u32 peer_sid = SECSID_NULL;
3581
3582 isec = SOCK_INODE(sock)->i_security;
3583
3584 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3585 isec->sclass == SECCLASS_TCP_SOCKET) {
3586 ssec = sock->sk->sk_security;
3587 peer_sid = ssec->peer_sid;
3588 }
3589 if (peer_sid == SECSID_NULL) {
3590 err = -ENOPROTOOPT;
3591 goto out;
3592 }
3593
3594 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3595
3596 if (err)
3597 goto out;
3598
3599 if (scontext_len > len) {
3600 err = -ERANGE;
3601 goto out_len;
3602 }
3603
3604 if (copy_to_user(optval, scontext, scontext_len))
3605 err = -EFAULT;
3606
3607 out_len:
3608 if (put_user(scontext_len, optlen))
3609 err = -EFAULT;
3610
3611 kfree(scontext);
3612 out:
3613 return err;
3614 }
3615
3616 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3617 {
3618 u32 peer_secid = SECSID_NULL;
3619 int err = 0;
3620
3621 if (sock && sock->sk->sk_family == PF_UNIX)
3622 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3623 else if (skb)
3624 security_skb_extlbl_sid(skb,
3625 SECINITSID_UNLABELED,
3626 &peer_secid);
3627
3628 if (peer_secid == SECSID_NULL)
3629 err = -EINVAL;
3630 *secid = peer_secid;
3631
3632 return err;
3633 }
3634
3635 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3636 {
3637 return sk_alloc_security(sk, family, priority);
3638 }
3639
3640 static void selinux_sk_free_security(struct sock *sk)
3641 {
3642 sk_free_security(sk);
3643 }
3644
3645 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3646 {
3647 struct sk_security_struct *ssec = sk->sk_security;
3648 struct sk_security_struct *newssec = newsk->sk_security;
3649
3650 newssec->sid = ssec->sid;
3651 newssec->peer_sid = ssec->peer_sid;
3652
3653 selinux_netlbl_sk_security_clone(ssec, newssec);
3654 }
3655
3656 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3657 {
3658 if (!sk)
3659 *secid = SECINITSID_ANY_SOCKET;
3660 else {
3661 struct sk_security_struct *sksec = sk->sk_security;
3662
3663 *secid = sksec->sid;
3664 }
3665 }
3666
3667 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3668 {
3669 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3670 struct sk_security_struct *sksec = sk->sk_security;
3671
3672 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3673 sk->sk_family == PF_UNIX)
3674 isec->sid = sksec->sid;
3675
3676 selinux_netlbl_sock_graft(sk, parent);
3677 }
3678
3679 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3680 struct request_sock *req)
3681 {
3682 struct sk_security_struct *sksec = sk->sk_security;
3683 int err;
3684 u32 newsid;
3685 u32 peersid;
3686
3687 security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peersid);
3688 if (peersid == SECSID_NULL) {
3689 req->secid = sksec->sid;
3690 req->peer_secid = SECSID_NULL;
3691 return 0;
3692 }
3693
3694 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3695 if (err)
3696 return err;
3697
3698 req->secid = newsid;
3699 req->peer_secid = peersid;
3700 return 0;
3701 }
3702
3703 static void selinux_inet_csk_clone(struct sock *newsk,
3704 const struct request_sock *req)
3705 {
3706 struct sk_security_struct *newsksec = newsk->sk_security;
3707
3708 newsksec->sid = req->secid;
3709 newsksec->peer_sid = req->peer_secid;
3710 /* NOTE: Ideally, we should also get the isec->sid for the
3711 new socket in sync, but we don't have the isec available yet.
3712 So we will wait until sock_graft to do it, by which
3713 time it will have been created and available. */
3714
3715 /* We don't need to take any sort of lock here as we are the only
3716 * thread with access to newsksec */
3717 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3718 }
3719
3720 static void selinux_inet_conn_established(struct sock *sk,
3721 struct sk_buff *skb)
3722 {
3723 struct sk_security_struct *sksec = sk->sk_security;
3724
3725 security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &sksec->peer_sid);
3726 }
3727
3728 static void selinux_req_classify_flow(const struct request_sock *req,
3729 struct flowi *fl)
3730 {
3731 fl->secid = req->secid;
3732 }
3733
3734 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3735 {
3736 int err = 0;
3737 u32 perm;
3738 struct nlmsghdr *nlh;
3739 struct socket *sock = sk->sk_socket;
3740 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3741
3742 if (skb->len < NLMSG_SPACE(0)) {
3743 err = -EINVAL;
3744 goto out;
3745 }
3746 nlh = (struct nlmsghdr *)skb->data;
3747
3748 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3749 if (err) {
3750 if (err == -EINVAL) {
3751 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3752 "SELinux: unrecognized netlink message"
3753 " type=%hu for sclass=%hu\n",
3754 nlh->nlmsg_type, isec->sclass);
3755 if (!selinux_enforcing)
3756 err = 0;
3757 }
3758
3759 /* Ignore */
3760 if (err == -ENOENT)
3761 err = 0;
3762 goto out;
3763 }
3764
3765 err = socket_has_perm(current, sock, perm);
3766 out:
3767 return err;
3768 }
3769
3770 #ifdef CONFIG_NETFILTER
3771
3772 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3773 struct avc_audit_data *ad,
3774 u16 family, char *addrp, int len)
3775 {
3776 int err = 0;
3777 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3778 struct socket *sock;
3779 struct inode *inode;
3780 struct inode_security_struct *isec;
3781
3782 sock = sk->sk_socket;
3783 if (!sock)
3784 goto out;
3785
3786 inode = SOCK_INODE(sock);
3787 if (!inode)
3788 goto out;
3789
3790 isec = inode->i_security;
3791
3792 err = sel_netif_sids(dev, &if_sid, NULL);
3793 if (err)
3794 goto out;
3795
3796 switch (isec->sclass) {
3797 case SECCLASS_UDP_SOCKET:
3798 netif_perm = NETIF__UDP_SEND;
3799 node_perm = NODE__UDP_SEND;
3800 send_perm = UDP_SOCKET__SEND_MSG;
3801 break;
3802
3803 case SECCLASS_TCP_SOCKET:
3804 netif_perm = NETIF__TCP_SEND;
3805 node_perm = NODE__TCP_SEND;
3806 send_perm = TCP_SOCKET__SEND_MSG;
3807 break;
3808
3809 case SECCLASS_DCCP_SOCKET:
3810 netif_perm = NETIF__DCCP_SEND;
3811 node_perm = NODE__DCCP_SEND;
3812 send_perm = DCCP_SOCKET__SEND_MSG;
3813 break;
3814
3815 default:
3816 netif_perm = NETIF__RAWIP_SEND;
3817 node_perm = NODE__RAWIP_SEND;
3818 break;
3819 }
3820
3821 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3822 if (err)
3823 goto out;
3824
3825 err = security_node_sid(family, addrp, len, &node_sid);
3826 if (err)
3827 goto out;
3828
3829 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3830 if (err)
3831 goto out;
3832
3833 if (send_perm) {
3834 u32 port_sid;
3835
3836 err = security_port_sid(sk->sk_family,
3837 sk->sk_type,
3838 sk->sk_protocol,
3839 ntohs(ad->u.net.dport),
3840 &port_sid);
3841 if (err)
3842 goto out;
3843
3844 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3845 send_perm, ad);
3846 }
3847 out:
3848 return err;
3849 }
3850
3851 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3852 struct sk_buff **pskb,
3853 const struct net_device *in,
3854 const struct net_device *out,
3855 int (*okfn)(struct sk_buff *),
3856 u16 family)
3857 {
3858 char *addrp;
3859 int len, err = 0;
3860 struct sock *sk;
3861 struct sk_buff *skb = *pskb;
3862 struct avc_audit_data ad;
3863 struct net_device *dev = (struct net_device *)out;
3864 struct sk_security_struct *sksec;
3865 u8 proto;
3866
3867 sk = skb->sk;
3868 if (!sk)
3869 goto out;
3870
3871 sksec = sk->sk_security;
3872
3873 AVC_AUDIT_DATA_INIT(&ad, NET);
3874 ad.u.net.netif = dev->name;
3875 ad.u.net.family = family;
3876
3877 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3878 if (err)
3879 goto out;
3880
3881 if (selinux_compat_net)
3882 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3883 family, addrp, len);
3884 else
3885 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3886 PACKET__SEND, &ad);
3887
3888 if (err)
3889 goto out;
3890
3891 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3892 out:
3893 return err ? NF_DROP : NF_ACCEPT;
3894 }
3895
3896 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3897 struct sk_buff **pskb,
3898 const struct net_device *in,
3899 const struct net_device *out,
3900 int (*okfn)(struct sk_buff *))
3901 {
3902 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3903 }
3904
3905 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3906
3907 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3908 struct sk_buff **pskb,
3909 const struct net_device *in,
3910 const struct net_device *out,
3911 int (*okfn)(struct sk_buff *))
3912 {
3913 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3914 }
3915
3916 #endif /* IPV6 */
3917
3918 #endif /* CONFIG_NETFILTER */
3919
3920 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3921 {
3922 int err;
3923
3924 err = secondary_ops->netlink_send(sk, skb);
3925 if (err)
3926 return err;
3927
3928 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3929 err = selinux_nlmsg_perm(sk, skb);
3930
3931 return err;
3932 }
3933
3934 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3935 {
3936 int err;
3937 struct avc_audit_data ad;
3938
3939 err = secondary_ops->netlink_recv(skb, capability);
3940 if (err)
3941 return err;
3942
3943 AVC_AUDIT_DATA_INIT(&ad, CAP);
3944 ad.u.cap = capability;
3945
3946 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3947 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3948 }
3949
3950 static int ipc_alloc_security(struct task_struct *task,
3951 struct kern_ipc_perm *perm,
3952 u16 sclass)
3953 {
3954 struct task_security_struct *tsec = task->security;
3955 struct ipc_security_struct *isec;
3956
3957 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3958 if (!isec)
3959 return -ENOMEM;
3960
3961 isec->sclass = sclass;
3962 isec->ipc_perm = perm;
3963 isec->sid = tsec->sid;
3964 perm->security = isec;
3965
3966 return 0;
3967 }
3968
3969 static void ipc_free_security(struct kern_ipc_perm *perm)
3970 {
3971 struct ipc_security_struct *isec = perm->security;
3972 perm->security = NULL;
3973 kfree(isec);
3974 }
3975
3976 static int msg_msg_alloc_security(struct msg_msg *msg)
3977 {
3978 struct msg_security_struct *msec;
3979
3980 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3981 if (!msec)
3982 return -ENOMEM;
3983
3984 msec->msg = msg;
3985 msec->sid = SECINITSID_UNLABELED;
3986 msg->security = msec;
3987
3988 return 0;
3989 }
3990
3991 static void msg_msg_free_security(struct msg_msg *msg)
3992 {
3993 struct msg_security_struct *msec = msg->security;
3994
3995 msg->security = NULL;
3996 kfree(msec);
3997 }
3998
3999 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4000 u32 perms)
4001 {
4002 struct task_security_struct *tsec;
4003 struct ipc_security_struct *isec;
4004 struct avc_audit_data ad;
4005
4006 tsec = current->security;
4007 isec = ipc_perms->security;
4008
4009 AVC_AUDIT_DATA_INIT(&ad, IPC);
4010 ad.u.ipc_id = ipc_perms->key;
4011
4012 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4013 }
4014
4015 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4016 {
4017 return msg_msg_alloc_security(msg);
4018 }
4019
4020 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4021 {
4022 msg_msg_free_security(msg);
4023 }
4024
4025 /* message queue security operations */
4026 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4027 {
4028 struct task_security_struct *tsec;
4029 struct ipc_security_struct *isec;
4030 struct avc_audit_data ad;
4031 int rc;
4032
4033 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4034 if (rc)
4035 return rc;
4036
4037 tsec = current->security;
4038 isec = msq->q_perm.security;
4039
4040 AVC_AUDIT_DATA_INIT(&ad, IPC);
4041 ad.u.ipc_id = msq->q_perm.key;
4042
4043 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4044 MSGQ__CREATE, &ad);
4045 if (rc) {
4046 ipc_free_security(&msq->q_perm);
4047 return rc;
4048 }
4049 return 0;
4050 }
4051
4052 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4053 {
4054 ipc_free_security(&msq->q_perm);
4055 }
4056
4057 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4058 {
4059 struct task_security_struct *tsec;
4060 struct ipc_security_struct *isec;
4061 struct avc_audit_data ad;
4062
4063 tsec = current->security;
4064 isec = msq->q_perm.security;
4065
4066 AVC_AUDIT_DATA_INIT(&ad, IPC);
4067 ad.u.ipc_id = msq->q_perm.key;
4068
4069 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4070 MSGQ__ASSOCIATE, &ad);
4071 }
4072
4073 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4074 {
4075 int err;
4076 int perms;
4077
4078 switch(cmd) {
4079 case IPC_INFO:
4080 case MSG_INFO:
4081 /* No specific object, just general system-wide information. */
4082 return task_has_system(current, SYSTEM__IPC_INFO);
4083 case IPC_STAT:
4084 case MSG_STAT:
4085 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4086 break;
4087 case IPC_SET:
4088 perms = MSGQ__SETATTR;
4089 break;
4090 case IPC_RMID:
4091 perms = MSGQ__DESTROY;
4092 break;
4093 default:
4094 return 0;
4095 }
4096
4097 err = ipc_has_perm(&msq->q_perm, perms);
4098 return err;
4099 }
4100
4101 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4102 {
4103 struct task_security_struct *tsec;
4104 struct ipc_security_struct *isec;
4105 struct msg_security_struct *msec;
4106 struct avc_audit_data ad;
4107 int rc;
4108
4109 tsec = current->security;
4110 isec = msq->q_perm.security;
4111 msec = msg->security;
4112
4113 /*
4114 * First time through, need to assign label to the message
4115 */
4116 if (msec->sid == SECINITSID_UNLABELED) {
4117 /*
4118 * Compute new sid based on current process and
4119 * message queue this message will be stored in
4120 */
4121 rc = security_transition_sid(tsec->sid,
4122 isec->sid,
4123 SECCLASS_MSG,
4124 &msec->sid);
4125 if (rc)
4126 return rc;
4127 }
4128
4129 AVC_AUDIT_DATA_INIT(&ad, IPC);
4130 ad.u.ipc_id = msq->q_perm.key;
4131
4132 /* Can this process write to the queue? */
4133 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4134 MSGQ__WRITE, &ad);
4135 if (!rc)
4136 /* Can this process send the message */
4137 rc = avc_has_perm(tsec->sid, msec->sid,
4138 SECCLASS_MSG, MSG__SEND, &ad);
4139 if (!rc)
4140 /* Can the message be put in the queue? */
4141 rc = avc_has_perm(msec->sid, isec->sid,
4142 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4143
4144 return rc;
4145 }
4146
4147 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4148 struct task_struct *target,
4149 long type, int mode)
4150 {
4151 struct task_security_struct *tsec;
4152 struct ipc_security_struct *isec;
4153 struct msg_security_struct *msec;
4154 struct avc_audit_data ad;
4155 int rc;
4156
4157 tsec = target->security;
4158 isec = msq->q_perm.security;
4159 msec = msg->security;
4160
4161 AVC_AUDIT_DATA_INIT(&ad, IPC);
4162 ad.u.ipc_id = msq->q_perm.key;
4163
4164 rc = avc_has_perm(tsec->sid, isec->sid,
4165 SECCLASS_MSGQ, MSGQ__READ, &ad);
4166 if (!rc)
4167 rc = avc_has_perm(tsec->sid, msec->sid,
4168 SECCLASS_MSG, MSG__RECEIVE, &ad);
4169 return rc;
4170 }
4171
4172 /* Shared Memory security operations */
4173 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4174 {
4175 struct task_security_struct *tsec;
4176 struct ipc_security_struct *isec;
4177 struct avc_audit_data ad;
4178 int rc;
4179
4180 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4181 if (rc)
4182 return rc;
4183
4184 tsec = current->security;
4185 isec = shp->shm_perm.security;
4186
4187 AVC_AUDIT_DATA_INIT(&ad, IPC);
4188 ad.u.ipc_id = shp->shm_perm.key;
4189
4190 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4191 SHM__CREATE, &ad);
4192 if (rc) {
4193 ipc_free_security(&shp->shm_perm);
4194 return rc;
4195 }
4196 return 0;
4197 }
4198
4199 static void selinux_shm_free_security(struct shmid_kernel *shp)
4200 {
4201 ipc_free_security(&shp->shm_perm);
4202 }
4203
4204 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4205 {
4206 struct task_security_struct *tsec;
4207 struct ipc_security_struct *isec;
4208 struct avc_audit_data ad;
4209
4210 tsec = current->security;
4211 isec = shp->shm_perm.security;
4212
4213 AVC_AUDIT_DATA_INIT(&ad, IPC);
4214 ad.u.ipc_id = shp->shm_perm.key;
4215
4216 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4217 SHM__ASSOCIATE, &ad);
4218 }
4219
4220 /* Note, at this point, shp is locked down */
4221 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4222 {
4223 int perms;
4224 int err;
4225
4226 switch(cmd) {
4227 case IPC_INFO:
4228 case SHM_INFO:
4229 /* No specific object, just general system-wide information. */
4230 return task_has_system(current, SYSTEM__IPC_INFO);
4231 case IPC_STAT:
4232 case SHM_STAT:
4233 perms = SHM__GETATTR | SHM__ASSOCIATE;
4234 break;
4235 case IPC_SET:
4236 perms = SHM__SETATTR;
4237 break;
4238 case SHM_LOCK:
4239 case SHM_UNLOCK:
4240 perms = SHM__LOCK;
4241 break;
4242 case IPC_RMID:
4243 perms = SHM__DESTROY;
4244 break;
4245 default:
4246 return 0;
4247 }
4248
4249 err = ipc_has_perm(&shp->shm_perm, perms);
4250 return err;
4251 }
4252
4253 static int selinux_shm_shmat(struct shmid_kernel *shp,
4254 char __user *shmaddr, int shmflg)
4255 {
4256 u32 perms;
4257 int rc;
4258
4259 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4260 if (rc)
4261 return rc;
4262
4263 if (shmflg & SHM_RDONLY)
4264 perms = SHM__READ;
4265 else
4266 perms = SHM__READ | SHM__WRITE;
4267
4268 return ipc_has_perm(&shp->shm_perm, perms);
4269 }
4270
4271 /* Semaphore security operations */
4272 static int selinux_sem_alloc_security(struct sem_array *sma)
4273 {
4274 struct task_security_struct *tsec;
4275 struct ipc_security_struct *isec;
4276 struct avc_audit_data ad;
4277 int rc;
4278
4279 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4280 if (rc)
4281 return rc;
4282
4283 tsec = current->security;
4284 isec = sma->sem_perm.security;
4285
4286 AVC_AUDIT_DATA_INIT(&ad, IPC);
4287 ad.u.ipc_id = sma->sem_perm.key;
4288
4289 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4290 SEM__CREATE, &ad);
4291 if (rc) {
4292 ipc_free_security(&sma->sem_perm);
4293 return rc;
4294 }
4295 return 0;
4296 }
4297
4298 static void selinux_sem_free_security(struct sem_array *sma)
4299 {
4300 ipc_free_security(&sma->sem_perm);
4301 }
4302
4303 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4304 {
4305 struct task_security_struct *tsec;
4306 struct ipc_security_struct *isec;
4307 struct avc_audit_data ad;
4308
4309 tsec = current->security;
4310 isec = sma->sem_perm.security;
4311
4312 AVC_AUDIT_DATA_INIT(&ad, IPC);
4313 ad.u.ipc_id = sma->sem_perm.key;
4314
4315 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4316 SEM__ASSOCIATE, &ad);
4317 }
4318
4319 /* Note, at this point, sma is locked down */
4320 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4321 {
4322 int err;
4323 u32 perms;
4324
4325 switch(cmd) {
4326 case IPC_INFO:
4327 case SEM_INFO:
4328 /* No specific object, just general system-wide information. */
4329 return task_has_system(current, SYSTEM__IPC_INFO);
4330 case GETPID:
4331 case GETNCNT:
4332 case GETZCNT:
4333 perms = SEM__GETATTR;
4334 break;
4335 case GETVAL:
4336 case GETALL:
4337 perms = SEM__READ;
4338 break;
4339 case SETVAL:
4340 case SETALL:
4341 perms = SEM__WRITE;
4342 break;
4343 case IPC_RMID:
4344 perms = SEM__DESTROY;
4345 break;
4346 case IPC_SET:
4347 perms = SEM__SETATTR;
4348 break;
4349 case IPC_STAT:
4350 case SEM_STAT:
4351 perms = SEM__GETATTR | SEM__ASSOCIATE;
4352 break;
4353 default:
4354 return 0;
4355 }
4356
4357 err = ipc_has_perm(&sma->sem_perm, perms);
4358 return err;
4359 }
4360
4361 static int selinux_sem_semop(struct sem_array *sma,
4362 struct sembuf *sops, unsigned nsops, int alter)
4363 {
4364 u32 perms;
4365
4366 if (alter)
4367 perms = SEM__READ | SEM__WRITE;
4368 else
4369 perms = SEM__READ;
4370
4371 return ipc_has_perm(&sma->sem_perm, perms);
4372 }
4373
4374 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4375 {
4376 u32 av = 0;
4377
4378 av = 0;
4379 if (flag & S_IRUGO)
4380 av |= IPC__UNIX_READ;
4381 if (flag & S_IWUGO)
4382 av |= IPC__UNIX_WRITE;
4383
4384 if (av == 0)
4385 return 0;
4386
4387 return ipc_has_perm(ipcp, av);
4388 }
4389
4390 /* module stacking operations */
4391 static int selinux_register_security (const char *name, struct security_operations *ops)
4392 {
4393 if (secondary_ops != original_ops) {
4394 printk(KERN_INFO "%s: There is already a secondary security "
4395 "module registered.\n", __FUNCTION__);
4396 return -EINVAL;
4397 }
4398
4399 secondary_ops = ops;
4400
4401 printk(KERN_INFO "%s: Registering secondary module %s\n",
4402 __FUNCTION__,
4403 name);
4404
4405 return 0;
4406 }
4407
4408 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4409 {
4410 if (ops != secondary_ops) {
4411 printk (KERN_INFO "%s: trying to unregister a security module "
4412 "that is not registered.\n", __FUNCTION__);
4413 return -EINVAL;
4414 }
4415
4416 secondary_ops = original_ops;
4417
4418 return 0;
4419 }
4420
4421 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4422 {
4423 if (inode)
4424 inode_doinit_with_dentry(inode, dentry);
4425 }
4426
4427 static int selinux_getprocattr(struct task_struct *p,
4428 char *name, void *value, size_t size)
4429 {
4430 struct task_security_struct *tsec;
4431 u32 sid;
4432 int error;
4433
4434 if (current != p) {
4435 error = task_has_perm(current, p, PROCESS__GETATTR);
4436 if (error)
4437 return error;
4438 }
4439
4440 tsec = p->security;
4441
4442 if (!strcmp(name, "current"))
4443 sid = tsec->sid;
4444 else if (!strcmp(name, "prev"))
4445 sid = tsec->osid;
4446 else if (!strcmp(name, "exec"))
4447 sid = tsec->exec_sid;
4448 else if (!strcmp(name, "fscreate"))
4449 sid = tsec->create_sid;
4450 else if (!strcmp(name, "keycreate"))
4451 sid = tsec->keycreate_sid;
4452 else if (!strcmp(name, "sockcreate"))
4453 sid = tsec->sockcreate_sid;
4454 else
4455 return -EINVAL;
4456
4457 if (!sid)
4458 return 0;
4459
4460 return selinux_getsecurity(sid, value, size);
4461 }
4462
4463 static int selinux_setprocattr(struct task_struct *p,
4464 char *name, void *value, size_t size)
4465 {
4466 struct task_security_struct *tsec;
4467 u32 sid = 0;
4468 int error;
4469 char *str = value;
4470
4471 if (current != p) {
4472 /* SELinux only allows a process to change its own
4473 security attributes. */
4474 return -EACCES;
4475 }
4476
4477 /*
4478 * Basic control over ability to set these attributes at all.
4479 * current == p, but we'll pass them separately in case the
4480 * above restriction is ever removed.
4481 */
4482 if (!strcmp(name, "exec"))
4483 error = task_has_perm(current, p, PROCESS__SETEXEC);
4484 else if (!strcmp(name, "fscreate"))
4485 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4486 else if (!strcmp(name, "keycreate"))
4487 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4488 else if (!strcmp(name, "sockcreate"))
4489 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4490 else if (!strcmp(name, "current"))
4491 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4492 else
4493 error = -EINVAL;
4494 if (error)
4495 return error;
4496
4497 /* Obtain a SID for the context, if one was specified. */
4498 if (size && str[1] && str[1] != '\n') {
4499 if (str[size-1] == '\n') {
4500 str[size-1] = 0;
4501 size--;
4502 }
4503 error = security_context_to_sid(value, size, &sid);
4504 if (error)
4505 return error;
4506 }
4507
4508 /* Permission checking based on the specified context is
4509 performed during the actual operation (execve,
4510 open/mkdir/...), when we know the full context of the
4511 operation. See selinux_bprm_set_security for the execve
4512 checks and may_create for the file creation checks. The
4513 operation will then fail if the context is not permitted. */
4514 tsec = p->security;
4515 if (!strcmp(name, "exec"))
4516 tsec->exec_sid = sid;
4517 else if (!strcmp(name, "fscreate"))
4518 tsec->create_sid = sid;
4519 else if (!strcmp(name, "keycreate")) {
4520 error = may_create_key(sid, p);
4521 if (error)
4522 return error;
4523 tsec->keycreate_sid = sid;
4524 } else if (!strcmp(name, "sockcreate"))
4525 tsec->sockcreate_sid = sid;
4526 else if (!strcmp(name, "current")) {
4527 struct av_decision avd;
4528
4529 if (sid == 0)
4530 return -EINVAL;
4531
4532 /* Only allow single threaded processes to change context */
4533 if (atomic_read(&p->mm->mm_users) != 1) {
4534 struct task_struct *g, *t;
4535 struct mm_struct *mm = p->mm;
4536 read_lock(&tasklist_lock);
4537 do_each_thread(g, t)
4538 if (t->mm == mm && t != p) {
4539 read_unlock(&tasklist_lock);
4540 return -EPERM;
4541 }
4542 while_each_thread(g, t);
4543 read_unlock(&tasklist_lock);
4544 }
4545
4546 /* Check permissions for the transition. */
4547 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4548 PROCESS__DYNTRANSITION, NULL);
4549 if (error)
4550 return error;
4551
4552 /* Check for ptracing, and update the task SID if ok.
4553 Otherwise, leave SID unchanged and fail. */
4554 task_lock(p);
4555 if (p->ptrace & PT_PTRACED) {
4556 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4557 SECCLASS_PROCESS,
4558 PROCESS__PTRACE, &avd);
4559 if (!error)
4560 tsec->sid = sid;
4561 task_unlock(p);
4562 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4563 PROCESS__PTRACE, &avd, error, NULL);
4564 if (error)
4565 return error;
4566 } else {
4567 tsec->sid = sid;
4568 task_unlock(p);
4569 }
4570 }
4571 else
4572 return -EINVAL;
4573
4574 return size;
4575 }
4576
4577 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4578 {
4579 return security_sid_to_context(secid, secdata, seclen);
4580 }
4581
4582 static void selinux_release_secctx(char *secdata, u32 seclen)
4583 {
4584 if (secdata)
4585 kfree(secdata);
4586 }
4587
4588 #ifdef CONFIG_KEYS
4589
4590 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4591 unsigned long flags)
4592 {
4593 struct task_security_struct *tsec = tsk->security;
4594 struct key_security_struct *ksec;
4595
4596 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4597 if (!ksec)
4598 return -ENOMEM;
4599
4600 ksec->obj = k;
4601 if (tsec->keycreate_sid)
4602 ksec->sid = tsec->keycreate_sid;
4603 else
4604 ksec->sid = tsec->sid;
4605 k->security = ksec;
4606
4607 return 0;
4608 }
4609
4610 static void selinux_key_free(struct key *k)
4611 {
4612 struct key_security_struct *ksec = k->security;
4613
4614 k->security = NULL;
4615 kfree(ksec);
4616 }
4617
4618 static int selinux_key_permission(key_ref_t key_ref,
4619 struct task_struct *ctx,
4620 key_perm_t perm)
4621 {
4622 struct key *key;
4623 struct task_security_struct *tsec;
4624 struct key_security_struct *ksec;
4625
4626 key = key_ref_to_ptr(key_ref);
4627
4628 tsec = ctx->security;
4629 ksec = key->security;
4630
4631 /* if no specific permissions are requested, we skip the
4632 permission check. No serious, additional covert channels
4633 appear to be created. */
4634 if (perm == 0)
4635 return 0;
4636
4637 return avc_has_perm(tsec->sid, ksec->sid,
4638 SECCLASS_KEY, perm, NULL);
4639 }
4640
4641 #endif
4642
4643 static struct security_operations selinux_ops = {
4644 .ptrace = selinux_ptrace,
4645 .capget = selinux_capget,
4646 .capset_check = selinux_capset_check,
4647 .capset_set = selinux_capset_set,
4648 .sysctl = selinux_sysctl,
4649 .capable = selinux_capable,
4650 .quotactl = selinux_quotactl,
4651 .quota_on = selinux_quota_on,
4652 .syslog = selinux_syslog,
4653 .vm_enough_memory = selinux_vm_enough_memory,
4654
4655 .netlink_send = selinux_netlink_send,
4656 .netlink_recv = selinux_netlink_recv,
4657
4658 .bprm_alloc_security = selinux_bprm_alloc_security,
4659 .bprm_free_security = selinux_bprm_free_security,
4660 .bprm_apply_creds = selinux_bprm_apply_creds,
4661 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4662 .bprm_set_security = selinux_bprm_set_security,
4663 .bprm_check_security = selinux_bprm_check_security,
4664 .bprm_secureexec = selinux_bprm_secureexec,
4665
4666 .sb_alloc_security = selinux_sb_alloc_security,
4667 .sb_free_security = selinux_sb_free_security,
4668 .sb_copy_data = selinux_sb_copy_data,
4669 .sb_kern_mount = selinux_sb_kern_mount,
4670 .sb_statfs = selinux_sb_statfs,
4671 .sb_mount = selinux_mount,
4672 .sb_umount = selinux_umount,
4673
4674 .inode_alloc_security = selinux_inode_alloc_security,
4675 .inode_free_security = selinux_inode_free_security,
4676 .inode_init_security = selinux_inode_init_security,
4677 .inode_create = selinux_inode_create,
4678 .inode_link = selinux_inode_link,
4679 .inode_unlink = selinux_inode_unlink,
4680 .inode_symlink = selinux_inode_symlink,
4681 .inode_mkdir = selinux_inode_mkdir,
4682 .inode_rmdir = selinux_inode_rmdir,
4683 .inode_mknod = selinux_inode_mknod,
4684 .inode_rename = selinux_inode_rename,
4685 .inode_readlink = selinux_inode_readlink,
4686 .inode_follow_link = selinux_inode_follow_link,
4687 .inode_permission = selinux_inode_permission,
4688 .inode_setattr = selinux_inode_setattr,
4689 .inode_getattr = selinux_inode_getattr,
4690 .inode_setxattr = selinux_inode_setxattr,
4691 .inode_post_setxattr = selinux_inode_post_setxattr,
4692 .inode_getxattr = selinux_inode_getxattr,
4693 .inode_listxattr = selinux_inode_listxattr,
4694 .inode_removexattr = selinux_inode_removexattr,
4695 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix,
4696 .inode_getsecurity = selinux_inode_getsecurity,
4697 .inode_setsecurity = selinux_inode_setsecurity,
4698 .inode_listsecurity = selinux_inode_listsecurity,
4699
4700 .file_permission = selinux_file_permission,
4701 .file_alloc_security = selinux_file_alloc_security,
4702 .file_free_security = selinux_file_free_security,
4703 .file_ioctl = selinux_file_ioctl,
4704 .file_mmap = selinux_file_mmap,
4705 .file_mprotect = selinux_file_mprotect,
4706 .file_lock = selinux_file_lock,
4707 .file_fcntl = selinux_file_fcntl,
4708 .file_set_fowner = selinux_file_set_fowner,
4709 .file_send_sigiotask = selinux_file_send_sigiotask,
4710 .file_receive = selinux_file_receive,
4711
4712 .task_create = selinux_task_create,
4713 .task_alloc_security = selinux_task_alloc_security,
4714 .task_free_security = selinux_task_free_security,
4715 .task_setuid = selinux_task_setuid,
4716 .task_post_setuid = selinux_task_post_setuid,
4717 .task_setgid = selinux_task_setgid,
4718 .task_setpgid = selinux_task_setpgid,
4719 .task_getpgid = selinux_task_getpgid,
4720 .task_getsid = selinux_task_getsid,
4721 .task_getsecid = selinux_task_getsecid,
4722 .task_setgroups = selinux_task_setgroups,
4723 .task_setnice = selinux_task_setnice,
4724 .task_setioprio = selinux_task_setioprio,
4725 .task_getioprio = selinux_task_getioprio,
4726 .task_setrlimit = selinux_task_setrlimit,
4727 .task_setscheduler = selinux_task_setscheduler,
4728 .task_getscheduler = selinux_task_getscheduler,
4729 .task_movememory = selinux_task_movememory,
4730 .task_kill = selinux_task_kill,
4731 .task_wait = selinux_task_wait,
4732 .task_prctl = selinux_task_prctl,
4733 .task_reparent_to_init = selinux_task_reparent_to_init,
4734 .task_to_inode = selinux_task_to_inode,
4735
4736 .ipc_permission = selinux_ipc_permission,
4737
4738 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4739 .msg_msg_free_security = selinux_msg_msg_free_security,
4740
4741 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4742 .msg_queue_free_security = selinux_msg_queue_free_security,
4743 .msg_queue_associate = selinux_msg_queue_associate,
4744 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4745 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4746 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4747
4748 .shm_alloc_security = selinux_shm_alloc_security,
4749 .shm_free_security = selinux_shm_free_security,
4750 .shm_associate = selinux_shm_associate,
4751 .shm_shmctl = selinux_shm_shmctl,
4752 .shm_shmat = selinux_shm_shmat,
4753
4754 .sem_alloc_security = selinux_sem_alloc_security,
4755 .sem_free_security = selinux_sem_free_security,
4756 .sem_associate = selinux_sem_associate,
4757 .sem_semctl = selinux_sem_semctl,
4758 .sem_semop = selinux_sem_semop,
4759
4760 .register_security = selinux_register_security,
4761 .unregister_security = selinux_unregister_security,
4762
4763 .d_instantiate = selinux_d_instantiate,
4764
4765 .getprocattr = selinux_getprocattr,
4766 .setprocattr = selinux_setprocattr,
4767
4768 .secid_to_secctx = selinux_secid_to_secctx,
4769 .release_secctx = selinux_release_secctx,
4770
4771 .unix_stream_connect = selinux_socket_unix_stream_connect,
4772 .unix_may_send = selinux_socket_unix_may_send,
4773
4774 .socket_create = selinux_socket_create,
4775 .socket_post_create = selinux_socket_post_create,
4776 .socket_bind = selinux_socket_bind,
4777 .socket_connect = selinux_socket_connect,
4778 .socket_listen = selinux_socket_listen,
4779 .socket_accept = selinux_socket_accept,
4780 .socket_sendmsg = selinux_socket_sendmsg,
4781 .socket_recvmsg = selinux_socket_recvmsg,
4782 .socket_getsockname = selinux_socket_getsockname,
4783 .socket_getpeername = selinux_socket_getpeername,
4784 .socket_getsockopt = selinux_socket_getsockopt,
4785 .socket_setsockopt = selinux_socket_setsockopt,
4786 .socket_shutdown = selinux_socket_shutdown,
4787 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4788 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4789 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4790 .sk_alloc_security = selinux_sk_alloc_security,
4791 .sk_free_security = selinux_sk_free_security,
4792 .sk_clone_security = selinux_sk_clone_security,
4793 .sk_getsecid = selinux_sk_getsecid,
4794 .sock_graft = selinux_sock_graft,
4795 .inet_conn_request = selinux_inet_conn_request,
4796 .inet_csk_clone = selinux_inet_csk_clone,
4797 .inet_conn_established = selinux_inet_conn_established,
4798 .req_classify_flow = selinux_req_classify_flow,
4799
4800 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4801 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
4802 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
4803 .xfrm_policy_free_security = selinux_xfrm_policy_free,
4804 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
4805 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
4806 .xfrm_state_free_security = selinux_xfrm_state_free,
4807 .xfrm_state_delete_security = selinux_xfrm_state_delete,
4808 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
4809 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
4810 .xfrm_decode_session = selinux_xfrm_decode_session,
4811 #endif
4812
4813 #ifdef CONFIG_KEYS
4814 .key_alloc = selinux_key_alloc,
4815 .key_free = selinux_key_free,
4816 .key_permission = selinux_key_permission,
4817 #endif
4818 };
4819
4820 static __init int selinux_init(void)
4821 {
4822 struct task_security_struct *tsec;
4823
4824 if (!selinux_enabled) {
4825 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4826 return 0;
4827 }
4828
4829 printk(KERN_INFO "SELinux: Initializing.\n");
4830
4831 /* Set the security state for the initial task. */
4832 if (task_alloc_security(current))
4833 panic("SELinux: Failed to initialize initial task.\n");
4834 tsec = current->security;
4835 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4836
4837 sel_inode_cache = kmem_cache_create("selinux_inode_security",
4838 sizeof(struct inode_security_struct),
4839 0, SLAB_PANIC, NULL, NULL);
4840 avc_init();
4841
4842 original_ops = secondary_ops = security_ops;
4843 if (!secondary_ops)
4844 panic ("SELinux: No initial security operations\n");
4845 if (register_security (&selinux_ops))
4846 panic("SELinux: Unable to register with kernel.\n");
4847
4848 if (selinux_enforcing) {
4849 printk(KERN_INFO "SELinux: Starting in enforcing mode\n");
4850 } else {
4851 printk(KERN_INFO "SELinux: Starting in permissive mode\n");
4852 }
4853
4854 #ifdef CONFIG_KEYS
4855 /* Add security information to initial keyrings */
4856 selinux_key_alloc(&root_user_keyring, current,
4857 KEY_ALLOC_NOT_IN_QUOTA);
4858 selinux_key_alloc(&root_session_keyring, current,
4859 KEY_ALLOC_NOT_IN_QUOTA);
4860 #endif
4861
4862 return 0;
4863 }
4864
4865 void selinux_complete_init(void)
4866 {
4867 printk(KERN_INFO "SELinux: Completing initialization.\n");
4868
4869 /* Set up any superblocks initialized prior to the policy load. */
4870 printk(KERN_INFO "SELinux: Setting up existing superblocks.\n");
4871 spin_lock(&sb_lock);
4872 spin_lock(&sb_security_lock);
4873 next_sb:
4874 if (!list_empty(&superblock_security_head)) {
4875 struct superblock_security_struct *sbsec =
4876 list_entry(superblock_security_head.next,
4877 struct superblock_security_struct,
4878 list);
4879 struct super_block *sb = sbsec->sb;
4880 sb->s_count++;
4881 spin_unlock(&sb_security_lock);
4882 spin_unlock(&sb_lock);
4883 down_read(&sb->s_umount);
4884 if (sb->s_root)
4885 superblock_doinit(sb, NULL);
4886 drop_super(sb);
4887 spin_lock(&sb_lock);
4888 spin_lock(&sb_security_lock);
4889 list_del_init(&sbsec->list);
4890 goto next_sb;
4891 }
4892 spin_unlock(&sb_security_lock);
4893 spin_unlock(&sb_lock);
4894 }
4895
4896 /* SELinux requires early initialization in order to label
4897 all processes and objects when they are created. */
4898 security_initcall(selinux_init);
4899
4900 #if defined(CONFIG_NETFILTER)
4901
4902 static struct nf_hook_ops selinux_ipv4_op = {
4903 .hook = selinux_ipv4_postroute_last,
4904 .owner = THIS_MODULE,
4905 .pf = PF_INET,
4906 .hooknum = NF_IP_POST_ROUTING,
4907 .priority = NF_IP_PRI_SELINUX_LAST,
4908 };
4909
4910 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4911
4912 static struct nf_hook_ops selinux_ipv6_op = {
4913 .hook = selinux_ipv6_postroute_last,
4914 .owner = THIS_MODULE,
4915 .pf = PF_INET6,
4916 .hooknum = NF_IP6_POST_ROUTING,
4917 .priority = NF_IP6_PRI_SELINUX_LAST,
4918 };
4919
4920 #endif /* IPV6 */
4921
4922 static int __init selinux_nf_ip_init(void)
4923 {
4924 int err = 0;
4925
4926 if (!selinux_enabled)
4927 goto out;
4928
4929 printk(KERN_INFO "SELinux: Registering netfilter hooks\n");
4930
4931 err = nf_register_hook(&selinux_ipv4_op);
4932 if (err)
4933 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4934
4935 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4936
4937 err = nf_register_hook(&selinux_ipv6_op);
4938 if (err)
4939 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4940
4941 #endif /* IPV6 */
4942
4943 out:
4944 return err;
4945 }
4946
4947 __initcall(selinux_nf_ip_init);
4948
4949 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4950 static void selinux_nf_ip_exit(void)
4951 {
4952 printk(KERN_INFO "SELinux: Unregistering netfilter hooks\n");
4953
4954 nf_unregister_hook(&selinux_ipv4_op);
4955 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4956 nf_unregister_hook(&selinux_ipv6_op);
4957 #endif /* IPV6 */
4958 }
4959 #endif
4960
4961 #else /* CONFIG_NETFILTER */
4962
4963 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4964 #define selinux_nf_ip_exit()
4965 #endif
4966
4967 #endif /* CONFIG_NETFILTER */
4968
4969 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4970 int selinux_disable(void)
4971 {
4972 extern void exit_sel_fs(void);
4973 static int selinux_disabled = 0;
4974
4975 if (ss_initialized) {
4976 /* Not permitted after initial policy load. */
4977 return -EINVAL;
4978 }
4979
4980 if (selinux_disabled) {
4981 /* Only do this once. */
4982 return -EINVAL;
4983 }
4984
4985 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
4986
4987 selinux_disabled = 1;
4988 selinux_enabled = 0;
4989
4990 /* Reset security_ops to the secondary module, dummy or capability. */
4991 security_ops = secondary_ops;
4992
4993 /* Unregister netfilter hooks. */
4994 selinux_nf_ip_exit();
4995
4996 /* Unregister selinuxfs. */
4997 exit_sel_fs();
4998
4999 return 0;
5000 }
5001 #endif
5002
5003